

Conda-build documentation

Conda-build contains commands and tools to build your own
conda packages.
It also provides helpful tools to constrain or pin
versions in recipes. Building a conda package requires
installing conda-build and
creating a conda recipe.
You then use the conda build command to build the conda package
from the conda recipe.

You can build conda packages from a variety of source code
projects, most notably Python. For help packing a Python project,
see the packaging.python.org tutorial [https://packaging.python.org/en/latest/tutorials/packaging-projects].

OPTIONAL: If you are planning to upload your packages to
anaconda.org [https://anaconda.org], you will need to make an anaconda.org account and
install the Anaconda client [https://docs.anaconda.com/anaconda/install/].

	Installing and updating conda-build

	Concepts

	User guide

	Resources

	Release notes

	Contributing to conda-build

Installing and updating conda-build

To enable building conda packages:

	install conda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html]

	install conda-build

	update conda and conda-build

Way of working

For proper functioning, it is strongly recommended to install conda-build in
the conda base environment. Not doing so may lead to problems.

Explanation

With earlier conda / conda-build versions, it was possible to build packages in
your own defined environment, e.g. my_build_env. This was partly driven by
the general conda recommendation not to use the base env for normal work;
see Conda Managing Environments [https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-environments] for instance. However, conda-build is better
viewed as part of the conda infrastructure, and not as a normal package. Hence,
installing it in the base env makes more sense. More information:
Must conda-build be installed in the base envt? [https://github.com/conda/conda-build/issues/4995]

Other considerations

	An installation or update of conda-build (in fact, of any package) in the base
environment needs to be run from an account with the proper permissions
(i.e., the same permissions as were used to install conda and the base env in
the first place via the Miniconda or Anaconda installers). For example, on
Windows that might mean an account with administrator privileges.

	conda-verfiy [https://github.com/conda/conda-verify] is a useful package that can also be added to the base
environment in order to remove some warnings generated when conda-build runs.

	For critical CI/CD projects, you might want to pin to an explicit (but recent)
version of conda-build, i.e. only update to a newer version of conda-build
and conda once they have been first verified "offline".

Installing conda-build

To install conda-build, in your terminal window or an Anaconda Prompt, run:

conda activate base
conda install conda-build

Updating conda and conda-build

Keep your versions of conda and conda-build up to date to
take advantage of bug fixes and new features.

To update conda and conda-build, in your terminal window or an Anaconda Prompt, run:

conda activate base
conda update conda
conda update conda-build

For release notes, see the conda-build GitHub
page [https://github.com/conda/conda-build/releases].

Concepts

	Conda channels

	Channels and generating an index

	Conda-build recipes

	Package naming conventions

What is a “package”?

	A package is anything you install using your package manager.

	A "conda package" is a compressed tarball that contains

	the module to be installed

	information on how to install the package

	You can use conda-build to build a conda package.

What about channels?

	Channels contain packages.

	They conform to a standard structure and contain an index of available packages.

	An index of the available packages can be generated by running:

$ conda index <path to channel>

	conda is able to install from channels and uses the indexes in the channel to
solve for requirements and dependencies.

Conda channels

Conda-build supports standard conda channel [https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html] behavior.

Identical channel and package name problem

If the channel and package name are identical, it's possible to encounter a build problem if the short channel name is used.

Let's say your Anaconda.org username or an organization name is example. And suppose you created a package example, whose files' layout is similar to:

setup.py
conda/meta.yaml
example/

If your build depends on some other packages inside your channel, you will need to add -c example, however, the following code:

conda-build ./conda/ -c example

will fail with the following error message (the path will be different):

requests.exceptions.HTTPError: 404 Client Error: None for url:
file:///path/to/your/local/example/noarch/repodata.json
[...]
The remote server could not find the noarch directory for the requested channel with
url: file:///path/to/your/local/example/noarch/repodata.json
[...]
As of conda 4.3, a valid channel must contain a `noarch/repodata.json` and
associated `noarch/repodata.json.bz2` file, even if `noarch/repodata.json`
is empty. please request that the channel administrator create
`noarch/repodata.json` and associated `noarch/repodata.json.bz2` files.

This happens because conda-build will consider the directory ./example/ in your project
as a channel. This is by design due to conda's CI servers, where the build path can be long,
complicated, and not predictable prior to build.

There are several ways to resolve this issue.

	Use the URL of the desired channel:

conda-build ./conda/ -c https://conda.anaconda.org/example/

	Run the build from inside the conda recipe directory:

cd conda
conda-build . -c example

	Use the label specification workaround:

conda-build ./conda/ -c example/label/main

which technically is the same as -c example, since main is the default label,
but now it won't mistakenly find a channel example/label/main on the local filesystem.

Channels and generating an index

Channel layout

.
├── channeldata.json
├── linux-32
| ├── repodata.json
│ └── package-0.0.0.tar.bz2
├── linux-64
| ├── repodata.json
│ └── package-0.0.0.tar.bz2
├── win-64
| ├── repodata.json
│ └── package-0.0.0.tar.bz2
├── win-32
| ├── repodata.json
│ └── package-0.0.0.tar.bz2
├── osx-64
| ├── repodata.json
│ └── package-0.0.0.tar.bz2
...

Parts of a channel

	channeldata.json contains metadata about the channel, including:

	What subdirs the channel contains.

	What packages exist in the channel and what subdirs they are in.

	Subdirs are associated with platforms. For example, the linux-64 subdir contains
packages for linux-64 systems.

	repodata.json contains an index of the packages in a subdir. Each subdir will
have its own repodata.

	Channels have packages as tarballs under corresponding subdirs.

channeldata.json

{
 "channeldata_version": 1,
 "packages": {
 "super-fun-package": {
 "activate.d": false,
 "binary_prefix": false,
 "deactivate.d": false,
 "home": "https://github.com/Home/super-fun-package",
 "license": "BSD",
 "post_link": false,
 "pre_link": false,
 "pre_unlink": false,
 "reference_package": "win-64/super-fun-package-0.1.0-py310_0.tar.bz2",
 "run_exports": {},
 "subdirs": [
 "win-64"
],
 "summary": "A fun package! Open me up for rainbows",
 "text_prefix": false,
 "version": "0.1.0"
 },
 "subdirs": [
 "win-64",
 ...
]
}

repodata.json

{
 "packages": {
 "super-fun-package-0.1.0-py310_0.tar.bz2": {
 "build": "py37_0",
 "build_number": 0,
 "depends": [
 "some-depends"
],
 "license": "BSD",
 "md5": "a75683f8d9f5b58c19a8ec5d0b7f796e",
 "name": "super-fun-package",
 "sha256": "1fe3c3f4250e51886838e8e0287e39029d601b9f493ea05c37a2630a9fe5810f",
 "size": 3832,
 "subdir": "win-64",
 "timestamp": 1530731681870,
 "version": "0.1.0"
 },
 ...
 }

How an index is generated

For each subdir:

	Look at all the packages that exist in the subdir.

	Generate a list of packages to add/update/remove.

	Remove all packages that need to be removed.

	For all packages that need to be added/updated:

	Extract the package to access metadata, including full package name,
file modification time (mtime), size, and index.json.

	Aggregate package metadata to repodata collection.

	Apply repodata hotfixes (patches).

	Compute and save the reduced current_index.json index.

Example: Building a channel

To build a local channel and put a package in it, follow the directions below:

	Make the channel directory.

$ mkdir local-channel
$ cd local-channel

	Now, download your favorite package. We'll use SciPy in our example. The next steps depend on your platform:

	Windows

$ mkdir win-64
$ curl -L https://anaconda.org/anaconda/scipy/1.9.1/download/win-64/scipy-1.9.1-py310h86744a3_0.tar.bz2 -o win-64\scipy-1.9.1-py310h86744a3_0.tar.bz2

	Linux

	Most Linux systems come with curl pre-installed. Let's install it if you don't already have it.

	Check if you have curl:

$ which curl

	If curl is not found, then install it:

$ conda install curl

	Create a local copy of the package you want to include in your channel:

$ mkdir linux-64
$ curl -L https://anaconda.org/anaconda/scipy/1.9.1/download/linux-64/scipy-1.9.1-py310hd5efca6_0.tar.bz2 -o linux-64\scipy-1.9.1-py310hd5efca6_0.tar.bz2

	macOS, Intel chip

$ mkdir osx-64
$ curl -L https://anaconda.org/anaconda/scipy/1.9.1/download/osx-64/scipy-1.9.1-py310h09290a1_0.tar.bz2 -o osx-64/scipy-1.9.1-py310h09290a1_0.tar.bz2

	macOS, Apple chip

$ mkdir osx-arm64
$ curl -L https://anaconda.org/anaconda/scipy/1.9.1/download/osx-arm64/scipy-1.9.1-py310h20cbe94_0.tar.bz2 -o osx-arm64/scipy-1.9.1-py310h20cbe94_0.tar.bz2

	Other

To find the latest SciPy on a platform not included in the list above, go to the Anaconda Packages file list for SciPy [https://anaconda.org/anaconda/scipy/files].

	Run a conda index. This will generate both channeldata.json for the channel and
repodata.json for the linux-64 and osx-64 subdirs, along with some other files:

$ conda index .

	Check your work by searching the channel:

$ conda search -c file:/<path to>/local-channel scipy

SciPy should be available in several channels, including local-channel.

More details behind the scenes

Caching package metadata

Caching utilizes the existing repodata.json file if it exists. Indexing checks
which files to update based on which files are new, removed, or changed since
the last repodata.json was created. When a package is new or changed, its
metadata is extracted and cached in the subdir to which the package belongs. The
subfolder is the .cache folder. This folder has one file of interest:
stat.json, which contains results from the stat command for each file. This
is used for understanding when a file has changed and needs to be updated. In
each of the other subfolders, the extracted metadata file for each package is
saved as the original package name, plus a .json extension. Having these
already extracted can save a lot of time in fully re-creating the index, should
that be necessary.

An aside: one design goal of the .conda package format was to make indexing as
fast as possible. To achieve this, the .conda format separates metadata from the
actual package contents. Where the old .tar.bz2 container required extracting
the entire package to obtain the metadata, the new package format allows
extraction of metadata without touching the package contents. This allows
indexing speed to be independent of the package size. Large .tar.bz2 packages
can take a very long time to extract and index.

It is generally never necessary to manually alter the cache. To force an
update/rescan of all cached packages, you can delete the .cache folder, or you
can delete just the .cache/stat.json file. Ideally, you could remove only one
package of interest from the cache, but that functionality does not currently
exist.

Repodata patching

Package repodata is bootstrapped from the index.json file within packages.
Unfortunately, that metadata is not always correct. Sometimes a version bound
needs to be added retroactively. The process of altering repodata from the
values derived from package index.json files is called "hotfixing." Hotfixing is
tricky, as it has the potential to break environments that have worked, but it
is also sometimes necessary to fix environments that are known not to work.

Repodata patches generated from a python script

On your own server, you're probably fine to run arbitrary python code that you
have written to apply your patches. The advantage here is that the patches are
generated on the fly every time the index is generated. That means that any new
packages that have been added since the patch python file was last committed
will be picked up and will have hotfixes applied to them where appropriate.

Anaconda applies hotfixes by providing a python file to conda index that has
logic on how to alter metadata. Anaconda's repository of hotfixes is at
https://github.com/AnacondaRecipes/repodata-hotfixes

Repodata patches applied from a JSON file

Unfortunately, you can't always run your python code directly - other people who
host your patches may not allow you to run code. What you can do instead is
package the patches as .json files. These will clobber the entries in the
repodata.json when they are applied.

This is the approach that conda-forge has to take, for example. Their patch
creation code is here:
https://github.com/conda-forge/conda-forge-repodata-patches-feedstock/tree/main/recipe

What that code does is to download the current repodata.json, then runs their
python logic to generate the patch JSON file. Those patches are placed into a
location where Anaconda's mirroring tools will find them and apply them to
conda-forge's repodata.json at mirroring time.

The downside here is that this JSON file is only as new as the last time that
the repodata-patches feedstock last generated a package. Any new packages that
have been added to the index in the meantime will not have any hotfixes applied
to them, because the hotfix JSON file does not know about those files.

Trimming to "current" repodata

The number of packages available is always growing. That means conda is always
having to do more and more work. To slow down this growth, in conda 4.7, we
added the ability to have alternate repodata.json files that may represent a
subset of the normal repodata.json. One in particular is
current_repodata.json, which represents:

	the latest version of each package

	any earlier versions of dependencies needed to make the latest versions satisfiable

current_repodata.json also keeps only one file type: .conda where it is
available, and .tar.bz2 where only .tar.bz2 is available.

For Anaconda's defaults "main" channel, the current_repodata.json file is
approximately 1/7 the size of repodata.json. This makes downloading the repodata
faster, and it also makes loading the repodata into its python representation
faster.

For those interested in how this is achieved, please refer to the code at
https://github.com/conda/conda-build/blob/90a6de55d8b9e36fc4a8c471b566d356e07436c7/conda_build/index.py#L695-L737

Conda-build recipes

To enable building conda packages [https://conda.io/projects/conda/en/latest/user-guide/concepts/packages.html], install and update conda
and conda-build.

Building a conda package requires a recipe. A conda-build recipe
is a flat directory that contains the following files:

	meta.yaml — A file that contains all the metadata in the
recipe. Only package/name and package/version are
required.

	build.sh — The script that installs the files for the
package on macOS and Linux. It is executed using the bash
command.

	bld.bat — The build script that installs the files for the
package on Windows. It is executed using cmd.

	run_test.[py,pl,sh,bat] — An optional Python test file, a
test script that runs automatically if it is part of the recipe.

	Optional patches that are applied to the source.

	Other resources that are not included in the source and cannot
be generated by the build scripts. Examples are icon files,
readme files and build notes.

Review Defining metadata (meta.yaml) to see a breakdown of the
components of a recipe, including:

	Package name

	Package version

	Descriptive metadata

	Where to obtain source code

	How to test the package

Tip

When you use the conda skeleton command,
the first 3 files — meta.yaml, build.sh, and
bld.bat — are automatically generated for you.

Conda-build process

Conda-build performs the following steps:

	Reads the metadata.

	Downloads the source into a cache.

	Extracts the source into the source directory.

	Applies any patches.

	Re-evaluates the metadata, if source is necessary to fill any
metadata values.

	Creates a build environment and then installs the build
dependencies there.

	Runs the build script. The current working directory is the
source directory with environment variables set. The build
script installs into the build environment.

	Performs some necessary post-processing steps, such as adding a shebang
and rpath.

	Creates a conda package containing all the files in the build
environment that are new from step 5, along with the necessary
conda package metadata.

	Tests the new conda package — if the recipe includes tests — by doing the following:

	Deletes the build environment and source directory to ensure that the new conda package does not inadvertantly depend on artifacts not included in the package.

	Creates a test environment with the package and its dependencies.

	Runs the test scripts.

The archived conda-recipes [https://github.com/continuumio/conda-recipes] repo, AnacondaRecipes [https://github.com/AnacondaRecipes/aggregate] aggregate repo,
and conda-forge [https://github.com/conda-forge/feedstocks/tree/main/feedstocks] feedstocks repo contain example recipes for many conda packages.

Caution

All recipe files, including meta.yaml and build
scripts, are included in the final package archive that is
distributed to users. Be careful not to put sensitive information
such as passwords into recipes where it could be made public.

The conda skeleton command can help to make
skeleton recipes for common repositories, such as PyPI [https://pypi.python.org/pypi].

Deep dive

Let's take a closer look at how conda-build uses a recipe
to create a package.

Templates

When you build a conda package, conda-build renders the package
by reading a template in the meta.yaml. See Templating with Jinja.

Templates are filled in using your conda build config,
which shows the matrix of things to build against. The
conda build config determines how many builds it has to do.
For example, defining a conda_build_config.yaml of the form
and filling it defines a matrix of 4 packages to build:

foo:
 - 1.0
 - 2.0
bar:
 - 1.2.0
 - 1.4.0

After this, conda-build determines what the outputs will be.
For example, if your conda build config indicates that you
want 2 different versions of Python, conda-build will show
you the rendering for each Python version.

Environments

To build the package, conda-build will make an environment for you
and install all of the build and run dependencies in that environment.
Conda-build will indicate where you can successfully build the package.
The prefix will take the form:

<file path to conda>/conda-bld/<package name and string>/h_env_placeholder…

Conda-build downloads your package source and then builds the conda
package in the context of the build environment. For example, you may
direct it to download from a Git repo or pull down a tarball from
another source. See the Source section for more information.

What conda-build puts into a package depends on what you put into
the build, host, or run sections. See the Requirements section
for more information.
Conda-build will use this information to identify dependencies to
link to and identify the run requirements for the package. This allows
conda-build to understand what is needed to install the package.

Building

Once the content is downloaded, conda-build runs the build step.
See the Build section for more information.
The build step runs a script. It can be one that you provided.
See the Script section for more information on this topic.

If you do not define the script section, then you can create a
build.sh or a bld.bat file to be run.

Prefix replacement

The build environment is created in a placeholder prefix.
When the package is bundled, the prefix is set to a "dummy" prefix.
Once conda is ready to install the package, it rewrites the dummy
prefix with the final one.

Testing

Once a package is built, conda-build has the ability to test it. To do this, it
creates another environment and installs the conda package. The form
of this prefix is:

<file path to conda>/conda-bld/<package name + string>/_test_env_placeholder…

At this point, conda-build has all of the information from meta.yaml about
what its runtime dependencies are, so those dependencies are installed
as well. This generates a test runner script with a reference to the
testing meta.yaml that is created. See the Test section for
more information. That file is run for testing.

Output metadata

After the package is built and tested, conda-build cleans up the
environments created during prior steps and outputs the metadata. The recipe for
the package is also added in the output metadata. The metadata directory
is at the top level of the package contents in the info directory.
The metadata contains information about the dependencies of the
package and a list of where all of the files in the package go when
it is installed. Conda reads that metadata when it needs to install.

Running conda install causes conda to:

	Reach out to the repodata containing the dependencies for the package(s) you are installing.

	Determine the correct dependencies.

	Install a list of additional packages determined by those dependencies.

	For each dependency package being installed:
#. Unpack the tarball to look at the information contained within.
#. Verify the file based on metadata in the package.
#. Go through each file in the package and put it in the right location.

For additional information on conda install, please visit the conda documentation deep dive [https://docs.conda.io/projects/conda/en/stable/dev-guide/deep-dives/install.html] page on that topic.

Package naming conventions

To facilitate communication and documentation, conda observes the
package naming conventions listed below:

	Package name
	The name of a package, without any reference to a particular
version. Conda package names are normalized and they may contain
only lowercase alpha characters, numeric digits, underscores,
hyphens, or dots. In usage documentation, these are referred to
by package_name.

	Package version
	A version number or string, often similar to X.Y or
X.Y.Z, but it may take other forms as well.

	Build string
	An arbitrary string that identifies a particular build of a
package for conda. It may contain suggestive mnemonics, but
these are subject to change, and you should not rely on it or try
to parse it for any specific information.

	Canonical name
	The package name, version, and build string joined together by
hyphens: name-version-buildstring. In usage documentation, these
are referred to by canonical_name.

	Filename
	Conda package filenames are canonical names, plus the suffix
.tar.bz2 or .conda.

The following figure compares a canonical name to a filename:

[image: ../_images/conda_names.png]

Conda package naming

Conda supports both .conda and .tar.bz2 package extensions. The .conda
format is generally smaller and more efficient than .tar.bz2 packages.
Read our blog post [https://www.anaconda.com/understanding-and-improving-condas-performance/] about it to learn more.

The build string is created as the package is built. Things that
contribute to it are the variants specified either by the command
line or the configuration from the conda_build_config.yaml, and the
build number in the recipe. If there are no variants,
then the build string is the build number that is specified in the recipe.

Package specification

A package name together with a package version — which may be
partial or absent — joined by an equal sign.

Examples:

	python=2.7.3

	python=2.7

	python

In usage documentation, these are referred to by package_spec.

User guide

Welcome to the conda-build user guide. Here you can find
tutorials and recipes as well as information about environment
variables and wheel files.

Tutorials

The tutorials will guide you through
how to build conda packages — whether you're creating a
package with compilers, using conda skeleton, creating from
scratch, or building R packages using skeleton CRAN.

Recipes

Conda-build uses recipes to create conda packages.
We have guides on debugging conda recipes, sample recipes for you to use, and
information on how to build a package without a recipe.

Environment variables

Use our environment variables guide
to understand which environment variables are available, set,
and inherited, and how they affect different processes.

Wheel files

The user guide includes information about
wheel files and how to build conda
packages from them.

Getting started

Before starting the tutorials, consider reviewing
how to install and update conda-build
and conda-build concepts.

You may also find our resources
collection helpful.

Prerequisites

Before starting the tutorials, you need to install:

	Miniconda or Anaconda [https://docs.anaconda.com/anaconda/install/]

	conda-build

	Git

The most straightforward way to do this is to install Miniconda or
Anaconda, which contain conda, and then use conda to install conda-build
and Git. Make sure you install these packages into a new environment
and not your base environment.:

conda create -n my-conda-build-environment conda-build git

Tutorial submissions

Have an idea for a tutorial? You can submit your suggestions
to Anaconda by emailing us at documentation@anaconda.com.

To create your own tutorials, follow the
writing style guide
and tutorial template.

Tutorials

Before starting the tutorials, review the
Getting started guide.

	Building conda packages

	Building conda packages with conda skeleton

	Building conda packages from scratch

	Building R packages with skeleton CRAN

Building conda packages

Overview

This tutorial describes how to use conda-build to create conda
packages on Windows, macOS, and Linux using the examples of
SEP and GDAL. Additional Windows-specific instructions are provided in the
Toolkit section.

The final built packages from this tutorial are available on
anaconda.org [https://anaconda.org] (formerly known as Anaconda Cloud):

	SEP [https://anaconda.org/wwarner/sep/files]

	GDAL [https://anaconda.org/conda-forge/gdal/files]

This tutorial also describes writing recipes. You can see the
final SEP recipe [https://github.com/conda-forge/sep-feedstock]
and the GDAL recipe [https://github.com/conda-forge/gdal-feedstock]
on GitHub in the conda-build documentation repository [https://github.com/conda/conda-build/tree/main/docs].

Who is this for?

This tutorial is for Windows, macOS, and Linux users who wish to
build more complex conda packages. This tutorial will involve building
scientific packages, which require compilers for several different
Python versions.

Before you start

Before you start, make sure you have installed:

	Conda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html]

	Conda-build

	Any compilers you want

Toolkit

Microsoft Visual Studio

In the standard practices of the conda developers, conda packages
for different versions of Python are each built with their own
version of Visual Studio (VS):

	Python 2.7 packages with Visual Studio 2008

	Python 3.4 packages with VS 2010

	Python 3.5 packages with VS 2015, (default) 2017

	Python 3.6 packages with VS 2015, (default) 2017

	Python 3.7 packages with VS 2015, (default) 2017

Using these versions of VS to build packages for each of these
versions of Python is also the practice used for the official
python.org builds of Python. Currently VS 2008 and VS 2010 are
available only through resellers, while VS 2015 and VS 2017 can
be purchased online from Microsoft. Note there is also a community
edition of VS 2015 and VS 2017 which may be used.

Alternatives to Microsoft Visual Studio

There are free alternatives available for each version of the VS
compilers:

	Instead of VS 2008, it is often possible to substitute the
free Microsoft Visual C++ Compiler for Python 2.7 [https://www.microsoft.com/en-us/download/details.aspx?id=44266].

	Instead of VS 2010, it is often possible to substitute the
free Microsoft Windows SDK for Windows 7 and .NET Framework 4 [https://www.microsoft.com/en-us/download/details.aspx?id=8279].

	Make sure that you also install VS 2010 Service Pack 1 (SP1) [https://www.microsoft.com/en-us/download/details.aspx?id=34677].

	Due to a bug in the VS 2010 SP1 installer, the compiler tools
may be removed during installation of VS 2010 SP1. They can be
restored as described in Microsoft Visual C++ 2010 Service Pack
1 Compiler Update for the Windows SDK 7.1 [https://www.microsoft.com/en-us/download/details.aspx?id=4422].

	Visual Studio 2015 has a full-featured, free Community edition [https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx]
for academic research, open source projects, and certain other
use cases.

The MS Visual C++ Compiler for Python 2.7 and the Microsoft
Windows SDK for Windows 7 and .NET Framework 4 are both
reasonably well tested. Conda-build is carefully tested to
support these configurations, but there are known issues with the
CMake build tool and these free VS 2008 and 2010 alternatives.
In these cases, you should prefer the "NMake Makefile" generator,
rather than a Visual Studio solution generator.

Windows versions

You can use any recent version of Windows. These examples were
built on Windows 10.

Other tools

Some environments initially lack tools such as patch or Git
that may be needed for some build workflows.

On Windows, these can be installed with conda using the following command:

$ conda install git m2-patch

On macOS and Linux, replace m2-patch with patch.

Developing a build strategy

Conda recipes are typically built with a trial-and-error method.
Sometimes, the first attempt to build a package will fail with compiler
or linker errors, often caused by missing dependencies. The person
writing the recipe then examines these errors and modifies the
recipe to include the missing dependencies, usually as part of the
meta.yaml file. Then the recipe writer attempts the build
again and, after a few of these cycles of trial and error, the
package builds successfully.

Building with a Python version different from your Miniconda installation

Miniconda2 and Miniconda3 can each build packages for either
Python 2 or Python 3 simply by specifying the version you want.
Miniconda2 includes only Python 2 and Miniconda3 includes only
Python 3.

Installing only one makes it easier to keep track of
the builds, but it is possible to have both installed on the same
system at the same time. If you have both installed, use the
where command on Windows, or the which command on macOS or
Linux, to see which version comes first on PATH, since this is
the one you will be using:

$ where python

To build a package for a Python version other than the one in
your Miniconda installation, use the --python option in the
conda-build command. For example, to build a Python 3.5 package
with Miniconda2:

$ conda-build recipeDirectory --python=3.5

Note

Replace recipeDirectory with the name and path of your
recipe directory.

Automated testing

After the build, if the recipe directory contains a test file. This test
file is named run_test.bat on Windows, run_test.sh on macOS or Linux,
or run_test.py on any platform. The file runs to test the package
and any errors that surface are reported. After seeing "check the output,"
you can also test if this package was built by using the command:

$ conda build --test <path to package>.tar.bz2

Note

Use the "test" section of the meta.yaml file
to move data files from the recipe directory to the test directory when
the test is run.

Building a SEP package with conda and Python 2 or 3

The SEP documentation [https://sep.readthedocs.io] states
that SEP runs on Python 2 and 3, and it depends only on NumPy.
Searching for SEP on PyPI shows that there is already a PyPI
package for SEP [https://pypi.python.org/pypi/sep].

Because a PyPI package for SEP already exists, the
conda skeleton command can make a skeleton or outline of a
conda recipe based on the PyPI package. The recipe outline
can then be completed manually and conda can build a conda package
from the completed recipe.

Install Visual Studio

If you have not already done so, install the appropriate
version of Visual Studio:

	For Python 3 — Visual Studio 2017:

	Choose the "Custom install" option.

	Under Programming Languages, choose to install Visual C++.

	For Python 2 — Visual Studio 2008:

	Choose the "Custom install" option.

	Choose to install X64 Compilers and Tools. Install Service Pack 1.

Make a conda skeleton recipe

	Run the skeleton command:

$ conda skeleton pypi sep

The skeleton command installs into a newly-created
directory called sep.

	Go to the sep directory to view the files:

$ cd sep

You will see that one skeleton file has been created: meta.yaml

Edit the skeleton files

For this package, bld.bat and build.sh need no changes.
You need to edit the meta.yaml file to add the dependency on
NumPy and add an optional test for the built package by importing
it. For more information about what can be specified in meta.yaml,
see Defining metadata (meta.yaml).

	In the requirements section of the meta.yaml file, add a
line that adds NumPy as a requirement to build the package.

	Add a second line to list NumPy as a requirement to run the
package.

	Set the NumPy version to the letters x.x.

	Make sure the new line is aligned with - python on the
line above it, so as to ensure proper yaml format.

EXAMPLE:

requirements:
 host:
 - python
 - numpy x.x

 run:
 - python
 - numpy x.x

Notice that there are two types of requirements, host and run
(build is another valid parameter, but is not shown in this example).
host represents packages that need to be specific to the target
platform when the target platform is not necessarily the same as
the native build platform. run represents the dependencies that
should be installed when the package is installed.

Note

Using the letters x.x instead of a specific version
such as 1.11 pins NumPy dynamically, so that the actual
version of NumPy is taken from the build command. Currently, NumPy
is the only package that can be pinned dynamically. Pinning is
important for SEP because this package uses NumPy's C API through
Cython. That API changes between NumPy versions, so it is
important to use the same NumPy version at runtime that was used
at build time.

Optional: Add a test for the built package

Adding this optional test will test the package at the end of the
build by making sure that the Python statement import sep
runs successfully:

	Add - sep, checking to be sure that the indentation is
consistent with the rest of the file:

test:
 # Python imports
 imports:
 - sep

Build the package

Build the package using the recipe you just created:

$ conda build sep

Check the output

	Check the output to make sure that the build completed
successfully. The output contains the location of the final
package file and a command to upload the package to Anaconda
Cloud. The output will look something like:

Automatic uploading is disabled
If you want to upload package(s) to anaconda.org later, type:
anaconda upload /Users/builder/miniconda3/conda-bld/osx-64/sep-1.0.3-np111py36_0.tar.bz2
To have conda build upload to anaconda.org automatically, use
$ conda config --set anaconda_upload yes
anaconda_upload is not set. Not uploading wheels: []
##
Resource usage summary:
Total time: 0:00:56.4
CPU usage: sys=0:00:00.7, user=0:00:07.0
Maximum memory usage observed: 220.1M
Total disk usage observed (not including envs): 3.9K
##
Source and build intermediates have been left in /Users/builder/miniconda3/conda-bld.
There are currently 437 accumulated.
To remove them, you can run the ```conda build purge``` command

	If there are any linker or compiler errors, modify the recipe
and build again.

Building a GDAL package with conda and Python 2 or 3

To begin, install Anaconda or Miniconda and conda-build. If you are using a
Windows machine, also use conda to install Git and m2-patch.

$ conda install git
$ conda install m2-patch

Because GDAL includes C and C++, building it on Windows requires Visual Studio.
This procedure describes how to build a package with Python 2 or
Python 3. Follow the instructions for the version with which you want
to build.

To build a GDAL package:

	Install Visual Studio:

	For Python 3, install Visual Studio 2017 [https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2017]:

	Choose "Custom install".

	Under "Programming Languages", select workloads that come from Visual
Studio so that you can choose the Desktop Development with C++ and
Universal Platform C.

	For Python 2, install Visual Studio 2008 [http://download.microsoft.com/download/E/8/E/E8EEB394-7F42-4963-A2D8-29559B738298/VS2008ExpressWithSP1ENUX1504728.iso]:

	Choose "Custom install".

	Choose to install X64 Compilers and Tools.

	Install Visual Studio 2008 Service Pack 1.

	Install Git.
Because the GDAL package sources are retrieved from GitHub
for the build, you must install Git:

$ conda install git m2-patch conda-build

	Get gdal-feedstock. For the purpose of this tutorial, we will be using a recipe from Anaconda:

$ git clone https://github.com/AnacondaRecipes/gdal-feedstock.git

	Use conda-build to build the gdal-feedstock:

$ conda build gdal-feedstock

	Check the output to make sure that the build completed
successfully. The output also contains the location of the
final package file and a command to upload the package to
Cloud. For this package in particular, there should be two
packages outputted: libgdal and GDAL.

	In case of any linker or compiler errors, modify the recipe
and run it again.

Let's take a closer look at what's happening inside the gdal-feedstock,
specifically in the meta.yaml file.

The first interesting bit happens under source in the patches
section:

patches:
 # BUILT_AS_DYNAMIC_LIB.
 - 0001-windowshdf5.patch
 # Use multiple cores on Windows.
 - 0002-multiprocessor.patch
 # disable 12 bit jpeg on Windows as we aren't using internal jpeg
 - 0003-disable_jpeg12.patch

This section is basically saying "when this package is being built on a Windows
platform, apply the following patch files". Notice that the patch files
are in the patches directory of the recipe. These patches will only
be applied to Windows since the # [win] selector is applied to each
of the patch entries. For more about selectors, see
Preprocessing selectors.

In the requirements section, notice how there are both a build and
host set of requirements (run is another valid parameter, but is
not shown in this example). For this recipe, all the compilers required to
build the package are listed in the build requirements.
Normally, this section will list out packages required to build the package.
GDAL requires CMake on Windows, as well as C compilers.
Notice that the C compilers are pulled into the recipe using the syntax
{{ compiler('c') }}. Since conda-build 3, conda-build defines a jinja2
function compiler() to specify compiler packages dynamically. So, using
the compiler('c') function in a conda recipe will pull in the correct
compiler for any build platform. For more information about compilers with
conda-build see compiler-tools.

Also note that the compilers used by conda-build can be specified using
a conda_build_config.yaml. For more information about how to do that,
see Using your customized compiler package with conda-build 3.

Notice that this package has an outputs section.
This section is a list of packages to output as a result of building
this package. In this case, the packages libgdal and GDAL will be built.
Similar to a normal recipe, the outputs can have build scripts,
tests scripts, and requirements specified.
For more information on how outputs work, see the Outputs section.

Now, let's try to build GDAL against some build matrix.
We will specify building against Python 3.7 and 3.5 using a conda-build config.
Add the following to your conda_build_config.yaml:

python:
 - 3.7
 - 3.5

Now you can build GDAL using conda-build with the command:

$ conda build gdal-feedstock

Or explicitly set the location of the conda-build variant matrix:

$ conda build gdal-feedstock --variant-config-file conda_build_config.yaml

If you want to know more about build variants and conda_build_config.yaml,
including how to specify a config file and what can go into it, take a look
at Creating conda-build variant config files.

Building conda packages with conda skeleton

Tip

We recommend Grayskull [https://github.com/conda/grayskull], a newer alternative to conda-skeleton,
to generate conda recipes for PyPI packages. Please check out their project page on GitHub
for more information.

Overview

This tutorial describes how to quickly build a conda package for
a Python module that is already available on PyPI.

In the first procedure, building a simple package, you build a
package that can be installed in any conda environment of the
same Python version as your root environment. The remaining
optional procedures describe how to build packages for other
Python versions and other architectures, as well as how to upload
packages to your Anaconda.org account.

Note

You may consider using Docker [https://www.docker.com/] to run the tutorial.

Who is this for?

This tutorial is for Windows, macOS, and Linux users who wish to
build a conda package from a PyPI package. No prior knowledge of
conda-build or conda recipes is required.

Before you start

Before you start, check the Prerequisites.

Building a simple package with conda skeleton pypi

The conda skeleton command picks up the PyPI package metadata
and prepares the conda-build recipe. The final step is to
build the package itself and install it into your conda environment.

It is easy to build a skeleton recipe for any Python package that
is hosted on PyPI, the official third-party software repository
for the Python programming language.

In this section you are going to use conda skeleton to generate a
conda recipe, which informs conda-build about where the source
files are located and how to build and install the package.

You'll be working with a package named Click [https://github.com/pallets/click] that is hosted on PyPI.
Click is a tool for exposing Python functions to create command line
interfaces.

First, in your user home directory, run the conda skeleton
command:

conda skeleton pypi click

The two arguments to conda skeleton are the hosting location,
in this case pypi, and the name of the package.

This creates a directory named click and creates one
skeleton file in that directory: meta.yaml. Many other files can be added
there as necessary, such as build.sh and bld.bat, test scripts, or
anything else you need to build your software. For simple, pure-Python recipes,
these extra files are unnecessary and the build/script section in the meta.yaml
is sufficient. Use the ls command on macOS or Linux or the dir command on
Windows to verify that this file has been created. The meta.yaml file has been
populated with information from the PyPI metadata and in many cases will not
need to be edited.

Files in the folder with meta.yaml are collectively referred to as the "conda-build recipe":

	meta.yaml---Contains all the metadata in the recipe. Only
the package name and package version sections are
required---everything else is optional.

	bld.bat---Windows commands to build the package.

	build.sh---macOS and Linux commands to build the package.

Now that you have the conda-build recipe ready, you can use conda-build to create the package:

conda-build click

When conda-build is finished, it displays the exact path and
filename of the conda package. See Troubleshooting a sample issue if the
conda-build command fails.

Windows example file path:

C:\Users\jsmith\miniconda\conda-bld\win-64\click-7.0-py37_0.tar.bz2

macOS example file path:

/Users/jsmith/miniconda/conda-bld/osx-64/click-7.0-py37_0.tar.bz2

Linux example file path:

/home/jsmith/miniconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2

Note

Your path and filename will vary depending on your
installation and operating system. Save the path and filename
information for the next step.

Now you can install your newly built package in your conda
environment by using the use-local flag:

conda install --use-local click

Notice that Click is coming from the local conda-build channel.

(click) 0561:~ jsmith$ conda list
packages in environment at /Users/Jsmith/miniconda/envs/click:
Name Version Build Channel
ca-certificates 2019.1.23 0
certifi 2019.3.9 py37_0
click 7.0 py37_0 local

Now verify that Click installed successfully:

conda list

Scroll through the list until you find Click.

At this point you now have a conda package for Click that
can be installed in any conda environment of the same Python
version as your root environment. The remaining optional sections
show you how to make packages for other Python versions and other
architectures and how to upload them to your Anaconda.org account.

Optional---Building for a different Python version

By default, conda-build creates packages for the version of
Python installed in the root environment. To build packages for
other versions of Python, you use the --python flag followed
by a version. For example, to explicitly build a version of the
Click package for Python 2.7, use:

conda-build --python 2.7 click

Notice that the file printed at the end of the conda-build
output has changed to reflect the requested version of Python.
conda install will look in the package directory for the file
that matches your current Python version.

Windows example file path:

C:\Users\jsmith\Miniconda\conda-bld\win-64\click-7.0-py27_0.tar.bz2

macOS example file path:

/Users/jsmith/miniconda/conda-bld/osx-64/click-7.0-py27_0.tar.bz2

Linux example file path:

/home/jsmith/miniconda/conda-bld/linux-64/click-7.0-py27_0.tar.bz2

Note

Your path and filename will vary depending on your
installation and operating system. Save the
path and filename information for the next task.

Optional---Converting conda package for other platforms

Now that you have built a package for your current platform with
conda-build, you can convert it for use on other platforms with
the conda convert command. This works only for pure Python
packages where there is no compiled code. Conda convert does
nothing to change compiled code, it only adapts file paths to
take advantage of the fact that Python scripts are mostly
platform independent. Conda convert accepts a platform specifier
from this and a platform specifier from this list:

	osx-64.

	linux-32.

	linux-64.

	win-32.

	win-64.

	all.

In the output directory, 1 folder will be created for each of the
1 or more platforms you chose and each folder will contain a
.tar.bz2 package file for that platform.

Windows:

conda convert -f --platform all C:\Users\jsmith\miniconda\conda-bld\win-64\click-7.0-py37_0.tar.bz2
-o outputdir\

macOS and Linux:

conda convert --platform all /home/jsmith/miniconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2
-o outputdir/

Note

Change your path and filename to the exact path and
filename you saved in Optional---Building for a different Python version.

To use these packages, you need to transfer them to other
computers and place them in the correct conda-bld/$ARCH
directory for the platform, where $ARCH can be osx-64,
linux-32, linux-64, win-32, or win-64.

A simpler way is to upload all of the bz2 files to Anaconda.org
as described in the next task.

If you find yourself needing to use conda convert, you might
instead prefer to change your recipe to make your package a "noarch" package.
Noarch packages run anywhere and do not require conda convert.
Some of the ecosystem tools don't yet support noarch packages but,
for the most part, noarch packages are a better way to go.

Optional---Uploading packages to Anaconda.org

Anaconda.org is a repository for
public or private packages. Uploading to Anaconda.org allows you
to easily install your package in any environment with just the
conda install command, rather than manually copying or moving the
tarball file from one location to another. You can choose to make
your files public or private. For more information about
Anaconda.org, see the Anaconda.org documentation [http://docs.anaconda.org/].

	Create a free Anaconda.org account and record your new
Anaconda.org username and password.

	Run conda install anaconda-client and enter your
Anaconda.org username and password.

	Log into your Anaconda.org account from your terminal with
the command anaconda login.

Now you can upload the new local packages to Anaconda.org.

Windows:

anaconda upload C:\Users\jsmith\miniconda\conda-bld\win-64\click-7.0-py37_0.tar.bz2

macOS and Linux:

anaconda upload /home/jsmith/miniconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2

Note

Change your path and filename to the exact path and
filename you saved in Optional---Building for a different Python version. Your path and
filename will vary depending on your installation and operating
system.

If you created packages for multiple versions of Python or used
conda convert to make packages for each supported architecture,
you must use the anaconda upload command to upload each one.
It is considered best practice to create packages for Python
versions 2.7, 3.4, and 3.5 along with all of the architectures.

Tip

If you want to always automatically upload a successful
build to Anaconda.org, run:
conda config --set anaconda_upload yes

You can log out of your Anaconda.org account with the command:

anaconda logout

Troubleshooting a sample issue

Conda-build may produce the error message "Build Package missing."

To explore this error:

	Create a conda skeleton package for skyfield. The
conda skeleton command is:

conda skeleton pypi skyfield

This command creates the skyfield conda-build recipe.

	Run conda-build skyfield and observe that it fails with
the following output:

Removing old build environment
Removing old work directory
BUILD START: skyfield-0.8-py35_0
Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata:
Solving package specifications: .
Error: Package missing in current osx-64 channels:
 - sgp4 >=1.4

In this example, the conda recipe requires sgp4 for the
skyfield package. The skyfield recipe was created by
conda skeleton. This error means that conda could not find
the sgp4 package and install it.

Since many PyPI packages depend on other PyPI packages to build
or run, the solution is sometimes as simple as using
conda skeleton to create a conda recipe for the missing
package and then building it:

conda skeleton sgp4
conda build sgp4

You may also try using the --recursive flag with
conda skeleton, but this makes conda recipes for all required
packages, even those that are already available to conda install.

More information

For more options, see the full conda skeleton command documentation.

Building conda packages from scratch

Overview

This tutorial describes how to build a conda package for
Click by writing the required files in the conda-build recipe.

Who is this for?

This tutorial is for Windows, macOS, and Linux users who wish to
generate a conda package by writing the necessary files.
Prior knowledge of conda-build and conda recipes is helpful.

Before you start

	Check the Prerequisites.

	You should have already completed Building conda packages with conda skeleton.

Editing the meta.yaml file

	Make a new directory for this tutorial named click,
and then change to the new directory:

mkdir click
cd click

	To create a new meta.yaml file, open your favorite editor.
Create a new text file and insert the information shown below.
A blank sample meta.yaml follows the table to make it
easier to match up the information.

Note

To allow correct sorting and comparison, specify
version as a string.

	name

	click

	version

	"7.0" (or latest from
https://github.com/pallets/click/releases)

	git_rev

	6.7 (or latest from
https://github.com/pallets/click/releases)

	git_url

	https://github.com/pallets/click.git

	imports

	click

	home

	https://github.com/pallets/click

	license

	BSD

package:
 name:
 version:

source:
 git_rev:
 git_url:

requirements:
 build:
 - python
 - setuptools

 run:
 - python

test:
 imports:
 -

about:
 home:

	Save the file in the same click
directory as meta.yaml. It should match this
meta.yaml file.

Writing the build script files build.sh and bld.bat

Besides meta.yaml, 2 files are required for a build:

	build.sh---Shell script for macOS and Linux.

	bld.bat---Batch file for Windows.

These 2 build files contain all the variables, such as for 32-bit
or 64-bit architecture---the ARCH variable---and the build
environment prefix---PREFIX. The 2 files build.sh and
bld.bat must be in the same directory as your meta.yaml
file.

This tutorial describes how to make both build.sh and
bld.bat so that other users can build the appropriate package
for their architecture.

	Open a text editor and create a new file named bld.bat.
Type the text exactly as shown:

"%PYTHON%" setup.py install
if errorlevel 1 exit 1

Note

In bld.bat, the best practice is to to add
if errorlevel 1 exit 1 after every command so that if the
command fails, the build fails.

	Save this new file bld.bat to the same directory where
you put your meta.yaml file.

	Open a text editor and create a new file named build.sh.
Enter the text exactly as shown:

$PYTHON setup.py install # Python command to install the script.

	Save your new build.sh file to the same directory where you
put the meta.yaml file.

You can run build.sh with bash -x -e. The -x makes it
echo each command that is run, and the -e makes it exit
whenever a command in the script returns nonzero exit status. If
you need to revert this in the script, use the set command
in build.sh.

Building and installing

Now that you have your 3 new build files ready, you are ready to
create your new package with conda-build and install the package
on your local computer.

	Run conda-build:

conda-build click

If you are already in the click folder, you can type conda build ..

When conda-build is finished, it displays the package filename
and location. In this case the file is saved to:

~/anaconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2

Note

Save this path and file information for the next task.
The exact path and filename vary depending on your operating
system and whether you are using Anaconda or Miniconda.
The conda-build command tells you the exact path and
filename.

	Install your newly built program on your local computer
by using the use-local flag:

conda install --use-local click

If there are no error messages, Click installed
successfully.

Note

Explicitly installing a local package bypasses the dependency
resolver, as such the package's run dependencies will not
be evaluated. See conda install --help or the install command reference
page [https://docs.conda.io/projects/conda/en/latest/commands/install.html]
for more info.

Converting a package for use on all platforms

Now that you have built a package for your current platform with
conda-build, you can convert it for use on other platforms by
using the 2 build files, build.sh and bld.bat.

Use the conda convert command with a platform specifier from
the list:

	osx-64.

	linux-32.

	linux-64.

	win-32.

	win-64.

	all.

EXAMPLE: Using the platform specifier all:

conda convert --platform all ~/anaconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2 -o outputdir/

Note

Change your path and filename to the path and
filename you saved in Building and installing.

Optional---Using PyPI as the source instead of GitHub

You can use PyPI or another repository instead of GitHub. There
is little difference to conda-build between building from Git
versus building from a tarball on a repository like PyPI. Because
the same source is hosted on PyPI and GitHub, you can easily find
a script on PyPI instead of GitHub.

Replace this source section:

git_rev: v0.6.7
git_url: https://github.com/pallets/click.git

With the following:

url: https://files.pythonhosted.org/packages/f8/5c/f60e9d8a1e77005f664b76ff8aeaee5bc05d0a91798afd7f53fc998dbc47/Click-7.0.tar.gz
sha256: 5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7

Note

The url and sha256 are found on the PyPI Click page [https://pypi.org/project/click/#files].

Optional---Uploading new packages to Anaconda.org

After converting your files for use on other platforms, you may
choose to upload your files to Anaconda.org, formerly known as binstar.org.
It only takes a minute to do if you have a free Anaconda.org account.

	If you have not done so already, open a free Anaconda.org account
and record your new user name and password.

	Run the command conda install anaconda-client, and then
enter your Anaconda.org username and password.

	Log into your Anaconda.org [http://anaconda.org] account
with the command:

anaconda login

	Upload your package to Anaconda.org:

anaconda upload ~/miniconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2

Note

Change your path and filename to the path and
filename you saved in Building and installing.

Tip

To save time, you can set conda to always
upload a successful build to Anaconda.org
with the command: conda config --set anaconda_upload yes.

More information

	For more information about all the possible values that can go
into the meta.yaml file, see
Defining metadata (meta.yaml).

Building R packages with skeleton CRAN

Overview

This tutorial describes how to quickly build
an R-language package on macOS for an R module
that is already available on CRAN.

You will build a simple package that can be
installed in any conda environment of the same
R version as your root environment. The tutorial
will also tell you how to build the dependencies
that may arise while building the package.

Who is this for?

This tutorial is for macOS users who wish to
build an R-language package from CRAN.
No prior knowledge of conda-build or conda recipes
is required.

Before you start

Before you start, check the prerequisites.

Building a simple package with conda skeleton CRAN

The conda skeleton command picks up the CRAN package
metadata and prepares the conda-build recipe. The final
step is to build the package itself and install it into
your conda environment.

It is easy to build a skeleton recipe for any R package that is hosted on CRAN.
In this section you are going to use conda skeleton to generate a conda recipe,
which informs conda-build about where the source files are located and how to
build and install the package.

You'll be working with a package that is hosted on CRAN named fansi [https://github.com/conda-forge/r-fansi-feedstock],
a tool that accounts for the effects of ANSI text formatting control sequences.

First, in your user home directory, run the conda skeleton command:

conda skeleton cran fansi

The two arguments to conda skeleton are the type of hosting location,
in this case cran, and the name of the package.

This creates a directory named r-fansi and creates 1
skeleton file in that directory: meta.yaml. Many other files
can be added there as necessary, such as build.sh and bld.bat,
test scripts, or anything else you need to build your software.
Use the ls command to verify that this file has been created.
The meta.yaml file has been populated with information from the
CRAN metadata and in many cases will not need to be edited.

Files in the folder with meta.yaml are collectively referred to
as the "conda-build recipe":

	meta.yaml---Contains all the metadata in the recipe. The package name and package version sections are required---everything else is optional.

	bld.bat---Windows commands to build the package.

	build.sh---macOS and Linux commands to build the package.

Now that you have the conda-build recipe ready, you can use
conda-build to create the package:

conda-build r-fansi

When conda-build is finished, it displays the exact path and
filename of the conda package. See Troubleshooting a sample issue if the
conda-build command fails. If you receive an error with SDK on macOS,
review our resources for macOS and SDK.

Example file path:

/Users/jsmith/anaconda3/conda-bld/osx-64/r-fansi-0.4.0-r353h46e59ec_0.tar.bz2

Note

Your path and filename will vary depending on your
installation and operating system. Save the path and
filename information for the next step.

Now you can install your newly built package in your
conda environment by using the use-local flag:

conda install --use-local r-fansi

Now verify that fansi installed successfully:

conda list

Scroll through the list until you find r-fansi.

Notice that fansi is coming from the local conda-build channel.

(base) 0561:~ jsmith$ conda list
packages in environment at /Users/Jsmith/anaconda3:
Name Version Build Channel
qtpy 1.5.0 py37_0
r-base 3.5.1 h539fb6c_1
r-fansi 0.4.0 r353h46e59ec_0 local

The version of R will be what you have in your base environment.

See Optional---Building for a different R version to set your own
R version.

At this point you now have a conda package for fansi
that can be installed in any conda environment of its
R version.

Building an R package with dependencies

The fansi package was a simple one that didn’t have
dependencies. To build an R package with dependencies,
let’s look at the example of janitor. Janitor is a
package hosted on CRAN that is used for examining and
cleaning up data.

To begin building it, type:

conda skeleton cran janitor

This creates a directory named r-janitor and
creates one skeleton file in that directory: meta.yaml.
Many other files can be added there as necessary, such
as build.sh and bld.bat, test scripts, or anything else
you need to build your software. Use the ls command
to verify that this file has been created. The meta.yaml
file has been populated with information from the CRAN
metadata and in many cases will not need to be edited.

Now that you have the conda-build recipe ready, you can
use conda-build to create the package:

conda-build r-janitor

What may happen at this point is that you will have
dependencies of this package that do not exist as conda
packages yet. They need to be turned into conda packages.
Use conda skeleton to recursively build out recipes for
the packages that it depends on:

conda skeleton cran janitor --recursive

You can manually build each package individually
by typing:

conda-build package-name

Note

Replace "package-name" with the name of each
package.

Once all of the package dependencies are resolved, you
can build the R package by using:

conda-build .

Now you can install your newly built package in your
conda environment by using the use-local flag:

conda install --use-local r-janitor

The remaining optional sections show you how to make
R packages for other R versions and other architectures
and how to upload them to your Anaconda.org account.

Optional---Building for a different R version

By default, conda-build creates packages for the version
of R installed in the root environment. To build packages
for other versions of R, you use the --R flag followed by
a version.

For example, to explicitly build a version of the fansi package
for R 3.6.1, use:

conda-build --R 3.6.1 r-fansi

Notice that the file printed at the end of the conda-build
output has changed to reflect the requested version of R.
Conda install will look in the package directory for the file
that matches your current R version.

Example file path:

/Users/jsmith/anaconda3/conda-bld/osx-64/r-fansi-0.4.0-r353h46e59ec_0.tar.bz2

Note

Your path and filename will vary depending on your
installation and operating system. Save the path and
filename information for the next task.

Optional---Uploading packages to Anaconda.org

Anaconda.org is a repository for public or private packages.
Uploading to Anaconda.org allows you to easily install your package
in any environment with just the conda install command,
rather than manually copying or moving the tarball file from
one location to another. You can choose to make your files
public or private.

For more information about Anaconda.org, see the Anaconda.org documentation [http://docs.anaconda.org/].

	Create a free Anaconda.org account and record your new
Anaconda.org username and password.

	Run conda install anaconda-client and enter your
Anaconda.org username and password.

	Log into your Anaconda.org account from your terminal with
the command anaconda login.

Now you can upload the new local packages to Anaconda.org.

anaconda upload /Users/jsmith/anaconda3/conda-bld/osx-64/r-fansi-0.4.0-r353h46e59ec_0.tar.bz2

Note

Change your path and filename to the exact path and
filename you saved in Optional---Building for a different R version. Your path and filename
will vary depending on your installation and operating system.
If you created packages for multiple versions of R,
you must use the anaconda upload command to upload each one.

Tip

If you want to always automatically upload a successful build to Anaconda.org, run:
conda config --set anaconda_upload yes

You can log out of your Anaconda.org account with the command:

anaconda logout

More information

For more options, see the full
conda skeleton command documentation.

Recipes

Review recipe concepts for more information about
conda-build recipes.

	Building a package without a recipe (bdist_conda)

	Sample recipes

	Debugging conda recipes

Building a package without a recipe (bdist_conda)

You can use conda-build to build packages for Python to install
rather than conda by using setup.py bdist_conda. This is a
quick way to build packages without using a recipe, but it has
limitations. The script is limited to the Python version used in
the build and it is not as reproducible as using a recipe. We
recommend using a recipe with conda-build.

Note

If you use Setuptools, you must first import Setuptools and
then import conda_build.bdist_conda, because Setuptools
monkey patches distutils.dist.Distribution.

EXAMPLE: A minimal setup.py file using the setup options
name and version:

 from setuptools import setup
 import conda_build.bdist_conda

setup(
 name="foo",
 version="1.0",
 distclass=conda_build.bdist_conda.CondaDistribution,
 conda_buildnum=1,
)

Setup options

You can pass the following options to setup(). You must
include distclass=conda_build.bdist_conda.CondaDistribution.

Build number

The number of the build. Can be overridden on the command line
with the --buildnum flag. Defaults to 0.

conda_buildnum=1

Build string

The build string. Default is generated automatically from the
Python version, NumPy version---if relevant---and the build
number, such as py34_0.

conda_buildstr=py34_0

Import tests

Whether to automatically run import tests. The default is
True, which runs import tests for all the modules in
packages. Also allowed are False, which runs no tests, or
a list of module names to be tested on import.

conda_import_tests=False

Command line tests

Command line tests to run. Default is True, which runs
command --help for each command in the console_scripts and
gui_scripts entry_points. Also allowed are False, which does
not run any command tests, or a list of command tests to run.

conda_command_tests=False

Binary files relocatable

Whether binary files should be made relocatable, using
install_name_tool on macOS or patchelf on Linux. The default is
True.

conda_binary_relocation=False

For more information, see Making packages relocatable.

Preserve egg directory

Whether to preserve the egg directory as installed by Setuptools.
The default is True if the package depends on Setuptools or
has Setuptools entry_points other than console_scripts and
gui_scripts.

conda_preserve_egg_dir=False

Command line options

Build number

Set the build number. Defaults to the conda_buildnum passed
to setup() or 0. Overrides any conda_buildnum passed to
setup().

--buildnum=1

Notes

	You must install bdist_conda into a root conda environment,
as it imports conda and conda_build. It is included as
part of the conda-build package.

	All metadata is gathered from the standard metadata from the
setup() function. Metadata that are not directly supported
by setup() can be added using one of the options specified
above.

	By default, import tests are run for each subpackage specified
by packages, and command line tests command --help are run
for each setuptools entry_points command. This is done to
ensure that the package is built correctly. You can disable or
change these using the conda_import_tests and
conda_command_tests options specified above.

	The Python version used in the build must be the same as where
conda is installed, as bdist_conda uses conda-build.

	bdist_conda uses the metadata provided to the setup()
function.

	If you want to pass any bdist_conda specific options to
setup(), in setup() you must set
distclass=conda_build.bdist_conda.CondaDistribution.

Sample recipes

Conda offers you the flexibility of being able to build things
that are not Python related. The first 2 sample recipes,
boost and libtiff, are examples of non-Python libraries, meaning
they do not require Python to run or build.

	boost [https://github.com/AnacondaRecipes/boost-feedstock] is an example
of a popular programming library and illustrates the use of selectors in a recipe.

	libtiff [https://github.com/AnacondaRecipes/libtiff-feedstock] is
another example of a compiled library, which shows how conda can apply patches to source directories before building the package.

	msgpack [https://github.com/AnacondaRecipes/msgpack-python-feedstock],
blosc [https://github.com/AnacondaRecipes/python-blosc-feedstock], and
cytoolz [https://github.com/AnacondaRecipes/cytoolz-feedstock]
are examples of Python libraries with extensions.

	toolz [https://github.com/AnacondaRecipes/toolz-feedstock],
sympy [https://github.com/AnacondaRecipes/sympy-feedstock],
six [https://github.com/AnacondaRecipes/six-feedstock], and
gensim [https://github.com/AnacondaRecipes/gensim-feedstock] are
examples of Python-only libraries.

gensim works on Python 2, and all of the others work on both Python 2 and Python 3.

Debugging conda recipes

Recipes are something that you'll rarely get exactly right on the first try.
Something about the build will be wrong, and the build will break. Maybe you
only notice a problem during tests, but you need more info than you got from the
tests running in conda-build. Conda-build 3.17.0 added the subcommand, conda
debug, that is designed to facilitate the recipe debugging process.

Fundamentally, debugging is a process of getting into or recreating the
environment and set of shell environment variables that conda-build creates
during its build or test processes. This has been possible for a very long
time---you could observe the build output, figure out where the files from your
build were placed, navigate there, and finally, activate the appropriate environment(s).
Then you might also need to set some environment variables manually.

What conda debug does is to create environments for you and provide you
with a single command line that you can copy/paste to enter a debugging
environment.

Usage

The conda debug command accepts 1 of 2 kinds of inputs: a recipe folder or
a path to a built package.

If a path to a recipe folder is provided, conda debug creates the build and host
environments. It provisions any source code that your recipe specifies. It
leaves the build-time scripts in the work folder for you. When complete, conda debug prints something like this:

##
Build and/or host environments created for debugging. To enter a debugging environment:

cd /Users/UserName/miniconda3/conda-bld/debug_1542385789430/work && source /Users/UserName/miniconda3/conda-bld/debug_1542385789430/work/build_env_setup.sh

To run your build, you might want to start with running the conda_build.sh file.
##

If a path to a built package is provided, conda debug creates the test
environment. It prepares any test files that the recipe specified. When complete, conda debug prints something like this:

##
Test environment created for debugging. To enter a debugging environment:

cd /Users/UserName/miniconda3/conda-bld/conda-build_1542302975704/work && source /Users/UserName/miniconda3/conda-bld/conda-build_1542302975704/work/build_env_setup.sh

To run your tests, you might want to start with running the conda_test_runner.sh file.
##

Next steps

Given the output above, you can now enter an environment to start debugging.
Copy paste from your terminal and go:

cd /Users/UserName/miniconda3/conda-bld/debug_1542385789430/work && source /Users/UserName/miniconda3/conda-bld/debug_1542385789430/work/build_env_setup.sh

This is where you'll hopefully know what build commands you want to run to help
you debug. Every build is different so your experience will vary. However,
if you have no idea at all, you could probably start by running the appropriate
build or test script, as mentioned in the output. If you do this, remember that
these scripts might be written to exit on error, which may close your shell
session. It may be wise to only run these scripts in an explicit subshell:

bash conda_build.sh
bash conda_test_runner.sh

Complications with multiple outputs

Multiple outputs effectively give the recipe many build phases to consider. The
--output-id argument is the mechanism to specify which of these should be
used to create the debug envs and scripts. The --output-id argument accepts
an fnmatch pattern. You can match any part of the output filenames. This really
only works for conda packages, not other output types, such as wheels, because
conda-build can't currently predict their filenames without actually carrying
out a build.

For example, our NumPy recipe [https://github.com/AnacondaRecipes/numpy-feedstock/blob/master/recipe/meta.yaml] has multiple outputs.
If we wanted to debug the NumPy-base output, we would specify it with a command like:

conda debug numpy-feedstock --output-id="numpy-base*"

If you have a matrix build, you may need to be more specific:

Specified --output-id matches more than one output (['/Users/msarahan/miniconda3/conda-bld/debug_1542387301945/osx-64/numpy-base-1.14.6-py27h1a60bec_4.tar.bz2', '/Users/msarahan/miniconda3/conda-bld/debug_1542387301945/osx-64/numpy-base-1.14.6-py27h8a80b8c_4.tar.bz2', '/Users/msarahan/miniconda3/conda-bld/debug_1542387301945/osx-64/numpy-base-1.14.6-py36h1a60bec_4.tar.bz2', '/Users/msarahan/miniconda3/conda-bld/debug_1542387301945/osx-64/numpy-base-1.14.6-py36h8a80b8c_4.tar.bz2', '/Users/msarahan/miniconda3/conda-bld/debug_1542387301945/osx-64/numpy-base-1.14.6-py37h1a60bec_4.tar.bz2', '/Users/msarahan/miniconda3/conda-bld/debug_1542387301945/osx-64/numpy-base-1.14.6-py37h8a80b8c_4.tar.bz2']). Please refine your output id so that only a single output is found.

You could either reduce your matrix by changing your conda_build_config.yaml, or making a simpler one and passing it on the CLI, or by using the CLI to reduce it.

conda debug numpy-feedstock --output-id="numpy-base*" --python=3.6 --variants="{blas_impl: openblas}"

Specified --output-id matches more than one output (['/Users/UserName/miniconda3/conda-bld/debug_1542387443190/osx-64/numpy-base-1.14.6-py36h28eea48_4.tar.bz2', '/Users/UserName/miniconda3/conda-bld/debug_1542387443190/osx-64/numpy-base-1.14.6-py36ha711998_4.tar.bz2']). Please refine your output id so that only a single output is found.

However, this is still not enough as our matrix includes two BLAS implementations, MKL and OpenBLAS.

Further reduction:

conda debug numpy-feedstock --output-id="numpy-base*" --python=3.6 --variants="{blas_impl: 'openblas'}"

Cleanup

Debugging folders are named in a way that the conda build purge command will
find and clean up. If you use the -p/--path CLI argument, conda-build will not
detect these and you'll need to manually clean up yourself. conda build
purge-all will also remove previously built packages.

Quirks

You can specify where you want the root of your debugging stuff to go with the
-p/--path CLI argument. The way this works is that conda-build treats that as
its "croot" where packages get cached as necessary, as well as potentially
indexed. When using the --path argument, you may see folders like "osx-64" or
other platform subdirs in the path you specify. It is safe to remove them or
ignore them.

Environment variables

Dynamic behavior based on state of build process

There are times when you may want to process a single file in
different ways at more than 1 step in the render-build-test
flow of conda-build. Conda-build sets the CONDA_BUILD_STATE
environment variable during each of these phases. The possible
values are:

	RENDER---Set during evaluation of the meta.yaml file.

	BUILD---Set during processing of the bld.bat or
build.sh script files.

	TEST---Set during the running of any run_test scripts,
which also includes any commands defined in meta.yaml in
the test/commands section.

The CONDA_BUILD_STATE variable is undefined outside
of these locations.

Environment variables set during the build process

During the build process, the following environment variables
are set, on Windows with bld.bat and on macOS and Linux with
build.sh. By default, these are the only variables available
to your build script. Unless otherwise noted, no variables are
inherited from the shell environment in which you invoke
conda-build. To override this behavior, see
Inherited environment variables.

	ARCH

	Either 32 or 64, to specify whether the build is
32-bit or 64-bit. The value depends on the ARCH
environment variable and defaults to the architecture the
interpreter running conda was
compiled with.

	BUILD_PREFIX

	Build prefix where command line tools are installed.

	CMAKE_GENERATOR

	The CMake generator string for the current build
environment. On Linux systems, this is always
Unix Makefiles. On Windows, it is generated according
to the Visual Studio version activated at build time, for
example, Visual Studio 9 2008 Win64.

	CONDA_BUILD=1

	Always set.

	CPU_COUNT

	The number of CPUs on the system, as reported by
multiprocessing.cpu_count().

	SHLIB_EXT

	The shared library extension.

	DIRTY

	Set to 1 if the --dirty flag is passed to the
conda-build command. May be used to skip parts of a
build script conditionally for faster iteration time when
developing recipes. For example, downloads, extraction and
other things that need not be repeated.

	HTTP_PROXY

	Inherited from your shell environment.

	HTTPS_PROXY

	Inherited from your shell environment.

	LANG

	Inherited from your shell environment.

	MAKEFLAGS

	Inherited from your shell environment. May be used to set
additional arguments to make, such as -j2, which uses
2 CPU cores to build your recipe.

	PY_VER

	Python version building against. Set with the --python argument
or with the CONDA_PY environment variable.

	NPY_VER

	NumPy version to build against. Set with the --numpy
argument or with the CONDA_NPY environment variable.

	PATH

	Inherited from your shell environment and augmented with
$PREFIX/bin.

	PREFIX

	Host prefix to which the build script should install.

	PKG_BUILDNUM

	Build number of the package being built.

	PKG_NAME

	Name of the package being built.

	PKG_VERSION

	Version of the package being built.

	PKG_BUILD_STRING

	Complete build string of the package being built, including hash.
EXAMPLE: py27h21422ab_0 . Conda-build 3.0+.

	PKG_HASH

	Hash of the package being built, without leading h. EXAMPLE: 21422ab .
Conda-build 3.0+.

	PYTHON

	Path to the Python executable in the host prefix. Python
is installed only in the host prefix when it is listed as
a host requirement.

	PY3K

	1 when Python 3 is installed in the host prefix,
otherwise 0.

	R

	Path to the R executable in the host prefix. R is only
installed in the host prefix when it is listed as a build
requirement.

	RECIPE_DIR

	Directory of the recipe.

	SP_DIR

	Python's site-packages location.

	SRC_DIR

	Path to where source is unpacked or cloned. If the source
file is not a recognized file type---zip, tar, tar.bz2, or
tar.xz---this is a directory containing a copy of the
source file.

	STDLIB_DIR

	Python standard library location.

	build_platform

	The native subdir of the conda executable

Unix-style packages on Windows, which are usually statically
linked to executables, are built in a special Library
directory under the host prefix. The environment variables
listed in the following table are defined only on Windows.

	CYGWIN_PREFIX

	Same as PREFIX, but as a Unix-style path, such as
/cygdrive/c/path/to/prefix.

	LIBRARY_BIN

	%PREFIX%\Library\bin.

	LIBRARY_INC

	%PREFIX%\Library\include.

	LIBRARY_LIB

	%PREFIX%\Library\lib.

	LIBRARY_PREFIX

	%PREFIX%\Library.

	SCRIPTS

	%PREFIX%\Scripts.

	VS_MAJOR

	The major version number of the Visual Studio version
activated within the build, such as 9.

	VS_VERSION

	The version number of the Visual Studio version activated
within the build, such as 9.0.

	VS_YEAR

	The release year of the Visual Studio version activated
within the build, such as 2008.

The environment variables listed in the following table are
defined only on macOS and Linux.

	HOME

	Standard $HOME environment variable.

	PKG_CONFIG_PATH

	Path to pkgconfig directory.

The environment variables listed in the following table are
defined only on macOS.

	CFLAGS

	-arch flag.

	CXXFLAGS

	Same as CFLAGS.

	LDFLAGS

	Same as CFLAGS.

	MACOSX_DEPLOYMENT_TARGET

	Same as the Anaconda Python macOS deployment target. Currently 10.9.

	OSX_ARCH

	i386 or x86_64, depending on Python build.

The environment variable listed in the following table is
defined only on Linux.

	LD_RUN_PATH

	$PREFIX/lib.

Git environment variables

The environment variables listed in the following table are
defined when the source is a git repository, specifying the
source either with git_url or path.

	GIT_BUILD_STR

	String that joins GIT_DESCRIBE_NUMBER and
GIT_DESCRIBE_HASH by an underscore.

	GIT_DESCRIBE_HASH

	The current commit short-hash as displayed from
git describe --tags.

	GIT_DESCRIBE_NUMBER

	String denoting the number of commits since the most
recent tag.

	GIT_DESCRIBE_TAG

	String denoting the most recent tag from the current
commit, based on the output of git describe --tags.

	GIT_FULL_HASH

	String with the full SHA1 of the current HEAD.

These can be used in conjunction with templated meta.yaml
files to set things---such as the build string---based on the
state of the git repository.

Mercurial environment variables

The environment variables listed in the following table are
defined when the source is a mercurial repository.

	HG_BRANCH

	String denoting the presently active branch.

	HG_BUILD_STR

	String that joins HG_NUM_ID and HG_SHORT_ID by an
underscore.

	HG_LATEST_TAG

	String denoting the most recent tag from the current
commit.

	HG_LATEST_TAG_DISTANCE

	String denoting number of commits since the most recent
tag.

	HG_NUM_ID

	String denoting the revision number.

	HG_SHORT_ID

	String denoting the hash of the commit.

Inherited environment variables

Other than those mentioned above, no variables are inherited from
the environment in which you invoke conda-build. You can choose
to inherit additional environment variables by adding them to
meta.yaml:

build:
 script_env:
 - TMPDIR
 - LD_LIBRARY_PATH # [linux]
 - DYLD_LIBRARY_PATH # [osx]

If an inherited variable is missing from your shell environment,
it remains unassigned, but a warning is issued noting that it has
no value assigned.

Additionally, values can be set by including = followed by the desired value:

build:
 script_env:
 - MY_VAR=some value

Warning

Inheriting environment variables can make it difficult for
others to reproduce binaries from source with your recipe. Use
this feature with caution or explicitly set values using the =
syntax.

Note

If you split your build and test phases with --no-test and --test,
you need to ensure that the environment variables present at build time and test
time match. If you do not, the package hashes may use different values and your
package may not be testable because the hashes will differ.

Environment variables that affect the build process

	CONDA_PY

	The Python version used to build the package. Should
be 27, 34, 35, 36, or 37.

	CONDA_NPY

	The NumPy version used to build the package, such as
19, 110, or 111.

	CONDA_PREFIX

	The path to the conda environment used to build the
package, such as /path/to/conda/env. Useful to pass as
the environment prefix parameter to various conda tools,
usually labeled -p or --prefix.

Environment variables that affect the test process

All of the above environment variables are also set during the
test process, using the test prefix instead of the build
prefix.

Using wheel files with conda

If you have software in a Python wheel file [https://pythonwheels.com/] and
want to use it with conda or install it in a conda environment, there are 3
ways.

The best way is to obtain the source code for the software and build a conda
package from the source and not from a wheel. This helps ensure that the new
package uses other conda packages to satisfy its dependencies.

The second best way is to build a conda package from the wheel file. This tells
conda more about the files present than a pip install. It is also less likely
than a pip install to cause errors by overwriting (or "clobbering") files.
Building a conda package from the wheel file also has the advantage that any
clobbering is more likely to happen at build time and not runtime.

The third way is to use pip to install a wheel file into a conda environment.
Some conda users have used this option safely. The first 2 ways are still the
safest and most reliable.

Building a conda package from a wheel file

To build a conda package from a wheel file, install the .whl file in the conda
recipe's bld.bat or build.sh file.

You may download the .whl file in the source section of the conda recipe's
meta.yaml file.

You may instead put the URL directly in the pip install command.

EXAMPLE: The conda recipe for TensorFlow has a pip install command in
build.sh [https://github.com/conda/conda-recipes/blob/a796713805ac8eceed191c0cb475b51f4d00718c/python/tensorflow/build.sh#L7]
with the URL of a .whl file. The
meta.yaml [https://github.com/conda/conda-recipes/blob/a796713805ac8eceed191c0cb475b51f4d00718c/python/tensorflow/meta.yaml]
file does not download or list the .whl file.

Note

It is important to pip install only the one desired package. Whenever
possible, install dependencies with conda and not pip.

You must use the --no-deps option in the pip install command in order
to avoid bundling dependencies into your conda-package.

If you run pip install without the --no-deps option, pip will often
install dependencies in your conda recipe and those dependencies will become
part of your package. This wastes space in the package and increases the
risk of file overlap, file clobbering, and broken packages.

Resources

These resources will help you accomplish more using conda-build.
We provide information on topics including build scripts, build variants,
making packages relocatable, and defining metadata in the meta.yaml. We
also provide guidelines and a template for submitting your own
documentation.

	Build scripts (build.sh, bld.bat)

	Anaconda compiler tools

	Defining metadata (meta.yaml)

	Adding pre-link, post-link, and pre-unlink scripts

	Activate scripts

	Making packages relocatable

	Conda package specification

	Using shared libraries

	Build variants

	Conda-build CLI reference

	Adding Windows Start menu items

	Writing style guide

	Tutorial template

Build scripts (build.sh, bld.bat)

The build.sh file is the build script for Linux and macOS and bld.bat
is the build script for Windows. These scripts contain the logic that carries
out your build steps. Traditionally it has also included install steps. With
the traditional one-package-per-recipe way of doing things, anything that your
build script copies into the $PREFIX or %PREFIX% folder will be
included in your output package. For example, this build.sh:

mkdir -p $PREFIX/bin
cp $RECIPE_DIR/my_script_with_recipe.sh $PREFIX/bin/super-cool-script.sh

If you don't care about deploying your package with pip on PyPI, this can save
you a lot of time in figuring out the proper way to include additional files
with setup.py.

There are many environment variables defined for you to use in build.sh and
bld.bat. Please see Environment variables for more information.

As of conda-build 2.1, you can also define multiple output packages. Each
package has its own script or list of files to include. The rules for these
outputs are documented at Outputs section. When any output is defined,
this overrides the default behavior of bundling anything in $PREFIX. So
to output multiple packages from a single recipe, remove any installation
steps from build.sh or bld.bat and do them instead in your install
script(s) for each output.

build.sh and bld.bat are optional. You can instead use the
build/script key in your meta.yaml, with each value being either a
string command or a list of string commands. Any commands you put there must be
able to run on every platform for which you build. For example, you can't use
the cp command because cmd.exe won't understand it in Windows.

build.sh is run with bash and bld.bat is run with cmd.exe.

There is some development towards the ability to use bash scripts in Windows,
but this is not currently supported. You may write your script as a .sh file,
and then call it in your bld.bat file, but there is no way to directly run
build.sh on Windows. The conda recipe at
https://github.com/AnacondaRecipes/conda-feedstock/tree/master/recipe is an
example of this method.

Anaconda compiler tools

Anaconda 5.0 switched from OS-provided compiler tools to our own toolsets. This
allows improved compiler capabilities, including better security and
performance. This page describes how to use these tools and enable these
benefits.

Compiler packages

Before Anaconda 5.0, compilers were installed using system tools such as XCode
or yum install gcc. Now there are conda packages for Linux and macOS
compilers. Unlike the previous GCC 4.8.5 packages that included GCC, g++, and
GFortran all in the same package, these conda packages are split into separate
compilers:

macOS:

	clang_osx-64.

	clangxx_osx-64.

	gfortran_osx-64.

Linux:

	gcc_linux-64.

	gxx_linux-64.

	gfortran_linux-64.

A compiler's "build platform" is the platform where the compiler runs and
builds the code.

A compiler's "host platform" is the platform where the built code will finally
be hosted and run.

Notice that all of these package names end in a platform identifier which
specifies the host platform. All compiler packages are specific to both the
build platform and the host platform.

Using the compiler packages

The compiler packages can be installed with conda. Because they are designed
with (pseudo) cross-compiling in mind, all of the executables in a compiler
package are "prefixed." Instead of gcc, the executable name of the compiler
you use will be something like x86_64-conda_cos6-linux-gnu-gcc. These full
compiler names are shown in the build logs, recording the host platform and
helping prevent the common mistake of using the wrong compiler.

Many build tools such as make and CMake search by default for a
compiler named simply gcc, so we set environment variables to point these
tools to the correct compiler.

We set these variables in conda activate.d scripts, so any environment in
which you will use the compilers must first be activated so the scripts will
run. Conda-build does this activation for you using activation hooks installed
with the compiler packages in CONDA_PREFIX/etc/conda/activate.d, so no
additional effort is necessary.

You can activate the root environment with the command conda activate root.

macOS SDK

The macOS compilers require the macOS 10.9 SDK or above. The SDK license prevents
it from being bundled in the conda package. We know of 2 current sources for the
macOS SDKs:

	https://github.com/devernay/xcodelegacy

	https://github.com/phracker/MacOSX-SDKs

We usually install the 10.10 SDK at /opt/MacOSX10.10.sdk but you may install
it anywhere. Edit your conda_build_config.yaml file to point to it, like this:

CONDA_BUILD_SYSROOT:
 - /opt/MacOSX10.10.sdk # [osx]

At Anaconda, we have this configuration setting in a centralized
conda_build_config.yaml at the root of our recipe repository. Since we run
build commands from that location, the file and the setting are used for all
recipes. The conda_build_config.yaml search order is described further at
Creating conda-build variant config files.

Build scripts for macOS should make use of the variables
MACOSX_DEPLOYMENT_TARGET and CONDA_BUILD_SYSROOT, which are set by
conda-build (see Environment variables). These variables should be translated into
correct compiler arguments, e.g. for Clang this would be:

clang .. -isysroot ${CONDA_BUILD_SYSROOT} -mmacosx-version-min=${MACOSX_DEPLOYMENT_TARGET} ..

Most build tools, e.g. CMake and distutils (setuptools), will automatically pick
up MACOSX_DEPLOYMENT_TARGET but you need to pass CONDA_BUILD_SYSROOT
explicitly. For CMake, this can be done with the option
-DCMAKE_OSX_SYSROOT=${CONDA_BUILD_SYSROOT}. When building Python extensions
with distutils, one should always extend CFLAGS before calling
setup.py:

export CFLAGS="${CFLAGS} -i sysroot ${CONDA_BUILD_SYSROOT}"

When building C++ extensions with Cython, CXXFLAGS must be similarly modified.

Backward compatibility

Some users want to use the latest Anaconda packages but do not yet want to use
the Anaconda compilers. To enable this, the latest Python package builds have
a default _sysconfigdata file. This file sets the compilers provided by the
system, such as gcc and g++, as the default compilers. This way allows legacy
recipes to keep working.

Python packages also include an alternative _sysconfigdata file that sets
the Anaconda compilers as the default compilers. The Anaconda Python executable
itself is made with these Anaconda compilers.

The compiler packages set the environment variable
_PYTHON_SYSCONFIGDATA_NAME, which tells Python which _sysconfigdata file
to use. This variable is set at activation time using the activation hooks
described above.

The new _sysconfigdata customization system is only present in recent
versions of the Python package. Conda-build automatically tries to use the
latest Python version available in the currently configured channels, which
normally gets the latest from the default channel. If you're using something
other than conda-build while working with the new compilers, conda does not
automatically update Python, so make sure you have the correct
_sysconfigdata files by updating your Python package manually.

Anaconda compilers and conda-build 3

The Anaconda 5.0 compilers and conda-build 3 are designed to work together.

Conda-build 3 defines a special jinja2 function, compiler(), to make it
easy to specify compiler packages dynamically on many platforms. The
compiler function takes at least 1 argument, the language of the compiler
to use:

requirements:
 build:
 - {{ compiler('c') }}

"Cross-capable" recipes can be used to make packages with a host platform
different than the build platform where conda-build runs. To write
cross-capable recipes, you may also need to use the "host" section in the
requirements section. In this example we set "host" to "zlib" to tell
conda-build to use the zlib in the conda environment and not the system
zlib. This makes sure conda-build uses the zlib for the host platform
and not the zlib for the build platform.

requirements:
 build:
 - {{ compiler('c') }}
 host:
 - zlib

Generally, the build section should include compilers and other build tools and
the host section should include everything else, including shared libraries,
Python, and Python libraries.

An aside on CMake and sysroots

Anaconda's compilers for Linux are built with something called crosstool-ng.
They include not only GCC, but also a "sysroot" with glibc, as well as the rest
of the toolchain (binutils). Ordinarily, the sysroot is something that your
system provides, and it is what establishes the libc compatibility bound for
your compiled code. Any compilation that uses a sysroot other than the system
sysroot is said to be "cross-compiling." When the target OS and the build OS
are the same, it is called a "pseudo-cross-compiler." This is the case for
normal builds with Anaconda's compilers on Linux.

Unfortunately, some software tools do not handle sysroots in intuitive ways.
CMake is especially bad for this. Even though the compiler itself understands
its own sysroot, CMake insists on ignoring that. We've filed issues at:

	https://gitlab.kitware.com/cmake/cmake/issues/17483

Additionally, this Stack Overflow issue has some more information: https://stackoverflow.com/questions/36195791/cmake-missing-sysroot-when-cross-compiling

In order to teach CMake about the sysroot, you must do additional work. As an
example, please see our recipe for libnetcdf at
https://github.com/AnacondaRecipes/libnetcdf-feedstock/tree/master/recipe

In particular, you'll need to copy the cross-linux.cmake file there, and reference it in your build.sh file:

CMAKE_PLATFORM_FLAGS+=(-DCMAKE_TOOLCHAIN_FILE="${RECIPE_DIR}/cross-linux.cmake")

cmake -DCMAKE_INSTALL_PREFIX=${PREFIX} \
 ${CMAKE_PLATFORM_FLAGS[@]} \
 ${SRC_DIR}

Customizing the compilers

The compiler packages listed above are small packages that only include the
activation scripts and list most of the software they provide as runtime
dependencies.

This design is intended to make it easy for you to customize your own compiler
packages by copying these recipes and changing the flags. You can then edit the
conda_build_config.yaml file to specify your own packages.

We have been careful to select good, general purpose, secure, and fast flags.
We have also used them for all packages in Anaconda Distribution 5.0.0, except
for some minor customizations in a few recipes. When changing these flags,
remember that choosing the wrong flags can reduce security, reduce performance,
and cause incompatibilities.

With that warning in mind, let's look at good ways to customize Clang.

	Download or fork the code from https://github.com/anacondarecipes/aggregate.
The Clang package recipe is in the clang folder. The main material is in the
llvm-compilers-feedstock folder.

	Edit clang/recipe/meta.yaml:

package:
 name: clang_{{ target_platform }}
 version: {{ version }}

The name here does not matter but the output names below do. Conda-build
expects any compiler to follow the BASENAME_PLATFORMNAME pattern, so it is
important to keep the {{target_platform}} part of the name.

{{ version }} is left as an intentionally undefined jinja2 variable. It
is set later in conda_build_config.yaml.

	Before any packaging is done, run the build.sh script:
https://github.com/AnacondaRecipes/aggregate/blob/master/clang/build.sh

In this recipe, values are changed here. Those values are inserted into the
activate scripts that are installed later.

#!/bin/bash

CHOST=${macos_machine}

FINAL_CPPFLAGS="-D_FORTIFY_SOURCE=2 -mmacosx-version-min=${macos_min_version}"
FINAL_CFLAGS="-march=core2 -mtune=haswell -mssse3 -ftree-vectorize -fPIC -fPIE -fstack-protector-strong -O2 -pipe"
FINAL_CXXFLAGS="-march=core2 -mtune=haswell -mssse3 -ftree-vectorize -fPIC -fPIE -fstack-protector-strong -O2 -pipe -stdlib=libc++ -fvisibility-inlines-hidden -std=c++14 -fmessage-length=0"
These are the LDFLAGS for when the linker is being called directly, without "-Wl,"
FINAL_LDFLAGS="-pie -headerpad_max_install_names"
These are the LDFLAGS for when the linker is being driven by a compiler, with "-Wl,"
FINAL_LDFLAGS_CC="-Wl,-pie -Wl,-headerpad_max_install_names"
FINAL_DEBUG_CFLAGS="-Og -g -Wall -Wextra -fcheck=all -fbacktrace -fimplicit-none -fvar-tracking-assignments"
FINAL_DEBUG_CXXFLAGS="-Og -g -Wall -Wextra -fcheck=all -fbacktrace -fimplicit-none -fvar-tracking-assignments"
FINAL_DEBUG_FFLAGS="-Og -g -Wall -Wextra -fcheck=all -fbacktrace -fimplicit-none -fvar-tracking-assignments"

find "${RECIPE_DIR}" -name "*activate*.sh" -exec cp {} . \;

find . -name "*activate*.sh" -exec sed -i.bak "s|@CHOST@|${CHOST}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@CPPFLAGS@|${FINAL_CPPFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@CFLAGS@|${FINAL_CFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@DEBUG_CFLAGS@|${FINAL_DEBUG_CFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@CXXFLAGS@|${FINAL_CXXFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@DEBUG_CXXFLAGS@|${FINAL_DEBUG_CXXFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@DEBUG_CXXFLAGS@|${FINAL_DEBUG_CXXFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@FFLAGS@|${FINAL_FFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@DEBUG_FFLAGS@|${FINAL_DEBUG_FFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@LDFLAGS@|${FINAL_LDFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@LDFLAGS_CC@|${FINAL_LDFLAGS_CC}|g" "{}" \;
find . -name "*activate*.sh.bak" -exec rm "{}" \;

	With those changes to the activate scripts in place, it's time to move on to
installing things. Look back at the clang folder's meta.yaml. Here's
where we change the package name. Notice what comes before the
{{ target_platform }}.

outputs:
 - name: super_duper_clang_{{ target_platform }}
 script: install-clang.sh
 requirements:
 - clang {{ version }}

The script reference here is another place you might add customization.
You'll either change the contents of those install scripts or change the
scripts that those install scripts are installing.

Note that we make the package clang in the main material agree in version
with our output version. This is implicitly the same as the top-level
recipe. The clang package sets no environment variables at all, so it
may be difficult to use directly.

	Let's examine the script install-clang.sh:

#!/bin/bash

set -e -x

CHOST=${macos_machine}

mkdir -p "${PREFIX}"/etc/conda/{de,}activate.d/
cp "${SRC_DIR}"/activate-clang.sh "${PREFIX}"/etc/conda/activate.d/activate_"${PKG_NAME}".sh
cp "${SRC_DIR}"/deactivate-clang.sh "${PREFIX}"/etc/conda/deactivate.d/deactivate_"${PKG_NAME}".sh

pushd "${PREFIX}"/bin
 ln -s clang ${CHOST}-clang
popd

Nothing here is too unusual.

Activate scripts are named according to our package name so they won't
conflict with other activate scripts.

The symlink for Clang is a Clang implementation detail that sets the host
platform.

We define macos_machine in aggregate's conda_build_config.yaml:
https://github.com/AnacondaRecipes/aggregate/blob/master/conda_build_config.yaml#L79

The activate scripts that are being installed are where we actually set the
environment variables. Remember that these have been modified by build.sh.

	With any of your desired changes in place, go ahead and build the recipe.

You should end up with a super_duper_clang_osx-64 package. Or, if you're not
on macOS and are modifying a different recipe, you should end up with an
equivalent package for your platform.

Using your customized compiler package with conda-build 3

Remember the Jinja2 function, {{ compiler('c') }}? Here's where that comes
in. Specific keys in conda_build_config.yaml are named for the language
argument to that jinja2 function. In your conda_build_config.yaml, add
this:

c_compiler:
 - super_duper_clang

Note that we're not adding the target_platform part, which is separate. You
can define that key, too:

c_compiler:
 - super_duper_clang
target_platform:
 - win-64

With those two keys defined, conda-build will try to use a compiler package
named super_duper_clang_win-64. That package needs to exist for your native
platform. For example, if you're on macOS, your native platform is osx-64.

The package subdirectory for your native platform is the build platform. The
build platform and the target_platform can be the same, and they are the
same by default, but they can also be different. When they are different,
you're cross-compiling.

If you ever needed a different compiler key for the same language, remember
that the language key is arbitrary. For example, we might want different
compilers for Python and for R within one ecosystem. On Windows, the Python
ecosystem uses the Microsoft Visual C compilers, while the R ecosystem uses the
Mingw compilers.

Let's start in conda_build_config.yaml:

python_c_compiler:
 - vs2015
r_c_compiler:
 - m2w64-gcc
target_platform:
 - win-64

In Python recipes, you'd have:

requirements:
 build:
 - {{ compiler('python_c') }}

In R recipes, you'd have:

requirements:
 build:
 - {{ compiler('r_c') }}

This example is a little contrived, because the m2w64-gcc_win-64 package is
not available. You'd need to create a metapackage m2w64-gcc_win-64 to
point at the m2w64-gcc package, which does exist on the msys2 channel on
repo.anaconda.com [https://repo.anaconda.com/].

Expressing the relation between compiler and its standard library

For most languages, certainly for "c" and for "cxx", compiling any given
program may create a run-time dependence on symbols from the respective
standard library. For example, the standard library for C on linux is generally
glibc, and a core component of your operating system. Conda is not able to
change or supersede this library (it would be too risky to try to). A similar
situation exists on MacOS and on Windows.

Compiler packages usually have two ways to deal with this dependence:

	assume the package must be there (like glibc on linux).

	always add a run-time requirement on the respective stdlib (e.g. libcxx
on MacOS).

However, even if we assume the package must be there, the information about the
glibc version is still a highly relevant piece of information, which is
also why it is reflected in the __glibc
virtual package [https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-virtual.html].

For example, newer packages may decide over time to increase the lowest version
of glibc that they support. We therefore need a way to express this
dependence in a way that conda will be able to understand, so that (in
conjunction with the __glibc virtual package) the environment resolver will
not consider those packages on machines whose glibc version is too old.

The way to do this is to use the Jinja2 function {{ stdlib('c') }}, which
matches {{ compiler('c') }} in as many ways as possible. Let's start again
with the conda_build_config.yaml:

c_stdlib:
 - sysroot # [linux]
 - macosx_deployment_target # [osx]
c_stdlib_version:
 - 2.17 # [linux]
 - 10.13 # [osx]

In the recipe we would then use:

requirements:
 build:
 - {{ compiler('c') }}
 - {{ stdlib('c') }}

This would then express that the resulting package requires sysroot ==2.17
(corresponds to glibc) on linux and macosx_deployment_target ==10.13 on
MacOS in the build environment, respectively. How this translates into a
run-time dependence can be defined in the metadata of the respective conda
(meta-)package which represents the standard library (i.e. those defined under
c_stdlib above).

In this example, sysroot 2.17 would generate a run-export on
__glibc >=2.17 and macosx_deployment_target 10.13 would similarly
generate __osx >=10.13. This way, we enable packages to define their own
expectations about the standard library in a unified way, and without
implicitly depending on some global assumption about what the lower version
on a given platform must be.

In principle, this facility would make it possible to also express the
dependence on separate stdlib implementations (like musl instead of
glibc), or to remove the need to assume that a C++ compiler always needs to
add a run-export on the C++ stdlib -- it could then be left up to packages
themselves whether they need {{ stdlib('cxx') }} or not.

Anaconda compilers implicitly add RPATH pointing to the conda environment

You might want to use the Anaconda compilers outside of conda-build
so that you use the same versions, flags, and configuration, for maximum
compatibility with Anaconda packages (but in a case where you want simple
tarballs, for example). In this case, there is a gotcha.

Even if Anaconda compilers are used from outside of conda-build, the GCC
specs are customized so that, when linking an executable or a shared library,
an RPATH pointing to lib/ inside the current enviroment prefix directory
($CONDA_PREFIX/lib) is added. This is done by changing the
link_libgcc: section inside GCC specs file, and this change is done
so that LD_LIBRARY_PATH isn't required for basic libraries.

conda-build knows how to make this automatically relocatable, so that
this RPATH will be changed to point to the environment where the package
is being installed (at installation time, by conda). But if you only pack
this binary in a tarball, it will continue containing this hardcoded RPATH
to an environment in your machine. In this case, it is recommended to manually
remove the RPATH.

Defining metadata (meta.yaml)

All the metadata in the conda-build recipe is specified in the
meta.yaml file. See the example below:

{% set version = "1.1.0" %}

package:
 name: imagesize
 version: {{ version }}

source:
 url: https://pypi.io/packages/source/i/imagesize/imagesize-{{ version }}.tar.gz
 sha256: f3832918bc3c66617f92e35f5d70729187676313caa60c187eb0f28b8fe5e3b5

build:
 noarch: python
 number: 0
 script: python -m pip install --no-deps --ignore-installed .

requirements:
 host:
 - python
 - pip
 run:
 - python

test:
 imports:
 - imagesize

about:
 home: https://github.com/shibukawa/imagesize_py
 license: MIT
 summary: 'Getting image size from png/jpeg/jpeg2000/gif file'
 description: |
 This module analyzes jpeg/jpeg2000/png/gif image header and
 return image size.
 dev_url: https://github.com/shibukawa/imagesize_py
 doc_url: https://pypi.python.org/pypi/imagesize
 doc_source_url: https://github.com/shibukawa/imagesize_py/blob/master/README.rst

All sections are optional except for package/name and
package/version.

Headers must appear only once. If they appear multiple times,
only the last is remembered. For example, the package: header
should appear only once in the file.

Package section

Specifies package information.

Package name

The lower case name of the package. It may contain "-", but no
spaces.

package:
 name: bsdiff4

Package version

The version number of the package. Use the PEP-386 verlib
conventions. Cannot contain "-". YAML interprets version numbers
such as 1.0 as floats, meaning that 0.10 will be the same as 0.1.
To avoid this, put the version number in quotes so that it is
interpreted as a string.

package:
 version: "1.1.4"

Note

Post-build versioning: In some cases, you may not know the
version, build number, or build string of the package until after
it is built. In these cases, you can perform
Templating with Jinja or utilize Git environment variables and
Inherited environment variables.

Source section

Specifies where the source code of the package is coming from.
The source may come from a tarball file, git, hg, or svn. It may
be a local path and it may contain patches.

Source from tarball or zip archive

source:
 url: https://pypi.python.org/packages/source/b/bsdiff4/bsdiff4-1.1.4.tar.gz
 md5: 29f6089290505fc1a852e176bd276c43
 sha1: f0a2c9a30073449cfb7d171c57552f3109d93894
 sha256: 5a022ff4c1d1de87232b1c70bde50afbb98212fd246be4a867d8737173cf1f8f

If an extracted archive contains only 1 folder at its top level, its contents
will be moved 1 level up, so that the extracted package contents sit in the
root of the work folder.

Source from git

The git_url can also be a relative path to the recipe directory.

source:
 git_url: https://github.com/ilanschnell/bsdiff4.git
 git_rev: 1.1.4
 git_depth: 1 # (Defaults to -1/not shallow)

The depth argument relates to the ability to perform a shallow clone.
A shallow clone means that you only download part of the history from
Git. If you know that you only need the most recent changes, you can
say, git_depth: 1, which is faster than cloning the entire repo.
The downside to setting it at 1 is that, unless the tag is on that
specific commit, then you won't have that tag when you go to reference
it in git_rev (for example). If your git_depth is insufficient
to capture the tag in git_rev, you'll encounter an error. So in the
example above, unless the 1.1.4 is the very head commit and the one
that you're going to grab, you may encounter an error.

Source from hg

source:
 hg_url: ssh://hg@bitbucket.org/ilanschnell/bsdiff4
 hg_tag: 1.1.4

Source from svn

source:
 svn_url: https://github.com/ilanschnell/bsdiff
 svn_rev: 1.1.4 # (defaults to head)
 svn_ignore_externals: True # (defaults to False)
 svn_username: username # Optional, if set must also have svn_password
 svn_password: password # Optional, if set must also have svn_username

To access a restricted SVN repository, specify both svn_username and svn_password.

Caution

Storing credentials in plaintext carries risks. Alternatively, consider
using environment variables:

source:
 svn_username: {{ environ["SVN_USERNAME"] }}
 svn_password: {{ environ["SVN_PASSWORD"] }}

Source from a local path

If the path is relative, it is taken relative to the recipe
directory. The source is copied to the work directory before
building.

source:
 path: ../src

If the local path is a git or svn repository, you get the
corresponding environment variables defined in your build
environment. The only practical difference between git_url or
hg_url and path as source arguments is that git_url and hg_url
would be clones of a repository, while path would be a copy of
the repository. Using path allows you to build packages with
unstaged and uncommitted changes in the working directory.
git_url can build only up to the latest commit.

Patches

Patches may optionally be applied to the source.

source:
 #[source information here]
 patches:
 - my.patch # the patch file is expected to be found in the recipe

Conda-build automatically determines the patch strip level.

Destination path

Within conda-build's work directory, you may specify a particular folder to
place source into. This feature is new in conda-build 3.0. Conda-build will
always drop you into the same folder (build folder/work), but it's up to you
whether you want your source extracted into that folder, or nested deeper. This
feature is particularly useful when dealing with multiple sources, but can apply
to recipes with single sources as well.

source:
 #[source information here]
 folder: my-destination/folder

Filename

The filename key is fn. It was formerly required with URL source types. It is not required now.

If the fn key is provided, the file is saved on disk with that name. If the fn key is not provided, the file is saved on disk with a name matching the last part of the URL.

For example, http://www.something.com/myfile.zip has an implicit filename of myfile.zip. Users may change this by manually specifying fn.

source:
 url: http://www.something.com/myfile.zip
 fn: otherfilename.zip

Source from multiple sources

Some software is most easily built by aggregating several pieces. For this,
conda-build 3.0 has added support for arbitrarily specifying many sources.

The syntax is a list of source dictionaries. Each member of this list
follows the same rules as the single source for earlier conda-build versions
(listed above). All features for each member are supported.

Example:

source:
 - url: https://package1.com/a.tar.bz2
 folder: stuff
 - url: https://package1.com/b.tar.bz2
 folder: stuff
 - git_url: https://github.com/conda/conda-build
 folder: conda-build

Here, the two URL tarballs will go into one folder, and the git repo
is checked out into its own space. Git will not clone into a non-empty folder.

Note

Dashes denote list items in YAML syntax.

Build section

Specifies build information.

Each field that expects a path can also handle a glob pattern. The matching is
performed from the top of the build environment, so to match files inside
your project you can use a pattern similar to the following one:
"**/myproject/**/*.txt". This pattern will match any .txt file found in
your project.

Note

The quotation marks ("") are required for patterns that start with a *.

Recursive globbing using ** is supported only in conda-build >= 3.0.

Build number and string

The build number should be incremented for new builds of the same
version. The number defaults to 0. The build string cannot
contain "-". The string defaults to the default conda-build
string plus the build number.

build:
 number: 1
 string: abc

A hash will appear when the package is affected by one or more variables from
the conda_build_config.yaml file. The hash is made up from the "used" variables
- if anything is used, you have a hash. If you don't use these variables then you
won't have a hash. There are a few special cases that do not affect the hash, such as
Python and R or anything that already had a place in the build string.

The build hash will be added to the build string if these are true for any
dependency:

	package is an explicit dependency in build, host, or run deps

	package has a matching entry in conda_build_config.yaml which
is a pin to a specific version, not a lower bound

	that package is not ignored by ignore_version

OR

	package uses {{ compiler() }} jinja2 function

You can also influence which variables are considered for the hash with:

build:
 force_use_keys:
 - package_1
 force_ignore_keys:
 - package_2

This will ensure that the value of package_2 will not be considered for the hash,
and package_1 will be, regardless of what conda-build discovers is used by its inspection.

This may be useful to further split complex multi-output builds, to ensure each package is built,
or to ensure the right package hash when using more complex templating or scripting.

Python entry points

The following example creates a Python entry point named
"bsdiff4" that calls bsdiff4.cli.main_bsdiff4().

build:
 entry_points:
 - bsdiff4 = bsdiff4.cli:main_bsdiff4
 - bspatch4 = bsdiff4.cli:main_bspatch4

Python.app

If osx_is_app is set, entry points use python.app instead of
Python in macOS. The default is False.

build:
 osx_is_app: True

Track features

Adding track_features to one or more
of the options will cause conda to de-prioritize it or “weigh it down.”
The lowest priority package is the one that would cause the most
track_features to be activated in the environment. The default package
among many variants is the one that would cause the least track_features
to be activated.

No two packages in a given subdir should ever have the same track_feature.

build:
 track_features:
 - feature2

Preserve Python egg directory

This is needed for some packages that use features specific to
setuptools. The default is False.

build:
 preserve_egg_dir: True

Skip compiling some .py files into .pyc files

Some packages ship .py files that cannot be compiled, such
as those that contain templates. Some packages also ship .py
files that should not be compiled yet, because the Python
interpreter that will be used is not known at build time. In
these cases, conda-build can skip attempting to compile these
files. The patterns used in this section do not need the ** to
handle recursive paths.

build:
 skip_compile_pyc:
 - "*/templates/*.py" # These should not (and cannot) be compiled
 - "*/share/plugins/gdb/*.py" # The python embedded into gdb is unknown

No link

A list of globs for files that should always be copied and never
soft linked or hard linked.

build:
 no_link:
 - bin/*.py # Don't link any .py files in bin/

Script

Used instead of build.sh or bld.bat. For short build
scripts, this can be more convenient. You may need to use
selectors to use different scripts
for different platforms.

build:
 script: python setup.py install --single-version-externally-managed --record=record.txt

RPATHs

Set which RPATHs are used when making executables relocatable on
Linux. This is a Linux feature that is ignored on other systems.
The default is lib/.

build:
 rpaths:
 - lib/
 - lib/R/lib/

Force files

Force files to always be included, even if they are already in
the environment from the build dependencies. This may be needed,
for example, to create a recipe for conda itself.

build:
 always_include_files:
 - bin/file1
 - bin/file2

Relocation

Advanced features. You can use the following 4 keys to control
relocatability files from the build environment to the
installation environment:

	binary_relocation.

	has_prefix_files.

	binary_has_prefix_files.

	ignore_prefix_files.

For more information, see Making packages relocatable.

Binary relocation

Whether binary files should be made relocatable using
install_name_tool on macOS or patchelf on Linux. The
default is True. It also accepts False, which indicates
no relocation for any files, or a list of files, which indicates
relocation only for listed files.

build:
 binary_relocation: False

Detect binary files with prefix

Binary files may contain the build prefix and need it replaced
with the install prefix at installation time. Conda can
automatically identify and register such files. The default is
True.

Note

The default changed from False to True in conda
build 2.0. Setting this to False means that binary
relocation---RPATH---replacement will still be done, but
hard-coded prefixes in binaries will not be replaced. Prefixes
in text files will still be replaced.

build:
 detect_binary_files_with_prefix: False

Windows handles binary prefix replacement very differently than
Unix-like systems such as macOS and Linux. At this time, we are
unaware of any executable or library that uses hardcoded
embedded paths for locating other libraries or program data on
Windows. Instead, Windows follows DLL search path
rules [https://msdn.microsoft.com/en-us/library/7d83bc18.aspx]
or more natively supports relocatability using relative paths.
Because of this, conda ignores most prefixes. However, pip
creates executables for Python entry points that do use embedded
paths on Windows. Conda-build thus detects prefixes in all files
and records them by default. If you are getting errors about
path length on Windows, you should try to disable
detect_binary_files_with_prefix. Newer versions of Conda,
such as recent 4.2.x series releases and up, should have no
problems here, but earlier versions of conda do erroneously try
to apply any binary prefix replacement.

Binary has prefix files

By default, conda-build tries to detect prefixes in all files.
You may also elect to specify files with binary prefixes
individually. This allows you to specify the type of file as
binary, when it may be incorrectly detected as text for some
reason. Binary files are those containing NULL bytes.

build:
 binary_has_prefix_files:
 - bin/binaryfile1
 - lib/binaryfile2

Text files with prefix files

Text files---files containing no NULL bytes---may contain the
build prefix and need it replaced with the install prefix at
installation time. Conda will automatically register such files.
Binary files that contain the build prefix are generally
handled differently---see Binary has prefix files---but there may be
cases where such a binary file needs to be treated as an ordinary
text file, in which case they need to be identified.

build:
 has_prefix_files:
 - bin/file1
 - lib/file2

Ignore prefix files

Used to exclude some or all of the files in the build recipe from
the list of files that have the build prefix replaced with the
install prefix.

To ignore all files in the build recipe, use:

build:
 ignore_prefix_files: True

To specify individual filenames, use:

build:
 ignore_prefix_files:
 - file1

This setting is independent of RPATH replacement. Use the
Detect binary files with prefix setting to control that behavior.

Skipping builds

Specifies whether conda-build should skip the build of this
recipe. Particularly useful for defining recipes that are
platform specific. The default is False.

build:
 skip: True # [not win]

Architecture independent packages

Allows you to specify "no architecture" when building a package,
thus making it compatible with all platforms and architectures.
Noarch packages can be installed on any platform.

Starting with conda-build 2.1, and conda 4.3, there is a new syntax that
supports different languages. Assigning the noarch key as generic tells
conda to not try any manipulation of the contents.

build:
 noarch: generic

noarch: generic is most useful for packages such as static javascript assets
and source archives. For pure Python packages that can run on any Python
version, you can use the noarch: python value instead:

build:
 noarch: python

The legacy syntax for noarch_python is still valid, and should be
used when you need to be certain that your package will be installable where
conda 4.3 is not yet available. All other forms of noarch packages require
conda >=4.3 to install.

build:
 noarch_python: True

Warning

At the time of this writing, noarch packages should not make use of preprocess-selectors:
noarch packages are built with the directives which evaluate to True in the platform
it was built, which probably will result in incorrect/incomplete installation in other
platforms.

Include build recipe

The full conda-build recipe and rendered meta.yaml file is
included in the Package metadata by default. You can
disable this with:

build:
 include_recipe: False

Use environment variables

Normally the build script in build.sh or bld.bat does not
pass through environment variables from the command line. Only
environment variables documented in Environment variables are seen by
the build script. To "white-list" environment variables that
should be passed through to the build script:

build:
 script_env:
 - MYVAR
 - ANOTHER_VAR

If a listed environment variable is missing from the environment
seen by the conda-build process itself, a UserWarning is
emitted during the build process and the variable remains
undefined.

Additionally, values can be set by including = followed by the desired value:

build:
 script_env:
 - MY_VAR=some value

Note

Inheriting environment variables can make it difficult for
others to reproduce binaries from source with your recipe. Use
this feature with caution or explicitly set values using the =
syntax.

Note

If you split your build and test phases with --no-test and --test,
you need to ensure that the environment variables present at build time and test
time match. If you do not, the package hashes may use different values, and your
package may not be testable, because the hashes will differ.

Export runtime requirements

Some build or host Requirements section will impose a runtime requirement.
Most commonly this is true for shared libraries (e.g. libpng), which are
required for linking at build time, and for resolving the link at run time.
With run_exports (new in conda-build 3) such a runtime requirement can be
implicitly added by host requirements (e.g. libpng exports libpng), and with
run_exports/strong even by build requirements (e.g. GCC exports libgcc).

meta.yaml of libpng
build:
 run_exports:
 - libpng

Here, because no specific kind of run_exports is specified, libpng's run_exports
are considered "weak." This means they will only apply when libpng is in the
host section, when they will add their export to the run section. If libpng were
listed in the build section, the run_exports would not apply to the run section.

meta.yaml of gcc compiler
build:
 run_exports:
 strong:
 - libgcc

Strong run_exports are used for things like runtimes, where the same runtime
needs to be present in the host and the run environment, and exactly which
runtime that should be is determined by what's present in the build section.
This mechanism is how we line up appropriate software on Windows, where we must
match MSVC versions used across all of the shared libraries in an environment.

meta.yaml of some package using gcc and libpng
requirements:
 build:
 - gcc # has a strong run export
 host:
 - libpng # has a (weak) run export
 # - libgcc <-- implicitly added by gcc
 run:
 # - libgcc <-- implicitly added by gcc
 # - libpng <-- implicitly added by libpng

You can express version constraints directly, or use any of the Jinja2 helper
functions listed at Extra Jinja2 functions.

For example, you may use Pinning expressions to obtain flexible version
pinning relative to versions present at build time:

build:
 run_exports:
 - {{ pin_subpackage('libpng', max_pin='x.x') }}

With this example, if libpng were version 1.6.34, this pinning expression would
evaluate to >=1.6.34,<1.7.

If build and link dependencies need to impose constraints on the run environment
but not necessarily pull in additional packages, then this can be done by
altering the Run_constrained entries. In addition to weak/strong
run_exports which add to the run requirements, weak_constrains and
strong_constrains add to the run_constrained requirements.
With these, e.g., minimum versions of compatible but not required packages (like
optional plugins for the linked dependency, or certain system attributes) can be
expressed:

requirements:
 build:
 - build-tool # has a strong run_constrained export
 host:
 - link-dependency # has a weak run_constrained export
 run:
 run_constrained:
 # - system-dependency >=min <-- implicitly added by build-tool
 # - optional-plugin >=min <-- implicitly added by link-dependency

Note that run_exports can be specified both in the build section and on
a per-output basis for split packages.

run_exports only affects directly named dependencies. For example, if you
have a metapackage that includes a compiler that lists run_exports, you also
need to define run_exports in the metapackage so that it takes effect
when people install your metapackage. This is important, because if
run_exports affected transitive dependencies, you would see many added
dependencies to shared libraries where they are not actually direct
dependencies. For example, Python uses bzip2, which can use run_exports to
make sure that people use a compatible build of bzip2. If people list python as
a build time dependency, bzip2 should only be imposed for Python itself and
should not be automatically imposed as a runtime dependency for the thing using
Python.

The potential downside of this feature is that it takes some control over
constraints away from downstream users. If an upstream package has a problematic
run_exports constraint, you can ignore it in your recipe by listing the upstream
package name in the build/ignore_run_exports section:

build:
 ignore_run_exports:
 - libstdc++

You can also list the package the run_exports constraint is coming from
using the build/ignore_run_exports_from section:

build:
 ignore_run_exports_from:
 - {{ compiler('cxx') }}

Pin runtime dependencies

The pin_depends build key can be used to enforce pinning
behavior on the output recipe or built package.

There are 2 possible behaviors:

build:
 pin_depends: record

With a value of record, conda-build will record all
requirements exactly as they would be installed in a file
called info/requires. These pins will not
show up in the output of conda render and they will
not affect the actual run dependencies of the output
package. It is only adding in this new file.

build:
 pin_depends: strict

With a value of strict, conda-build applies the pins
to the actual metadata. This does affect the output of
conda render and also affects the end result
of the build. The package dependencies will be strictly
pinned down to the build string level. This will
supersede any dynamic or compatible pinning that
conda-build may otherwise be doing.

Ignoring files in overlinking/overdepending checks

The overlinking_ignore_patterns key in the build section can be used to
ignore patterns of files for the overlinking and overdepending checks. This
is sometimes useful to speed up builds that have many files (large repackage jobs)
or builds where you know only a small fraction of the files should be checked.

Glob patterns are allowed here, but mind your quoting, especially with leading wildcards.

Use this sparingly, as the overlinking checks generally do prevent you from making mistakes.

build:
 overlinking_ignore_patterns:
 - "bin/*"

Whitelisting shared libraries

The missing_dso_whitelist build key is a list of globs for
dynamic shared object (DSO) files that should be ignored when
examining linkage information.

During the post-build phase, the shared libraries in the newly created
package are examined for linkages which are not provided by the
package's requirements or a predefined list of system libraries. If such
libraries are detected, either a warning --no-error-overlinking
or error --error-overlinking will result.

build:
 missing_dso_whitelist:

These keys allow additions to the list of allowed libraries.

The runpath_whitelist build key is a list of globs for paths
which are allowed to appear as runpaths in the package's shared
libraries. All other runpaths will cause a warning message to be
printed during the build.

build:
 runpath_whitelist:

Requirements section

Specifies the build and runtime requirements. Dependencies of
these requirements are included automatically.

Versions for requirements must follow the conda match
specification. See Package match specifications.

Build

Tools required to build the package. These packages are run on
the build system and include things such as revision control systems
(Git, SVN) make tools (GNU make, Autotool, CMake) and compilers
(real cross, pseudo-cross, or native when not cross-compiling),
and any source pre-processors.

Packages which provide "sysroot" files, like the CDT packages (see below)
also belong in the build section.

requirements:
 build:
 - git
 - cmake

Host

This section was added in conda-build 3.0. It represents packages that need to
be specific to the target platform when the target platform is not necessarily
the same as the native build platform. For example, in order for a recipe to be
"cross-capable", shared libraries requirements must be listed in the host
section, rather than the build section, so that the shared libraries that get
linked are ones for the target platform, rather than the native build platform.
You should also include the base interpreter for packages that need one. In other
words, a Python package would list python here and an R package would list
mro-base or r-base.

requirements:
 build:
 - {{ compiler('c') }}
 - {{ cdt('xorg-x11-proto-devel') }} # [linux]
 host:
 - python

Note

When both build and host sections are defined, the build section can be
thought of as "build tools" - things that run on the native platform, but output
results for the target platform. For example, a cross-compiler that runs on
linux-64, but targets linux-armv7.

The PREFIX environment variable points to the host prefix. With respect to
activation during builds, both the host and build environments are activated.
The build prefix is activated after the host prefix so that the build prefix,
which always contains native executables for the running platform, has priority
over the host prefix, which is not guaranteed to provide native executables (e.g.
when cross-compiling).

As of conda-build 3.1.4, the build and host prefixes are always separate when
both are defined, or when {{ compiler() }} Jinja2 functions are used. The
only time that build and host are merged is when the host section is absent, and
no {{ compiler() }} Jinja2 functions are used in meta.yaml. Because these
are separate, you may see some build failures when migrating your recipes. For
example, let's say you have a recipe to build a Python extension. If you add the
compiler Jinja2 functions to the build section, but you do not move your Python
dependency from the build section to the host section, your recipe will fail. It
will fail because the host environment is where new files are detected, but
because you have Python only in the build environment, your extension will be
installed into the build environment. No files will be detected. Also, variables
such as PYTHON will not be defined when Python is not installed into the host
environment.

On Linux, using the compiler packages provided by Anaconda Inc. in the defaults
meta-channel can prevent your build system leaking into the built software by
using our CDT (Core Dependency Tree) packages for any "system" dependencies.
These packages are repackaged libraries and headers from CentOS6 and are unpacked
into the sysroot of our pseudo-cross compilers and are found by them automatically.

Note that what qualifies as a "system" dependency is a matter of opinion. The
Anaconda Distribution chose not to provide X11 or GL packages, so we use CDT
packages for X11. Conda-forge chose to provide X11 and GL packages.

On macOS, you can also use {{ compiler() }} to get compiler packages
provided by Anaconda Inc. in the defaults meta-channel. The
environment variables MACOSX_DEPLOYMENT_TARGET and CONDA_BUILD_SYSROOT
will be set appropriately by conda-build (see Environment variables).
CONDA_BUILD_SYSROOT will specify a folder containing a macOS SDK. These
settings achieve backwards compatibility while still providing access to C++14
and C++17. Note that conda-build will set CONDA_BUILD_SYSROOT by parsing the
conda_build_config.yaml. For more details, see Anaconda compiler tools.

TL;DR: If you use {{ compiler() }} Jinja2 to utilize our new
compilers, you must also move anything that is not strictly a build tool into
your host dependencies. This includes Python, Python libraries, and any shared
libraries that you need to link against in your build. Examples of build tools
include any {{ compiler() }}, Make, Autoconf, Perl (for running scripts, not
installing Perl software), and Python (for running scripts, not for installing
software).

Run

Packages required to run the package. These are the dependencies
that are installed automatically whenever the package is
installed. Package names should follow the package match specifications [https://conda.io/projects/conda/en/latest/user-guide/concepts/pkg-specs.html#package-match-specifications].

requirements:
 run:
 - python
 - argparse # [py26]
 - six >=1.8.0

To build a recipe against different versions of NumPy and ensure
that each version is part of the package dependencies, list
numpy x.x as a requirement in meta.yaml and use
conda-build with a NumPy version option such as
--numpy 1.7.

The line in the meta.yaml file should literally say
numpy x.x and should not have any numbers. If the
meta.yaml file uses numpy x.x, it is required to use the
--numpy option with conda-build.

requirements:
 run:
 - python
 - numpy x.x

Note

Instead of manually specifying run requirements, since
conda-build 3 you can augment the packages used in your build and host
sections with run_exports which are then automatically
added to the run requirements for you.

Run_constrained

Packages that are optional at runtime but must obey the supplied additional constraint if they are installed.

Package names should follow the package match specifications [https://conda.io/projects/conda/en/latest/user-guide/concepts/pkg-specs.html#package-match-specifications].

requirements:
 run_constrained:
 - optional-subpackage =={{ version }}

For example, let's say we have an environment that has package "a" installed at
version 1.0. If we install package "b" that has a run_constrained entry of
"a>1.0", then conda would need to upgrade "a" in the environment in order to
install "b".

This is especially useful in the context of virtual packages, where the
run_constrained dependency is not a package that conda manages, but rather a
virtual package [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html]
that represents a system property that conda can't change. For example, a
package on linux may impose a run_constrained dependency on __glibc>=2.12.
This is the version bound consistent with CentOS 6. Software built against glibc
2.12 will be compatible with CentOS 6. This run_constrained dependency helps
conda tell the user that a given package can't be installed if their system
glibc version is too old.

Test section

If this section exists or if there is a
run_test.[py,pl,sh,bat] file in the recipe, the package is
installed into a test environment after the build is finished
and the tests are run there.

Test files

Test files that are copied from the recipe into the temporary
test directory and are needed during testing. If providing a path,
forward slashes must be used.

test:
 files:
 - test-data.txt

Source files

Test files that are copied from the source work directory into
the temporary test directory and are needed during testing.

test:
 source_files:
 - test-data.txt
 - some/directory
 - some/directory/pattern*.sh

This capability was added in conda-build 2.0.

Test requirements

In addition to the runtime requirements, you can specify
requirements needed during testing. The runtime requirements that you specified
in the "run" section described above are automatically included during testing.

test:
 requires:
 - nose

Test commands

Commands that are run as part of the test.

test:
 commands:
 - bsdiff4 -h
 - bspatch4 -h

Python imports

List of Python modules or packages that will be imported in the
test environment.

test:
 imports:
 - bsdiff4

This would be equivalent to having a run_test.py with the
following:

import bsdiff4

Run test script

The script run_test.sh---or .bat, .py, or
.pl---is run automatically if it is part of the recipe.

Note

Python .py and Perl .pl scripts are valid only
as part of Python and Perl packages, respectively.

Downstream tests

Knowing that your software built and ran its tests successfully is necessary,
but not sufficient, for keeping whole systems of software running. To have
confidence that a new build of a package hasn't broken other downstream
software, conda-build supports the notion of downstream testing.

test:
 downstreams:
 - some_downstream_pkg

This is saying "When I build this recipe, after you run my test suite here, also
download and run some_downstream_pkg which depends on my package." Conda-build
takes care of ensuring that the package you just built gets installed into the
environment for testing some_downstream_pkg. If conda-build can't create that
environment due to unsatisfiable dependencies, it will skip those downstream
tests and warn you. This usually happens when you are building a new version of
a package that will require you to rebuild the downstream dependencies.

Downstreams specs are full conda specs, similar to the requirements section. You
can put version constraints on your specs in here:

test:
 downstreams:
 - some_downstream_pkg >=2.0

More than one package can be specified to run downstream tests for:

test:
 downstreams:
 - some_downstream_pkg
 - other_downstream_pkg

However, this does not mean that these packages are tested together. Rather,
each of these are tested for satisfiability with your new package, then each of
their test suites are run separately with the new package.

Outputs section

Explicitly specifies packaging steps. This section supports
multiple outputs, as well as different package output types. The
format is a list of mappings. Build strings for subpackages are
determined by their runtime dependencies. This support was added
in conda-build 2.1.0.

outputs:
 - name: some-subpackage
 version: 1.0
 - name: some-other-subpackage
 version: 2.0

Note

If any output is specified in the outputs section, the
default packaging behavior of conda-build is bypassed. In other
words, if any subpackage is specified, then you do not get the
normal top-level build for this recipe without explicitly
defining a subpackage for it. This is an alternative to the
existing behavior, not an addition to it. For more information,
see Implicit metapackages. Each output may have its own version and
requirements. Additionally, subpackages may impose downstream pinning similarly
to Pin downstream to help keep your packages aligned.

Specifying files to include in output

You can specify files to be included in the package in 1 of
3 ways:

	Explicit file lists.

	Scripts that move files into the build prefix.

	Both of the above

Explicit file lists are relative paths from the root of the
build prefix. Explicit file lists support glob expressions.
Directory names are also supported, and they recursively include
contents.

outputs:
 - name: subpackage-name
 files:
 - a-file
 - a-folder
 - *.some-extension
 - somefolder/*.some-extension

Scripts that create or move files into the build prefix can be
any kind of script. Known script types need only specify the
script name. Currently the list of recognized extensions is
py, bat, ps1, and sh.

outputs:
 - name: subpackage-name
 script: move-files.py

The interpreter command must be specified if the file extension
is not recognized.

outputs:
 - name: subpackage-name
 script: some-script.extension
 script_interpreter: program plus arguments to run script

For scripts that move or create files, a fresh copy of the
working directory is provided at the start of each script
execution. This ensures that results between scripts are
independent of one another.

Note

For either the file list or the script approach, having
more than 1 package contain a given file is not explicitly
forbidden, but may prevent installation of both packages
simultaneously. Conda disallows this condition because it
creates ambiguous runtime conditions.

When both scripts and files are given, the script is first run
and then only the files in the explicit file list are packaged.

Subpackage requirements

Like a top-level recipe, a subpackage may have zero or more dependencies listed
as build requirements and zero or more dependencies listed as run requirements.

The dependencies listed as subpackage build requirements are available only
during the packaging phase of that subpackage.

A subpackage does not automatically inherit any dependencies from its top-level
recipe, so any build or run requirements needed by the subpackage must be
explicitly specified.

outputs:

 - name: subpackage-name
 requirements:
 build:
 - some-dep
 run:
 - some-dep

It is also possible for a subpackage requirements section to have a list of
dependencies, but no build section or run section. This is the same as having
a build section with this dependency list and a run section with the same
dependency list.

outputs:
 - name: subpackage-name
 requirements:
 - some-dep

You can also impose runtime dependencies whenever a given (sub)package is
installed as a build dependency. For example, if we had an overarching
"compilers" package, and within that, had gcc and libgcc outputs, we
could force recipes that use GCC to include a matching libgcc runtime
requirement:

outputs:
 - name: gcc
 run_exports:
 - libgcc 2.*
 - name: libgcc

See the Export runtime requirements section for additional information.

Note

Variant expressions are very powerful here. You can express the version
requirement in the run_exports entry as a Jinja function to insert values
based on the actual version of libgcc produced by the recipe. Read more about
them at Referencing subpackages.

Implicit metapackages

When viewing the top-level package as a collection of smaller
subpackages, it may be convenient to define the top-level
package as a composition of several subpackages. If you do this
and you do not define a subpackage name that matches the
top-level package/name, conda-build creates a metapackage for
you. This metapackage has runtime requirements drawn from its
dependency subpackages, for the sake of accurate build strings.

EXAMPLE: In this example, a metapackage for subpackage-example
will be created. It will have runtime dependencies on
subpackage1, subpackage2, some-dep, and
some-other-dep.

package:
 name: subpackage-example
 version: 1.0

requirements:
 run:
 - subpackage1
 - subpackage2

outputs:
 - name: subpackage1
 requirements:
 - some-dep
 - name: subpackage2
 requirements:
 - some-other-dep
 - name: subpackage3
 requirements:
 - some-totally-exotic-dep

Subpackage tests

You can test subpackages independently of the top-level package.
Independent test script files for each separate package are
specified under the subpackage's test section. These files
support the same formats as the top-level run_test.* scripts,
which are .py, .pl, .bat, and .sh. These may be extended to
support other script types in the future.

outputs:
 - name: subpackage-name
 test:
 script: some-other-script.py

By default, the run_test.* scripts apply only to the
top-level package. To apply them also to subpackages, list them
explicitly in the script section:

outputs:
 - name: subpackage-name
 test:
 script: run_test.py

Test requirements for subpackages can be specified using the optional
test/requires section of subpackage tests. Subpackage tests install
their runtime requirements during the test as well.

EXAMPLE: In this example, the test for subpackage-name
installs some-test-dep and subpackage-run-req, but not
some-top-level-run-req.

requirements:
 run:
 - some-top-level-run-req

outputs:
 - name: subpackage-name
 requirements:
 - subpackage-run-req
 test:
 script: run_test.py
 requires:
 - some-test-dep

Output type

Conda-build supports creating packages other than conda packages.
Currently that support includes only wheels, but others may come
as demand appears. If type is not specified, the default value is
conda.

requirements:
 build:
 - wheel

outputs:
 - name: name-of-wheel-package
 type: wheel

Currently you must include the wheel package in your top-level
requirements/build section in order to build wheels.

When specifying type, the name field is optional and it defaults
to the package/name field for the top-level recipe.

requirements:
 build:
 - wheel

outputs:
 - type: wheel

Conda-build currently knows how to test only conda packages.
Conda-build does support using Twine to upload packages to PyPI.
See the conda-build help output (conda-build --help) for the list of arguments
accepted that will be passed through to Twine.

Note

You must use pip to install Twine in order for this to work.

About section

Specifies identifying information about the package. The
information displays in the Anaconda.org channel.

about:
 home: https://github.com/ilanschnell/bsdiff4
 license: BSD
 license_file: LICENSE
 summary: binary diff and patch using the BSDIFF4-format

License file

Add a file containing the software license to the package
metadata. Many licenses require the license statement to be
distributed with the package. The filename is relative to the
source or recipe directory. The value can be a single filename
or a YAML list for multiple license files. Values can also point
to directories with license information. Directory entries must
end with a / suffix (this is to lessen unintentional
inclusion of non-license files; all of the directory's
contents will be unconditionally and recursively added).

about:
 license_file:
 - LICENSE
 - vendor-licenses/

Prelink Message File

Similar to the license file, the user can add prelink message files to the conda package.

about:
 prelink_message:
 - prelink_message_file.txt
 - folder-with-all-prelink-messages/

App section

If the app section is present, the package is an app, meaning
that it appears in Anaconda Navigator [https://docs.anaconda.com/anaconda/navigator/].

Entry point

The command that is called to launch the app in Navigator.

app:
 entry: ipython notebook

Icon file

The icon file contained in the recipe.

app:
 icon: icon_64x64.png

Summary

Summary of the package used in Navigator.

app:
 summary: "The Jupyter Notebook"

Own environment

If True, installing the app through Navigator installs
into its own environment. The default is False.

app:
 own_environment: True

Extra section

A schema-free area for storing non-conda-specific metadata in
standard YAML form.

EXAMPLE: To store recipe maintainer information:

extra:
 maintainers:
 - name of maintainer

Templating with Jinja

Conda-build supports Jinja templating in the meta.yaml file.

EXAMPLE: The following meta.yaml would work with the GIT
values defined for Git repositores. The recipe is included at the
base directory of the Git repository, so the git_url is ../:

package:
 name: mypkg
 version: {{ GIT_DESCRIBE_TAG }}

build:
 number: {{ GIT_DESCRIBE_NUMBER }}

 # Note that this will override the default build string with the Python
 # and NumPy versions
 string: {{ GIT_BUILD_STR }}

source:
 git_url: ../

Conda-build checks if the Jinja2 variables that you use are
defined and produces a clear error if it is not.

You can also use a different syntax for these environment
variables that allows default values to be set, although it is
somewhat more verbose.

EXAMPLE: A version of the previous example using the syntax that
allows defaults:

package:
 name: mypkg
 version: {{ environ.get('GIT_DESCRIBE_TAG', '') }}

build:
 number: {{ environ.get('GIT_DESCRIBE_NUMBER', 0) }}

 # Note that this will override the default build string with the Python
 # and NumPy versions
 string: {{ environ.get('GIT_BUILD_STR', '') }}

source:
 git_url: ../

One further possibility using templating is obtaining data from
your downloaded source code.

EXAMPLE: To process a project's setup.py and obtain the
version and other metadata:

{% set data = load_setup_py_data() %}

package:
 name: conda-build-test-source-setup-py-data
 version: {{ data.get('version') }}

source will be downloaded prior to filling in jinja templates
Example assumes that this folder has setup.py in it
source:
 path_url: ../

These functions are completely compatible with any other
variables such as Git and Mercurial.

Extending this arbitrarily to other functions requires that
functions be predefined before Jinja processing, which in
practice means changing the conda-build source code. See the
conda-build issue tracker [https://github.com/conda/conda-build/issues].

For more information, see the Jinja2 template
documentation [https://jinja.palletsprojects.com/en/latest/templates/]
and the list of available environment
variables.

Jinja templates are evaluated during the build process. To
retrieve a fully rendered meta.yaml, use the
conda render command.

Loading data from other files

There are several additional functions available to Jinja2 which can be used
to load data from other files. These are load_setup_py_data, load_file_regex,
load_file_data, and load_str_data.

	load_setup_py_data: Loads data from a setup.py file. This can be useful to
obtain metadata such as the version from a project's setup.py file. For example:

{% set data = load_setup_py_data() %}
{% set version = data.get('version') %}
package:
 name: foo
 version: {{ version }}

	load_file_regex: Searches a file for a regular expression and returns the
first match as a Python re.Match object. For example:

{% set readme_heading = load_file_regex(load_file='README.rst', regex_pattern=r'^# (\S+)') %}
package:
 name: {{ readme_heading.string }}

	load_file_data: You can also parse JSON, TOML, or YAML files and load data
from them. For example you can use this to load poetry configurations from
pyproject.toml. This is especially useful as setup.py is no longer the
only standard way to define project metadata (see
PEP 517 [https://peps.python.org/pep-0517] and
PEP 518 [https://peps.python.org/pep-0518]):

{% set pyproject = load_file_data('pyproject.toml') %}
{% set poetry = pyproject.get('tool', {}).get('poetry') %}
package:
 name: {{ poetry.get('name') }}
 version: {{ poetry.get('version') }}

	load_str_data: Loads and parses data from a string. This is similar to
load_file_data, but it takes a string instead of a file as an argument.
This may seem pointless at first, but you can use this to pass more complex
data structures by environment variables. For example:

{% set extra_deps = load_str_data(environ.get("EXTRA_DEPS", []), "json") %}
requirements:
 run:
 - ...
 {% for dep in extra_deps %}
 - {{ dep }}
 {% endfor %}

Then you can pass the EXTRA_DEPS environment variable to the build like so:

EXTRA_DEPS='["foo =1.0", "bar >=2.0"]' conda build path/to/recipe

The functions load_setup_py_data, load_file_regex, and load_file_data
all take the parameters from_recipe_dir and recipe_dir. If
from_recipe_dir is set to true, then recipe_dir must also be passed. In
that case, the file in question will be searched for relative to the recipe
directory. Otherwise the file is searched for in the source (after it is
downloaded and extracted, if necessary). If the given file is an
absolute path, neither of the two directories are searched.

The functions load_file_data and load_str_data also accept *args and
**kwargs which are passed verbatim to the function used to parse the file.
For JSON this would be json.load; for TOML, toml.load; and for YAML
yaml.safe_load.

Conda-build specific Jinja2 functions

Besides the default Jinja2 functionality, additional Jinja functions are
available during the conda-build process: pin_compatible,
pin_subpackage, compiler, and resolved_packages. Please see
Extra Jinja2 functions for the definition of the first 3 functions. Definition
of resolved_packages is given below:

	resolved_packages('environment_name'): Returns the final list of packages
(in the form of package_name version build_string) that are listed in
requirements:host or requirements:build. This includes all packages
(including the indirect dependencies) that will be installed in the host or
build environment. environment_name must be either host or build.
This function is useful for creating meta-packages that will want to pin all
of their direct and indirect dependencies to their exact match. For
example:

requirements:
 host:
 - curl 7.55.1
 run:
 {% for package in resolved_packages('host') %}
 - {{ package }}
 {% endfor %}

might render to (depending on package dependencies and the platform):

requirements:
 host:
 - curl 7.55.1
 run:
 - ca-certificates 2017.08.26 h1d4fec5_0
 - curl 7.55.1 h78862de_4
 - libgcc-ng 7.2.0 h7cc24e2_2
 - libssh2 1.8.0 h9cfc8f7_4
 - openssl 1.0.2n hb7f436b_0
 - zlib 1.2.11 ha838bed_2

Here, output of resolved_packages was:

['ca-certificates 2017.08.26 h1d4fec5_0', 'curl 7.55.1 h78862de_4',
'libgcc-ng 7.2.0 h7cc24e2_2', 'libssh2 1.8.0 h9cfc8f7_4',
'openssl 1.0.2n hb7f436b_0', 'zlib 1.2.11 ha838bed_2']

Preprocessing selectors

You can add selectors to any line, which are used as part of a
preprocessing stage. Before the meta.yaml file is read, each
selector is evaluated and if it is False, the line that it
is on is removed. A selector has the form # [<selector>] at
the end of a line.

source:
 url: http://path/to/unix/source # [not win]
 url: http://path/to/windows/source # [win]

Note

Preprocessing selectors are evaluated after Jinja templates.

A selector is a valid Python statement that is executed. The
following variables are defined. Unless otherwise stated, the
variables are booleans.

	x86

	True if the system architecture is x86, both 32-bit and
64-bit, for Intel or AMD chips.

	x86_64

	True if the system architecture is x86_64, which is
64-bit, for Intel or AMD chips.

	linux

	True if the platform is Linux.

	linux32

	True if the platform is Linux and the Python architecture
is 32-bit and uses x86.

	linux64

	True if the platform is Linux and the Python architecture
is 64-bit and uses x86.

	armv6l

	True if the platform is Linux and the Python architecture
is armv6l.

	armv7l

	True if the platform is Linux and the Python architecture
is armv7l.

	aarch64

	True if the platform is Linux and the Python architecture
is aarch64.

	ppc64le

	True if the platform is Linux and the Python architecture
is ppc64le.

	s390x

	True if the platform is Linux and the Python architecture
is s390x.

	osx

	True if the platform is macOS.

	arm64

	True if the platform is either macOS or Windows and the
Python architecture is arm64.

	unix

	True if the platform is either macOS or Linux or emscripten.

	win

	True if the platform is Windows.

	win32

	True if the platform is Windows and the Python
architecture is 32-bit.

	win64

	True if the platform is Windows and the Python
architecture is 64-bit.

	py

	The Python version as an int, such as 27 or 36.
See the CONDA_PY environment variable.

	py3k

	True if the Python major version is 3.

	py2k

	True if the Python major version is 2.

	py27

	True if the Python version is 2.7. Use of this selector is discouraged in favor of comparison operators (e.g. py==27).

	py34

	True if the Python version is 3.4. Use of this selector is discouraged in favor of comparison operators (e.g. py==34).

	py35

	True if the Python version is 3.5. Use of this selector is discouraged in favor of comparison operators (e.g. py==35).

	py36

	True if the Python version is 3.6. Use of this selector is discouraged in favor of comparison operators (e.g. py==36).

	np

	The NumPy version as an integer such as 111. See the
CONDA_NPY environment variable.

	build_platform

	The native subdir of the conda executable

The use of the Python version selectors, py27, py34, etc. is discouraged in
favor of the more general comparison operators. Additional selectors in this
series will not be added to conda-build.

Note that for each subdir with OS and architecture that conda supports,
two preprocessing selectors are created for the OS and the architecture separately
except when the architecture is not a valid python expression (*-32 and *-64
in particular).

Because the selector is any valid Python expression, complicated
logic is possible:

source:
 url: http://path/to/windows/source # [win]
 url: http://path/to/python2/unix/source # [unix and py2k]
 url: http://path/to/python3/unix/source # [unix and py>=35]

Note

The selectors delete only the line that they are on, so you
may need to put the same selector on multiple lines:

source:
 url: http://path/to/windows/source # [win]
 md5: 30fbf531409a18a48b1be249052e242a # [win]
 url: http://path/to/unix/source # [unix]
 md5: 88510902197cba0d1ab4791e0f41a66e # [unix]

Note

To select multiple operating systems use the or statement. While it might be tempting
to use skip: True # [win and osx], this will only work if the platform is both
windows and osx simultaneously (i.e. never).

build:
 skip: True # [win or osx]

Adding pre-link, post-link, and pre-unlink scripts

You can add scripts to a recipe. They must be located in the same directory
as the meta.yaml file. The following scripts can be added:

	pre-link---Executed before the package is installed. An error is
indicated by a nonzero exit and causes conda to stop and causes the
installation to fail.

	post-link---Executed after the package is installed. An error is
indicated by a nonzero exist and causes installation to fail. If there is an
error, conda does not write any package metadata.

	pre-unlink---Executed before the package is removed. An error is
indicated by a nonzero exist and causes the removal to fail.

In addition to being co-located with the meta.yaml file, they must be named simply post-link.sh or post-link.bat. Conda-build will rename them to .<name>-<action>.sh (or .bat) where <name> is the package name and <action> is one of the preceeding actions.

These scripts are executed in a subprocess by
conda, using %COMSPEC% /c <script> on Windows and
/bin/bash <script> on macOS and Linux.

The convention for the path and filenames of these scripts on Windows is:

Scripts/.<name>-<action>.bat

On Linux and macOS the convention is:

bin/.<name>-<action>.sh

The scripts set the following environment variables:

	PREFIX

	The install prefix.

	PKG_NAME

	The name of the package.

	PKG_VERSION

	The version of the package.

	PKG_BUILDNUM

	The build number of the package.

The scripts are:

	Windows:

	pre-link.bat

	post-link.bat

	pre-unlink.bat

	macOS and Linux:

	pre-link.sh

	post-link.sh

	pre-unlink.sh

Post-link and pre-unlink scripts should:

	Be avoided whenever possible.

	Not touch anything other than the files being installed.

	Not write anything to stdout or stderr, unless an error occurs.

	Not depend on any installed or to-be-installed conda packages.

	Depend only on simple system tools such as rm, cp, mv, and ln.

The scripts should not write to stdout or stderr unless an error occurs, but
they may write to $PREFIX/.messages.txt, which is shown after conda
completes all actions.

Activate scripts

Recipes are allowed to have activate scripts
which will be sourced or called when the environment is activated.
It is generally recommended to avoid using activate scripts when
another option is possible because people do not always activate
environments the expected way and these packages may then misbehave.

When using them in a recipe, feel free to name them activate.bat,
activate.sh, deactivate.bat, and deactivate.sh in the recipe.
The installed scripts are recommended to be prefixed by the package
name and a separating -.

Below is some sample code for Unix and
Windows that will make this install process easier.

In build.sh:

Copy the [de]activate scripts to $PREFIX/etc/conda/[de]activate.d.
This will allow them to be run on environment activation.
for CHANGE in "activate" "deactivate"
do
 mkdir -p "${PREFIX}/etc/conda/${CHANGE}.d"
 cp "${RECIPE_DIR}/${CHANGE}.sh" "${PREFIX}/etc/conda/${CHANGE}.d/${PKG_NAME}_${CHANGE}.sh"
done

In build.bat:

setlocal EnableDelayedExpansion

:: Copy the [de]activate scripts to %PREFIX%\etc\conda\[de]activate.d.
:: This will allow them to be run on environment activation.
for %%F in (activate deactivate) DO (
 if not exist %PREFIX%\etc\conda\%%F.d mkdir %PREFIX%\etc\conda\%%F.d
 copy %RECIPE_DIR%\%%F.bat %PREFIX%\etc\conda\%%F.d\%PKG_NAME%_%%F.bat
 :: Copy unix shell activation scripts, needed by Windows Bash users
 copy %RECIPE_DIR%\%%F.sh %PREFIX%\etc\conda\%%F.d\%PKG_NAME%_%%F.sh
)

Making packages relocatable

Often, the most difficult thing about building a conda package is
making it relocatable. Relocatable means that the package can be
installed into any prefix. Otherwise, the package would be usable
only in the environment in which it was built.

Conda-build does the following things automatically to make
packages relocatable:

	Binary object files are converted to use relative paths using
install_name_tool on macOS and patchelf on Linux.

	Any text file without NULL bytes that contains the build prefix
or the placeholder prefix /opt/anaconda1anaconda2anaconda3
is registered in the info/has_prefix file in the package
metadata. When conda installs the package, any files in
info/has_prefix have the registered prefix replaced with
the install prefix. For more information, see
Package metadata.

	Any binary file containing the build prefix can automatically
be registered in info/has_prefix using
build/detect_binary_files_with_prefix in meta.yaml.
Alternatively, individual binary files can be registered by
listing them in build/binary_has_prefix_files in
meta.yaml. The registered files will have their build
prefix replaced with the install prefix at install time. This
works by padding the install prefix with null terminators, such
that the length of the binary file remains the same. The build
prefix must therefore be long enough to accommodate any
reasonable installation prefix. On macOS and Linux, conda-build
pads the build prefix to 255 characters by appending
_placeholds to the end of the build directory name.

Note

The prefix length was changed in conda-build 2.0 from 80
characters to 255 characters. Legacy packages with
80-character prefixes must be rebuilt to take advantage of the
longer prefix.

	There may be cases where conda identified a file as binary, but
it needs to have the build prefix replaced as if it were
text---no padding with null terminators. Such files can be
listed in build/has_prefix_files in meta.yaml.

Conda package specification

A conda package is an archive file that contains:

	Metadata under the info/ directory.

	A collection of files that are installed directly into an
install prefix.

There are currently two formats of archives that are supported:

	Type

	Description

	.tar.bz2

	The original format of conda packages. Is the default output of conda-build.

	.conda

	2nd Gen. This is a more compact and thus faster. Can be outputed from conda-build by setting output in .condarc file.

The formats are identical across platforms and operating systems.
During the install process, all files are extracted into the
install prefix, with the exception of the ones in info/.
Installing a conda package into an environment is similar to
executing the following commands:

cd <environment prefix>
tar xjf some-package-1.0-0.tar.bz2

Only files, including symbolic links, are part of a conda
package. Directories are not included. Directories are created
and removed as needed, but you cannot create an empty directory
from the tar archive directly.

Package metadata

The info/ directory contains all metadata about a package.
Files in this location are not installed under the install
prefix. Although you are free to add any file to this directory,
conda only inspects the content of the files discussed below.

info/index.json

This file contains basic information about the package, such as
name, version, build string, and dependencies. The content of this
file is stored in repodata.json, which is the repository
index file, hence the name index.json. The JSON object is a
dictionary containing the keys shown below. The filename of the
conda package is composed of the first 3 values, as in:
<name>-<version>-<build>.tar.bz2 or <name>-<version>-<build>.conda.

	Key

	Type

	Description

	name

	string

	The lowercase name of the package. May contain the "-"
character.

	version

	string

	The package version. May not contain "-". Conda
acknowledges PEP 440 [https://www.python.org/dev/peps/pep-0440/].

	build

	string

	The build string. May not contain "-". Differentiates
builds of packages with otherwise identical names and
versions, such as:

	A build with other dependencies, such as Python 3.4
instead of Python 2.7.

	A bug fix in the build process.

	Some different optional dependencies, such as MKL versus
ATLAS linkage. Nothing in conda actually inspects the
build string. Strings such as np18py34_1 are
designed only for human readability and conda never
parses them.

	build_number

	integer

	A non-negative integer representing the build number of the package.

Unlike the build string, the build_number is inspected by conda.

Conda uses it to sort packages that have otherwise identical names and versions to determine the latest one.

This is important because new builds that contain bug fixes for the way a package is built may be added to a repository.

	depends

	list of strings

	A list of dependency specifications, where each element
is a string, as outlined in Package match specifications.

	arch

	string

	Optional. The architecture the package is built for.

EXAMPLE: x86_64

Conda currently does not use this key.

	platform

	string

	Optional. The OS that the package is built for.

EXAMPLE: osx

Conda currently does not use this key.

Packages for a specific architecture and platform are usually distinguished by the repository subdirectory that contains
them.

See Repository structure and index.

info/files

Lists all files that are part of the package itself, 1 per line.
All of these files need to get linked into the environment. Any
files in the package that are not listed in this file are not
linked when the package is installed. The directory delimiter for
the files in info/files should always be "/", even on
Windows. This matches the directory delimiter used in the
tarball.

info/has_prefix

Optional file. Lists all files that contain a hard-coded build
prefix or placeholder prefix, which needs to be replaced by the
install prefix at installation time.

Note

Due to the way the binary replacement works, the
placeholder prefix must be longer than the install prefix.

Each line of this file should be either a path, in which case it
is considered a text file with the default placeholder
/opt/anaconda1anaconda2anaconda3, or a space-separated list
of placeholder, mode, and path, where:

	Placeholder is the build or placeholder prefix.

	Mode is either text or binary.

	Path is the relative path of the file to be updated.

EXAMPLE: On Windows:

"Scripts/script1.py"
"C:\Users\username\anaconda\envs_build" text "Scripts/script2.bat"
"C:/Users/username/anaconda/envs/_build" binary "Scripts/binary"

EXAMPLE: On macOS or Linux:

bin/script.sh
/Users/username/anaconda/envs/_build binary bin/binary
/Users/username/anaconda/envs/_build text share/text

Note

The directory delimiter for the relative path must always
be "/", even on Windows. The placeholder may contain either "\"
or "/" on Windows, but the replacement prefix will match the
delimiter used in the placeholder. The default placeholder
/opt/anaconda1anaconda2anaconda3 is an exception, being
replaced with the install prefix using the native path
delimiter. On Windows, the placeholder and path always appear
in quotes to support paths with spaces.

info/license.txt

Optional file. The software license for the package.

info/no_link

Optional file. Lists all files that cannot be linked---either
soft-linked or hard-linked---into environments and are copied
instead.

info/about.json

Optional file. Contains the entries in the About section
of the meta.yaml file. The following keys are
added to info/about.json if present in the build recipe:

	home.

	dev_url.

	doc_url.

	license_url.

	license.

	summary.

	description.

	license_family.

info/recipe

A directory containing the full contents of the build recipe.

meta.yaml.rendered

The fully rendered build recipe. See conda render.

This directory is present only when the the include_recipe flag
is True in the Build section.

Link and unlink scripts

You may optionally execute scripts before and after the link
and unlink steps. For more information, see Adding pre-link, post-link, and pre-unlink scripts.

Repository structure and index

A conda repository---or channel---is a directory tree, usually
served over HTTPS, which has platform subdirectories, each of
which contains conda packages and a repository index. The index
file repodata.json lists all conda packages in the platform
subdirectory. Use conda index to create such an index from
the conda packages within a directory. It is simple mapping of
the full conda package filename to the dictionary object in
info/index.json described in Adding pre-link, post-link, and pre-unlink scripts.

In the following example, a repository provides the conda package
misc-1.0-np17py27_0.tar.bz2 on 64-bit Linux and 32-bit
Windows:

<some path>/linux-64/repodata.json
 repodata.json.bz2
 misc-1.0-np17py27_0.tar.bz2
 /win-32/repodata.json
 repodata.json.bz2
 misc-1.0-np17py27_0.tar.bz2

Note

Both conda packages have identical filenames and are
distinguished only by the repository subdirectory that contains
them.

Package match specifications

This match specification is not the same as the syntax used at
the command line with conda install, such as
conda install python=3.4. Internally, conda translates the
command line syntax to the spec defined in this section.

EXAMPLE: python=3.4 is translated to python 3.4.*. conda search 'python=3.1' does NOT bring up Python 3.10, only Python 3.1.*.

Package dependencies are specified using a match specification.
A match specification is a space-separated string of 1, 2, or 3
parts:

	The first part is always the exact name of the package.

	The second part refers to the version and may contain special
characters. See table below.

	The third part is always the exact build string. When there are
three parts, the second part must be the exact version.

Version Special Characters

	Symbol

	Meaning

	Example

	<, >, <=, >=

	Relational operators on versions, which are compared using PEP-440 [https://www.python.org/dev/peps/pep-0440/].

	<=1.0 matches 0.9, 0.9.1, and 1.0, but not 1.0.1.

	==, and !=

	Exact equality and not equalities.

	==0.5.1 matches 0.5.1 and not anything else while !=0.5.1 matches everything but.

	~=

	Compatibility Release

	~=0.5.3 is equivalent to >=0.5.3, <0.6.0a

	|

	OR

	1.0|1.2 matches version 1.0 or 1.2.

	*

	Matches 0 or more characters in the version string. In terms of regular expressions, it is the same as r'.*'.

	1.0|1.4* matches 1.0, 1.4 and 1.4.1b2, but not 1.2.

	,

	AND

	>=2,<3 matches all packages in the 2 series. 2.0, 2.1, and 2.9 all match, but 3.0 and 1.0 do not.

Hint

, has higher precedence than |, so >=1,<2|>3 means greater than or equal to 1 AND less than 2 or greater than 3, which matches 1, 1.3 and 3.0, but not 2.2.

Note

For package match specifications, pre-release versioning is also supported such that >1.0b4 will match 1.0b5 and 1.0rc1 but not 1.0b4 or 1.0a5.

Conda parses the version by splitting it into parts separated
by |. If the part begins with <, >, =, or !, it is parsed as a
relational operator. Otherwise, it is parsed as a version,
possibly containing the "*" operator.

Remember that the version specification cannot contain spaces,
as spaces are used to delimit the package, version, and build
string in the whole match specification. python >= 2.7 is an
invalid match specification. However, "python >= 2.7" (with double or single quotes) is
matched as any version of a package named python>=2.7.

Examples of Package Specs

The build string constraint "numpy=1.11.2=*nomkl*" matches the NumPy 1.11.2 packages without MKL, but not the normal MKL NumPy
1.11.2 packages.

The build string constraint "numpy=1.11.1|1.11.3=py36_0" matches NumPy 1.11.1 or 1.11.3 built for Python 3.6, but not any versions
of NumPy built for Python 3.5 or Python 2.7.

The following are all valid match specifications for
numpy-1.8.1-py27_0:

	numpy

	numpy 1.8*

	numpy 1.8.1

	numpy >=1.8

	numpy ==1.8.1

	numpy 1.8|1.8*

	numpy >=1.8,<2

	numpy >=1.8,<2|1.9

	numpy 1.8.1 py27_0

	numpy=1.8.1=py27_0

Command Line Match Spec Examples

When using the command line, put double or single quotes around any package
version specification that contains the space character or any of
the following characters: <, >, *, or |.

Examples

	Example

	Meaning

	conda install numpy=1.11

	The fuzzy constraint numpy=1.11 matches 1.11, 1.11.0, 1.11.1, 1.11.2, 1.11.18, and so on.

	conda install numpy==1.11

	The exact constraint numpy==1.11 matches 1.11, 1.11.0, 1.11.0.0, and so on.

	conda install "numpy=1.11.1|1.11.3"

	The OR constraint "numpy=1.11.1|1.11.3" matches with 1.11.1 or 1.11.3.

	conda install "numpy>1.11"

	Any numpy version 1.12.0a or greater.

	conda install "numpy>=1.8,<2"

	The AND constraint "numpy>=1.8,<2" matches with 1.8 and 1.9 but not 2.0.

Using shared libraries

Shared libraries are libraries that are loosely coupled to the
programs and extensions that depend on them. When loading an
executable into memory, an operating system finds all dependent
shared libraries and links them to the executable so that it can
run.

Windows, macOS, and Linux all provide a way to build executables
and libraries that contain links to the shared libraries they
depend on, instead of directly linking the libraries themselves.

Shared libraries in Windows

Unlike macOS and Linux, Windows does not have the concept of
embedding links into binaries. Instead, Windows depends primarily
on searching directories for matching filenames, as documented in
Search Path Used by Windows to Locate a DLL [https://msdn.microsoft.com/en-us/library/7d83bc18.aspx].

There is an alternate configuration, called side-by-side
assemblies [https://en.wikipedia.org/wiki/Side-by-side_assembly],
that requires specification of DLL versions in either an embedded
manifest or an appropriately named XML file alongside the binary
in question. Conda does not currently use side-by-side
assemblies, but it may turn towards that in the future to resolve
complications with multiple versions of the same library on the
same system.

For now, most DLLs are installed into (install prefix)\\Library\\bin.
This path is added to os.environ["PATH"] for all Python processes,
so that DLLs can be located, regardless of the value of the
system's PATH environment variable.

Note

PATH is searched from left to right, with the first DLL
name match being picked up, in the absence of a manifest
specifying otherwise. This means that installing software with
other matching DLLs may give you a system that crashes in
unpredictable ways. When troubleshooting or asking for support on
Windows, always consider PATH as a potential source of issues.

Shared libraries in macOS and Linux

In macOS and Linux, dynamic links are discovered in a similar
manner to the way that Python modules are discovered via
PYTHONPATH, and executables are discovered via PATH. A list of
search locations is made, and then the library objects are
searched for in the search locations. By default, as well as by
design, the system dynamic linker does not have any special
preference for the conda environment lib directories.

You can specify both absolute links and relative links. If the
links are absolute paths, such as /Users/UserName/my_build_env,
the library works only on a system where that exact path exists.
Therefore, relative links are preferred in conda packages.

Relative links require a special variable in the link itself:

	On Linux, the $ORIGIN variable allows you to specify "relative
to this file as it is being executed".

	On macOS, the variables are:

	@rpath---Allows you to set relative links from the system
load paths.

	@loader_path---Equivalent to $ORIGIN.

	@executable_path---Supports the Apple .app directory
approach, where libraries know where they live relative to
their calling application.

Conda-build uses @loader_path on macOS and $ORIGIN on Linux
because we install into a common root directory and can assume
that other libraries are also installed into that root. The use
of the variables allows you to build relocatable binaries that
can be built on one system and sent everywhere.

On Linux, conda-build modifies any shared libraries or
generated executables to use a relative dynamic link by calling
the patchelf tool. On macOS, the install_name_tool tool is used.

Warning

Setting LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH on
macOS can interfere with this because the dynamic linker
short-circuits link resolution by first looking at
LD_LIBRARY_PATH.

EXAMPLE: You install an old version of libcurl into your conda
environment due to some compatibility issues with the code you're
using. Then, you set
export LD_LIBRARY_PATH=/home/UserName/envs/curl_env/lib. From
that point on, every program that you execute in that session
will favor this libcurl to your system libcurl because it is now
effectively at the "front" of the dynamic load path.

Including conda environment paths in LD_LIBRARY_PATH or
DYLD_LIBRARY_PATH is not recommended.

Build variants

The nature of binary compatibility (and incompatibility) means that we
sometimes need to build binary packages (and any package containing binaries)
with several variants to support different usage environments. For
example, using NumPy's C API means that a package must be used with the same
version of NumPy at runtime that was used at build time.

There has been limited support for this for a long time. Including Python in
both build and run requirements resulted in a package with Python pinned to the
version of Python used at build time, and a corresponding addition to the
filename such as "py27". Similar support existed for NumPy with the addition of
an x.x pin in the recipe after Conda-build PR
573 [https://github.com/conda/conda-build/pull/573] was merged. Before
conda-build version 3.0, there were also many longstanding proposals for general
support (Conda-build issue
1142 [https://github.com/conda/conda-build/issues/1142]).

As of conda-build 3.0, a new configuration scheme has been added, dubbed
"variants." Conceptually, this decouples pinning values from recipes, replacing
them with Jinja2 template variables. It adds support for the notion of
"compatible" pinnings to be integrated with ABI compatibility databases, such as
ABI Laboratory [https://abi-laboratory.pro/]. Note that the concept of
"compatible" pinnings is currently still under heavy development.

Variant input is ultimately a dictionary. These dictionaries are mostly very
flat. Keys are made directly available in Jinja2 templates. As a result, keys
in the dictionary (and in files read into dictionaries) must be valid jinja2
variable names (no - characters allowed). This example builds Python 2.7
and 3.5 packages in one build command:

conda_build_config.yaml like:

python:
 - 2.7
 - 3.5

meta.yaml contents like:

package:
 name: compiled-code
 version: 1.0

requirements:
 build:
 - python
 run:
 - python

The command to build recipes is unchanged relative to earlier conda-build
versions. For example, with our shell in the same folder as meta.yaml and
conda_build_config.yaml, we just call the conda build . command.

General pinning examples

There are a few characteristic use cases for pinning. Please consider this a
map for the content below.

	Shared library providing a binary interface. All uses of this library use
the binary interface. It is convenient to apply the same pin to all of your
builds. Example: boost

conda_build_config.yaml in your HOME folder:

boost:
 - 1.61
 - 1.63
pin_run_as_build:
 boost: x.x

meta.yaml:

package:
 name: compiled-code
 version: 1.0

requirements:
 build:
 - boost
 run:
 - boost

This example demonstrates several features:

	User-wide configuration with a specifically named config file
(conda_build_config.yaml in your home folder). More options below in
Creating conda-build variant config files.

	Building against multiple versions of a single library (set versions
installed at build time).

	Pinning runtime requirements to the version used at build time. More
information below at Pinning at the variant level.

	Specify granularity of pinning. x.x pins major and minor version. More
information at Pinning expressions.

	Python package with externally accessible binary component. Not all uses of
this library use the binary interface (some only use pure Python). Example:
NumPy.

conda_build_config.yaml in your recipe folder (alongside meta.yaml):

numpy:
 - 1.11
 - 1.12

meta.yaml:

package:
 name: numpy_using_pythonAPI_thing
 version: 1.0

requirements:
 build:
 - python
 - numpy
 run:
 - python
 - numpy

This example demonstrates a particular feature: reduction of builds when pins
are unnecessary. Since the example recipe above only requires the Python API
to NumPy, we will only build the package once and the version of NumPy will
not be pinned at runtime to match the compile-time version. There's more
information at Avoiding unnecessary builds.

For a different package that makes use of the NumPy C API, we will need to
actually pin NumPy in this recipe (and only in this recipe, so that other
recipes don't unnecessarily build lots of variants). To pin NumPy, you can
use the variant key directly in meta.yaml:

package:
 name: numpy_using_cAPI_thing
 version: 1.0

requirements:
 build:
 - numpy
 run:
 - numpy

For legacy compatibility, Python is pinned implicitly without specifying
{{ python }} in your recipe. This is generally intractable to extend to
all package names, so in general, try to get in the habit of always using
the Jinja2 variable substitution for pinning using versions from your
conda_build_config.yaml file.

There are also more flexible ways to pin using the Pinning expressions.
See Pinning at the recipe level for examples.

	One recipe splits into multiple packages, and package dependencies need to be
dynamically pinned among one another. Example:
GCC/libgcc/libstdc++/gfortran/etc.

The dynamic pinning is the tricky part. Conda-build provides new ways to
refer to other subpackages within a single recipe.

package:
 name: dynamic_supackage
 version: 1.0

requirements:
 run:
 - {{ pin_subpackage('my_awesome_subpackage') }}

outputs:
 - name: my_awesome_subpackage
 version: 2.0

By referring to subpackages this way, you don't need to worry about what the
end version of my_awesome_subpackage will be. Update it independently and
just let conda-build figure it out and keep things consistent. There's more
information below in the Referencing subpackages section.

Transition guide

Let's say we have a set of recipes that currently builds a C library, as well as
Python and R bindings to that C library. xgboost, a recent machine learning
library, is one such example. Under conda-build 2.0 and earlier, you needed to
have 3 recipes - 1 for each component. Let's go over some simplified
meta.yaml files. First, the C library:

package:
 name: libxgboost
 version: 1.0

Next, the Python bindings:

package:
 name: py-xgboost
 version: 1.0

requirements:
 build:
 - libxgboost # you probably want to pin the version here, but there's no dynamic way to do it
 - python
 run:
 - libxgboost # you probably want to pin the version here, but there's no dynamic way to do it
 - python

package:
 name: r-xgboost
 version: 1.0

requirements:
 build:
 - libxgboost # you probably want to pin the version here, but there's no dynamic way to do it
 - r-base
 run:
 - libxgboost # you probably want to pin the version here, but there's no dynamic way to do it
 - r-base

To build these, you'd need several conda-build commands, or a tool like
conda-build-all to build out the various Python versions. With conda-build 3.0
and split packages from conda-build 2.1, we can simplify this to one coherent
recipe that also includes the matrix of all desired Python and R builds.

First, the meta.yaml file:

package:
 name: xgboost
 version: 1.0

outputs:
 - name: libxgboost
 - name: py-xgboost
 requirements:
 - {{ pin_subpackage('libxgboost', exact=True) }}
 - python

 - name: r-xgboost
 requirements:
 - {{ pin_subpackage('libxgboost', exact=True) }}
 - r-base

Next, the conda_build_config.yaml file, specifying our build matrix:

python:
 - 2.7
 - 3.5
 - 3.6
r_base:
 - 3.3.2
 - 3.4.0

With this updated method, you get a complete build matrix: 6 builds total. One
libxgboost library, 3 Python versions, and 2 R versions. Additionally, the
Python and R packages will have exact pins to the libxgboost package that was
built by this recipe.

Creating conda-build variant config files

Variant input files are yaml files. Search order for these files is the following:

	A file named conda_build_config.yaml in the user's HOME folder (or an arbitrarily
named file specified as the value for the conda_build/config_file key in your
.condarc file).

	A file named conda_build_config.yaml in the current working directory.

	A file named conda_build_config.yaml in the same folder as meta.yaml
with your recipe.

	Any additional files specified on the command line with the
--variant-config-files or -m command line flags, which can be passed
multiple times for multiple files. The conda build and conda render
commands accept these arguments.

Values in files found later in this search order will overwrite and replace the
values from earlier files.

Note

The key conda_build/config_file is a nested value:

conda_build:
 config_file: some/path/to/file

Using variants with the conda-build API

Ultimately, a variant is just a dictionary. This dictionary is provided directly
to Jinja2 and you can use any declared key from your variant configuration in
your Jinja2 templates. There are two ways that you can feed this information
into the API:

	Pass the variants keyword argument to API functions. Currently, the
build, render, get_output_file_path, and check functions
accept this argument. variants should be a dictionary where each value
is a list of versions to iterate over. These are aggregated as detailed in
the Aggregation of multiple variants section below.

	Set the variant member of a Config object. This is just a dictionary. The
values for fields should be strings or lists of strings, except "extended
keys", which are documented in the Extended keys section below.

Again, with meta.yaml contents like:

package:
 name: compiled-code
 version: 1.0

requirements:
 build:
 - python
 run:
 - python

You could supply a variant to build this recipe like so:

variants = {"python": ["2.7", "3.5"]}
api.build(path_to_recipe, variants=variants)

Note that these Jinja2 variable substitutions are not limited to version
numbers. You can use them anywhere, for any string value. For example, to build
against different MPI implementations:

With meta.yaml contents like:

package:
 name: compiled-code
 version: 1.0

requirements:
 build:
 - {{ mpi }}
 run:
 - {{ mpi }}

You could supply a variant to build this recipe like this (conda_build_config.yaml):

mpi:
 - openmpi # version spec here is totally valid, and will apply in the recipe
 - mpich # version spec here is totally valid, and will apply in the recipe

Selectors are valid in conda_build_config.yaml, so you can have one
conda_build_config.yaml for multiple platforms:

mpi:
 - openmpi # [osx]
 - mpich # [linux]
 - msmpi # [win]

Jinja is not allowed in conda_build_config.yaml, though. It is the source of
information to feed into other Jinja templates, and the buck has to stop
somewhere.

About reproducibility

A critical part of any build system is ensuring that you can reproduce the same
output at some future point in time. This is often essential for troubleshooting
bugs. For example, if a package contains only binaries, it is helpful to
understand what source code created those binaries, and thus what bugs might be
present.

Since conda-build 2.0, conda-build has recorded its rendered meta.yaml files
into the info/recipe folder of each package it builds. Conda-build 3.0 is no
different in this regard, but the meta.yaml that is recorded is a frozen set of
the variables that make up the variant for that build.

Note

Package builders may disable including the recipe with the
build/include_recipe key in meta.yaml. If the recipe is omitted from the
package, then the package is not reproducible without the source recipe.

Special variant keys

There are some special keys that behave differently and can be more nested:

	zip_keys: a list of strings or a list of lists of strings. Strings are
keys in variant. These couple groups of keys, so that particular keys are
paired, rather than forming a matrix. This is useful, for example, to couple
vc version to Python version on Windows. More info below in the Coupling
keys section.

	pin_run_as_build: should be a dictionary. Keys are package names. Values
are "pinning expressions" - explained in more detail in Customizing
compatibility. This is a generalization of the numpy x.x spec, so that
you can pin your packages dynamically based on the versions used at build
time.

	extend_keys: specifies keys that should be aggregated, and not replaced,
by later variants. These are detailed below in the Extended keys
section.

	ignore_version: list of package names whose versions should be excluded
from meta.yaml's requirements/build when computing hash. Described further in
Avoiding unnecessary builds.

Coupling keys

Sometimes particular versions need to be tied to other versions. For example, on
Windows, we generally follow the upstream Python.org association of Visual
Studio compiler version with Python version. Python 2.7 is always compiled with
Visual Studio 2008 (also known as MSVC 9). We don't want a
conda_build_config.yaml like the following to create a matrix of Python/MSVC
versions:

python:
 - 2.7
 - 3.5
vc:
 - 9
 - 14

Instead, we want 2.7 to be associated with 9, and 3.5 to be associated with 14.
The zip_keys key in conda_build_config.yaml is the way to achieve this:

python:
 - 2.7
 - 3.5
vc:
 - 9
 - 14
zip_keys:
 - python
 - vc

You can also have nested lists to achieve multiple groups of zip_keys:

zip_keys:
 -
 - python
 - vc
 -
 - numpy
 - blas

The rules for zip_keys are:

	Every list in a group must be the same length. This is because without
equal length, there is no way to associate earlier elements from the
shorter list with later elements in the longer list. For example, this is
invalid, and will raise an error:

python:
 - 2.7
 - 3.5
vc:
 - 9
zip_keys:
 - python
 - vc

	zip_keys must be either a list of strings, or a list of lists of
strings. You can't mix them. For example, this is an error:

zip_keys:
 -
 - python
 - vc
 - numpy
 - blas

Rule #1 raises an interesting use case: How does one combine CLI flags
like --python with zip_keys? Such a CLI flag will change the variant so that
it has only a single entry, but it will not change the vc entry in the
variant configuration. We'll end up with mismatched list lengths, and an error.
To overcome this, you should instead write a very simple YAML file with
all involved keys. Let's call it python27.yaml, to reflect its intent:

python:
 - 2.7
vc:
 - 9

Provide this file as a command-line argument:

conda build recipe -m python27.yaml

You can also specify variants in JSON notation from the CLI as detailed in the
CONDA_* variables and command line arguments to conda-build section. For example:

conda build recipe --variants "{'python': ['2.7', '3.5'], 'vc': ['9', '14']}"

Avoiding unnecessary builds

To avoid building variants of packages where pinning does not require having
different builds, you can use the ignore_version key in your variant. Then
all variants are evaluated, but if any hashes are the same, then they are
considered duplicates, and are deduplicated. By omitting some packages from the
build dependencies, we can avoid creating unnecessarily specific hashes and
allow this deduplication.

For example, let's consider a package that uses NumPy in both run and build
requirements, and a variant that includes 2 NumPy versions:

variants = [{"numpy": ["1.10", "1.11"], "ignore_version": ["numpy"]}]

meta.yaml:

requirements:
 build:
 - numpy
 run:
 - numpy

Here, the variant says that we'll have two builds - one for each NumPy version.
However, since this recipe does not pin NumPy's run requirement (because it
doesn't utilize NumPy's C API), it is unnecessary to build it against both NumPy
1.10 and 1.11.

The rendered form of this recipe, with conda-build ignoring NumPy's value in the
recipe, is going to be just one build that looks like:

meta.yaml:

requirements:
 build:
 - numpy
 run:
 - numpy

ignore_version is an empty list by default. The actual build performed is
probably done with the last 'numpy' list element in the variant, but that's
an implementation detail that you should not depend on. The order is
considered unspecified behavior because the output should be independent of the
input versions.

Warning

If the output is not independent of input versions, don't use
this key

Any pinning done in the run requirements will affect the hash, and thus builds
will be done for each variant in the matrix. Any package that sometimes is used
for its compiled interface and sometimes used for only its Python interface may
benefit from careful use of ignore_version in the latter case.

Note

pin_run_as_build is kind of the opposite of ignore_version. Where
they conflict, pin_run_as_build takes priority.

CONDA_* variables and command line arguments to conda-build

To ensure consistency with existing users of conda-build, environment variables
such as CONDA_PY behave as they always have, and they overwrite all variants set
in files or passed to the API.

The full list of respected environment variables are:

	CONDA_PY

	CONDA_NPY

	CONDA_R

	CONDA_PERL

	CONDA_LUA

CLI flags are also still available. These are sticking around for their
usefulness in one-off jobs.

	--python

	--numpy

	--R

	--perl

	--lua

In addition to these traditional options, there's one new flag to specify
variants: --variants. This flag accepts a string of JSON-formatted text. For
example:

conda build recipe --variants "{python: [2.7, 3.5], vc: [9, 14]}"

Aggregation of multiple variants

The matrix of all variants is first consolidated from several dicts of lists
into a single dict of lists, and then transformed in a list of dicts (using the
Cartesian product of lists), where each value is a single string from the list
of potential values.

For example, general input for variants could be something like:

a = {"python": ["2.7", "3.5"], "numpy": ["1.10", "1.11"]}
values can be strings or lists. Strings are converted to one-element lists internally.
b = {"python": ["3.4", "3.5"], "numpy": "1.11"}

Here, let's say b is found after a, and thus has priority over a. Merging these
2 variants yields:

merged = {"python": ["3.4", "3.5"], "numpy": ["1.11"]}

b's values for python have overwritten a's. From here, we compute the
Cartesian product of all input variables. The end result is a collection of
dicts, each with a string for each value. Output would be something like:

variants = [{"python": "3.4", "numpy": "1.11"}, {"python": "3.5", "numpy": "1.11"}]

conda-build would loop over these variants where appropriate, such as when
building, outputting package output names, and so on.

If numpy had had two values instead of one, we'd end up with four output
variants: 2 variants for python, times 2 variants for numpy:

variants = [
 {"python": "3.4", "numpy": "1.11"},
 {"python": "3.5", "numpy": "1.11"},
 {"python": "3.4", "numpy": "1.10"},
 {"python": "3.5", "numpy": "1.10"},
]

Bootstrapping pins based on an existing environment

To establish your initial variant, you may point to an existing conda
environment. Conda-build will examine the contents of that environment and pin
to the exact requirements that make up that environment.

conda build --bootstrap name_of_env

You may specify either environment name or filesystem path to the environment.
Note that specifying environment name does mean depending on conda's
environment lookup.

Extended keys

These are not looped over to establish the build matrix. Rather, they are
aggregated from all input variants, and each derived variant shares the whole
set. These are used internally for tracking which requirements should be pinned,
for example, with the pin_run_as_build key. You can add your own extended
keys by passing in values for the extend_keys key for any variant.

For example, if you wanted to collect some aggregate trait from multiple
conda_build_config.yaml files, you could do something like this:

HOME/conda_build_config.yaml:

some_trait:
 - dog
extend_keys:
 - some_trait

recipe/conda_build_config.yaml:

some_trait:
 - pony
extend_keys:
 - some_trait

Note that both of the conda_build_config.yaml files need to list the trait as
an extend_keys entry. If you list it in only one of them, an error will be
raised to avoid confusion with one conda_build_config.yaml file that would add
entries to the build matrix, and another which would not. For example, this
should raise an error:

some_trait:
 - dog

recipe/conda_build_config.yaml:

some_trait:
 - pony
extend_keys:
 - some_trait

When our two proper YAML config files are combined, ordinarily the recipe-local
variant would overwrite the user-wide variant, yielding {'some_trait':
'pony'}. However, with the extend_keys entry, we end up with what we've always
wanted: a dog and pony show: {'some_trait': ['dog', 'pony'])}

Again, this is mostly an internal implementation detail - unless you find a use for it.
Internally, it is used to aggregate the pin_run_as_build and
ignore_version entries from any of your conda_build_config.yaml
files.

Customizing compatibility

Pinning expressions

Pinning expressions are the syntax used to specify how many parts of the version
to pin. They are by convention strings containing x characters separated by
.. The number of version parts to pin is simply the number of things that
are separated by .. For example, "x.x" pins major and minor version.
"x" pins only major version.

Wherever pinning expressions are accepted, you can customize both lower and
upper bounds.

produces pins like >=1.11.2,<1.12
variants = [{"numpy": "1.11", "pin_run_as_build": {"numpy": {"max_pin": "x.x"}}}]

Note that the final pin may be more specific than your initial spec. Here, the
spec is 1.11, but the produced pin could be 1.11.2, the exact version of NumPy
that was used at build time.

produces pins like >=1.11,<2
variants = [
 {"numpy": "1.11", "pin_run_as_build": {"numpy": {"min_pin": "x.x", "max_pin": "x"}}}
]

Note that for pre-release versions min_pin will be ignored and substituted
with the exact input version since pre-releases can never match >=x.x (see
Package match specifications for details on pre-release version matching).

Pinning at the variant level

Some packages, such as boost, always need to be pinned at runtime to the
version that was present at build time. For these cases where the need for
pinning is consistent, pinning at the variant level is a good option.
Conda-build will automatically pin run requirements to the versions present in
the build environment when the following conditions are met:

	The dependency is listed in the requirements/build section. It can be pinned,
but does not need to be.

	The dependency is listed by name (no pinning) in the requirements/run section.

	The pin_run_as_build key in the variant has a value that is a dictionary,
containing a key that matches the dependency name listed in the run
requirements. The value should be a dictionary with up to 4 keys:
min_pin, max_pin, lower_bound, upper_bound. The first 2 are
pinning expressions. The latter 2 are version numbers, overriding detection
of current version.

An example variant/recipe is shown here:

conda_build_config.yaml:

boost: 1.63
pin_run_as_build:
 boost:
 max_pin: x.x

meta.yaml:

requirements:
 build:
 - boost
 run:
 - boost

The result here is that the runtime boost dependency will be pinned to
>=(current boost 1.63.x version),<1.64.

More details on the pin_run_as_build function is below in the
Extra Jinja2 functions section.

Note that there are some packages that you should not use pin_run_as_build
for. Packages that don't always need to be pinned should be pinned on a
per-recipe basis (described in the next section). NumPy is an interesting
example here. It actually would not make a good case for pinning at the variant
level. Because you only need this kind of pinning for recipes that use NumPy's C
API, it would actually be better not to pin NumPy with pin_run_as_build.
Pinning it is over-constraining your requirements unnecessarily when you are not
using NumPy's C API. Instead, we should customize it for each recipe that uses
NumPy. See also the Avoiding unnecessary builds section above.

Pinning at the recipe level

Pinning at the recipe level overrides pinning at the variant level, because run
dependencies that have pinning values in meta.yaml (even as Jinja variables) are
ignored by the logic handling pin_run_as_build. We expect that pinning at
the recipe level will be used when some recipe's pinning is unusually stringent
(or loose) relative to some standard pinning from the variant level.

By default, with the pin_compatible('package_name') function, conda-build pins to your
current version and less than the next major version. For projects that don't
follow the philosophy of semantic versioning, you might want to restrict things
more tightly. To do so, you can pass one of two arguments to the pin_compatible
function.

variants = [{"numpy": "1.11"}]

meta.yaml:

requirements:
 build:
 - numpy
 run:
 - {{ pin_compatible('numpy', max_pin='x.x') }}

This would yield a pinning of >=1.11.2,<1.12.

The syntax for the min_pin and max_pin is a string pinning expression.
Each can be passed independently of the other. An example of specifying both:

variants = [{"numpy": "1.11"}]

meta.yaml:

requirements:
 build:
 - numpy
 run:
 - {{ pin_compatible('numpy', min_pin='x.x', max_pin='x.x') }}

This would yield a pinning of >=1.11,<1.12.

You can also pass the minimum or maximum version directly. These arguments supersede the
min_pin and max_pin arguments and are thus mutually exclusive.

variants = [{"numpy": "1.11"}]

meta.yaml:

requirements:
 build:
 - numpy
 run:
 - {{ pin_compatible('numpy', lower_bound='1.10', upper_bound='3.0') }}

This would yield a pinning of >=1.10,<3.0.

Appending to recipes

As of conda-build 3.0, you can add a file named recipe_append.yaml in the
same folder as your meta.yaml file. This file is considered to follow the
same rules as meta.yaml, except that selectors and Jinja2 templates are not
evaluated. Evaluation of selectors and Jinja2 templates will likely be added
in future development.

Any contents in recipe_append.yaml will add to the contents of meta.yaml.
List values will be extended and string values will be concatenated. The
proposed use case for this is to tweak/extend central recipes, such as those
from conda-forge, with additional requirements while minimizing the actual
changes to recipe files so as to avoid merge conflicts and source code
divergence.

Partially clobbering recipes

As of conda-build 3.0, you can add a file named recipe_clobber.yaml in the
same folder as your meta.yaml file. This file is considered to follow the
same rules as meta.yaml, except that selectors and Jinja2 templates are not
evaluated. Evaluation of selectors and Jinja2 templates will likely be added
in future development.

Any contents in recipe_clobber.yaml will replace the contents of meta.yaml.
This can be useful, for example, for replacing the source URL without copying
the rest of the recipe into a fork.

Differentiating packages built with different variants

With only a few things supported, we could just add things to the filename, such
as py27 for Python, or np111 for NumPy. Variants are meant to support the
general case, and in the general case this is no longer an option. Instead,
used variant keys and values are hashed using the SHA1 algorithm, and that hash is a
unique identifier. The information that went into the hash is stored with the
package in a file at info/hash_input.json. Packages only have a hash when
there are any "used" variables beyond the ones that are already accounted for in
the build string (py, np, etc). The takeaway message is that hashes will appear
when binary compatibility matters, but not when it doesn't.

Currently, only the first 7 characters of the hash are stored. Output package
names will keep the pyXY and npXYY, but may have added the 7-character hash.
Your package names will look like:

my-package-1.0-py27h3142afe_0.tar.bz2

As of conda-build 3.1.0, this hashing scheme has been simplified. A hash will be
added if all of these are true for any dependency:

	Package is an explicit dependency in build, host, or run deps.

	Package has a matching entry in conda_build_config.yaml which is a pin to a
specific version, not a lower bound.

	That package is not ignored by ignore_version.

OR

	Package uses {{ compiler() }} Jinja2 function.

Since conflicts only need to be prevented within one version of a package, we
think this will be adequate. If you run into hash collisions with this limited
subspace, please file an issue on the conda-build issue tracker [https://github.com/conda/conda-build/issues].

There is a CLI tool that just pretty-prints this JSON file for easy viewing:

conda inspect hash-inputs <package path>

This produces output such as:

{'python-3.6.4-h6538335_1': {'files': [],
 'recipe': {'c_compiler': 'vs2015',
 'cxx_compiler': 'vs2015'}}}

Extra Jinja2 functions

Two especially common operations when dealing with these API and ABI
incompatibilities are ways of specifying such compatibility, and of explicitly
expressing the compiler to be used. Three new Jinja2 functions are available when
evaluating meta.yaml templates:

	pin_compatible('package_name', min_pin='x.x.x.x.x.x', max_pin='x',
lower_bound=None, upper_bound=None): To be used as pin in run and/or test
requirements. Takes package name argument. Looks up compatibility of named
package installed in the build environment and writes compatible range pin
for run and/or test requirements. Defaults to a semver-based assumption:
package_name >=(current version),<(next major version). Pass min_pin
or max_pin a Pinning expressions . This will be enhanced as time goes
on with information from ABI Laboratory [https://abi-laboratory.pro/].

	pin_subpackage('package_name', min_pin='x.x.x.x.x.x', max_pin='x',
exact=False): To be used as pin in run and/or test requirements. Takes
package name argument. Used to refer to particular versions of subpackages
built by parent recipe as dependencies elsewhere in that recipe. Can use
either pinning expressions, or exact (including build string).

	compiler('language'): To be used in build requirements most commonly.
Run or test as necessary. Takes language name argument. This is shorthand to
facilitate cross-compiler usage. This Jinja2 function ties together 2
variant variables, {language}_compiler and target_platform, and
outputs a single compiler package name. For example, this could be used to
compile outputs targeting x86_64 and arm in one recipe, with a variant.

There are default "native" compilers that are used when no compiler is specified
in any variant. These are defined in conda-build's jinja_context.py file [https://github.com/conda/conda-build/blob/main/conda_build/jinja_context.py].
Most of the time, users will not need to provide compilers in their variants -
just leave them empty and conda-build will use the defaults appropriate for
your system.

Referencing subpackages

Conda-build 2.1 brought in the ability to build multiple output packages from a
single recipe. This is useful in cases where you have a big build that outputs a
lot of things at once, but those things really belong in their own packages. For
example, building GCC outputs not only GCC, but also GFortran, g++, and runtime
libraries for GCC, GFortran, and g++. Each of those should be their own package to
make things as clean as possible. Unfortunately, if there are separate recipes
to repack the different pieces from a larger, whole package it can be hard to
keep them in sync. That's where variants come in. Variants, and more
specifically the pin_subpackage(name) function, give you a way to refer to
the subpackage with control over how tightly the subpackage version relationship
should be in relation to other subpackages or the parent package. The following
will output 5 conda packages.

meta.yaml:

package:
 name: subpackage_demo
 version: 1.0

requirements:
 run:
 - {{ pin_subpackage('subpackage_1') }}
 - {{ pin_subpackage('subpackage_2', max_pin='x.x') }}
 - {{ pin_subpackage('subpackage_3', min_pin='x.x', max_pin='x.x') }}
 - {{ pin_subpackage('subpackage_4', exact=True) }}

outputs:
 - name: subpackage_1
 version: 1.0.0
 - name: subpackage_2
 version: 2.0.0
 - name: subpackage_3
 version: 3.0.0
 - name: subpackage_4
 version: 4.0.0

Here, the parent package will have the following different runtime dependencies:

	subpackage_1 >=1.0.0,<2 (default uses min_pin='x.x.x.x.x.x,
max_pin='x', pins to major version with default >= current version lower
bound)

	subpackage_2 >=2.0.0,<2.1 (more stringent upper bound)

	subpackage_3 >=3.0,<3.1 (less stringent lower bound, more stringent upper bound)

	subpackage_4 4.0.0 h81241af (exact pinning - version plus build string)

Compiler packages

On macOS and Linux, we can and do ship GCC packages. These will become even more
powerful with variants since you can specify versions of your compiler much
more explicitly and build against different versions, or with different flags
set in the compiler package's activate.d scripts. On Windows, rather than
providing the actual compilers in packages, we still use the compilers that
are installed on the system. The analogous compiler packages on Windows run
any compiler activation scripts and set compiler flags instead of actually
installing anything.

Over time, conda-build will require that all packages explicitly list their
compiler requirements this way. This is to both simplify conda-build and improve
the tracking of metadata associated with compilers - localize it to compiler
packages, even if those packages are doing nothing more than activating an
already-installed compiler, such as Visual Studio.

Note also the run_exports key in meta.yaml. This is useful for compiler
recipes to impose runtime constraints based on the versions of subpackages
created by the compiler recipe. For more information, see the Export runtime requirements
section of the meta.yaml docs. Compiler packages provided by Anaconda use the
run_exports key extensively. For example, recipes that include the
gcc_linux-cos5-x86_64 package as a build time dependency (either directly,
or through a {{ compilers('c') }} Jinja2 function) will automatically have a
compatible libgcc runtime dependency added.

Compiler versions

Usually the newest compilers are the best compilers, but in some special cases
you'll need to use older compilers.

For example, NVIDIA's CUDA libraries only support compilers that they have
rigorously tested. Often the latest GCC compiler is not supported for use with
CUDA. If your recipe needs to use CUDA, you'll need to use an older version of
GCC.

There are special keys associated with the compilers. The key name of each
special key is the compiler key name plus _version.

For example, if your compiler key is c_compiler, the version key associated
with it is c_compiler_version. If you have a recipe for Tensorflow with GPU
support, put a conda_build_config.yaml file alongside meta.yaml, with contents
like:

c_compiler_version: # [linux]
 - 5.4 # [linux]
cxx_compiler_version: # [linux]
 - 5.4 # [linux]

Specify selectors so that this extra version information is not also applied to
Windows and macOS. Those platforms have totally different compilers and could
have their own versions if necessary.

It is not necessary to specify c_compiler or cxx_compiler because the
default value (gcc on Linux) will be used. It is necessary to specify both
c and cxx versions, even if they are the same, because they are treated
independently.

By placing this file in the recipe, it will apply only to this recipe. All other
recipes will default to the latest compiler.

Note

The version number you specify here must exist as a package in your
currently configured channels.

Cross-compiling

The compiler Jinja2 function is written to support cross-compilers. This depends
on setting at least 2 variant keys: (language)_compiler and
target_platform. The target platform is appended to the value of
(language)_compiler with the _ character. This leads to package names
like g++_linux-aarch64. We recommend a convention for naming your
compiler packages as: <compiler name>_<target_platform>.

Using a cross-compiler in a recipe would look like the following:

variants = {
 "cxx_compiler": ["g++"],
 "target_platform": ["linux-cos5-x86_64", "linux-aarch64"],
}

and a meta.yaml file:

package:
 name: compiled-code
 version: 1.0

requirements:
 build:
 - {{ compiler('cxx') }}

This assumes that you have created 2 compiler packages named
g++_linux-cos5-x86_64 and g++_linux-aarch64 - all conda-build
is providing you with is a way to loop over appropriately named cross-compiler
toolchains.

Self-consistent package ecosystems

The compiler function is also how you could support a non-standard Visual Studio
version, such as using VS 2015 to compile Python 2.7 and packages for Python
2.7. To accomplish this, you need to add the {{ compiler('<language>') }} to
each recipe that will make up the system. Environment consistency is maintained
through dependencies - thus it is useful to have the runtime be a versioned
package with only one version being able to be installed at a time. For
example, the vc package, originally created by Conda-Forge, is a versioned
package (only one version can be installed at a time), and it installs the
correct runtime package. When the compiler package imposes such a runtime
dependency, then the resultant ecosystem is self-consistent.

Given these guidelines, consider a system of recipes using a variant like this:

variants = {"cxx_compiler": ["vs2015"]}

The recipes include a compiler meta.yaml like this:

package:
 name: vs2015
 version: 14.0
build:
 run_exports:
 - vc 14

They also include some compiler-using meta.yaml contents like this:

package:
 name: compiled-code
 version: 1.0

requirements:
 build:
 # these are the same (and thus redundant) on windows, but different elsewhere
 - {{ compiler('c') }}
 - {{ compiler('cxx') }}

These recipes will create a system of packages that are all built with the
VS 2015 compiler, and which have the vc package matched at version 14, rather
than whatever default is associated with the Python version.

Conda-build CLI reference

Command-line interface (CLI) adds onto conda-build's functionality.
CLI provides functions enabling you to convert packages
between formats, render recipes, develop an index of packages, and more.

	conda-build

	conda convert

	conda develop

	conda index

	conda inspect

	conda inspect channels

	conda inspect linkages

	conda inspect objects

	conda metapackage

	conda render

	conda skeleton

	conda skeleton cpan

	conda skeleton cran

	conda skeleton luarocks

	conda skeleton pypi

conda-build

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda build

DESCRIPTION
 usage: conda-build [-h] [-V] [-n] [--output] [--python PYTHON] [--perl
 PERL]

 [--numpy NUMPY] [--R R_BASE] [--lua LUA] [--bootstrap BOOTSTRAP]
 [--append-file APPEND_SECTIONS_FILE] [--clobber-file CLOB-
 BER_SECTIONS_FILE] [-m VARIANT_CONFIG_FILES] [-e EXCLUSIVE_CON-
 FIG_FILE] [--old-build-string] [--check] [--no-anaconda-upload]
 [--no-include-recipe] [-s] [-t] [--no-test] [-b] [-p]
 [--skip-existing] [--keep-old-work] [--dirty] [-q] [--debug]
 [--token TOKEN] [--user USER] [--no-force-upload] [--password
 PASSWORD] [--sign SIGN] [--sign-with SIGN_WITH] [--identity
 IDENTITY] [--config-file CONFIG_FILE] [--repository REPOSITORY]
 [--no-activate] [--no-build-id] [--croot CROOT] [--verify]
 [--output-folder OUTPUT_FOLDER] [--no-prefix-length-fallback]
 [--prefix-length-fallback] [--prefix-length _PREFIX_LENGTH]
 [--no-locking] [--no-remove-work-dir] [--error-overlinking]
 [--no-error-overlinking] [--long-test-prefix]
 [--no-long-test-prefix] [--keep-going] [--cache-dir CACHE_DIR]
 [--no-copy-test-source-files] [--merge-build-host] [--stats-file
 STATS_FILE] [--extra-deps EXTRA_DEPS [EXTRA_DEPS ...]] [-c CHAN-
 NEL] [--override-channels] RECIPE_PATH [RECIPE_PATH ...]

 Tool for building conda packages. A conda package is a binary tarball
 containing system-level libraries, Python modules, executable programs,
 or other components. conda keeps track of dependencies between packages
 and platform specifics, making it simple to create working environments
 from different sets of packages.

 positional arguments:
 RECIPE_PATH
 Path to recipe directory. Pass 'purge' here to clean the work
 and test intermediates.

 optional arguments:
 -h, --help
 Show this help message and exit.

 -V, --version
 Show the conda-build version number and exit.

 -n, --no-source
 When templating can't be completed, do not obtain the source to
 try fill in related template variables.

 --output
 Output the conda package filename which would have been created

 --python PYTHON
 Set the Python version used by conda build.

 --perl PERL
 Set the Perl version used by conda build.

 --numpy NUMPY
 Set the NumPy version used by conda build.

 --R R_BASE
 Set the R version used by conda build.

 --lua LUA
 Set the Lua version used by conda build.

 --bootstrap BOOTSTRAP
 Provide initial configuration in addition to recipe. Can be a
 path to or name of an environment, which will be emulated in the
 package.

 --append-file APPEND_SECTIONS_FILE
 Append data in meta.yaml with fields from this file. Jinja2 is
 not done on appended fields

 --clobber-file CLOBBER_SECTIONS_FILE
 Clobber data in meta.yaml with fields from this file. Jinja2 is
 not done on clobbered fields.

 -m VARIANT_CONFIG_FILES, --variant-config-files VARIANT_CONFIG_FILES
 Additional variant config files to add. These yaml files can
 contain keys such as `c_compiler` and `target_platform` to form
 a build matrix.

 -e EXCLUSIVE_CONFIG_FILE, --exclusive-config-file EXCLUSIVE_CONFIG_FILE
 Exclusive variant config file to add. Compared with --vari-
 ant-config-files, you're allowed only one file here. Providing a
 file here disables searching in your home directory and in cwd.
 The file specified here comes at the start of the order, as
 opposed to the end with --variant-config-files. Any config files
 in recipes and any config files specified with --variantcon-
 fig-files will override values from this file.

 --old-build-string
 Disable hash additions to filenames to distinguish package vari-
 ants from one another. NOTE: any filename collisions are yours
 to handle. Any variants with overlapping names within a build
 will clobber each other.

 --check
 Only check (validate) the recipe.

 --no-anaconda-upload
 Do not ask to upload the package to anaconda.org.

 --no-include-recipe
 Don't include the recipe inside the built package.

 -s, --source
 Only obtain the source (but don't build).

 -t, --test
 Test package (assumes package is already built). RECIPE_DIR
 argument can be either recipe directory, in which case source
 download may be necessary to resolve package version, or path to
 built package .tar.bz2 file, in which case no source is neces-
 sary.

 --no-test
 Do not test the package.

 -b, --build-only
 Only run the build, without any post processing or testing.
 Implies --no-test and --no-anaconda-upload.

 -p, --post
 Run the post-build logic. Implies --no-test and --noana-
 conda-upload.

 -p, --test-run-post
 Run the post-build logic during testing.

 --skip-existing
 Skip recipes for which there already exists an existing build
 (locally or in the channels).

 --keep-old-work
 Do not remove anything from environment, even after successful
 build and test.

 --dirty
 Do not remove work directory or _build environment, to speed up
 debugging. Does not apply patches or download source.

 -q, --quiet
 do not display progress bar

 --debug
 Show debug output from source checkouts and conda

 --token TOKEN
 Token to pass through to anaconda upload

 --user USER
 User/organization to upload packages to on anaconda.org or pypi

 --label LABELS
 Label argument to pass through to anaconda upload

 --no-force-upload
 Disable force upload to anaconda.org, preventing overwriting any
 existing packages

 --zstd-compression-level {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22}
 When building v2 packages, set the compression level used by
 conda-package-handling. Defaults to 19. Note that using levels
 above 19 is not advised due to high memory consumption.

 --no-activate
 do not activate the build and test envs; just prepend to PATH

 --no-build-id
 do not generate unique build folder names. Use if having issues
 with paths being too long. Deprecated, please use --build-id-pat
 instead

 --build-id-pat BUILD_ID_PAT
 specify a templated pattern to use as build folder names. Use if
 having issues with paths being too long.

 --croot CROOT
 Build root folder. Equivalent to CONDA_BLD_PATH, but applies
 only to this call of conda-build.

 --verify
 run verification on recipes or packages when building

 --no-verify
 do not run verification on recipes or packages when building

 --strict-verify
 Exit if any conda-verify check fail, instead of only printing them

 --output-folder OUTPUT_FOLDER
 folder to dump output package to. Package are moved here if
 build or test succeeds. Destination folder must exist prior to
 using this.

 --no-prefix-length-fallback
 Disable fallback to older 80 character prefix length if environ-
 ment creation fails due to insufficient prefix length in depen-
 dency packages

 --prefix-length-fallback
 Disable fallback to older 80 character prefix length if environ-
 ment creation fails due to insufficient prefix length in depen-
 dency packages

 --prefix-length _PREFIX_LENGTH
 length of build prefix. For packages with binaries that embed
 the path, this is critical to ensuring that your package can run
 as many places as possible. Notethat this value can be altered
 by the OS below conda-build (e.g. encrypted filesystems on
 Linux), and you should prefer to set --croot to a non-encrypted
 location instead, so that you maintain a known prefix length.

 --no-locking
 Disable locking, to avoid unresolved race condition issues.
 Unsafe to run multiple builds at once on one system with this
 set.

 --no-remove-work-dir
 Disable removal of the work dir before testing. Be careful using
 this option, as you package may depend on files that are not
 included in the package, and may pass tests, but ultimately fail
 on installed systems.

 --error-overlinking
 Enable error when shared libraries from transitive dependencies
 are directly linked to any executables or shared libraries in
 built packages. This is disabled by default, but will be enabled
 by default in condabuild 4.0.

 --no-error-overlinking
 Disable error when shared libraries from transitive dependencies
 are directly linked to any executables or shared libraries in
 built packages. This is currently the default behavior, but will
 change in conda-build 4.0.

 --error-overdepending
 Enable error when packages with names beginning lib or which have
 run_exports are not auto-loaded by the OSes DSO loading mechanism
 by any of the files in this package.

 --no-error-overdepending
 Disable error when packages with names beginning lib or which have
 run_exports are not auto-loaded by the OSes DSO loading mechanism
 by any of the files in this package.

 --long-test-prefix
 Use a long prefix for the test prefix, as well as the build pre-
 fix. Affects only Linux and Mac. Prefix length matches the
 --prefix-length flag. This is on by default in conda-build 3.0+

 --no-long-test-prefix
 Do not use a long prefix for the test prefix, as well as the
 build prefix. Affects only Linux and Mac. Prefix length matches
 the --prefix-length flag.

 --keep-going, -k
 When running tests, keep going after each failure. Default is
 to stop on the first failure.

 --cache-dir CACHE_DIR
 Path to store the source files (archives, git clones, etc.) dur-
 ing the build.

 --no-copy-test-source-files
 Disables copying the files necessary for testing the package
 into the info/test folder. Passing this argument means it may
 not be possible to test the package without internet access.
 There is also a danger that the source archive(s) containing the
 files could become unavailable sometime in the future.

 --merge-build-host
 Merge the build and host directories, even when host section or
 compiler jinja2 is present

 --stats-file STATS_FILE
 File path to save build statistics to. Stats are in JSON format

 --extra-deps EXTRA_DEPS [EXTRA_DEPS ...]
 Extra dependencies to add to all environment creation steps.
 This is only enabled for testing with the -t or --test flag.
 Change meta.yaml or use templates otherwise.

 -c CHANNEL, --channel CHANNEL
 Additional channel to search for packages. These are URLs
 searched in the order they are given (including file:// for
 local directories). Then, the defaults or channels from .condarc
 are searched (unless --override-channels is given). You can use
 'defaults' to get the default packages for conda, and 'system'
 to get the system packages, which also takes .condarc into
 account. You can also use any name and the .condarc chan-
 nel_alias value will be prepended. The default channel_alias is
 http://conda.anaconda.org/.

 --override-channels
 Do not search default or .condarc channels. Requires --channel.

 PyPI upload parameters (twine):
 --password PASSWORD
 password to use when uploading packages to pypi

 --sign SIGN
 sign files when uploading to pypi

 --sign-with SIGN_WITH
 program to use to sign files when uploading to pypi

 --identity IDENTITY
 GPG identity to use to sign files when uploading to pypi

 --config-file CONFIG_FILE
 path to .pypirc file to use when uploading to pypi

 --repository REPOSITORY, -r REPOSITORY
 PyPI repository to upload to

 conda commands available from other packages:
 build build-all convert develop env index inspect metapackage
 render server sign skeleton smithy tracker verify

Anaconda, Inc. June 2018 CONDA(1)

conda convert

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda convert

DESCRIPTION
 usage: conda-convert [-h]

 [-p
 {osx-64,linux-32,linux-64,linux-ppc64le,linux-armv6l,linux-armv7l,linux-aarch64,win-32,win-64,all}]
 [--dependencies [DEPENDENCIES [DEPENDENCIES ...]]]
 [--show-imports] [-f] [-o OUTPUT_DIR] [-v] [--dry-run] [-q]
 files [files ...]

 Various tools to convert conda packages. Takes a pure Python package
 build for one platform and converts it to work on one or more other
 platforms, or all.

OPTIONS
 positional arguments:
 files Package files to convert.

 optional arguments:
 -h, --help
 Show this help message and exit.

 -p
 {osx-64,linux-32,linux-64,linux-ppc64le,linux-armv6l,linux-armv7l,linux-aarch64,win-32,win-64,all},
 --platform
 {osx-64,linux-32,linux-64,linux-ppc64le,linux-armv6l,linux-armv7l,linux-aarch64,win-32,win-64,all}
 Platform to convert the packages to.

 --dependencies [DEPENDENCIES [DEPENDENCIES ...]], -d [DEPENDENCIES
 [DEPENDENCIES ...]]
 Additional (besides python) dependencies of the converted pack-
 age. To specify a version restriction for a dependency, wrap the
 dependency in quotes, like 'package >=2.0'.

 --show-imports
 Show Python imports for compiled parts of the package.

 -f, --force
 Force convert, even when a package has compiled C extensions.

 -o OUTPUT_DIR, --output-dir OUTPUT_DIR
 Directory to write the output files. The packages will be orga-
 nized in platform/ subdirectories, e.g., win-32/pack-
 age-1.0-py27_0.tar.bz2.

 -v, --verbose
 Print verbose output.

 --dry-run
 Only display what would have been done.

 -q, --quiet
 Don't print as much output.

 Tool to convert packages

 conda convert converts pure Python packages to other platforms.

 Packages are automatically organized in subdirectories according to
 platform, e.g.,

 osx-64/

 package-1.0-py33.tar.bz2

 win-32/

 package-1.0-py33.tar.bz2

EXAMPLES
 Convert a package built with conda build to Windows 64-bit, and place
 the resulting package in the current directory (supposing a default
 Anaconda install on Mac OS X):

 conda convert package-1.0-py33.tar.bz2 -p win-64

 conda commands available from other packages:
 build build-all convert develop env index inspect metapackage
 render server sign skeleton smithy tracker verify

Anaconda, Inc. June 2018 CONDA(1)

conda develop

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda develop

DESCRIPTION
 usage: conda-develop [-h] [-npf] [-b] [-c] [-u] [-n ENVIRONMENT | -p
 PATH]

 PATH [PATH ...]

 Install a Python package in 'development mode'.

 This works by creating a conda.pth file in site-packages.

OPTIONS
 positional arguments:
 PATH Path to the source directory.

 optional arguments:
 -h, --help
 Show this help message and exit.

 -npf, --no-pth-file
 Relink compiled extension dependencies against libraries found
 in current conda env. Do not add source to conda.pth.

 -b, --build_ext
 Build extensions inplace, invoking: python setup.py build_ext
 --inplace; add to conda.pth; relink runtime libraries to envi-
 ronment's lib/.

 -c, --clean
 Invoke clean on setup.py: python setup.py clean use with
 build_ext to clean before building.

 -u, --uninstall
 Removes package if installed in 'development mode' by deleting
 path from conda.pth file. Ignore other options - just uninstall
 and exit

 -n ENVIRONMENT, --name ENVIRONMENT
 Name of environment.

 -p PATH, --prefix PATH
 Full path to environment prefix.

 conda commands available from other packages:
 build build-all convert develop env index inspect metapackage
 render server sign skeleton smithy tracker verify

Anaconda, Inc. June 2018 CONDA(1)

conda index

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda index

DESCRIPTION
 usage: conda-index [-h] [-c] [-f] [-q] [--no-remove]

 [--channel-name CHANNEL_NAME] [dir [dir ...]]

 Update package index metadata files in given directories.

OPTIONS
 positional arguments:
 dir Directory that contains an index to be updated.

 optional arguments:
 -h, --help
 Show this help message and exit.

 -c, --check-md5
 Use MD5 values instead of file modification times for determin-
 ing if a package's metadata needs to be updated.

 -f, --force
 Force reading all files.

 -q, --quiet
 Don't show any output.

 --no-remove
 Don't remove entries for files that don't exist.

 --channel-name CHANNEL_NAME
 Adding a channel name will create an index.html file within the
 subdir.

 conda commands available from other packages:
 build build-all convert develop env index inspect metapackage
 render server sign skeleton smithy tracker verify

Anaconda, Inc. June 2018 CONDA(1)

conda inspect

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda inspect

DESCRIPTION
 usage: conda-inspect [-h]

 {linkages,objects,channels,prefix-lengths,hash-inputs}
 ...

 Tools for inspecting conda packages.

OPTIONS
 positional arguments:
 {linkages,objects,channels,prefix-lengths,hash-inputs}

 linkages
 Investigates linkages of binary libraries in a package (works in
 Linux and OS X). This is an advanced command to aid building
 packages that link against C libraries. Aggregates the output of
 ldd (on Linux) and otool -L (on OS X) by dependent packages.
 Useful for finding broken links, or links against system
 libraries that ought to be dependent conda packages.

 objects
 Investigate binary object files in a package (only works on OS
 X). This is an advanced command to aid building packages that
 have compiled libraries. Aggregates the output of otool on all
 the binary object files in a package.

 channels
 Tools for investigating conda channels.

 prefix-lengths
 Inspect packages in given path, finding those with binary pre-
 fixes shorter than specified

 hash-inputs
 Show data used to compute hash identifier (h????) for package

 optional arguments:
 -h, --help
 Show this help message and exit.

 Run --help on the subcommands like 'conda inspect linkages --help' to
 see the options available.

 conda commands available from other packages:
 build build-all convert develop env index inspect metapackage
 render server sign skeleton smithy tracker verify

Anaconda, Inc. June 2018 CONDA(1)

conda inspect channels

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda inspect channels

DESCRIPTION
 usage: conda-inspect channels [-h] [--verbose] [--test-installable]
 [channel]

 Tools for investigating conda channels.

OPTIONS
 positional arguments:
 channel
 The channel to test. The default is defaults.

 optional arguments:
 -h, --help
 Show this help message and exit.

 --verbose
 Show verbose output. Note that error output to stderr will
 always be shown regardless of this flag.

 --test-installable, -t
 Test every package in the channel to see if it is installable by
 conda.

Anaconda, Inc. June 2018 CONDA(1)

conda inspect linkages

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda inspect linkages

DESCRIPTION
 usage: conda-inspect linkages [-h] [--untracked] [--show-files]

 [--groupby {package,dependency}]
 [--sysroot SYSROOT] [--all] [-n ENVIRONMENT | -p PATH] [packages
 [packages ...]]

 Investigates linkages of binary libraries in a package (works in Linux
 and OS X). This is an advanced command to aid building packages that
 link against C libraries. Aggregates the output of ldd (on Linux) and
 otool -L (on OS X) by dependent packages. Useful for finding broken
 links, or links against system libraries that ought to be dependent
 conda packages.

OPTIONS
 positional arguments:
 packages
 Conda packages to inspect.

 optional arguments:
 -h, --help
 Show this help message and exit.

 --untracked
 Inspect the untracked files in the environment. This is useful
 when used in conjunction with conda build --build-only.

 --show-files
 Show the files in the package that link to each library

 --groupby {package,dependency}
 Attribute to group by (default: package). Useful when used in
 conjunction with --all.

 --sysroot SYSROOT
 System root in which to look for system libraries.

 --all Generate a report for all packages in the environment.

 -n ENVIRONMENT, --name ENVIRONMENT
 Name of environment.

 -p PATH, --prefix PATH
 Full path to environment prefix.

Anaconda, Inc. June 2018 CONDA(1)

conda inspect objects

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda inspect objects

DESCRIPTION
 usage: conda-inspect objects [-h] [--untracked]

 [--groupby {filename,filetype,rpath}] [--all]
 [-n ENVIRONMENT | -p PATH] [packages [packages ...]]

 Investigate binary object files in a package (only works on OS X). This
 is an advanced command to aid building packages that have compiled
 libraries. Aggregates the output of otool on all the binary object
 files in a package.

OPTIONS
 positional arguments:
 packages
 Conda packages to inspect.

 optional arguments:
 -h, --help
 Show this help message and exit.

 --untracked
 Inspect the untracked files in the environment. This is useful
 when used in conjunction with conda build --build-only.

 --groupby {filename,filetype,rpath}
 Attribute to group by (default: filename).

 --all Generate a report for all packages in the environment.

 -n ENVIRONMENT, --name ENVIRONMENT
 Name of environment.

 -p PATH, --prefix PATH
 Full path to environment prefix.

Anaconda, Inc. June 2018 CONDA(1)

conda metapackage

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda metapackage

DESCRIPTION
 usage: conda-metapackage [-h] [--no-anaconda-upload] [--token TOKEN]

 [--user USER] [--build-number BUILD_NUMBER]
 [--build-string BUILD_STRING] [--dependencies [DEPENDENCIES
 [DEPENDENCIES ...]]] [--home HOME] [--license LICENSE_NAME]
 [--summary SUMMARY] [--entry-points [ENTRY_POINTS [ENTRY_POINTS
 ...]]] [-c CHANNEL] [--override-channels] name version

 Tool for building conda metapackages. A metapackage is a package with
 no files, only metadata. They are typically used to collect several
 packages together into a single package via dependencies.

 NOTE: Metapackages can also be created by creating a recipe with the
 necessary metadata in the meta.yaml, but a metapackage can be created
 entirely from the command line with the conda metapackage command.

OPTIONS
 positional arguments:
 name Name of the created package.

 version
 Version of the created package.

 optional arguments:
 -h, --help
 Show this help message and exit.

 --no-anaconda-upload
 Do not ask to upload the package to anaconda.org.

 --token TOKEN
 Token to pass through to anaconda upload

 --user USER
 User/organization to upload packages to on anaconda.org

 --label LABELS
 Label argument to pass through to anaconda upload

 --build-number BUILD_NUMBER
 Build number for the package (default is 0).

 --build-string BUILD_STRING
 Build string for the package (default is automatically gener-
 ated).

 --dependencies [DEPENDENCIES [DEPENDENCIES ...]], -d [DEPENDENCIES
 [DEPENDENCIES ...]]
 The dependencies of the package. To specify a version restric-
 tion for a dependency, wrap the dependency in quotes, like
 'package >=2.0'.

 --home HOME
 The homepage for the metapackage.

 --license LICENSE_NAME
 The license of the metapackage.

 --summary SUMMARY
 Summary of the package. Pass this in as a string on the command
 line, like --summary 'A metapackage for X'. It is recommended to
 use single quotes if you are not doing variable substitution to
 avoid interpretation of special characters.

 --entry-points [ENTRY_POINTS [ENTRY_POINTS ...]]
 Python entry points to create automatically. They should use the
 same syntax as in the meta.yaml of a recipe, e.g.,
 --entry-points bsdiff4=bsdiff4.cli:main_bsdiff4 will create an
 entry point called bsdiff4 that calls bsdiff4.cli.main_bsd-
 iff4().

 -c CHANNEL, --channel CHANNEL
 Additional channel to search for packages. These are URLs
 searched in the order they are given (including file:// for
 local directories). Then, the defaults or channels from .condarc
 are searched (unless --override-channels is given). You can use
 'defaults' to get the default packages for conda, and 'system'
 to get the system packages, which also takes .condarc into
 account. You can also use any name and the .condarc chan-
 nel_alias value will be prepended. The default channel_alias is
 http://conda.anaconda.org/.

 --override-channels
 Do not search default or .condarc channels. Requires --channel.

 conda commands available from other packages:
 build build-all convert develop env index inspect metapackage
 render server sign skeleton smithy tracker verify

Anaconda, Inc. June 2018 CONDA(1)

conda render

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda render

DESCRIPTION
 usage: conda-render [-h] [-V] [-n] [--output] [--python PYTHON] [--perl
 PERL]

 [--numpy NUMPY] [--R R_BASE] [--lua LUA]
 [--bootstrap BOOTSTRAP] [--append-file APPEND_SECTIONS_FILE]
 [--clobber-file CLOBBER_SECTIONS_FILE] [-m VARIANT_CONFIG_FILES]
 [-e EXCLUSIVE_CONFIG_FILE] [--old-build-string] [-c CHANNEL]
 [--override-channels] [-f FILE] [--verbose] RECIPE_PATH

 Tool for building conda packages. A conda package is a binary tarball
 containing system-level libraries, Python modules, executable programs,
 or other components. conda keeps track of dependencies between packages
 and platform specifics, making it simple to create working environments
 from

 different sets of packages.

OPTIONS
 positional arguments:
 RECIPE_PATH
 Path to recipe directory.

 optional arguments:
 -h, --help
 Show this help message and exit.

 -V, --version
 Show the conda-build version number and exit.

 -n, --no-source
 When templating can't be completed, do not obtain the source to
 try fill in related template variables.

 --output
 Output the conda package filename which would have been created

 --python PYTHON
 Set the Python version used by conda build.

 --perl PERL
 Set the Perl version used by conda build.

 --numpy NUMPY
 Set the NumPy version used by conda build.

 --R R_BASE
 Set the R version used by conda build.

 --lua LUA
 Set the Lua version used by conda build.

 --bootstrap BOOTSTRAP
 Provide initial configuration in addition to recipe. Can be a
 path to or name of an environment, which will be emulated in the
 package.

 --append-file APPEND_SECTIONS_FILE
 Append data in meta.yaml with fields from this file. Jinja2 is
 not done on appended fields

 --clobber-file CLOBBER_SECTIONS_FILE
 Clobber data in meta.yaml with fields from this file. Jinja2 is
 not done on clobbered fields.

 -m VARIANT_CONFIG_FILES, --variant-config-files VARIANT_CONFIG_FILES
 Additional variant config files to add. These yaml files can
 contain keys such as `c_compiler` and `target_platform` to form
 a build matrix.

 -e EXCLUSIVE_CONFIG_FILE, --exclusive-config-file EXCLUSIVE_CONFIG_FILE
 Exclusive variant config file to add. Compared with --vari-
 ant-config-files, you're allowed only one file here. Providing a
 file here disables searching in your home directory and in cwd.
 The file specified here comes at the start of the order, as
 opposed to the end with --variant-config-files. Any config files
 in recipes and any config files specified with --variantcon-
 fig-files will override values from this file.

 --old-build-string
 Disable hash additions to filenames to distinguish package vari-
 ants from one another. NOTE: any filename collisions are yours
 to handle. Any variants with overlapping names within a build
 will clobber each other.

 -c CHANNEL, --channel CHANNEL
 Additional channel to search for packages. These are URLs
 searched in the order they are given (including file:// for
 local directories). Then, the defaults or channels from .condarc
 are searched (unless --override-channels is given). You can use
 'defaults' to get the default packages for conda, and 'system'
 to get the system packages, which also takes .condarc into
 account. You can also use any name and the .condarc chan-
 nel_alias value will be prepended. The default channel_alias is
 http://conda.anaconda.org/.

 --override-channels
 Do not search default or .condarc channels. Requires --channel.

 -f FILE, --file FILE
 write YAML to file, given as argument here. Overwrites existing
 files.

 --verbose
 Enable verbose output from download tools and progress updates

 conda commands available from other packages:
 build build-all convert develop env index inspect metapackage
 render server sign skeleton smithy tracker verify

Anaconda, Inc. June 2018 CONDA(1)

conda skeleton

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda skeleton

DESCRIPTION
 usage: conda-skeleton [-h] {cpan,cran,luarocks,pypi,rpm} ...

 Generates a boilerplate/skeleton recipe, which you can then edit to
 create a full recipe. Some simple skeleton recipes may not even need
 edits.

OPTIONS
 positional arguments:
 {cpan,cran,luarocks,pypi,rpm}

 cpan Create recipe skeleton for packages hosted on the Comprehensive
 Perl Archive Network (CPAN) (cpan.org).

 cran Create recipe skeleton for packages hosted on the Comprehensive
 R Archive Network (CRAN) (cran.r-project.org).

 luarocks
 Create recipe skeleton for luarocks, hosted at luarocks.org

 pypi Create recipe skeleton for packages hosted on the Python Packag-
 ing Index (PyPI) (pypi.io).

 rpm Create recipe skeleton for RPM files

 optional arguments:
 -h, --help
 Show this help message and exit.

 Run --help on the subcommands like 'conda skeleton pypi --help' to see
 the options available.

 conda commands available from other packages:
 build build-all convert develop env index inspect metapackage
 render server sign skeleton smithy tracker verify

Anaconda, Inc. June 2018 CONDA(1)

conda skeleton cpan

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda skeleton cpan

DESCRIPTION
 usage: conda-skeleton cpan [-h] [--output-dir OUTPUT_DIR] [--version
 VERSION]

 [--meta-cpan-url META_CPAN_URL] [--recursive]
 [--force] [--write_core] packages [packages ...]

 positional arguments:
 packages
 CPAN packages to create recipe skeletons for.

 optional arguments:
 -h, --help
 Show this help message and exit.

 --output-dir OUTPUT_DIR
 Directory to write recipes to (default: .).

 --version VERSION
 Version to use. Applies to all packages.

 --meta-cpan-url META_CPAN_URL
 URL to use for MetaCPAN API. It must include a version, such as
 v1

 --recursive
 Create recipes for dependencies if they do not already exist
 (default: False).

 --force
 Force overwrite of existing recipes (default: False).

 --write_core
 Write recipes for perl core modules (default: False).

Anaconda, Inc. June 2018 CONDA(1)

conda skeleton cran

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda skeleton cran

DESCRIPTION
 usage: conda-skeleton cran [-h] [--output-dir OUTPUT_DIR]

 [--output-suffix OUTPUT_SUFFIX]
 [--add-maintainer ADD_MAINTAINER] [--version VERSION] [--git-tag
 GIT_TAG] [--all-urls] [--cran-url CRAN_URL] [--r-interp
 R_INTERP] [--use-binaries-ver USE_BINARIES_VER]
 [--use-noarch-generic] [--use-rtools-win] [--recursive]
 [--no-recursive] [--no-archive] [--version-compare]
 [--update-policy {error,skip-up-to-date,skip-existing,over-
 write,merge-keep-build-num,merge-incr-build-num}] [-m VARI-
 ANT_CONFIG_FILES] packages [packages ...]

 positional arguments:
 packages
 CRAN packages to create recipe skeletons for.

 optional arguments:
 -h, --help
 Show this help message and exit.

 --output-dir OUTPUT_DIR
 Directory to write recipes to (default: .).

 --output-suffix OUTPUT_SUFFIX
 Suffix to add to recipe dir, can contain other dirs (eg: -feed-
 stock/recipe). (default:)

 --add-maintainer ADD_MAINTAINER
 Add this github username as a maintainer if not already present.
 (default: None)

 --version VERSION
 Version to use. Applies to all packages. (default: None)

 --git-tag GIT_TAG
 Git tag to use for GitHub recipes. (default: None)

 --all-urls
 Look at all URLs, not just source URLs. Use this if it can't
 find the right URL. (default: False)

 --cran-url CRAN_URL
 URL to use for as source package repository (default: None)

 --r-interp R_INTERP
 Declare R interpreter package (default: r-base)

 --use-binaries-ver USE_BINARIES_VER
 Repackage binaries from version provided by argument instead of
 building from source. (default: None)

 --use-noarch-generic
 Mark packages that do not need compilation as `noarch: generic`
 (default: False)

 --use-rtools-win
 Use Rtools when building from source on Windows (default: False)

 --recursive
 Create recipes for dependencies if they do not already exist.
 (default: False)

 --no-recursive
 Don't create recipes for dependencies if they do not already
 exist. (default: True)

 --no-archive
 Don't include an Archive download url. (default: True)

 --version-compare
 Compare the package version of the recipe with the one available
 on CRAN. Exits 1 if a newer version is available and 0 other-
 wise. (default: False)

 --update-policy {error,skip-up-to-date,skip-existing,over-
 write,merge-keep-build-num,merge-incr-build-num}
 Dictates what to do when existing packages are encountered in
 the output directory (set by --outputdir). In the present imple-
 mentation, the merge options avoid overwriting bld.bat and
 build.sh and only manage copying across patches, and the
 `build/{number,script_env}` fields. When the version changes,
 both merge options reset `build/number` to 0. When the version
 does not change they either keep the old `build/number` or else
 increase it by one. (default: error)

 -m VARIANT_CONFIG_FILES, --variant-config-files VARIANT_CONFIG_FILES
 Variant config file to add. These yaml files can contain keys
 such as `cran_mirror`. Only one can be provided here. (default:
 None)

Anaconda, Inc. June 2018 CONDA(1)

conda skeleton luarocks

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda skeleton luarocks

DESCRIPTION
 usage: conda-skeleton luarocks [-h] [--output-dir OUTPUT_DIR]

 [--version VERSION] [--recursive]
 packages [packages ...]

 positional arguments:
 packages
 luarocks packages to create recipe skeletons for.

 optional arguments:
 -h, --help
 Show this help message and exit.

 --output-dir OUTPUT_DIR
 Directory to write recipes to (default: .).

 --version VERSION
 Version to use. Applies to all packages.

 --recursive
 Create recipes for dependencies if they do not already exist.

Anaconda, Inc. June 2018 CONDA(1)

conda skeleton pypi

CONDA(1) User Commands CONDA(1)

NAME
 conda - conda skeleton pypi

DESCRIPTION
 usage: conda-skeleton pypi [-h] [--output-dir OUTPUT_DIR] [--version
 VERSION]

 [--all-urls] [--pypi-url PYPI_URL] [--prompt]
 [--all-extras] [--recursive] [--version-compare] [--python-ver-
 sion {2.7,3.4,3.5}] [--manual-url] [--noarch-python] [--set-
 up-options SETUP_OPTIONS] [--pin-numpy] [--extra-specs
 EXTRA_SPECS] packages [packages ...]

 positional arguments:
 packages
 PyPi packages to create recipe skeletons for. You can also spec-
 ify package[extra,...] features.

 optional arguments:
 -h, --help
 Show this help message and exit.

 --output-dir OUTPUT_DIR
 Directory to write recipes to (default: .).

 --version VERSION
 Version to use. Applies to all packages. If not specified the
 lastest visible version on PyPI is used.

 --all-urls
 Look at all URLs, not just source URLs. Use this if it can't
 find the right URL.

 --pypi-url PYPI_URL
 URL to use for PyPI (default: https://pypi.io/pypi/).

 --prompt
 Prompt the user on ambiguous choices. Default is to make the
 best possible choice and continue.

 --all-extras
 Add all extra feature requirements. Applies to all packages.

 --recursive
 Create recipes for dependencies if they do not already exist.

 --version-compare
 Compare the package version of the recipe with all available
 versions on PyPI.

 --python-version {2.7,3.4,3.5}
 Version of Python to use to run setup.py. Default is 3.6.

 --manual-url
 Manually choose source url when more than one urls are
 present.Default is the one with least source size.

 --noarch-python
 Creates recipe as noarch python

 --setup-options SETUP_OPTIONS
 Options to be added to setup.py install in the recipe. The same
 options are passed to setup.py install in both the construction
 of the recipe and in the recipe itself.For options that include
 a double-hypen or to pass multiple options, use the syntax
 --setupoptions="--option1 --option-with-arg arg"

 --pin-numpy
 Ensure that the generated recipe pins the version of numpyto
 CONDA_NPY.

 --extra-specs EXTRA_SPECS
 Extra specs for the build environment to extract the skeleton.

EXAMPLES
 Create a recipe for the sympy package:

 conda skeleton pypi sympy

 Create a recipes for the flake8 package and all its dependencies:

 conda skeleton pypi --recursive flake8

 Use the --pypi-url flag to point to a PyPI mirror url:

 conda skeleton pypi --pypi-url <mirror-url> package_name

Anaconda, Inc. June 2018 CONDA(1)

Adding Windows Start menu items

When a package is installed, it can add a shortcut to the Windows
Start menu. Conda and conda-build handle this with the
package menuinst [https://github.com/ContinuumIO/menuinst],
which currently supports only Windows. For instructions on using
menuinst, see
the menuinst wiki [https://github.com/ContinuumIO/menuinst/wiki].

The easiest way to ensure that a package made with
conda constructor [https://github.com/conda/constructor] does
not install any menu shortcuts is to remove menuinst from
the list of conda packages included. To do this, add the
following to the constuct.yaml file:

exclude:
 - menuinst

Writing style guide

Follow these guidelines for submitting
or editing conda-build documentation.

Audience

Identify who your audience is, their skill level,
and how they can use the information.

Technical language

Match the level of technical language with the audience's
level of proficiency. It's better to uderestimate the
knowledge of your readers than overestimate it.
Limit technical terms to those the user will encounter.
If you must define a large number of terms, use a glossary
to supplement definitions in the text.

Addressing the user

Use the active voice (e.g. Click this) and address
users directly (write "you" rather than "the user").
When explaining an action, use the "command" form of
the verb: "Choose an option from the menu and press Enter."

Format

See the tutorial template
for the format. Provide descriptive task and subtask titles and
do not number headings.

Tutorial template

This document describes the steps for creating
a tutorial for conda-build.

	Copy the template: https://github.com/conda/conda-build/tree/main/docs/source/resources/tutorial-template.rst.

	Replace the italicized text with your tutorial content, following the writing style guide.

	Review other tutorials
for additional guidance.

	Contact us at documentation@anaconda.com for help.

Overview

Provide descriptions of the tutorial's:

	Purpose.

	Benefits.

	Application.

Who is this for?

	Who is your audience?

	What skills or prior knowledge do they need?

	How will they use this tutorial?

Before you start

Before you start, check the Prerequisites.

Provide descriptions of and links to requisite programs.

Glossary (optional)

If you're using several technical terms that your
readers may be unfamiliar with, provide a glossary
of key terms.

	Glossary

	Definition

	Term 1

	Term 1 defined

	Term 2

	Term 2 defined

	Term 3

	Term 3 defined

Tutorial tasks

	Provide descriptive titles for each section.

	Identify the major tasks.

	Separate each major task into subtasks.

	Write a series of steps that walk the user through each subtask.

More information (optional)

	Provide links to related content.

	Add final notes for how to expand upon the tutorial.

Release notes

This information is drawn from the GitHub conda project
changelog: https://github.com/conda/conda-build/blob/main/CHANGELOG.md

24.1.2 (2024-02-15)

Bug fixes

	Fix rpaths patcher being run on symbolic links. (#5179 via #5181)

	Fix corrupted package cache for outputs in subpackage tests. (#5184)

Contributors

	@mbargull

24.1.1 (2024-02-07)

Bug fixes

	Fix nonzero exitcode on success. (#5167 via #5169)

Contributors

	@kenodegard

24.1.0 (2024-01-25)

Enhancements

	Update conda inspect channels to use updated solver/transaction logic. (#5033)

	Relax script_env error in outputs when variable referenced in script_env is not defined.
This unifies current behavior with the top-level build. (#5105)

	Add support for Python 3.12. (#4997 via #4998)

	Adopt calender versioning (CalVer) per CEP-8 for consistency with conda. (#4975)

	Adopt expedited CEP-9 deprecation policy. (#5064)

Deprecations

	Mark conda inspect channels --test-installable as pending deprecation. (#5033)

	Mark conda_build.inspect_pkg.check_install(package) as pending deprecation in favor of conda_build.inspect_pkg.check_install(subdir). (#5033)

	Mark conda_build.inspect_pkg.check_install(prepend) as pending deprecation. (#5033)

	Mark conda_build.inspect_pkg.check_install(minimal_hint) as pending deprecation. (#5033)

	Mark conda_build.conda_interface.Dist as pending deprecation. (#5074)

	Mark conda_build.conda_interface.display_actions as pending deprecation. (#5074)

	Mark conda_build.conda_interface.execute_actions as pending deprecation. (#5074)

	Mark conda_build.conda_interface.execute_plan as pending deprecation. (#5074)

	Mark conda_build.conda_interface.get_index as pending deprecation. (#5074)

	Mark conda_build.conda_interface.install_actions as pending deprecation. (#5074)

	Mark conda_build.conda_interface.linked as pending deprecation. (#5074)

	Mark conda_build.conda_interface.linked_data as pending deprecation. (#5074)

	Mark conda_build.utils.linked_data_no_multichannels as pending deprecation. (#5074)

	Mark conda_build.environ.get_install_actions as pending deprecation in favor of conda_build.environ.get_package_records. (#5152)

	Mark conda_build.environ.create_env(specs_or_actions) as pending deprecation in favor of conda_build.environ.create_env(specs_or_precs). (#5152)

	Mark conda_build.index.channel_data as pending deprecation. (#5152)

	Mark conda_build.index._determine_namespace as pending deprecation. (#5152)

	Mark conda_build.index._make_seconds as pending deprecation. (#5152)

	Mark conda_build.index.REPODATA_VERSION as pending deprecation. (#5152)

	Mark conda_build.index.CHANNELDATA_VERSION as pending deprecation. (#5152)

	Mark conda_build.index.REPODATA_JSON_FN as pending deprecation. (#5152)

	Mark conda_build.index.REPODATA_FROM_PKGS_JSON_FN as pending deprecation. (#5152)

	Mark conda_build.index.CHANNELDATA_FIELDS as pending deprecation. (#5152)

	Mark conda_build.index._clear_newline_chars as pending deprecation. (#5152)

	Mark conda_build.index._apply_instructions as pending deprecation. (#5152)

	Mark conda_build.index._get_jinja2_environment as pending deprecation. (#5152)

	Mark conda_build.index._maybe_write as pending deprecation. (#5152)

	Mark conda_build.index._maybe_build_string as pending deprecation. (#5152)

	Mark conda_build.index._warn_on_missing_dependencies as pending deprecation. (#5152)

	Mark conda_build.index._cache_post_install_details as pending deprecation. (#5152)

	Mark conda_build.index._cache_recipe as pending deprecation. (#5152)

	Mark conda_build.index._cache_run_exports as pending deprecation. (#5152)

	Mark conda_build.index._cache_icon as pending deprecation. (#5152)

	Mark conda_build.index._make_subdir_index_html as pending deprecation. (#5152)

	Mark conda_build.index._make_channeldata_index_html as pending deprecation. (#5152)

	Mark conda_build.index._get_source_repo_git_info as pending deprecation. (#5152)

	Mark conda_build.index._cache_info_file as pending deprecation. (#5152)

	Mark conda_build.index._alternate_file_extension as pending deprecation. (#5152)

	Mark conda_build.index._get_resolve_object as pending deprecation. (#5152)

	Mark conda_build.index._get_newest_versions as pending deprecation. (#5152)

	Mark conda_build.index._add_missing_deps as pending deprecation. (#5152)

	Mark conda_build.index._add_prev_ver_for_features as pending deprecation. (#5152)

	Mark conda_build.index._shard_newest_packages as pending deprecation. (#5152)

	Mark conda_build.index._build_current_repodata as pending deprecation. (#5152)

	Mark conda_build.index.ChannelIndex as pending deprecation. (#5152)

	Mark conda_build.render.actions_to_pins as pending deprecation. (#5152)

	Mark conda_build.render.execute_download_actions(actions) as pending deprecation in favor of conda_build.render.execute_download_actions(precs). (#5152)

	Mark conda_build.render.get_upstream_pins(actions) as pending deprecation in favor of conda_build.render.get_upstream_pins(precs). (#5152)

	Remove conda_build.api.update_index. (#5151)

	Remove conda_build.cli.main_build.main. (#5151)

	Remove conda_build.cli.main_convert.main. (#5151)

	Remove conda_build.cli.main_debug.main. (#5151)

	Remove conda_build.cli.main_develop.main. (#5151)

	Remove conda_build.cli.main_index. (#5151)

	Remove conda_build.cli.main_inspect.main. (#5151)

	Remove conda_build.cli.main_metapackage.main. (#5151)

	Remove conda_build.cli.main_render.main. (#5151)

	Remove conda_build.cli.main_skeleton.main. (#5151)

	Remove conda_build.conda_interface.IndexRecord. (#5151)

	Remove conda_build.conda_interface.CrossPlatformStLink. (#5151)

	Remove conda_build.conda_interface.SignatureError. (#5151)

	Remove conda_build.conda_interface.which_package. (#5151)

	Remove conda_build.conda_interface.which_prefix. (#5151)

	Remove conda_build.conda_interface.get_installed_version. (#5151)

	Remove conda_build.config.python2_fs_encode. (#5151)

	Remove conda_build.config._ensure_dir. (#5151)

	Remove conda_build.config.Config.CONDA_LUA. (#5151)

	Remove conda_build.config.Config.CONDA_PY. (#5151)

	Remove conda_build.config.Config.CONDA_NPY. (#5151)

	Remove conda_build.config.Config.CONDA_PERL. (#5151)

	Remove conda_build.config.Config.CONDA_R. (#5151)

	Remove conda_build.environ.clean_pkg_cache. (#5151)

	Remove conda_build.index.update_index. (#5151)

	Remove conda_build.inspect_pkg.dist_files. (#5151)

	Remove conda_build.inspect_pkg.which_package(avoid_canonical_channel_name). (#5151)

	Remove conda_build.inspect_pkg._installed. (#5151)

	Remove conda_build.metadata.Metadata.name(fail_ok). (#5151)

	Remove conda_build.os_utils.ldd.get_package_files. (#5151)

	Remove conda_build.os_utils.liefldd.is_string. (#5151)

	Remove conda_build.os_utils.liefldd.codefile_type_liefldd. (#5151)

	Remove conda_build.os_utils.liefldd.codefile_type_pyldd. (#5151)

	Remove conda_build.os_utils.liefldd.codefile_type. (#5151)

	Remove conda_build.os_utils.pyldd.mach_o_change. (#5151)

	Remove conda_build.os_utils.pyldd.is_codefile. (#5151)

	Remove conda_build.os_utils.pyldd.codefile_type. (#5151)

	Remove conda_build.os_utils.pyldd.inspect_rpaths. (#5151)

	Remove conda_build.os_utils.pyldd.get_runpaths. (#5151)

	Remove conda_build.os_utils.pyldd.otool_sys. (#5151)

	Remove conda_build.os_utils.pyldd.ldd_sys. (#5151)

	Remove conda_build.plugin.index. (#5151)

	Remove conda_build.post.determine_package_nature. (#5151)

	Remove conda_build.post.library_nature(subdir). (#5151)

	Remove conda_build.post.library_nature(bldpkgs_dirs). (#5151)

	Remove conda_build.post.library_nature(output_folder). (#5151)

	Remove conda_build.post.library_nature(channel_urls). (#5151)

	Remove conda_build.post.dists_from_names. (#5151)

	Remove conda_build.post.FakeDist. (#5151)

	Remove conda_build.post._get_fake_pkg_dist. (#5151)

	Remove conda_build.utils.relative. (#5151)

	Remove conda_build.utils.samefile. (#5151)

Docs

	Add GoatCounter (https://www.goatcounter.com/) as an analytics tool. (#5093)

Other

	Remove unused Allure test report collection. (#5113)

	Remove dependency on conda.plan. (#5074)

	Remove almost all dependency on conda.models.dist. (#5074)

	Replace usage of legacy conda.models.dist.Dist with conda.models.records.PackageRecord. (#5074)

Contributors

	@conda-bot

	@dholth

	@jaimergp

	@jezdez

	@johnnynunez

	@kenodegard

	@msarahan

	@travishathaway

	@pre-commit-ci[bot]

3.28.4 (2024-01-17)

Bug fixes

	Fix linking check regressions by restoring pre-3.28 behavior for conda_build.inspect_pkg.which_package. (#5141)

Contributors

	@mbargull

3.28.3 (2024-01-04)

Bug fixes

	Update conda_build.os_utils.liefldd.ensure_binary to handle None inputs. (#5123 via #5124)

	Update conda_build.inspect_pkg.which_package to use a cached mapping of paths to packages (first call: O(n), subsequent calls: O(1)) instead of relying on Path.samefile comparisons (O(n * m)). (#5126 via #5130)

Contributors

	@kenodegard

3.28.2 (2023-12-15)

Enhancements

	Update conda_build.metadata.MetaData.get_section to consistently return lists for “source” and “outputs”. (#5111 via #5112)

Bug fixes

	Resolve duplicate package record issue in conda_build.inspect_pkg.which_package. (#5106 via #5108)

	Ensure conda_build.post._lookup_in_prefix_packages displays str(PackageRecord) instead of repr(PackageRecord). (#5106 via #5108)

	Fix finalization of recipes with multiple sources. (#5111 via #5112)

	Improve handling by catching the more general ImportError instead of ModuleNotFoundError to cover cases involving menuinst 1.x. (#5116)

Contributors

	@jaimergp

	@kenodegard

3.28.1 (2023-12-06)

Bug fixes

	Relax conda_build.metadata.MetaData.version checks when outputs have been defined. (#5096)

	Remove lief from pyproject.toml since it causes pip check to fail. To be re-added in the future after an update to py-lief package. (#5099)

Contributors

	@dholth

	@kenodegard

3.28.0 (2023-11-30)

Special announcement

In the upcoming January 2024 release of conda-build, significant changes are underway. We’re set to transition to the CalVer [https://calver.org/] versioning system. Additionally, we’ll be formally embracing CEP 8 [https://github.com/conda-incubator/ceps/blob/main/cep-8.md] to manage our release schedule. Moreover, an expedited version of CEP 9 [https://github.com/conda-incubator/ceps/blob/main/cep-8.md] will be adopted for deprecation handling, omitting the pending deprecation phase and streamlining the period from deprecation to removal to a mere 2 months.

Enhancements

	Add stblib jinja function similar to compiler to explicitly define sysroot dependencies. (#4999)

	Utilize conda-known subdirs for selector definitions, enabling conda_build to support new architectures with only an updated conda version. New OS support requires additional information for proper conda_build functionality, including UNIX-like platform designation, shared library prefix, and binary archive format for the platform. (#5009)

	Eliminate unnecessary cache clearing from conda_build.build.test. (#5031)

	Consolidate which_package implementations and replace conda.models.dist.Dist usage with conda.models.records.PrefixRecords. (#5041)

Bug fixes

	Display package file name in get_hash_input. (#5021)

	Fall back to solved record filename to locate the downloaded tarball in get_upstream_pins. (#4991 via #5037)

	Prevent overwriting of variants in high priority cbc.yaml entries when absent in lower priority cbc.yamls. (#5039)

	Correct the check for a missing anaconda-client to display a useful error message. (#5050)

	Fix conda_index.index verbose DEBUG/INFO message logging. (#5066)

Deprecations

	Mark conda_build.environ.clean_pkg_cache for pending deprecation. (#5031)

	Mark conda_build.conda_interface.IndexRecord for pending deprecation. Use conda.models.records.PackageRecord instead. (#5032)

	Mark conda_build.os_utils.pyldd.is_string for pending deprecation. Use isinstance(value, str) instead. (#5040)

	Mark conda_build.os_utils.pyldd.is_codefile for pending deprecation. Use conda_build.os_utils.pyldd.codefile_class instead. (#5040)

	Mark conda_build.os_utils.pyldd.codefile_type for pending deprecation. Use conda_build.os_utils.pyldd.codefile_class instead. (#5040)

	Mark conda_build.inspect_pkg.dist_files for pending deprecation. (#5041)

	Mark conda_build.inspect_pkg.which_package(avoid_canonical_channel_name) for pending deprecation. (#5041)

	Mark conda_build.inspect_pkg._installed for pending deprecation. (#5041)

	Mark conda_build.os_utils.ldd.get_package_files for pending deprecation. (#5041)

	Mark conda_build.os_utils.pyldd.mach_o_change for pending deprecation. (#5041)

	Mark conda_build.os_utils.pyldd.inspect_rpath for pending deprecation. (#5041)

	Mark conda_build.os_utils.pyldd.get_runpaths for pending deprecation. (#5041)

	Mark conda_build.os_utils.pyldd.otool_sys for pending deprecation. (#5041)

	Mark conda_build.os_utils.pyldd.ldd_sys for pending deprecation. (#5041)

	Mark conda_build.post.determine_package_nature for pending deprecation. Use conda_build.post.get_dsos and conda_build.post.get_run_exports instead. (#5041)

	Mark conda_build.post.library_nature(subdir, bldpkgs_dirs, output_folder, channel_urls) for pending deprecation. (#5041)

	Mark conda_build.post.dist_from_names for pending deprecation. Query conda.core.prefix_data.PrefixData instead. (#5041)

	Mark conda_build.post.FakeDist for pending deprecation. Use conda.models.records.PrefixRecord instead. (#5041)

	Mark conda_build.post._get_fake_pkg_dist for pending deprecation. Use conda.models.records.PrefixRecord instead. (#5041)

	Mark conda_build.utils.relative for pending deprecation. Use os.path.relpath or pathlib.Path.relative_to instead. (#5042)

Docs

	Incorporate the conda-sphinx-theme into conda-build documentation. (#5067)

	Update certain pages to remove redundant TOC entries. (#5067)

Other

	Implement Ruff linter in pre-commit configuration. (#5015)

	Replace black with ruff format in pre-commit setup. (#5052)

	Identify Unicode tests as incompatible with libmamba. (#5059)

Contributors

	@conda-bot

	@danpetry made their first contribution in https://github.com/conda/conda-build/pull/5039

	@duncanmmacleod

	@h-vetinari made their first contribution in https://github.com/conda/conda-build/pull/4999

	@isuruf

	@jaimergp

	@jakirkham

	@kenodegard

	@mbargull

	@travishathaway

	@pre-commit-ci[bot]

3.27.0 (2023-09-26)

Enhancements

	Remove glob2 dependency. As of Python 3.5, the ‘**’, operator was available to glob when using recursive=True. Builtin glob is also much faster. (#5005)

	Handle emscripten-wasm32 and wasi-wasm32 platforms. (#4813)

Bug fixes

	Delay imports in conda command plugin until the command is used, avoiding import-time side effects. (#4949)

Deprecations

	When templating new recipes from a PyPI package, the build script {{ PYTHON }} -m pip install . -vv is deprecated in favor of {{ PYTHON }} -m pip install . -vv --no-deps --no-build-isolation. (#4960)

Docs

	Document ~= (compatibility release) match spec. (#4553)

	Clarify that the build prefix is activated after the host prefix. (#4942)

	Add explanation that conda-build should be run from the base environment. (#4995)

Contributors

	@beeankha

	@conda-bot

	@dholth

	@DaveKaretnyk made their first contribution in https://github.com/conda/conda-build/pull/5004

	@boldorider4 made their first contribution in https://github.com/conda/conda-build/pull/4960

	@jaimergp

	@jezdez

	@jugmac00

	@kenodegard

	@ryanskeith

	@scdub made their first contribution in https://github.com/conda/conda-build/pull/4965

	@wolfv made their first contribution in https://github.com/conda/conda-build/pull/4813

	@dependabot[bot]

	@pre-commit-ci[bot]

3.26.1 (2023-08-17)

Bug fixes

	Delay imports in conda command plugin until the command is used, avoiding
import-time side effects including unwanted logging configuration. (#4949)

Contributors

	@beeankha

	@conda-bot

	@dholth

	@jezdez

	@kenodegard

	@pre-commit-ci[bot]

3.26.0 (2023-07-18)

Enhancements

	Add pip to env-doc make command so function works correctly (pip is no longer added by default with the python conda package). (#4633)

	Log extra-meta data to make it easier to verify that the right extra-meta data is burned into packages (also helps to co-relate packages and their build-log). The feature was first introduced in #4303 and is now improved via the logging call. (#4901)

	Implement subcommands as conda plugins. (#4921)

Bug fixes

	Fix handling of unknown binaries with newer (py)lief versions. (#4900)

	Disable LIEF logging to remove “Unknown format” warning message. (#4850)

	Revert enable_static default value in conda_build.config to remove “Failed to get_static_lib_exports” warning messages. (#4850)

	Avoid duplicate logging by not propagating the top-level conda-build logger. (#4903)

	Fix git cloning for repositories with submodules containing local relative paths. (#4914)

Deprecations

	Mark executable invocations (e.g., conda-build) as pending deprecation. (#4921)

	Mark module based invocations (e.g., python -m conda_build.cli.main_build) as pending deprecation. (#4921)

Docs

	Update pkg-spec docs to mention .conda package format. (#4633)

	Drop unnecessary Jinja package name variables from variants.rst docs file. (#4834)

Other

	Drop duplicate get_summary call in conda_build.skeletons.pypi. (#3998)

	Fix failing resolved_packages test due to recent OpenSSL 3.0.8 release to defaults. (#4912)

Contributors

	@beeankha

	@conda-bot

	@dbast

	@jaimergp

	@jakirkham

	@josegonzalez made their first contribution in https://github.com/conda/conda-build/pull/3998

	@katietz

	@kenodegard

	@rfezzani made their first contribution in https://github.com/conda/conda-build/pull/4850

	@ryanskeith

	@sven6002

	@dependabot[bot]

	@pre-commit-ci[bot]

3.25.0 (2023-05-22)

Enhancements

	Noarch packages that use virtual packages have the virtual packages added to the hash contents of the package. This facilitates the building of noarch packages multiple times for different platforms with platform specific dependencies. (#4606)

	Add support for svn source credentials (svn_username and svn_password). (#4692)

	Depend on standalone conda-index instead of bundled indexing code. (#4828)

	Switch from setup.py to pyproject.toml and use Hatchling [https://pypi.org/project/hatchling/] for our build system. (#4840)

	Add Python 3.11 support. (#4852)

Bug fixes

	Ensure tests/commands are also run in the presence of run_test.* (#4429)

	Require the source when rendering a recipe that uses the load_file_data function. (#4817)

	Download packages during build into the correct subdir folder. (#4832)

	Use a unique subdir variable name when rebuilding the index for multi-output builds. (#4862)

Deprecations

	Inline conda index logic is pending deprecation. conda-build still provides conda-index a.k.a. conda index CLI, but uses standalone conda-index during builds. (#4828)

	Prefer the standalone conda-index package [https://conda.github.io/conda-index/], instead of conda-build index or conda index, to use faster indexing code. (#4828)

	Mark conda_build.metadata.ns_cfg as pending deprecation. Use conda_build.get_selectors.get_selectors instead. (#4837)

	Mark conda_build.config.python2_fs_encode as pending deprecation. (#4843)

	Mark conda_build.config._ensure_dir as pending deprecation. Use stdlib’s pathlib.Path.mkdir(exist_ok=True) or os.makedirs(exist_ok=True) instead. (#4843)

Other

	Format with black and replaced pre-commit’s darker hook with black. (#4836)

	Format with isort and add pre-commit isort hook. (#4836)

	Minor code simplification for conda_build.index.ChannelIndex._ensuredirs. (#4843)

	Enable xattr test on macOS. (#4845)

Contributors

	@beeankha

	@conda-bot

	@dholth

	@duncanmmacleod

	@ffirmanff made their first contribution in https://github.com/conda/conda-build/pull/4692

	@isuruf

	@jezdez

	@jakirkham

	@jjhelmus

	@kenodegard

	@rishabh11336 made their first contribution in https://github.com/conda/conda-build/pull/4782

	@ryanskeith made their first contribution in https://github.com/conda/conda-build/pull/4843

	@pre-commit-ci[bot]

3.24.0 (2023-03-22)

Bug fixes

	Fix the failing git clone when source has LFS files. (#4318)

	Fix many false-positives during the detection of Perl core modules in conda skeleton cpan. (#4592)

	conda skeleton cpan now correctly adds a C compiler as dependency if the distribution contains an .xs file. (#4599)

	Install downstream packages in correct subdir. (#4763, #4803)

	Update supported Python version in setup.py [http://setup.py]. (#4804)

Deprecations

	Removed conda <4.13 logic. (#4677)

	conda_build.conda_interface.CrossPlatformStLink is pending deprecation in favor of using os.stat().st_nlink. (#4728)

	Drop Python 3.7 support. (#4796)

Docs

	Updated broken links to example conda recipes and updated link to the now archived conda-recipes, with additional links to AnacondaRecipes aggregated feedstocks and conda-forge feedstocks. (#4580)

	Replaced two instances of “Anaconda Cloud” with “anaconda.org [http://anaconda.org]”. (#4719)

Other

	Update test matrix to run tests on all supported Python versions on Linux. Only run tests on lower & upper Python bounds for Windows and macOS. (#4691)

	Re-enable code coverage reporting to codecov. (#4767)

	Eliminate test setup’s manual clone of https://github.com/conda/conda_build_test_recipe in favor of a session fixture. (#4781)

	Use tomllib (Python 3.11+) or tomli for .toml support. (#4783)

Contributors

	@beeankha

	@conda-bot

	@dbast

	@dholth

	@ernstluring made their first contribution in https://github.com/conda/conda-build/pull/4318

	@xileF1337 made their first contribution in https://github.com/conda/conda-build/pull/4592

	@jezdez

	@jakirkham

	@johnnynunez made their first contribution in https://github.com/conda/conda-build/pull/4804

	@kathatherine

	@kenodegard

	@minrk

	@peetw made their first contribution in https://github.com/conda/conda-build/pull/4662

	@sven6002 made their first contribution in https://github.com/conda/conda-build/pull/4621

	@tttc3 made their first contribution in https://github.com/conda/conda-build/pull/4580

	@dependabot[bot]

	@pre-commit-ci[bot]

3.23.3 (2022-12-06)

Bug fixes

	Change Zstd default compression to 19. (#4663)

	Fix build/host environment activation broken in >=3.23.0,<=3.23.2. (#4665)

	Add PREFIX/bin to PATH on Windows and remove PREFIX root from PATH on Unix. (#4665)

Other

	Skip test suite for non-code changes. (#4664)

Contributors

	@jakirkham

	@kenodegard

	@mbargull

3.23.2 (2022-11-30)

Bug fixes

	conda-build CLI overrode condarc’s zstd_compression_level with the default value. (#4650)

Contributors

	@kenodegard

	@mbargull

	@pre-commit-ci[bot]

3.23.1 (2022-11-17)

Bug fixes

	Fixed regression when writing link JSON files introduced in #4603. (#4636)

	Update conda dependency. (#4635)

Contributors

	@jezdez

	@kenodegard

3.23.0 (2022-11-15)

Enhancements

	Outputs now support both script and files arguments. When both script and an explicit file list are given, the script is run first and then the files given in the explicit file list are packaged. (#4281)

	Add overlinking_ignore_patterns build parameter to speed up recipes where it is not helpful. (#4576)

	Add win-arm64 as a recognized platform (subdir). (#4579)

	Add opt-in environment variable to run conda in isolated mode (python -I -m conda) when invoked from conda-build. This is necessary to fix an issue when packaging conda itself. Alternative solutions (see #4628) are under investigation, so the current implementation will likely change. (#4604, #4625)

	Refactored conda_build.convert.update_lib_contents to use pathlib.Path. Mark test_cli.test_convert as xfail on Windows (something with the GitHub Windows Runner makes this particularly flaky). (#4619, #4626)

Deprecations

	Drop cytoolz dependency. (#4556)

	Removed internal usage of the memoized decorator. (#4593, #4615)

	Remove py2 compatibility code and use of six.py [http://six.py] code exported from conda. (#4603)

	conda_build.environ.system_vars is marked as pending deprecation. Use conda_build.environ.os_vars instead. (#4615)

	Conda 4.2 introduced a private conda env that appears to have been a testing environment. This is no longer used and is only included in conda-build as an informational status. Removing in accordance with the feature pending deprecation starting with conda 22.11.0. (#4629)

Docs

	Add s390x selector missing from docs. (#4550)

	Update “Channels and generating an index” docs to specify additional platforms. (#4602)

	Link to https://packaging.python.org/en/latest/tutorials/packaging-projects/ over setuptools for how to pack a project. (#4632)

Other

	Renamed canary recipe from conda.recipe to recipe. (#4584)

	Introduce canary and review builds as part of GitHub CI. (#4608, #4613)

	Removed unused AppVeyor files. (#4562)

	Removed unused .checkignore. (#4564)

	Removed unused .editorconfig. (#4564)

	Removed unused .gitmodules. (#4564)

	Removed unused .lgtm.yml. (#4564)

	Removed unused .binstar.yml. (#4616)

Contributors

	@chenghlee

	@conda-bot

	@dholth

	@tnabtaf made their first contribution in https://github.com/conda/conda-build/pull/4602

	@erykoff made their first contribution in https://github.com/conda/conda-build/pull/4603

	@isuruf

	@jaimergp made their first contribution in https://github.com/conda/conda-build/pull/4604

	@jezdez

	@kenodegard

	@mariusvniekerk

	@msarahan

	@skupr-anaconda made their first contribution in https://github.com/conda/conda-build/pull/4550

	@pre-commit-ci[bot]

	@brettcannon made their first contribution in https://github.com/conda/conda-build/pull/4632

3.22.0 (2022-08-02)

Enhancements

	Created function load_file_data available in Jinja templates for meta.yaml (#4465, #4480)

	Created function load_str_data available in Jinja templates for meta.yaml (#4465, #4480)

	Support using --zstd-compression-level to control the compression of v2 style conda packages. (#4467)

Bug fixes

	When building with Python 3.10, STDLIB_DIR and SP_DIR now refer to python3.10, not the symlink python3.1. (#4479)

	Reduce verbosity of urllib3 on the default log level. (#4517)

	Fixed issue identifying DSOs from sysroots when cross-compiling. (#4529)

Docs

	Improved documentation for load_setup_py_data (#4465, #4480)

	Added documentation for load_file_regex (#4465, #4480)

	Fix prerequisites for build tutorials link. (#4478)

	Link in contributing docs. (#4532)

Other

	Fix patch tests. (#4495)

	Added patch/m2-patch as a hard dependency. (#4495)

	Update “Artistic-2.0” license test to use a valid package. (#4516)

	Rename master branch to main. (#4515, #4531)

Contributors

	@abrahammurciano made their first contribution in #4465/#4480

	@chrisburr

	@conda-bot

	@duncanmmacleod

	@jezdez

	@jakirkham

	@jugmac00 made their first contribution in #4478

	@kathatherine made their first contribution in #4515

	@kenodegard

	@stuarteberg

	@teake

	@travishathaway

	@pre-commit-ci[bot]

3.21.9 (2022-05-27)

Enhancements

	Replace is_dir with scandir for channel_root. (#4273)

	Remove rpaths in PREFIX/../ that doesn’t start with PREFIX.
This includes BUILD_PREFIX, SRC_DIR. Previously it was only BUILD_PREFIX. (#4287)

	Add entry_points to outputs in FIELDS schema. (#4389)

	Support for setuptools 61+. (#4430)

	Use set membership for faster indexing. (#4459)

Bug fixes

	Remove rpaths that occur multiple times. (#4287)

	Enable bdist_conda via entry_point mechanism supported also by setuptools >=60.0.0.
Usable via from setuptools import setup and setup(distclass=conda_build.bdist_conda.CondaDistribution, ...). (#4368)

	Patch setuptools’s vendored distutils.core as well. (#4434)

	Resolve conda debug failure when a trailing slash path is provided. (#4448)

	Fix import error caused by conda 4.13.0’s removal of Python 2.7 code. (#4482)

Deprecations

	Usage of bdist_conda via from distutils.core import setup and distclass=distutils.command.bdist_conda.CondaDistribution,
as that only works for setuptools <60.0.0. (#4368)

	Remove Python 2.7 imports removed in conda 4.13.0. (#4482)

Other

	Move Windows tests from Azure to GitHub Actions. (#4353, #4436)

	Add pyupgrade to pre-commit. (#4374)

	Move MacOS tests from Azure to GitHub Actions. (#4412, #4436, #4455)

	Update Makefile for easier testing. (#4425)

	Remove unused Travis CI configs. (#4438)

	Add MyST to the documentation system and render release notes
correctly. (#4483)

Contributors

	@beeankha

	@conda-bot

	@dbast

	@dholth made their first contribution in https://github.com/conda/conda-build/pull/4273

	@isuruf

	@jezdez

	@jakirkham

	@kenodegard

	@remkade made their first contribution in https://github.com/conda/conda-build/pull/4425

	@rchord made their first contribution in https://github.com/conda/conda-build/pull/4353

	@travishathaway made their first contribution in https://github.com/conda/conda-build/pull/4448

	@wimglenn made their first contribution in https://github.com/conda/conda-build/pull/4434

	@pre-commit-ci[bot]

3.21.8 (2022-01-25)

Enhancements

	Adds --extra-meta key=value option which allows users to save any specified extra metadata to about.json
to e.g. store the repo-url, git-sha1 or the CI run-id a package was built from.

Bug fixes

	Old work directories will be preserved when croot and build_id are set manually

Other

	Separate contributor related documentation into dedicated file

	Migrating to github actions for tests

	Synced file(s) with conda/infra

Contributors

	@Lnaden

	@jezdez

	@cjmartian

	@beeankha

	@pre-commit

	@conda-bot

3.21.7 (2021-11-30)

Bug fixes

	Handle an import from the vendored auxlib library in Conda 4.11.0 better.

Other

	cran-skeleton: more unit tests

Contributors

	@kenodegard

	@jdblischak

	@jezdez

	@pre-commit

3.21.6 (2021-11-09)

Enhancements

	Add limited support for platform_system/sys_platform env markers in PyPI skeleton

	cran-skeleton: Adds a flag --no-comments to remove the instructional comments from the recipe files.

Bug fixes

	When checking for circular dependencies in cross-compiling mode, build
requirements are ignored now.

	Make sure symlinked directories are found in always_include_files

	Fix pinning expressions for prerelease builds

Contributors

	@isuruf

	@mbargull

	@kenodegard

	@jdblischak

	@dbast

	@jezdez

	@ChristofKaufmann

3.21.5 (2021-08-06)

Enhancements

	Revert “Consider any file containing .yaml in its name as maybe a recipe file” (#4235)

	Support setting build/script_env values containing “=” (#4211)

	Drop Python 2.7 support from setup.py (#4202)

	Make variant configuration error message more informative (#4198)

	Ensure file globs are always sorted (#4186)

	Add preliminary support for prelink_message files in conda packages (#4203)

Bug fixes

	Do not munge rpath for non Mach-O files on macOS (#4238)

	Fix Windows test file extension reported by conda-debug (#4224)

Docs

	Document build/script_env recipe option (#4211)

	Clarify wording about selecting multiple operating systems (#4139)

Contributors

	@chrisburr

	@gabm

	@isuruf

	@jacobtylerwalls

	@katietz

	@kenodegard

	@marcelotrevisani

	@xhochy

3.21.4 (2021-01-15)

Enhancements

	Add new centos 7 distribution cleof to rpm skeleton for s390x. (#4181)

Bug fixes

	Fixed bug where symlinks in symlinks caused conda build to exit. (#4180)

Contributors

	@mingwandroid

	@beckermr

	@katietz

	@beckermr

3.21.3 (2021-01-11)

Enhancements

	Fix stupid error in prefix replacement (#4177)

Contributors

	@mingwandroid

3.21.2 (2021-01-11)

3.21.1 (2021-01-11)

Bug fixes

	Fix noarch: python version from version-age determination (#4174)

Contributors

	@mingwandroid

3.21.0 (2021-01-10)

Enhancements

	activate_in_script defaults to true (#4120)

	Add Setting and build/noarch_python_build_age and fix tests not finding packages (#4120)

	Allow directories as license_file source (#4153)

	Consider any file containing .yaml in its name as maybe a recipe file (#4120)

	Add weak_constrains and strong_constrains run_exports types (#4125)

	Issue a single command for the upload command (#4120)

	Print hash_inputs after upload info (#4120)

	Add cross-r-base for cross compiling

	Add --build-id-pat option

	macOS: Delete build_prefix rpaths

	Use smarter build_number

	Combine default_structs with FIELDS

	Fix conda render indent from 4 to 2

	macOS: arm64 ci/test-suite setup

	Removing more conda-forge testing deps

	Variants: Be more informative

	more verbosity in tests

	Use MacOSX10.10.sdk, not MacOS10.9.sdk in tests (#4120)

	Warn when files have been removed from the prefix (#4120)

Bug fixes

	Add conda-verify to install_conda_build_test_deps (#4120)

	Add flaky to testing dependencies (#4138)

	Fix tests not finding packages

	Avoid writing to the package cache in package_has_file (collisions) (#4120)

	Change package_has_file to refresh if out of date (#4120)

	Ensure ~/.condarc does not leak into testing_config (#4120)

	Fix applying patches to read-only files (#4140)

	Fix auth in aboutjson (#4137)

	Fix skeleton URLs for CentOS 6 (EOL) and various CI fixes (#4154)

	Fix typo in cran skeleton (#4143)

	Force channel_targets to be considered used (#4120)

	Fix printing bytes-like object is required, not 'str' when applying patches (#4118)

	Set “platform” in index.json to the target platform for cross-platform builds (#4124)

	Reduce get_rpaths_raw/patchelf disagree warnings (#4131)

	LIEF: Allow parsing static libs to fail (#4149)

	pass cache_dir to api.build (#4120)

	Fix symlinks to directories

	Make post-link run_export/library_nature determination less work when CONDA_OFFLINE=1

	Remove Python 2.7 from CI matrix

	Fix test_pypi_installer_metadata (builds against python 3.9 not 3.7)

	tests: Fix test_render_with_python_arg_reduces_subspace

	tests: Update python 3 from 3.5/6 to 3.9 in many

	Set numpy default to 1.16

	tests: Fix pins for numpy_used

	tests: CI: Win: Circumvent delayed expansion

	Install patch or m2-patch, write .sh files as binary, more Win tests

	tests: Avoid issue with coverage==5.0 on Win+Py2.7

	Assume non-revisible patches

	Add flaky marker and --strict-markers to setup.cfg

	Don’t sort recipes

	Use extra R_ARGS and fix them

	shell check fix

Contributors

	@mingwandroid

	@isuruf

	@mbargull

	@njalerikson

	@cjmartian

	@chrisburr

	@hugobuddel

	@kurtschelfthout

3.20.5 (2020-10-26)

Enhancements

	A new feature build/ignore_run_exports_from which will ignore run_exports

	coming from a package listed in build/ignore_run_exports_from. (#4114)

Bug fixes

	Respect PEP440 ~= ‘Compatible release clause’ (#4113)

	Detect amalgamated patches (#4099)

	Handle realpath properly in unsafe patch check (#4099)

	Force channel_targets to be considered used (#4099)

	Look for git in build_prefix in git_info (#4099)

	Fall back to shutil.copy if shutil.copy2 fails when copying patches (#4099)

	Fix indexing by file (#4111)

	Helper functions to extract keys (#4088)

	Simplify find_config_files call (#4086)

	Refactor dict_of_lists_to_lists_of_dict (#4075)

Contributors

	@mingwandroid

	@isuruf

	@njalerikson

	@cjmartian

	@njalerikson

3.20.4 (2020-10-14)

Enhancements

	Make stats output more easily human-readable (#4069)

	Prefer meta.yaml build/error_overlinking and error_overdepending (#4074)

	Cleanup variant processing code (#4075)

	Add --file option to indexing (#4076)

Bug Fixes

	Remove old rpath when loader_path is used (#4080)

	Fix MACOSX_DEPLOYMENT_TARGET default for osx-arm64 (#4091)

	Rewrite apply_patch again (#4092)

	Add a .* to conditional_regex (#4092)

Contributors

	@isuruf

	@njalerikson

	@cjmartian

	@mingwandroid

3.20.3 (2020-09-29)

Enhancements

	Use CONDA_PACKAGE_EXTENSIONS (#4053)

	raise runtimeerror instead of calling sys.exit (#4062)

	Refactor conda_build.build.get_all_replacements (#4055)

Bug fixes

	Do not clobber config argument in conda_build.build.build_tree (#4066)

	Use --dry-run to test that a patch applies. Fixes bug 4054 (#4067)

	Include target_platform in package build string hash (#4065)

	Fix post linking for SDKs with tapi-tbd-v4 (MacOS 11.0 and upwards) (#4048)

3.20.1 (2020-09-04)

Bug fixes

	Run bash with -e in outputs too #4033

	Add target to recognized fields in outputs #4034

	Various overlinking fixes for Windows #4036

	variants: remove hard-coded default path for CONDA_BUILD_SYSROOT

Contributors

	@mingwandroid

	@isuruf

	@mbargull

3.20.0 (2020-08-27)

Enhancements

	enable Python 3.8 on Azure Pipelines (#3841)

	which_package can be passed avoid_canonical_channel_name (#3952)

	make life easier (less shell exit-y) for those who source test scripts (#3952)

	move old host env instead of deleting it when --keep-old-work (#3952)

	convert info.d/.yaml to info/.json (#3952)

	allow manual specification of which binary files to prefix replace (#3952)

	filter out ‘.AppleDouble’ folders from recipe searches (#3952)

	re-wrote apply_patch() to be more robust (#3952)

	many fixes for DSO post-processing (#3952, #3953)

	add support for (limited) tbd parsing (#3953)

	Make sure packages in current repo data w/ features have versions without features (#3957)

	Check all sysroot locations for DSOs (#3969)

	More helpful error message if an empty string is passed as the hash (‘md5’, ‘sha1’ or ‘sha256’ fields) (#3971)

	the GIT_DESCRIBE_HASH variable will be available regardless of whether the sources of the recipe have a git tag or not (#3982)

	add apple silicon support (#4004, #4015)

	set build_platform for aid in cross compiling (#4005)

	import macho on non apple system for cross compiling (#4025)

	Add ccache as a jinja 2 function (#4026)

	Improve cpan skeleton (#4026)

	Retry moving host prefix due to Windows file locking (#4026)

	Rename ccache method from mklink to sylinks (#4028)

Bug fixes

	conda_build.metadata: fixed typos in FIELDS (#3866)

	add spaces in CRAN templates (fixes #3943) (#3944)

	raise valid CalledProcessException in macho.otool (#3952)

	cache local_output_folder too for get_build_index (#3952)

	fix relocations when cross compiling (#3995)

	use host_platform instead of sys.platform to facilitate cross compiling (#3997)

	Fix parsing UnsatisfiableError from conda>=4.7.8 (#4001)

	allow packages to depend on themselves when cross compiling (#4011)

	set the correct SHLIB_EXT when cross compiling (#4013, #4021)

	inspect linkages with pyldd when not DLL/EXE files (#4019)

	Respect no_rewrite_stdout_env on Windows (#4026)

	Prefix replacement fixes (#4026)

	Use git am -3 when applying patches (#4026)

	Fix env_var=val assertion (#4026)

	Use exit /B from patch files (#4026)

Docs

	extend docs o generating the index (#3877)

	add details to documentation of run_constrained (#3878)

	remove documentation on bdist_conda and environment variables (#3879)

	update cli help information for conda index (#3931)

	Clarify how to install conda-build (#3976)

	Add note for local package install deps (#3980)

	Clarify multiple OS selection (#3984)

	add aarch64 selector to the docs (#4003)

	add docs on build_platform and arm64 (#4020)

Other

	Enable s390x support (#3949, #4030)

	Add xfail test for non-utf-8 charsets (#3972)

	Improve testing on CI (#3987, #4017, #4027)

	Allow python=3.8 for pypi skeletons (#4014)

3.19.3 (2020-04-13)

Bug fixes

	load log prior to calling warn method (#3925)

	test suite fixes and prefix replacement fixes (#3932)

Other

	Enable ppc64 support (#3921)

Docs

	Update cli help information for conda index (#3931)

Contributors

	@beenje

	@jjhelmus

	@mingwandroid

3.19.2 (2020-04-01)

Bug fixes

	Show a warning instead of failing if a Mach-O file is prouduced by a build running on a platform other than macOS (#3912)

	Revert #3893, restores behavior of build/binary_has_prefix_files to that found in 3.18.12 (#3916)

Docs

	clarified ‘deletes the build environment’ in concepts/recipe.rst (#3901)

Contributors

	@jjhelmus

	@timsnyder

	@chrisburr

3.19.1 (2020-03-17)

Bug fixes

	Fix issues with PREFIX detection in Windows #3899

Other

	Change the CI trigger #3904

Contributors

	@mingwandroid

	@marcelotrevisani

	@jjhelmus

3.19.0 (2020-03-10)

Enhancements

	Keep python pinning in hashing if there is a space #3895

	ci launcher supporting python d shebangs on Windows #3894

	Allow build/binary_has_prefix_files to specify a list of files #3893

Bug fixes

	Use patchelf to set RPATH by default #3897

Contributors

	@isuruf

	@jjhelmus

	@mingwandroid

3.18.12 (2020-03-02)

	Keep python pinning in hashing if there is a space #3895

	ci launcher supporting python d shebangs on Windows #3894

	Allow build/binary_has_prefix_files to specify a list of files #3893

	Use patchelf to set RPATH by default #3897

	Prevent non-atomic writes to repodata JSON files #3833

	Audited and updated all docs with formatting, grammar, and accuracy errors.

	Docs: Removed deprecated page on features

	Fixed issue where symlinks to files that do not exist break conda build #3840

Contributors

	@bdice

	@beckermr

	@chrisburr

	@csoja

	@guidara

	@isuruf

	@jakirkham

	@jjhelmus

	@marcelotrevisani

	@mcg1969

	@mingwandroid

	@msarahan

	@rrigdon

	@saraedum

	@sscherfke

	@zeehio

3.18.11 (2019-11-01)

	Update build.sh [http://build.sh] files of skeletons to be shellcheck clean including test to lint future updates.

	Corrected documentation on subpackage test requirements.

	Do not move work dir to work/work/

	fixed a missing .lower() on two tar_xf related util functions

	Fix has_prefix detection for Windows.

	conda_build.inspect_pkg: optimise use of fnmatch

	Do not consider .ignore files when searching with ripgrep

	Remove N*N os.lstat calls in build_info_files_json_v1

Contributors

	@msarahan

	@rrigdon

	@marcelotrevisani

	@rrigdon

	@soapy1

	@dbast

	@duncanmmacleod

	@beckermr

	@seanyen

	@AndrewAnnex

	@183amir

	@njzjz

3.18.10 (2019-10-14)

Enhancements

	Added the error message when an invalid pip dependency version expression is used

	Conda skeleton pypi quoting just version, summary and description or attributes with special characters

	Set up CI Azure pipeline for Linux

	Update cran skeleton to match supported optional licenses for license file derivation.

	Migrate Unittests to PyTest

	Update script command on conda skeleton pypi to use {{ PYTHON }} -m pip install . -vv

	Add a warning when a received a file on RECIPE_PATH

	Refactored the skeletons/pypi.py get_package_metadata to be more modular

	added --suppress-variables switch to hide environment variables from console output

Bug fixes

	Fixed build of ‘.conda’ packages enabled via conda config --set conda_build.pkg_format 2

	Workaround for future deprecations of the SafeConfigParser and readfp of the same module.

Docs

	Remove bzip2 package from build toolkit description.

Contributors

	@msarahan

	@jakirkham

	@marcelotrevisani

	@duncanmmacleod

	@kinow

	@saraedum

	@jjhelmus

	@rrigdon

	@mingwandroid

	@asford

	@timsnyder

	@mcg1969

	@kaitietz

	@stuarteberg

	@isuruf

	@dbast

	@Bezier89

3.18.9 (2019-07-23)

Enhancements

	add --use-channeldata argument to conda render/build.

	Extract the part in the skeletons pypi responsible to get the package metadata to a free function.

	Creat unittests for the get_package_metadata (skeletons/pypi.py) and for the new functions.

Bug fixes

	Limit threads to 61 on Windows.

	Do not use channeldata for run_exports unless --use-channeldata specified.

	Finalize top-level metadata if not present as an output.

Docs

	Add 3.18.7 release notes

Other

	Add disable_pip to FIELDS

Contributors

	@rrigdon

	@jjhelmus

	@rrigdon

	@Bezier89

	@jakirkham

	@marcelotrevisani

3.18.8 (2019-07-18)

Enhancements

	license_file can optionally be a yaml list

Bug fixes

	fix readup of existing index.json in cache while extracting

	fix spurious post build errors/warning message

	merge channeldata from all urls

Contributors

	@msarahan

	@rrigdon

	@jjhelmus

	@isuruf

	@ddamiani

3.18.7 (2019-07-09)

Enhancements

	Update authorship for 3.18.7

	Add note on single threading for indexing during build

	Add in fallback for run_exports when channeldata not available

	Make pins for current_repodata additive - always newest, and pins are additions to that

	Limit indexing in build to using one thread

	Speed up by allowing empty run_exports entries in channeldata be valid results

	Bump conda-package-handling to 1.3+

	Add test for run_exports without channeldata

	Fallback to file-based run_exports if channeldata has no results

	Add Mozilla as valid license family

	Add in fallback for run_exports when channeldata not available

	Updated tutorials and resource documentation

Bug fixes

	Flake8 and test fixes from pytest deprecations

	Fix in render.py::_read_specs_from_package

	Fix for pkg_loc

	Fix conda debug output being suppressed

Contributors

	@msarahan

	@rrigdon

	@rrigdon

	@scopatz

	@mbargull

	@jakirkham

	@oleksandr-pavlyk

3.18.6 (2019-06-26)

Enhancements

	package sha256 sums are includex in index.html

Bug fixes

	fix bug where package filenames were not included in the index.html

Contributors

	@rrigdon

	@jjhelmus

3.18.5 (2019-06-25)

Bug fixes

	fix one more keyerror with missing timestamp data

	when indexing, allow .tar.bz2 files to use .conda cache, but not vice versa. This acts as a sanity check on the .conda files.

	add build/rpaths_patcher to meta.yaml, to allow switching between lief and patchelf for binary mangling

Contributors

	@mingwandroid

	@msarahan

	@csosborn

3.18.4 (2019-06-21)

Enhancements

	channeldata reworked a bit to try to capture any available run_exports for all versions available

Bug fixes

	make “timestamp” an optional field in conda index operations

Contributors

	@msarahan

3.18.3 (2019-06-20)

Enhancements

	Make VS2017 default Visual Studio

	Add hook for customizing the behavior of conda render

	Drop /usr from CDT skeleton path

	Update cran skeleton to use m2w64 compilers for windows instead of toolchain.
The linter is telling since long: Using toolchain directly in this manner is deprecated.

Bug fixes

	Update cran skeleton to not use toolchain for win

	fix package_has_file so it supports .conda files (use cph)

	fix package_has_file function for .conda format

	fix off-by-one path trimming in prefix_files

	disable overlinking checks when no files in the package have any shared library linkage

	try to avoid finalizing top-level metadata twice

	try to address permission errors on Appveyor and Azure by falling back to copy and warning (not erroring) if removing a file after copying fails

	reduce the files inspected/loaded for channeldata, so that indexing goes faster

Deprecations

	The repodata2.json file is no longer created as part of indexing. It was not used by anything. It has been removed as an optimization. Its purpose was to explore namespaces, and we’ll bring its functionality back when we address that fully.

Contributors

	@mingwandroid

	@msarahan

	@rrigdon

	@rrigdon

	@soapy1

	@mariusvniekerk

	@jakirkham

	@dbast

	@duncanmmacleod

3.18.2 (2019-05-26)

Bug fixes

	speed up post-link checks

	fix activation not running during tests

	improve indexing to show status better, and fix bug where size/hashes were being mixed up between .tar.bz2 and .conda files

Contributors

	@mingwandroid

	@msarahan

	@rrigdon

3.18.1 (2019-05-18)

Enhancements

	rearrange steps in index.py [http://index.py] to optimize away unnecessary work

	restore parallel extract and hash in index operations

Contributors

	@msarahan

3.18.0 (2019-05-17)

Enhancements

	Set R_USER environment variable when building R packages

	Make Centos 7 default cdt distribution for linux-aarch64

	Bump default python3 version to 3.7 for CI

	Build docs if any docs related file changes

	Add support for conda pkgv2 (.conda) format

	add creation of current_repodata.json - like repodata.json, but only has the newest version of each file

	change repodata layout to support .conda files. They live under the “packages.conda” key and have similar subkeys to their .tar.bz2 counterparts.

	Always show display actions, regardless of verbosity level

	Ignore registry autorun for all cmd.exe invocations

	Relax default pinning on r-base for benefit of noarch R packages

	Make conda index produce repodata_from_packages.json{,.bz2} which contains unpatched metadata

	Use a shorter environment prefix when testing on unix-like platforms

	Prevent pip from clobbering conda installed python packages by populating .dist_info INSTALLER file

Bug fixes

	Allow build/missing_dso_whitelist section to be empty

	Make conda-debug honor custom channels passed using -c

	Do not attempt linkages inspection via lief if not installed

	Fix all lief related regressions brought in v3.17.x

	Fix ZeroDivisionError in ELF sections that have zero entries

	binary_has_prefix_files and text_has_prefix_files now override the automatically detected prefix replacement mode

	Handle special characters properly in pypi conda skeleton

	Build recipes in order of dependencies when passed to CB as directories

	Fix run_test script name for recipes with multiple outputs

	Fix recursion error with subpackages and build_id

	Avoid mutating global variable to fix tests on Windows

	Update CRAN license test case (replace r-ruchardet with r-udpipe)

	Update utils.filter_files to filter out generated .conda_trash files

	Replace stdlib glob with utils.glob. Latter supports recursion (**)

Docs

	Updated Sphinx theme to make notes and warnings more visible

	Added tutorial on building R-language packages using skeleton CRAN

	Add 37 to the list of valid values for CONDA_PY

	Corrected argparse rendering error

	Added tutorials section, reorganized content, and added a Windows tutorial

	Added Concepts section, removed extraneous content

	Added release notes section

	Reorganized sections

	Clarify to use ‘where’ on Windows and ‘which’ on Linux to inspect files in PATH

	Add RPATH information to compiler-tools documentation

	Improve the documentation on how to use the macOS SDK in build scripts.

	Document conda build purge-all.

	Fix user-guide index

	Add example for meta.yaml

	Updated theme

	Reorganized conda-build topics, updated link-scripts

Contributors

	@mingwandroid

	@msarahan

	@rrigdon

	@jjhelmus

	@nehaljwani

	@scopatz

	@Bezier89

	@rrigdon

	@isuruf

	@teake

	@jdblischak

	@bilderbuchi

	@soapy1

	@ESSS

	@tjd2002

	@tovrstra

	@chrisburr

	@katietz

	@hrzafer

	@zdog234

	@gabrielcnr

	@saraedum

	@uilianries

	@theultimate1

	@scw

	@spalmrot-tic

3.17.8 (2019-01-26)

Bug fixes

	provide fallback from libarchive back to python tarfile handling for handling tarfiles containing symlinks on windows

Other

	Rever support added for releasing conda-build

Contributors

	@msarahan

	@jjhelmus

	@scopatz

	@rrigdon

	@ax3l

	@rrigdon

3.17.7 (2019-01-16)

Bug fixes

	respect context.offline setting #3328

	don’t write bytecode when building noarch: python packages #3330

	escape path separator in repl #3336

	remove deprecated sudo statement from travis CI configuration #3338

	fix running of test scripts in outputs #3343

	allow overriding one key of zip_keys as long as length of group agrees #3344

	fix compatibility with conda 4.6.0+ #3346

	update centos 7 skeleton (CDT) URL #3350

Contributors

	@iainsgillis

	@isuruf

	@jjhelmus

	@nsoranzo

	@msarahan

	@qwhelan

3.17.6 (2018-12-19)

Bug fixes

	don’t raise when recipe text can’t be extracted if manual build string is already set #3326

Contributors

	@msarahan

3.17.5 (2018-12-14)

Bug fixes

	fix pip build isolation / fix absence of “falsey” env vars. Ignore only if empty string or None. #3319

	pass-through VS20XYINSTALLDIR var (used by intel compiler to locate VS2017 installation) #3322

Contributors

	@jjhelmus

	@msarahan

3.17.4 (2018-12-12)

Bug fixes

	fix python-3 only JSON decode error handling (make py27 compatible) #3307

	fix too much caching in getting used vars from meta.yaml leading to inaccurate hash contents #3311

	fix merge of build/host not being recognized before an rm_rf call utilized that info #3311

Contributors

	@Lnaden

	@msarahan

3.17.3 (2018-12-11)

Bug fixes

	ignore non-native binaries in lief for now. Cross-platform inspection still theoretically possible using subdir parameter. #3306

Contributors

	@msarahanl

3.17.2 (2018-12-11)

Bug fixes

	fix to ignore unsatisfiable pin_compatible calls for packages in other outputs #3277

	add license files to CRAN recipes generated by conda skeleton #3284

	restrict py-lief to running on linux/macos only for now #3291,

	fix lief operation on files that are missing dynamic section (e.g. go binaries) #3292

	expand instructions on how to setup a dev env for conda-build #3296

	fix file= keyword being passed to a logger call #3298

	add test for standalone DLLs with py-lief, don’t error out on them #3301

	rename windows build script runner to avoid confusion with existing bld.bat files in root dir #3303

	fix file URL handling on Windows #3303

	use conda’s download function rather than requests directly, so that conda’s proxy settings are respected #3303

	silence patch output when output verbosity is False #3305

Contributors

	@bergtholdt

	@dsludwig

	@jdblischak

	@msarahan

	@nehaljwani

	@sodre

3.17.1 (2018-12-04)

Bug fixes

	omit LIEF depedency on Windows until it is better tested #3288

	activate host environment #3288

	allow calls to nm to fail #3290

Contributors

	@jjhelmus

	@msarahan

	@nehaljwani

3.17.0 (2018-11-28)

Enhancements

	tell pip to not go find things on PyPI (turn off downloading) #3109

	new “conda debug” command for creating build/host or test envs for working on recipes #3237

	new package check: “overdepending” - warns or errors out when your run dependencies include unnecessary shared library packages #3237

	utilize LIEF for analyzing shared object data, extending capabilities beyond pyldd #3237

Bug fixes

	avoid discarding build string during pin_run_as_build and ensure_valid_spec #3264

	fix conda index’s handling of packages where ‘depends’ key doesn’t exist #3270

	fix bad inversion assumption about pip’s PIP_NO_DEPENDENCIES setting #3271

	fix regex to allow for whitespace after hyphens in outputs section #3274, #3275

	handle unicode decode fails in output rewriting #3279

	fix merge of repodata patches that have keys that don’t exist in repo #3280

Contributors

	@bergtholdt

	@isuruf

	@minrk

	@msarahan

	@mingwandroid

	@nehaljwani

3.16.3 (2018-11-21)

Enhancements

	rewrite long prefix paths as $PREFIX, etc. for more readable build logs #3258

	make the --output-folder switch configurable in condarc #3265

	make the --long-test-prefix switch configurable in condarc, fix logic error with that argument #3266

Bug fixes

	improve robustness of indexing in face of corrupt package data #3238

	change timeouts to 900 instead of 90 #3239

	add activation to wheel bundling script #3240

	fix PermissionError import from utils, undefined on py2.7 #3247

	fix outputs with custom build string getting hash incorrectly #3250

	fix tests not being run on windows #3257

Contributors

	@Bezier89

	@gabm

	@isuruf

	@minrk

	@msarahan

	@teake

	@tomashek

	@tschoonj

3.16.2 (2018-10-29)

Bug fixes

	Remove noarch binary file check (do this in conda-verify instead) #3212

	Fix utf-8 conversion of check_output_env #3213

	fix thread count when indexing causing oversubscription #3217

	fix behavior of try_acquire_locks during lock contention #3224

	fix test env creation improperly prioritizing local channel #3229

	don’t check for error when removing conda-init (in conda recipe for this repo) #3230

	add r-impl to R package template generator #3232

	fix creation of unix and win shell script files for noarch packages #3236

	fix path of python interpreter used for noarch packages being tested on win, when created on linux/mac #3236

Contributors

	@alexandersturm

	@Bezier89

	@dsludwig

	@mandeep

	@mingwandroid

	@msarahan

	@rchateauneu

	@soapy1

3.16.1 (2018-10-12)

Enhancements

	expand ~ in source paths #3206

	Use binsort when available to sort file list in tar archives, to optimize compressibility #3210

	allow meta.yaml’s build/rpaths key to function on macOS, not just linux #3206

Bug fixes

	improve docs on behavior of channel arguments #3197

	remove mention in docs about building .RPM and .DEB files. #3199

	fix dist-info errors where dist-info files didn’t match the package name #3206

	fix some hard-coded .tar.bz2 references, to support other compression formats more readily #3206

	batch calls to compiling .pyc files to avoid problems with maximum command length #3206

	use ensure_list in processing files to be extracted #3210

	fix KeyError that happened when a jinja2 rendering error occurred, which hid the rendering error 3211

Contributors

	@mingwandroid

	@msarahan

	@stas00

	@teake

3.16.0 (2018-10-05)

Enhancements

	incorporate libarchive to support more compression formats (adds libarchive as a package dep) #3163

	add build/ignore_verify_codes key to allow recipes to ignore specific conda-verify error codes #3179

Bug fixes

	fix JSON string encoding error in index cache reading #3156

	restore --variants CLI flag for specifying variants #3168

	handle empty build section in output #3175

	add mro-base_impl as something that causes mro build strings #3163

	fix skeleton PyPI inappropriately dropping package case (needed for URLs) #3163

	fix packages from earlier loops with multiple outputs being removed prior to later loops #3185

	fix conda-index not removing entries from index that no longer exist on disk #3186 #3188

	clean up tempfiles after indexing #3187

	fix indexing of specific subdirs #3190

	fix pypi skeleton when python constraint has no operator #3191

	fix issues testing packages and recipe folders when done separately from build #3192

	fix source looking for patches in wrong folder when dealing with outputs #3194

Contributors

	@dpryan79

	@gabm

	@mbargull

	@mingwandroid

	@msarahan

	@nehaljwani

3.15.1 (2018-09-18)

Bug fixes

	sort “removed” fns in index repodata.json #3154

	fix deps being merged instead of clobbered #3154

	Handle corrupt packages during indexing better #3154

Contributors

	@msarahan

3.15.0 (2018-09-17)

Enhancements

	add CLI flag (–strict-verify) to allow erroring out when conda-verify fails a package #3135

	output text stating that the license file has been successfully found and included with a package #3152

Bug fixes

	allow channel auth when checking if a package is built #3133

	If local git cache can’t be updated, delete it and barf (for user to re-run) #3136

	clean up duplicate pip requirements produced by skeleton #3138

	replace recipe_log.txt file with recipe_log.json file (for passing recipe history along with package) #3139

	fix decoding to str before passing package contents to JSON loading #3140

	fix loss of “removed” section of index with every other indexing operation #3144

	fix update_index used in tests to index channel, not subdir #3145

	fix ELF sections not included in memory image of process being loaded by pyldd and giving misleading results #3148

	fix index operations outputting debug log messages #3151

	fix private channels showing 404 errors during test phase #3153

Contributors

	@Bezier89

	@gabm

	@jakirkham

	@jjhelmus

	@kalefranz

	@msarahan

	@stuarteberg

	@teake

3.14.4 (2018-09-11)

Bug fixes

	fix recipe_log.txt not being filtered from info/files #3134

Contributors

	@msarahan

3.14.3 (2018-09-11)

Enhancements

	add support for index patch instructions as tarballs containing subdirs #3129

	add progress bars for indexing (using tqdm) #3130

Bug fixes

	fix log messages being deduplicated too much #3130

	handle permission errors with moving files in indexing more gracefully #3132

Contributors

	@msarahan

3.14.2 (2018-09-07)

Enhancements

	add support for a “recipe log” file. This will be used at Anaconda to capture the commit activity of a given recipe, which will be published in the RSS feed. #3123

Bug fixes

	fix indexing of noarch subdir as done by conda-forge #3120

	decode cached index files to utf-8 before reading JSON #3121

	try to address unicode problems in run_exports handling #3121

	skip over index metadata files when they are not present in a package #3125

Contributors

	@msarahan

3.14.1 (2018-09-06)

Bug fixes

	detect and fall back to old update_index behavior (new is channel-wide; old is specific subdir) #3117

	fix CONDA_BUILD_STATE not being set when load_setup_py_data gets run #3117

	fix channel_name as CLI argument for conda index. It can’t be positional. #3318

Contributors

	@msarahan

3.14.0 (2018-09-04)

Enhancements

	refactor indexing to cache more efficiently #3091

	add tags, identifiers, and keywords to about section. Tie them into channeldata.json. #3091

	filter .la files from packages by default #3102

	memoize read_meta_file #3108

Bug fixes

	fix --check for optionally iterable fields #3098

	fix permission problems prior to fixing shebangs #3101

	do not disable pip’s cache directory. Redirect it instead. #3104

	fix usage of config in load_setup_py_data #3110

	show logger message when default numpy is used, to communicate what’s happening to the user #3110

Other

	drop python 3.4, add 3.6, 3.7 to skeleton pypi #3103

Contributors

	@jjhelmus

	@kalefranz

	@msarahan

	@nehaljwani

	@nsoranzo

	@ocefpaf

	@teake

3.13.0 (2018-08-20)

Enhancements

	add run_exports and aggregated post-install metadata indexing outputs #3060

	allow whitelisting runpath entries #3072

	consider *_compiler_version entries when looping over variants (allow *_compiler_version to be a used variable that affects the hash) #3084

Bug fixes

	fix cached git info for variants #3082

	fix linux temporary channel not being added at test time, leaving package unresolvable #3088

Contributors

	@msarahan

	@teake

3.12.1 (2018-08-06)

Enhancements

	add the “extra” field of a package’s meta.yaml file into the output package’s info/about.json file #3048

	add option to omit local channel in is_package_build (used by c3i) #3051

	add pip env vars to prevent it from pulling in external dependencies when used in build scripts #3053

Bug fixes

	fix local channel always being top priority. Allow user-defined channel orders where local is lower than remotes. #3049

	Fix conda-verify import error warning showing up in --output text #3052

	fix RPM skeleton test (point to newer CentOS repo) #3054

	fix test/files and test/source_files looking in the wrong place for info/recipe/parent contents (subpackages) #3061

Contributors

	@Bezier89

	@jakirkham

	@mikecormier

	@mingwandroid

	@msarahan

3.12.0 (2018-07-24)

Enhancements

	Allow user-specified channels to come ahead of local channel #3038

	Add schema for outputs section in FIELDS; provide method for getting rendered recipe text (to support conda-verify) #3041

	Enable conda-verify by default when it is importable, but only print warnings by default, instead of exiting #3042

	Add --label CLI argument to allow specifying label for uploading packages to #3043

Bug fixes

	fix apply_selectors, leading to excessive detection of used variables #3040

Contributors

	@CJ-Wright

	@msarahan

	@speleo3

3.11.0 (2018-07-20)

Bug fixes

	improve environment marker support for pypi skeleton #2972

	apply selectors before checking requirements, to better understand per-platform used vars #2973

	Handle conda UnsatisfiableError causing packages to be moved to broken folder without tests actually being run on them #2974 #2975

	use tempfiles when writing index to reduce risk of corrupt index #2978

	handle conda index recipe info for older versions of conda-build #2979

	allow empty missing_dso_whitelist in build section #2983

	fix host_reqs referring to a detached list, leading to requirements/host not being modified by run_exports #2987

	fix for bypassing MITM proxies based on SSL_NO_VERIFY env var #2991

	add missing_dso_whitelist to FIELDS #2994

	Don’t skip logic in pyldd based on CB verbosity (–quiet) #2999

	Convert empty git refs to HEAD, so that git_url behavior is more predictable #3003

	set NPY_DISTUTILS_APPEND_FLAGS=1 so the compiler package flags are respected #3015

	fix script file renaming when converting package from win to unix #3014

	allow fn to be omitted when using multiple url sources #3021

	fix default config settings being shared across Config instances #3022

	force text interpretation of CRAN DESCRIPTION files #3020

	fix is_no_link to honor patterns #3023

	fix test/requires being ignored when --no-copy-test-source-files is specified #3027

	fix up dependencies in CRAN skeleton output #3030 #3032

Enhancements

	change skeleton pypi to generate recipes that use pip for install step. Remove description. #2972

	Set environment variable to disable pip environment isolation to prevent problems #2972

	support multiple exclusive_config_files #3022

Docs

	Fix search order for conda_build_config.yaml #3029

Contributors

	@isuruf

	@j-hartshorn

	@kalefranz

	@mandeep

	@mbargull

	@mcg1969

	@mingwandroid

	@minrk

	@msarahan

	@nehaljwani

	@ocefpaf

	@tjd2002

3.10.9 (2018-06-15)

Other

	docs are moving from the conda-docs repo into conda-build (splitting off from conda docs in general)

Bug fixes

	fix re.escape usage for Python <3.3 #2970

Contributors

	@mbargull

	@msarahan

3.10.8 (2018-06-12)

Bug fixes

	clean up license field for pypi skeleton #2938

	fix regex to match requirements with trailing spaces #2948

	Check for dash in text with variants #2949

	do not check in build prefix for overlinking when merging build and host #2950

	utils.glob: remove unnecessary normcas, fix test_expand_globs #2952

	add missing “build” fields in FIELDS schema thing #2962

Contributors

	@isuruf

	@mariusvniekerk

	@mbargull

	@mingwandroid

3.10.7 (2018-06-01)

Enhancements

	replace glob2 by glob for py3 (speed improvement) #2937

Bug fixes

	Fix folder copying in test/files #2941

Contributors

	@mbargull

	@msarahan

3.10.6 (2018-05-31)

Enhancements

	several rendering speed improvements #2925

Bug fixes

	add regression test for #2912 #2914

	fix a file handle not being closed #2915

	fix an incorrect syntax RuntimeError #2920

	fix custom compiler languages not being possible #2927

	fix OS vars not correctly respecting test prefix; add test #2932

	fix incorrect python versions showing up in test phase paths (SP_DIR) #2932

	fix test/files functionality for outputs; add test #2934

Contributors

	@mbargull

	@msarahan

	@nicoddemus

	@rainwoodman

	@sodre

	@tomashek

3.10.5 (2018-05-23)

Enhancements

	allow ‘*’ as an ignore_run_exports value to ignore all run_exports #2907

Bug fixes

	fix handling of empty run and test requirements #2908

	fix trailing zeroes in version numbers getting lost by yaml interpreting things as floats #2909

	fix regression in host prefix showing up in the test phase, leading to files/executables not being where they should be #2910

	fix handling of not-yet-available requirements #2912

	fix get_value with default keyword not respecting that user-specified default #2912

Contributors

	@msarahan

3.10.4 (2018-05-20)

Bug fixes

	fix import tests being run multiple times #2892

	add creative commons as a license family (used to be classified OTHER) #2893

	handle empty packages in checks for duplicated files across subpackages #2894

	set PYTHON and other language path vars based on presence in build/host reqs, rather than binary file in either env. Allows usage of PYTHON and friends in meta.yaml vars. #2895

	fix entry points incorrecty pointing at build prefix (instead of host), leading to prefix replacement failing #2895

	fix merge_build_host functionality. Adding an empty host section now forces build and host to be split. #2896

Contributors

	@msarahan

	@scopatz

3.10.3 (2018-05-17)

Enhancements

	–skip-existing applies to outputs, not just whole collections of packages. Individual outputs that are already built will be skipped. #2889

	add output of hash contents to what gets printed with conda render (not with --output)

Bug fixes

	fix conda pypi skeleton checking for ‘~’ in None values #2880

	add /B to win exits, so that erroring out of tests does not close out of outer shells #2881

	ensure that merge_build_host is updated correctly for each output #2882

	Remove several env vars from being recorded in about.json, over concerns for GDPR compliance #2883

	remove parent_recipe entry from recipes when recording meta.yaml for output packages, to avoid confusion over used variables #2886

	xfail get_installed_version for new conda and test_build_with_activate_does_activate when PATH is too long #2889

	change os.rename to shutil.move so that there is a copy fallback #2889

	fix mutability of config objects passed to test causing bizarre states of variants

	fix win style slashes in paths.json and files that broke things when converting a win package to unix #2891

Contributors

	@mingwandroid

	@msarahan

3.10.2 (2018-05-08)

Bug fixes

	fix downstream test not using channel list; fix exact specs in downstream testing #2864

	add deprecation notice for msvc_compiler key in meta.yaml. Explain its incompatibility with variants. #2868

	set default cran mirror #2868

	disallow merging of build and host prefixes when host_subdir != build_subdir #2876

Contributors

	@msarahan

3.10.1 (2018-05-01)

Bug fixes

	fix handling of downstream testing when downstreams don’t exist yet (e.g. bootstrapping) #2860

	fix handling of downstream testing in tandem with --output-dir or --croot (add locations as file:// urls) #2860

	fix improperly escaped entries in cran template. Clean up unnecessary changes. #2861

Contributors

	@mingwandroid

	@msarahan

3.10.0 (2018-05-01)

Enhancements

	Warn user about path conflicts during environment building for test phase #2843

	Add conda 4.6 compatibility #2844

	remove conda 4.2 and earlier compatibility #2845

	add info to merge/copy source subdir error #2858

	Add setup for Air Speed Velocity benchmarking #2859

Bug fixes

	fix python handling when python is a tuple (inner python looping) #2854

	fix python not looping in inner packages when top-level doesn’t use it. Fix zip_keys handling. #2856

Contributors

	@kalefranz

	@msarahan

3.9.2 (2018-04-27)

Enhancements

	Optimizations to rendering to speed up dealing with lots of recipes #2838 #2848

Bug fixes

	include folder as a field in source for linting purposes #2837

	remove merging of constraints. Keep only the clobbering of groups of constraints by exact constraints (of which you can have only one) #2839

	ensure u+w permissions before calling install_name_tool #2840

	remove conversion of dash to underscore in pin_run_as_build #2842

Contributors

	@jakirkham

	@mingwandroid

	@msarahan

3.9.1 (2018-04-24)

Bug fixes

	Revert #2831 (add license file for R packages from CRAN) due to incompatibility with package layout in defaults

	handle OrderedDict dumping to yaml better; further work on preserving dict key order in config yaml files #2834

	consolidate cran default repo settings, respect variant setting better. #2836

	Add conda-build/skeleton_config_yaml key to condarc to control which conda_build_config.yaml should be used to find the cran_mirror setting. #2836

	Change default cran mirror from mran to cran. #2836

Contributors

	@mingwandroid

	@msarahan

3.9.0 (2018-04-24)

Enhancements

	Add new key in test section, downstreams that accepts a list of package specs to test after the current package is built #2823

	work to prevent unsafe paths in tarballs that would affect paths outside of the work dir #2822

	simplify all constraints for a given package name to a single constraint that represents the tightest combination of them all #2694

Bug fixes

	fix a misnamed cran skeleton key #2817

	Remove unused index command in rendering path #2818

	fix loss of ordering when using recipe_append #2825

	fix usage of dict for default pin_run_as_build data structure. Losing ordering created noise down the line for Conda-Forge. #2830

	fix selector regex being too greedy; reporting wrong used vars #2832

Contributors

	@ceball

	@isuruf

	@jamesabbott

	@jdblischak

	@mingwandroid

	@msarahan

3.8.1 (2018-04-16)

Bug fixes

	fix shebang rewriting so that it only touches python[w]? shebangs #2786

	fix a regression in ignoring python as a build-only dep being “used” and becoming a loop var #2799

	improve config log warning #2801

	skip, but warn about failures in pyldd #2802

	fix whitespace in multi-line help strings #2808

	fix variables in compound selectors not getting detected as “used” #2814

Contributors

	@bjlittle

	@jbcrail

	@mingwandroid

	@msarahan

3.8.0 (2018-03-30)

Enhancements

	Add new jinja2 function, resolved_packages, that can be used to pin run or
test requirements to indirect dependencies as well as direct dependencies #2715

Bug fixes

	Fix R/Rscript mixup that broke usage of R env var #2782

	Improve error message when additional modules are needed in root env in order to render a recipe #2784

	Fix handling of FEATURE_NOARCH, which was adding specs that conda’s solver didn’t understand #2787

	allow license_file to be found in either source root or recipe root (common point of confusion) #2792

	fix disable_pip removing setuptools even when it was an explicit dependency.
This was due to conda changing its string representation of MatchSpecs, and
our regex didn’t take that into account. #2793

Contributors

	@183amir

	@msarahan

3.7.2 (2018-03-22)

Enhancements

	add runpath handling to pyldd #2768

	add lgtm.com [http://lgtm.com] configuration #2772

Bug fixes

	fix language issues with finding directory size on windows #2749 #2766 #2760

	ignore non-rendered jinja2 errors when indexing packages #2756

	fix cran skeleton argparse errors when version flag not provided #2751 #2759

	fix exact pinning in subpackages raising errors due to non-final output data conflicting with final top-level data #2763

	skip test_preferred_env until conda more fully implements it #2722

	Don’t run mk_relative_osx on linux DSO’s #2768

	use Rscript to run R tests, so that console output is shown more clearly. Only add r-base spec if neither r-base nor mro-base are already in deps. #2764

	don’t filter out .gitignore and .gitmodules when packaging #2774

	fix pin_* regex that was erroneously picking up wrong usages #2775

Contributors

	@bilderbuchi

	@kfranz

	@m-rossi

	@mingwandroid

	@msarahan

	@wikiped

3.7.1 (2018-03-08)

Enhancements

	Enable glob2.fnmatch for shared library whitelists. Add more Frameworks to whitelist on Mac. #2732

Bug fixes

	Squelch yaml ScannerError when building index can’t read meta.yaml in package #2740

	Fix & simplify “hoisting” of source folders up one level #2741

	Fix build number not getting inherited from top-level metadata #2742

	Allow output creation environment for wheels to be activated #2744

	Fix selector regex for finding “used” variables; was finding too much across lines. #2745

	Ignore empty config files (don’t error out on them) #2746

Contributors

	@mingwandroid

	@msarahan

	@neok-m4700

3.7.0 (2018-03-05)

Enhancements

	raise ValueError when pin_subpackage is used, but no matching output is found #2720

	Add new optional CLI argument, --extra-deps, to add test-time dependencies dynamically when splitting build and test phases (can’t apply variants when phases are split) #2724

Bug fixes

	fix cran skeleton py2 invalid list copy syntax #2720

	reconfigure TravisCI to test against conda master #2720

	fix inaccurately raised problems with pin_subpackage #2720

	coerce boolean values in conda_build_config.yaml to booleans (value.lower() == “true”) #2723

	change r skeleton cran test to a different package (nmf -> acs); nmf got removed

	fix selectors being applied before variable detection, leading to variables in selectors never being detected #2723

	add filesize calculation to converted script files #2727

Contributors

	@mandeep

	@msarahan

3.6.0 (2018-02-28)

Enhancements

	Allow per-output {pre,post}-{un,}link scripts #2712

	support mro as part of the build string #2711

	improve interpreter guessing for running output packaging scripts #2709

	improve library overlinkage check, add support for whitelists of always-ok
libraries to ignore. #2708

	add support for noarch: generic recipes in cran skeleton generator

	add support for using Rtools on windows when building a package from source

	add support for binary repackaging of CRAN/MRAN artifacts

	add support for cran recipes from source tarballs

	template cran_mirror variable in generated cran output recipes. This allows
CRAN and MRAN to easily be switched out. Default is MRAN. #2710

Bug fixes

	Reverse build/host activation order, to give build executables higher
priority. Necessary to support proper R packaging. Includes better errors for
empty packages caused by build env python being used to install python
packages. #2686

	Fix test scripts from subpackage outputs not being detected #2703

	Fix sha in scripts in conversion from linux to windows packages (was not
correctly handling hashbang addition/removal). #2713

	Speed up stat gathering, restrict it more to only build, packaging, and test
steps (not arbitrary subprocess calls) #2714

	Check for incomplete files when inspecting links. Some files that looked like
ELF files, but weren’t, would trip up pyldd and kill the build. #2718

Contributors

	@jjhelmus

	@MatthieuDartiailh

	@mingwandroid

	@msarahan

3.5.1 (2018-02-22)

Enhancements

	Add relative path support for load_setup_py_data jinja2 function #2700

Bug fixes

	fix hoisting of archives containing folders named same as top-level folder. These subfolders were being removed inappropriately. #2692

	Fall back gracefully when psutil fails to import. Disk and total time stats still available; memory and CPU time are not when psutil is unavailable. #2693

	Fix directory size computation not being recursive, use scandir for walk operations on py27 #2699

Contributors

	@mariusvniekerk

	@msarahan

3.5.0 (2018-02-20)

Enhancements

	Print resource statistics for each step, as well as whole. CPU time, memory usage, disk usage. #2685

	Record resource statistics to JSON file when --stats-file <output_file_path> argument is provided #2685

Bug fixes

	save complete parent recipe in info/recipe/parent for packages that are only outputs of a top-level package #2687

Contributors

	@msarahan

3.4.2 (2018-02-15)

Enhancements

	allow trimming of skipped metadata in rendering to be optional (for sake of
conda-forge rendering readme’s on platforms that are skipped) #2680

	rename the build prefix prior to the test phase. This will precipitate
failures when packages embed paths to the build prefix, which conda does not
replace at install time. Fixing these instances is specific enough to packages
that we do not attempt to handle it in conda-build. #2681

	add conda_interface.get_install_version function that facilitates checking if
a pkg is in an env, and if so, what its version is #2682

Bug fixes

	use lookaheads in extraction regexes to avoid capturing unwanted text #2679

Contributors

	@msarahan

3.4.1 (2018-02-08)

Bug fixes

	fix interpretation of zip_keys when testing pkgs (ignore empty values) #2673

Contributors

	@msarahan

3.4.0 (2018-01-31)

Enhancements

	implement “–exclusive-config-file” CLI flag to render & build. This file
bypasses detection of config files in $HOME and cwd, but respects any config
files in recipe folders. #2661

	Activate output scripts in meta.yaml (#2667), but only when:

	output has a build/script entry

	output uses {{ compiler() }} jinja2 function in its requirements AND output extension is either .sh or .bat

	output has build/activate_in_script key in meta.yaml set to a truthy value AND output extension is either .sh or .bat

Bug fixes

	fix AttributeError in overlinking check #2650 #2651

	reorder mmap operations to fix problem with WSL #2655

	fix numpy detection as “used” variable when using pin_compatible jinja2 #2659

	silence conda KeyError warnings when indexing legacy packages that don’t have newer metadata files #2656

	replace “which” with “type -P” in conda-build’s internal recipe. This avoids issues on PowerPC and with long paths. #2664

	Error out when version computation fails in conda-build’s setup.py [http://setup.py]. This will
help prevent conda-build packages going out without valid internal versions
being recorded (for example, when git is not installed on a build worker).
#2665

	ignore tarcheck errors for files in the info folder that don’t appear in info/files file. Fixes inclusion of arbitrarily named readme files. #2668

	clean up host prefix in between skeletons when using pypi’s --recursive mode. Conda otherwise throws errors on the 2nd recipe. #2669

Contributors

	@kfranz

	@mingwandroid

	@msarahan

	@nehaljwani

	@neok-m4700

	@steamelephant

3.3.0 (2018-01-23)

Enhancements

	Issue template created for github repo #2632

	Detect overlinking (usage of libraries that are not present in listed dependencies).
Warn by default. Error out with --error-overlinking flag. Conda-build 4.0 will
error by default. #2635 #2647

Bug fixes

	fix merge_build_host to always be used in CRAN skeletons #2635

	fix macho filename attribute error #2641

	reorder search through files for compatibility bounds for speed #2638

	cache used vars based also on recipe path, to avoid overly caching results #2643

	normalize slashes in file glob lists for explicit output file lists #2644

	silence conda 4.4 better when using quiet operations, such as --output #2645

	fix pypi_url not affecting the url of the actual skeleton output from conda skeleton pypi #2646

	fix overly broad string matching of “None” that caused problems where None may appear
as part of a string in meta.yaml #2649

Contributors

	@csoja

	@mingwandroid

	@msarahan

	@nehaljwani

	@neok-m4700

3.2.2 (2018-01-12)

Enhancements

	Add CLI flag (–merge-build-host) to restore pre-3.1.4 behavior with merging build and host envs #26260

Bug fixes

	Check recipe/metadata skip status in more places, rather than strictly at the top-level #2617

	fix unnecessary conforming of zip keys when distributing variants #2618

	fix matching of unrendered output names when matching rendered names #2618

	fix matching of partial (only used parts) of variants when lining up subpackages #2618

	fix handling of outputs with same name as top level when considering used vars #2618

	exclude top-level run_exports from applying to all outputs #2618

	Fix linking compiler runtimes from build to host prefix (was broken by build/host prefix split in 3.1.4) #2621

	Fix logic errors around merging build/host envs #2623

	fix run_exports in outputs being overwritten #2623

Contributors

	@jjhelmus

	@mingwandroid

	@msarahan

3.2.1 (2018-01-02)

Enhancements

	Improve “BUILD” environment variable value (especially on powerpc) #2615

	Implement CentOS 7 ppc64le distro for conda skeleton rpm #2615

	Improve handling of outputs that use the build/skip key to skip building #2616

Bug fixes

	Don’t loop in all zipped keys when collecting used vars. Leave it to consumers to decide what to do. #2612

	Fix run_exports using pin_subpackage not applying versioning for the implicit top-level output #2613

	Fix run_exports not applying to build-time environment creation for top-level recipe (as opposed to outputs) #2613

	Fix CRAN skeleton to better use host/build envs appropriately #2614

	fix outputs not loading hash input info from files at test time correctly, leading to incorrect hashes and unresolved packages. #2616

Contributors

	@mingwandroid

	@msarahan

3.2.0 (2017-12-21)

This release bumps the minor version to reflect the change in splitting the
build and host folders originally introduced by 3.1.4. That change has proven to
be disruptive to many users, and we felt it necessary to bump a minor version to
indicate that people should pay attention to this change. There’s more info in
our docs at
https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#host

Enhancements

	Add log messages for each source of variants, so that you know where values are coming from #2597

Bug fixes

	remove unnecessary looped rm_rf when cleaning out prefixes between outputs #2587

	fix meta.yaml not found errors when trying to test packages built with --no-include-recipe #2590

	fix zipped key group with single entry causing a list to be passed later for single string values #2596

	fix incomplete change to splitting build and host envs #2595

	fix merging of top-level requirements and output reqs when output named same as top-level #2595

	fix handling of outputs with templates in their name (they were losing their requirements) #2595

	fix test file copying to avoid re-provisioning source during tests #2595

	tweak requirements regex to avoid misinterpreting python executable usage in test commands as usage of the python variant #2595

Contributors

	@msarahan

3.1.6 (2017-12-15)

Bug fixes

	fix test files in outputs (was losing reference to absolute path of recipe) #2584

	fix several incorrect references to build_prefix that needed to be host_prefix #2584

Contributors

	@msarahan

3.1.5 (2017-12-15)

Enhancements

	detect “used” variables in selectors #2581

Bug fixes

	Cache used variables for a given output on a given target platform to avoid
recomputing this too often. This dramatically speeds up operations relative to
3.1.4. #2581

	fix used variable treatment of target_platform #2581

Contributors

	@msarahan

3.1.4 (2017-12-14)

Enhancements

	detect “used” variables in build.sh [http://build.sh], bld.bat and any output scripts, in
addition to what already existed in meta.yaml. Used variables end up in the
hash. #2576

	don’t merge build and host prefixes. We used to do this when host subdir ==
build subdir. Keep them separate, so that build tools in build prefix won’t
ever interfere with software installed to host, to be packaged. #2579

Bug fixes

	exclude grouped keys from zip_keys when computing hashes. Only direct dependencies affect the hash. #2573

	fix always_include_files usage omitting other ordinarily installed files #2580

Contributors

	@msarahan

3.1.3 (2017-12-13)

Enhancements

	support environment variable expansion in path-related condarc settings #2563

	speed up “fixing linking” on MacOS by ~98% #2564

	Allow build/script and build/script_env entries in outputs, for simple scripts
and for passing env vars into output scripts #2572

Bug fixes

	fix run_exports from build section not applying to host early enough and causing conflicts #2560

	order outputs based on build, host, and run dependencies, not just run #2561

	fix always_include_files when used in output sections #2569

	add jinja2 to dependencies in setup.py [http://setup.py] (not just in conda.recipe) #2570

Contributors

	@akovner

	@mingwandroid

	@msarahan

	@nehaljwani

	@rlizzo
2017-12-9 3.1.2:

Bug fixes

	fix copying of relative paths with source_files in test section #2551

	fix handling of too many x’s in max_pin field. If more x’s than actual places were present, the incrementing broke. #2552

	refactor upstream pinning, fix extraction of outputs so that run_exports and pin_compatible work with them #2556

	fix bug that occurred when an output had the same name as the top level recipe. Ended up extracting wrong part of recipe with wrong regex. #2556

	fix copying of recipe losing folder structure in the destination copy of the recipe #2557

Contributors

	@msarahan

	@nehaljwani

3.1.1 (2017-12-06)

Bug fixes

	fix info files filters on windows #2542

	fix icon.png files that needed to be included in the app section of recipes, for usage with Navigator #2545

	fix package matching regex for packages with - in them (regex should find either - or _) #2546

	fix detection of used variant variables within jinja2 conditionals #2547

	fix output extraction regex (was picking up whole outputs section, not just one
output). Also, fix top-level variables not being carried into later outputs. #2549

Contributors

	@jjhelmus

	@msarahan

3.1.0 (2017-12-05)

Enhancements

	Speed up package inspection by optimizing package file lookup #2535

	Simplify hashing scheme. A hash will be added if all of these are true for any dependency:

	package is an explicit dependency in build, host, or run deps

	package has a matching entry in conda_build_config.yaml which is a pin to a specific version, not a lower bound

	that package is not ignored by ignore_version
OR

	package uses {{ compiler() }} jinja2 function
All other packages will no longer have hashes. The takeaway message is that
hashes will appear when binary compatibility matters, but not when it doesn’t. #2537

Bug fixes

	Allow packages to store files in info folder #2538

	Fix source_files not working correctly when using test files in packages #2539

Contributors

	@mingwandroid

	@msarahan

3.0.31 (2017-11-30)

Enhancements

	expose time and datetime modules in jinja2 context, for use in meta.yaml #2513

	jinja: permit recipes to check for existence of a variable without erroring #2529

	add method for getting all variant values used by a recipe, not just those variants with more than one value. #2531

Bug fixes

	allow SSL_NO_PROXY env var to disable SSL checking on proxied connections #2505

	Fix source hoisting issues (incorrectly flattening directory structure of extracted archives) #2507

	Fix build env for output getting lost when output name == top-level name #2511

	add global pin_run_as_build for R (x.x.x) to keep legacy R pinning behavior #2518

	Fix path conversion issues going from windows to unix #2522

	only insert variant versions when testing runtime availability for packages that are also present in build (not just run) #2527

Contributors

	@anton-malakhov

	@bheklilr

	@mandeep

	@msarahan

	@stuarteberg

3.0.30 (2017-11-15)

Bug fixes

	write all ‘about’ metadata fields out, not just select few #2488

	fix lists getting nested during merging of configs, leading to TypeErrors #2494

	make always_include_files act on host_prefix, not build_prefix #2497

	warn users when script_env passes env vars through #2502

	fix build string pyXY being just pyX when input didn’t have full python version #2504

Contributors

	@jakirkham

	@msarahan

3.0.29 (2017-11-10)

Enhancements

	interpret ~= in pypi skeletons, map to compatible expressions #2427

	add arm and ppc architectures to conda convert #2472, #2474

	add indentation to index.json and hash_input.json for easier reading #2476

	check arch in index.json for platforms other than linux, mac, win #2478

	update cran skeletonizer for new compilers, add flags for updating, rather than replacing recipe. #2481

Bug fixes

	fix implicit pinning not taking effect in outputs, fix incorrect matching of hashed subpackages #2455

	exclude python from build requirements for purposes of hash computation. This was causing recipes that used python as a build tool to build too many similar packages. #2455

	Support GIT_* vars even when source folders are specified #2477

	silence warnings about .* being added to vc deps #2483

	fix non-finalized recipe being used for creating build env, resulting in too few variants in output #2485

Contributors

	@mandeep

	@mingwandroid

	@msarahan

	@stuarteberg

3.0.28 (2017-11-02)

Enhancements

	Implement “subspace selection” - so you can reduce a larger central set of variants to some smaller subset. Fixes --python=X.Y on windows, with its zip_keys. #2466

	Update cpan skeleton #2156

	Pass through VSXY0COMNTOOLS env vars, so they’re available in activate scripts called from outputs #2453

	Add additional index-related files for Anaconda Navigator to use #2463

	Add back CONDA_PY, CONDA_NPY, and friends, for backcompat with conda-build-all #2469

Bug fixes

	Fix build_folder selection in dirty envs #2445

	Fix an os.rename back to copy_into for cross-volume compatibility #2451

	Clean up leftovers created by utils.get_recipe_abspath #2459

	fix path globbing and filtering replacing prefix not at start of path, which broke file copying #2468

	Don’t recreate envs unnecessarily for recipes with no outputs section #2470

Contributors

	@jerowe

	@kalefranz

	@msarahan

	@neok-m4700

	@rendinam

3.0.27 (2017-10-17)

Enhancements

	For windows error checks, assert that the errorlevel is 0, rather than GEQ 1. Makes negative return codes fail builds. #2442

	allow channels to be passed to the metapackage command. Note that channels are not recorded to the package, and need to be passed at package install time, as well as metapackage creation time. #2443

Bug fixes

	Fix windows bits dictionary indexing incorrect type #2441

Contributors

	@msarahan

3.0.26 (2017-10-16)

Enhancements

	Conda index now generates html index pages in addition to repodata.json #2395

	make bash verbosity (-x flag) depend on setting of --debug flag #2426

	pass test and build sections in any outputs through wholesale, rather than picking out individual fields from them. #2429

	make conda-verify opt-in, rather than opt-out. Use --verify cli argument or verify keyword to api. #2436

	implement requires_features and provides_features, for compatibility with conda 4.4’s new key-value feature #2440

Bug fixes

	fix FEATURE_* variables not working due to a type error #2428

	fix misleading error when download_url present but empty #2434

	check HTTP status code of PyPI pkg manifest request before decoding it, to improve error message #2435

	fix 64-bit exe’s showing up in 32-bit win packages due to not accounting for host_arch with script files #2439

	fix hardlink-breaking bug where path was being copied instead of specific file. Use better tempdir. #2437

Contributors

	@Bezier89

	@eklitzke

	@kalefranz

	@maddenp

	@msarahan

	@nehaljwani

3.0.25 (2017-10-06)

Bug fixes

	unify usage of conda_43, learn to let the tests run. #2424

Contributors

	@msarahan

3.0.24 (2017-10-06)

Enhancements

	add get_used_loop_vars() function to MetaData object, to show which loop variables are actually used by recipe #2410

	Allow multiple file extensions for pypi skeletons, not just .tar.gz #2412

Bug fixes

	make build reqs equivalent to host when cross-compiling and no host section present (helps reduce need to modify python-only recipes) #2406

	reduce logging output from filelock and conda #2418 #2422

	Don’t strip files in noarch: python when they are not known file types #2420

	fix infinite loop when trying to build dep from found recipe, but that recipe is wrong version #2423

	update perl used on appveyor for testing to 5.26

Contributors

	@minrk

	@msarahan

	@nehaljwani

3.0.23 (2017-09-29)

Bug fixes

	simplify handling of blank fields in CRAN metadata #2393

	load conda_build_config.yaml from inside package when testing package separately from build process #2399

	use sets instead of lists for field descriptions #2403

	fix noarch_python packages getting pinned to a specific python version #2409

Contributors

	@Bezier89

	@CJ-Wright

	@jdblischak

	@msarahan

3.0.22 (2017-09-20)

Bug fixes

	fix filename_hashing setting being ignored when using conda-build API #2385

	fix relpath causing cross-drive issues on windows #2386

	examine .a files when considering prefix replacement #2390

	fix run/test deps check looking at build_subdir rather than host_subdir (broke cross compiling) #2391

Contributors

	@Bezier89

	@mingwandroid

	@msarahan

3.0.21 (2017-09-18)

Bug fixes

	Fix strong run_exports from build being applied to host too late, running into conflicts (especially with VC features) #2383

	crash properly when patching fails, rather than proceeding with build #2384

Contributors

	@msarahan

3.0.20 (2017-09-16)

Bug fixes

	Never activate build or host env when building conda, so that symlinks or .bat files are never created. #2381

	Apply “strong” run_exports from build section to host section, not just run section. This is necessary for ensuring that features activated by packages in the build section are used to line up the host section also. #2382

Contributors

	@msarahan

3.0.19 (2017-09-15)

Bug fixes

	write info/files for noarch. Always sanity check info/files. #2379

	fix build_prefix -> host_prefix in write_pth, fixes cross compiling python packages #2380

Contributors

	@Bezier89

	@msarahan

3.0.18 (2017-09-14)

Bug fixes

	fix source hash not being verified #2367

	fix several references to arch that should be host_arch to support cross compiling (win-32 on win-64, for example) #2369, #2368

	replace recipe run requirements with contents of index.json’s “depends” when testing packages #2370

	update R and perl versions in DEFAULT_VARIANTS #2373

	fix versioneer showing unknown version on windows due to --match argument #2375

	add subdir to moved work folder dirname, to avoid clobbering when cross compiling #2376

Contributors

	@jjhelmus

	@mingwandroid

	@msarahan

3.0.17 (2017-09-12)

Enhancements

	add track_features and features to output options, to allow per-output configuration of features #2358

Bug fixes

	Fix conda symlinks misbehaving when building conda package #2359

Contributors

	@msarahan

3.0.16 (2017-09-12)

Enhancements

	allow env check to be bypassed when rendering (for c3i) #2353

	provide mechanism for compiler version to be passed to compiler jinja2 function (match name with _version) #2356

Bug fixes

	use host_subdir instead of build_subdir when setting selectors #2345

	remove downloaded files from source cache if they failed at any download step #2349

	fix variants being merged across multiple builds due to modification of global #2350

	disable pyldd disagrees warning output for now #2352

Contributors

	@mingwandroid

	@msarahan

3.0.15 (2017-09-04)

Bug fixes

	fix relative paths for croot argument to CLI; test #2335

	fix several issues with zip_keys #2340

	fix output build number never applying #2340

	fix ensure_matching_hashes for strong/weak run_exports #2340

	fix indexing of channels, especially before testing packages #2341

	copy wheels and unextractable files (.sh) into the workdir with their original, un-hashed filename, for simplicity in working with them. #2343

	avoid attempting to overwrite existing files in the source cache #2343

	avoid unsatisfiable requirement errors by adding .* to specs that lack .* or >/</>=/<= #2344

Contributors

	@gabm

	@msarahan

3.0.14 (2017-08-29)

Bug fixes

	fix config.arch comparison being wrong data type #2325

	fix run_exports handling with dict of lists #2325

	pyldd: disambiguate java .class files from Mach-O fat files (same magic number) #2328

	fix hash regex for downloaded files in src_cache #2330

	fix zip_keys becoming a loop dimension when variants passed as object rather than loaded from file #2333

	fix windows always warning about old compiler activation. Now only warns if {{ compiler() }} is not used. #2333

	Add LD_RUN_PATH back into Linux variables for now (may remove later, but will have deprecation cycle) #2334

Contributors

	@mingwandroid

	@msarahan

	@neok-m4700

3.0.13 (2017-08-26)

Enhancements

	allow output build number and string to be set independently of top-level metadata #2311

	add file hash to source cache filenames to avoid collisions #2312

	add notion of “strong” or “weak” run exports. Strong apply to run whether parent is in build or host. Weak apply only if in host, or in build with no host present. #2320

Bug fixes

	Fix PY3K value changing from 0/1 to True/False. Keep 0/1.

	make work_dir the cwd when running output bundling scripts. It was the host prefix before now.

	start tmpdir prefixes when getting dependency versions with _ so that conda can be one of the deps #2321

	avoid setting empty compiler variables #2322

	remove meaningless error with glob_files and always_include_files during env creation #2323

Contributors

	@msarahan

3.0.12 (2017-08-23)

Enhancements

	update default MACOSX_DEPLOYMENT_TARGET to 10.9 #2293

	modernize pin_depends so that it works with conda render #2294

	environment variable pass-throughs now respect variant (env var highest priority; variant, finally default) #2310

Bug fixes

	fix run_exports getting picked up transitively #2298

	fix default compiler not having platform #2300

	fix CONDA_PY formatting (should not have period). PY_VER does have period. #2304

	update index before testing a package, so that that package is conda-installable. #2308

	update index after moving a package after test failure, so that the index is current. #2308

	fix --output-folder not being respected by --output preview of output path #2309

Contributors

	@mingwandroid

	@msarahan

3.0.11 (2017-08-17)

Enhancements

	set BUILD environment variable (triplet used by cross-compiling) #2285

	respect condarc cache_dir setting for changing the source cache dir location #2278

	run selectors before returning meta.yaml extractions #2284

Bug fixes

	fix CRAN skeleton field truncation with ; characters #2274

	Warn about overlapping files in subpackages within a recipe #2275

	fix --override-channels not taking effect #2277

	fix double-activation on Windows for cross compiling #2280

	fix variant entry duplication with zipped keys #2280

	fix folder hoisting when folder name in archive matches package name #2281

	fix test env showing old cached packages when test env has actually been removed #2282

	fix source code not being present for render when source necessary for render and more than one variant #2283

	fix binary_relocation not allowing lists of files #2288

	fix incorrect python (or none at all) being used for pyc compilation with python only in host reqs #2290

Contributors

	@dsludwig

	@jdblischak

	@jjhelmus

	@mingwandroid

	@msarahan

3.0.10 (2017-08-11)

Enhancements

	Provide variant variables for use in selector expressions #2258

Bug fixes

	fix ordering of recipe elements in skeletonized pypi recipes #2230

	Trim empty variant sections (due to selectors) prior to zipping keys #2258

	Don’t set blank env vars in build scripts #2259

	Fix testing with recipe paths #2262

	add newlines to test scripts #2265

	Fix render command not considering provided channels #2267

	fix get_value being hardcoded to only first entry #2268

	fix setting target (target platform) in output section causing tarcheck validation error #2271

	don’t add setuptools to runtime dependencies in skeletonized pypi recipes (only build) #2272

Contributors

	@chaubold

	@msarahan

	@mwcraig

	@neok-m4700

	@ratstache

	@stuarteberg

3.0.9 (2017-08-02)

Enhancements

	store test files specifed by test/source_files directly in packages. This allows testing of packages that do not include recipes. Recommendation: make subpackages for large data files. #2232

	add new syntax to get_value for accessing list items, such as multiple sources #2247

	add independently configurable source cache path (–cache-dir) #2249

	add PKG_HASH env var, available in meta.yaml. Use this to put the package hash where you want it in your custom build/string field in meta.yaml. #2250

Bug fixes

	Fix test python using incorrect metadata config object, and then using wrong prefix #2226

	Allow testing multiple conda packages or folders at once with wildcard CLI arguments #2227

	Fallback path for ruamel_yaml to ruamel.yaml #2233

	raise exception when both build/script in meta.yaml and build script (build.sh/bld.bat [http://build.sh/bld.bat]) are provided #2238

	Fix unclosed file handle when loading setup.py [http://setup.py] data #2242

	Fix ‘path’ source with multiple source #2247

	improve compatibility with conda 4.4 #2248

	remove hash from manually-specified build/string fields. Use new PKG_HASH env var instead. #2250

	fix windows activate scripts getting included in windows packages #2251

	ignore feature records in index for ‘conda inspect’ #2253

	fix variant handling when variants affect the downloaded source (need re-extract, re-parse with new source at each step) #2254

Contributors

	@Bezier89

	@jjhelmus

	@kalefranz

	@msarahan

	@mandeep

	@mingwandroid

	@stuarteberg

3.0.8 (2017-07-20)

Bug fixes

	Fix internal conda-build recipe to include missing setuptools and not use pip #2221

	Try to avoid downloading anything until we absolutely need it for rendering or build #2222

	Fix regexes that were leading to unsatisfiable dependencies, especially with perl #2222

	Tweak internal recipe to include more git info; adjust regex accordingly for this practice #2223

Contributors

@msarahan

3.0.7 (2017-07-20)

Enhancements

	Rewrite skeleton pypi template; match conda-forge standard #2205

Bug fixes

	Remove entry point links to avoid write-through to root envs #2209

	Properly insert variant versions for x.x in outputs (not just parent recipe) #2210

	Relax version constraints for lua and R in default variant #2213

	fix test of package directly using wrong config object #2214

	Don’t check test env satisfiability when --no-test is passed #2218

	Iron out prefix when noarch as host env. Was creating separate build/host envs inappropriately. #2219

	Fix skipping finalization with finalize=False (for c3i speedup). #2219

	Fix implicit variant looping - wasn’t keeping track of “used variables” that are used implicitly. #2219

Contributors

	@mandeep

	@mwcraig

	@msarahan

3.0.6 (2017-07-14)

Bug fixes

	Find git more intelligently, because build_prefix isn’t always on PATH #2196

	Fix up assorted RPM skeleton issues #2196

	Fix and test “numpy x.x” recipes #2198

	Fix and test --skip-existing. Ensure that it also works with --croot. #2200

	Fix and test “python x.x” recipes #2201

	Fix inappropriate insertion of variant versions that led to conflicts (for example, numpy) #2202

Contributors

	@mingwandroid

	@msarahan

3.0.5 (2017-07-12)

Bug fixes

	Fix --skip-existing (was not matching output-dir/croot locations correctly) #2192

	Fix numpy x.x getting .* appended, resulting in unsatisfiable numpy #2193

Contributors

	@msarahan

3.0.4 (2017-07-11)

Bug fixes

	Don’t symlink conda when building conda (clobbers actual scripts) #2167

	Fix pyldd following links #2170

	Preserve mode bit on noarch python bin/Scripts files #2171

	remove logging output showing up with --output option #2174

	Fix CONDA_* variables without . #2176

	pass croot to extraction (file path length issue on win) #2178

	fix uncorrect unpacking of tuples with --skip-existing #2179

	Fix priority of setup.cfg over setup.py [http://setup.py] #2180

	Remove overly aggressive removal of test prefix at end of test phase #2182

	Fix upper bound increment to account for pre-release versions (alpha, beta, rc, etc.) #2183

Contributors

	@jjhelmus

	@mingwandroid

	@msarahan

3.0.3 (2017-07-07)

Bug fixes

	fix loss of setup.cfg reading due to bad merge #2163

	avoid error when attempting to sort list, and that list consists of dicts #2163

Contributors

	@msarahan

3.0.2 (2017-07-06)

Enhancements

	Add SSL_CERT_FILE and REQUESTS_CA_BUNDLE env vars to passed-through variables #2142

	Sort several package aspects for package reproducibility #2143 #2149 #2154

	Add glob2 dependency to allow recursive globs in fields specifying filenames/paths #2146

	Add conda skeleton rpm for creating recipes to repackage RPMs as conda packages #2147

	Improve error messaging when git describe fails due to lack of annotated tags #2158

Bug fixes

	drop setup.py [http://setup.py] data that is not JSON serializable #2141

	enhance support for recipes containing unicode or non-ascii characters in meta.yaml #2148

	CRAN skeleton: allow some keys to be blank without throwing exceptions #2153

	Fix incorrect arguments passed to pyldd (use keywords) #2160

	fix incorrect distribution of variants when more than one variant key matched #2161

Contributors

	@aburgm

	@dougalsutherland

	@dhirschfeld

	@mandeep

	@MatthieuDartiailh

	@mingwandroid

	@msarahan

	@nehaljwani

2.1.17 (2017-06-30)

Bug fixes

	Fix disable_pip removing packages even when they are explicit dependencies #2129

	Remove any pyc files for entry point scripts that pip may have created #2134

	Ignore unserializable data when reading setup.py [http://setup.py] data #2141

Contributors

	@mandeep

	@msarahan

3.0.1 (2017-06-29)

This release includes all changes to the 2.1.x branch up to and including the 2.1.16 release.

Enhancements

	Raise errors prior to build if any run or test deps are unsatisfiable #2102

	Add skeleton function for RPM packages, to be used for things like Xorg #2109

	Improve test coverage of workdir removal #2111 #2112

	Match variants in conda_build_config.yaml with dep names (implicit jinja2 version spec) #2124

Bug fixes

	fix reference to cc.subdir (it is just subdir) #2015

	fix failing test when using filename_hashing=False (non-existent json file) #2087

	fix dependencies specified to conda-convert not being added #2090

	fix disable_pip removing packages even when they are explicit recipe deps #2129

	fix pin_compatible jinja2 function not respecting lower_bound as None correctly #2138

Contributors

	@jakirkham

	@mandeep

	@mingwandroid

	@msarahan

	@neok-m4700

2.1.16 (2017-06-23)

Enhancements

	add CLI flag and condarc setting to disable --force for anaconda upload #2047

	add doc_source_url to allowed fields in about section #2048

	add a second pass for getting information from setup.py [http://setup.py] that is performed in
the build environment, so that version-specific logic in setup.py [http://setup.py] should work.
#2071

	add semicolons to print statements in test files to avoid errors with Perl. #2012 #2089

	pass through more CPU-specific environment variables on windows #2072

	pass through DISPLAY environment variable on Linux #2098

	Improve conda_interface for better conda 4.4 and later 4.3.x releases #2113

	skeleton pypi & lua: replace legacy noarch syntax with conda 4.3 style #2120

	Restore --keep-old-work flag: works like --dirty to leave your build intermediaries, but does not reuse build folders like --dirty. #2119

	Speed up and fix-up conda-convert #2116 #2123

Bug fixes

	fix test/imports with multiple language entries #1967

	add missing six dependency in conda recipe for conda-build #2063

	fix dependency addition when converting packages #2091

	don’t set build_id in test phase when --no-build-id is given #2100

	fix handling of string literals not being lists in test requirements from setup.py [http://setup.py] #2107

Contributors

	@aburgm

	@AndresGuzman-Ballen

	@gqmelo

	@isuruf

	@kalefranz

	@mandeep

	@mingwandroid

	@msarahan

	@nehaljwani

	@nsoranzo

	@timsnyder

	@vinjana

3.0.0 (2017-05-23)

These release notes are an aggregation of all older pre-releases of conda-build
3.0.0. All changes from 2.1.15 and below have been incorporated.

Breaking changes

	Support for post-build metadata (__conda_version__.txt and the like) has been removed.

	pin_downstream has been renamed to run_exports #1911

	exclude_from_build_hash has been renamed to ignore_version #1911

	Package signing and verification have been removed, to follow their removal from conda 4.3. #1950

Enhancements

	greatly extended Jinja2 templating capabilities #1585

	record environment variables at top of build.sh [http://build.sh], similar to what is done with bld.bat in win. #1765

	use symlinks when copying to improve performance #1867

	load setup.cfg data in load_setup_py_data #1878

	calculate checksum and simplify cran skeleton #1879

	Check that files are executable when finding them #1899

	use rm_rf to remove prefixes for more cleanliness and better speed #1915

	add support for multiple sources in one meta.yaml #1929

	allow exact keyword for pin_compatible jinja2 function #1929

	allow selectors in variant conda_build_config.yaml files #1937

	Avoid duplicate recreation of package index. Speedup of 0-50%, depending on how extensively the recipe uses Jinja2 features. #1954

	Allow per-subpackage specification of target subdir #1961

	Add basic environment marker support to conda skeleton pypi #1984

	allow about section for each subpackage #1987

	add support for optional dependencies (conda 4.4) #2001

	fix windows entry point exe’s for unicode #2045

	allow strings for pin_run_as_build values (e.g. x.x) rather than just dictionaries #2042

	add meta.yaml entry to override run_exports pins #2073

	add several condarc entries that can be used to control conda-build behavior #2074

	add new pyldd tool and use it when ldd/otool fail #2082

	Allow configuration of conda-build’s loggers by logging configuration files. Default to debug,info going to stdout, warn,error going to stderr. #2078

	rename work dir before tests, rather than removing it, so that build intermediates can be inspected if tests fail. #2078

Bug fixes

	fix symlinks to folders in packaging #1775

	fix detection of patch level when maxlevel=0 #1796

	properly copy permissions when extracting zip files #1855

	Add more important Windows environment variables to the test environment #1859, #1863

	remove build and test envs after each packaging step, to avoid unsatisfiable errors #1866

	remove version pins from requirements added by run_test files (again avoid unsatisfiable errors) #1866

	fix prefix file detection picking up too many files due to env recreation #1866

	fix missing r_bin, make run_test.r scripts work #1869

	fix R’s binary path on Windows #1870

	remove tab completion on CLI for compatibility with conda 4.4 #1795

	reduce scope of git try/except block so that GIT_FULL_HASH is available, even if tags are not #1873

	Fix “compiler” jinja2 looping, so that it is respected in subpackages #1874

	Fix license family comparison - case matching #1875

	Fix inspect linkages when multiple packages contain a library #1884

	avoid unnecessary computation of hashing #1888

	fix python imports not being run in test phase #1896

	fix path omission in paths.json for noarch packages #1895

	standardize entry point script template to match pip #1908

	fix cleanup happening even when build fails #1909

	fix bin/conda getting included in conda-build release tarballs #1913

	fix mmap/file problems on virtualbox shared folders #1914

	Correct rendering with --dirty flag if recipe name appears as substring of another’s name #1931

	don’t set language env vars (PERL, R, LUA, PYTHON) when those packages are not installed #1932

	exclude language env vars from variant being set #1944

	Fix cleanup of folders in outer variant loop - was causing incorrect packages on 2nd variant in windows builds #1950

	Remove variant functionality from bdist_conda. Its split packaging approach is incompatible. #1950

	Fix import of _toposort from conda, reroute through conda_interface #1952

	Match folder substrings more intelligently, for finding previous builds with --dirty #1953

	Fix type error with --skip-existing and some conda recipes (Conda-build’s internal conda.recipe was one). #1956

	Fix non-python packages creating python tests where they should not have #1967

	Don’t add python.app to run reqs multiple times #1972

	Fix incorrect removal of cc in conda_interface.py #1971

	Fix ORIGIN replacement - trailing slash was messing things up #1982

	Pipe stdin when calling subprocess, in hopes of getting better ctrl-c handling with conda. #1986

	Ensure that lock files are removed after build exit (or crash) to avoid permission errors on central installs #2002

	Process line endings in bytes mode rather than text mode #2035

	add a warning to find_recipe when multiple meta.yaml files are found (bioconda style) #2040

	When applying patches, try 3 line ending options on the patch: 1. unchanged; 2. convert patch to unix line endings; 3. convert patch to windows line endings. #2052

	fix empty target_platform variant entry leading to empty builds #2056

	fix host activation for cross-capable recipes #2060

	fix handling of circularity in subpackages #2065

	fix subdir handling for subdirs with more than one - character #2066

	Install build and host deps when using cross-capable recipe on strictly native (not cross) build #2070

	reduce verbosity of git error messages that people never care about #2075

	hash only direct inputs of subpackages, rather than all files. This limits creation of identical packages with similar hashes. #2079

Contributors

	@abretaud

	@evhub

	@groutr

	@jjhelmus

	@kalefranz

	@ma-ba

	@mandeep

	@mingwandroid

	@minrk

	@msarahan

	@pkgw

	@pwwang

	@rolando

	@stuarteberg

	@tatome

	@ukoethe

	@waltonseymour

	@wulmer

3.0.0rc1 (2017-05-23)

These release notes are an aggregation of all older pre-releases of conda-build
3.0.0, plus changes since 3.0.0rc0. All changes from 2.1.15 and below have been
incorporated.

Breaking changes

	Support for post-build metadata (__conda_version__.txt and the like) has been removed.

	pin_downstream has been renamed to run_exports #1911

	exclude_from_build_hash has been renamed to ignore_version #1911

	Package signing and verification have been removed, to follow their removal from conda 4.3. #1950

Enhancements

	greatly extended Jinja2 templating capabilities #1585

	record environment variables at top of build.sh [http://build.sh], similar to what is done with bld.bat in win. #1765

	use symlinks when copying to improve performance #1867

	load setup.cfg data in load_setup_py_data #1878

	calculate checksum and simplify cran skeleton #1879

	Check that files are executable when finding them #1899

	use rm_rf to remove prefixes for more cleanliness and better speed #1915

	add support for multiple sources in one meta.yaml #1929

	allow exact keyword for pin_compatible jinja2 function #1929

	allow selectors in variant conda_build_config.yaml files #1937

	Avoid duplicate recreation of package index. Speedup of 0-50%, depending on how extensively the recipe uses Jinja2 features. #1954

	Allow per-subpackage specification of target subdir #1961

	Add basic environment marker support to conda skeleton pypi #1984

	allow about section for each subpackage #1987

	add support for optional dependencies (conda 4.4) #2001

	fix windows entry point exe’s for unicode #2045

	allow strings for pin_run_as_build values (e.g. x.x) rather than just dictionaries #2042

Bug fixes

	fix symlinks to folders in packaging #1775

	fix detection of patch level when maxlevel=0 #1796

	properly copy permissions when extracting zip files #1855

	Add more important Windows environment variables to the test environment #1859, #1863

	remove build and test envs after each packaging step, to avoid unsatisfiable errors #1866

	remove version pins from requirements added by run_test files (again avoid unsatisfiable errors) #1866

	fix prefix file detection picking up too many files due to env recreation #1866

	fix missing r_bin, make run_test.r scripts work #1869

	fix R’s binary path on Windows #1870

	remove tab completion on CLI for compatibility with conda 4.4 #1795

	reduce scope of git try/except block so that GIT_FULL_HASH is available, even if tags are not #1873

	Fix “compiler” jinja2 looping, so that it is respected in subpackages #1874

	Fix license family comparison - case matching #1875

	Fix inspect linkages when multiple packages contain a library #1884

	avoid unnecessary computation of hashing #1888

	fix python imports not being run in test phase #1896

	fix path omission in paths.json for noarch packages #1895

	standardize entry point script template to match pip #1908

	fix cleanup happening even when build fails #1909

	fix bin/conda getting included in conda-build release tarballs #1913

	fix mmap/file problems on virtualbox shared folders #1914

	Correct rendering with --dirty flag if recipe name appears as substring of another’s name #1931

	don’t set language env vars (PERL, R, LUA, PYTHON) when those packages are not installed #1932

	exclude language env vars from variant being set #1944

	Fix cleanup of folders in outer variant loop - was causing incorrect packages on 2nd variant in windows builds #1950

	Remove variant functionality from bdist_conda. Its split packaging approach is incompatible. #1950

	Fix import of _toposort from conda, reroute through conda_interface #1952

	Match folder substrings more intelligently, for finding previous builds with --dirty #1953

	Fix type error with --skip-existing and some conda recipes (Conda-build’s internal conda.recipe was one). #1956

	Fix non-python packages creating python tests where they should not have #1967

	Don’t add python.app to run reqs multiple times #1972

	Fix incorrect removal of cc in conda_interface.py #1971

	Fix ORIGIN replacement - trailing slash was messing things up #1982

	Pipe stdin when calling subprocess, in hopes of getting better ctrl-c handling with conda. #1986

	Ensure that lock files are removed after build exit (or crash) to avoid permission errors on central installs #2002

	Process line endings in bytes mode rather than text mode #2035

	add a warning to find_recipe when multiple meta.yaml files are found (bioconda style) #2040

	When applying patches, try 3 line ending options on the patch: 1. unchanged; 2. convert patch to unix line endings; 3. convert patch to windows line endings. #2052

	fix empty target_platform variant entry leading to empty builds #2056

Contributors

	@abretaud

	@evhub

	@groutr

	@jjhelmus

	@kalefranz

	@ma-ba

	@mandeep

	@mingwandroid

	@minrk

	@msarahan

	@pkgw

	@pwwang

	@rolando

	@stuarteberg

	@tatome

	@ukoethe

	@wulmer

3.0.0rc0 (2017-05-16)

These release notes are an aggregation of all older pre-releases of conda-build 3.0.0, plus changes since 3.0.0beta1. All changes from 2.1.13 and below have been incorporated.

Breaking changes

	Support for post-build metadata (__conda_version__.txt and the like) has been removed.

	pin_downstream has been renamed to run_exports #1911

	exclude_from_build_hash has been renamed to ignore_version #1911

	Package signing and verification have been removed, to follow their removal from conda 4.3. #1950

Enhancements

	greatly extended Jinja2 templating capabilities #1585

	record environment variables at top of build.sh [http://build.sh], similar to what is done with bld.bat in win. #1765

	use symlinks when copying to improve performance #1867

	load setup.cfg data in load_setup_py_data #1878

	calculate checksum and simplify cran skeleton #1879

	Check that files are executable when finding them #1899

	use rm_rf to remove prefixes for more cleanliness and better speed #1915

	add support for multiple sources in one meta.yaml #1929

	allow exact keyword for pin_compatible jinja2 function #1929

	allow selectors in variant conda_build_config.yaml files #1937

	Avoid duplicate recreation of package index. Speedup of 0-50%, depending on how extensively the recipe uses Jinja2 features. #1954

	Allow per-subpackage specification of target subdir #1961

	Add basic environment marker support to conda skeleton pypi #1984

	allow about section for each subpackage #1987

	add support for optional dependencies (conda 4.4) #2001

Bug fixes

	fix symlinks to folders in packaging #1775

	fix detection of patch level when maxlevel=0 #1796

	properly copy permissions when extracting zip files #1855

	Add more important Windows environment variables to the test environment #1859, #1863

	remove build and test envs after each packaging step, to avoid unsatisfiable errors #1866

	remove version pins from requirements added by run_test files (again avoid unsatisfiable errors) #1866

	fix prefix file detection picking up too many files due to env recreation #1866

	fix missing r_bin, make run_test.r scripts work #1869

	fix R’s binary path on Windows #1870

	remove tab completion on CLI for compatibility with conda 4.4 #1795

	reduce scope of git try/except block so that GIT_FULL_HASH is available, even if tags are not #1873

	Fix “compiler” jinja2 looping, so that it is respected in subpackages #1874

	Fix license family comparison - case matching #1875

	Fix inspect linkages when multiple packages contain a library #1884

	avoid unnecessary computation of hashing #1888

	fix python imports not being run in test phase #1896

	fix path omission in paths.json for noarch packages #1895

	standardize entry point script template to match pip #1908

	fix cleanup happening even when build fails #1909

	fix bin/conda getting included in conda-build release tarballs #1913

	fix mmap/file problems on virtualbox shared folders #1914

	Correct rendering with --dirty flag if recipe name appears as substring of another’s name #1931

	don’t set language env vars (PERL, R, LUA, PYTHON) when those packages are not installed #1932

	exclude language env vars from variant being set #1944

	Fix cleanup of folders in outer variant loop - was causing incorrect packages on 2nd variant in windows builds #1950

	Remove variant functionality from bdist_conda. Its split packaging approach is incompatible. #1950

	Fix import of _toposort from conda, reroute through conda_interface #1952

	Match folder substrings more intelligently, for finding previous builds with --dirty #1953

	Fix type error with --skip-existing and some conda recipes (Conda-build’s internal conda.recipe was one). #1956

	Fix non-python packages creating python tests where they should not have #1967

	Don’t add python.app to run reqs multiple times #1972

	Fix incorrect removal of cc in conda_interface.py #1971

	Fix ORIGIN replacement - trailing slash was messing things up #1982

	Pipe stdin when calling subprocess, in hopes of getting better ctrl-c handling with conda. #1986

	Ensure that lock files are removed after build exit (or crash) to avoid permission errors on central installs #2002

Contributors

	@abretaud

	@evhub

	@groutr

	@jjhelmus

	@kalefranz

	@ma-ba

	@mingwandroid

	@msarahan

	@pkgw

	@pwwang

	@stuarteberg

	@tatome

	@ukoethe

	@wulmer

2.1.13 (2017-05-10)

Bug fixes

	fix missing argument to get_site_packages function; add test coverage #2009

	pin codecov on appveyor to 2.0.5 for now #2009

	fix lock removal (just don’t create locks for temporary directories) #2009

Contributors

	@msarahan

2.1.12 (2017-05-09)

Bug fixes

	Clean up lock files for temporary directories also

Contributors

	@msarahan

2.1.11 (2017-05-09)

Enhancements

	add libgcc to build dependencies for R skeleton recipes that require compilation $1969

Bug fixes

	fix entry points, test commands, test imports from top-level recipe from applying to subpackages #1933

	fix preferred_env in index.json #1941

	do not add python.app to run_reqs multiple times #1981

	Fix $ORIGIN replacement from extra trailing slash #1981

	Remove error when _license package exists in folder where conda index is called #2005

	fix STDLIB_DIR so that it is always defined (based on python version in configuration) #2006

	Clean up lock files after builds complete or fail to avoid permission errors #2007

Contributors

	@johanneskoester

	@kalefranz

	@mingwandroid

	@msarahan

3.0.0beta1 (2017-04-25)

Breaking changes

	Package signing and verification have been removed, to follow their removal from conda 4.3. #1950

Enhancements

	Avoid duplicate recreation of package index. Speedup of 0-50%, depending on how extensively the recipe uses Jinja2 features. #1954

Bug fixes

	Fix cleanup of folders in outer variant loop - was causing incorrect packages on 2nd variant in windows builds #1950

	Remove variant functionality from bdist_conda. Its split packaging approach is incompatible. #1950

	Fix import of _toposort from conda, reroute through conda_interface #1952

	Match folder substrings more intelligently, for finding previous builds with --dirty #1953

	Fix type error with --skip-existing and some conda recipes (Conda-build’s internal conda.recipe was one). #1956

Contributors

	@kalefranz

	@msarahan

	@rendinam

3.0.0beta0 (2017-04-20)

Breaking changes

	pin_downstream has been renamed to run_exports #1911

	exclude_from_build_hash has been renamed to ignore_version #1911

Enhancements

	use rm_rf to remove prefixes for more cleanliness and better speed #1915

	add support for multiple sources in one meta.yaml #1929

	allow exact keyword for pin_compatible jinja2 function #1929

	allow selectors in variant conda_build_config.yaml files #1937

Bug fixes

	fix mmap/file problems on virtualbox shared folders #1914

	Correct rendering with --dirty flag if recipe name appears as substring of another’s name #1931

	don’t set language env vars (PERL, R, LUA, PYTHON) when those packages are not installed #1932

	exclude language env vars from variant being set #1944

Contributors

	@mingwandroid

	@msarahan

	@rendinam

2.1.10 (2017-04-17)

Enhancements

	Inspect linkages will now warn when multiple packages contain the same library #1884, #1921

Bug fixes

	Fix bin/conda getting included in packages that also had entry point scripts or binaries starting with ‘conda’ #1923

	Fix empty create_env, for compatibility with conda 4.4 #1924

	Adapt to Conda’s new MatchSpec implementation #1927

	Fix unbound local variables when --no-locking option used. #1928

	Don’t set language env vars (PERL, R, LUA, etc.) when packages for those languages are not installed #1930

Contributors

	@jjhelmus

	@kalefranz

	@msarahan

3.0.0alpha2 (2017-04-05)

Breaking changes

	Support for post-build metadata (__conda_version__.txt and the like) has been removed.

Enhancements

	use symlinks when copying to improve performance #1867

	load setup.cfg data in load_setup_py_data #1878

	calculate checksum and simplify cran skeleton #1879

Bug fixes

	fix R’s binary path on Windows #1870

	remove tab completion on CLI for compatibility with conda 4.4 #1795

	reduce scope of git try/except block so that GIT_FULL_HASH is available, even if tags are not #1873

	Fix “compiler” jinja2 looping, so that it is respected in subpackages #1874

	Fix license family comparison - case matching #1875

	Fix inspect linkages when multiple packages contain a library #1884

	avoid unnecessary computation of hashing #1888

	fix python imports not being run in test phase #1896

	fix path omission in paths.json for noarch packages #1895

Contributors

	@abretaud

	@groutr

	@jjhelmus

	@kalefranz

	@ma-ba

	@mingwandroid

	@msarahan

2.1.9 (2017-04-04)

Enhancements

	calculate checksum and simplify cran skeleton #1879

	backport usage of symlinks for speed from master branch #1881

Bug fixes

	fix import tests not being run, test this functionality #1897

Contributors

	@isuruf

	@jjhelmus

	@johanneskoester

	@msarahan

2.1.8 (2017-03-24)

Enhancements

	use symlinks when copying files from files sources to improve performance #1867

Bug fixes

	reset build folder for each built package (fixes building multiple recipes in one command) #1842

	wrap copy of test/source_files so that errors don’t prevent a successful build #1843

	Restore permissions when extracting from zipfiles #1855

	pass through several Windows-specific environment variables #1859, #1862

	python 2 os.environ string type compatibility fix #1861

	fix indentation breaking perl package testing #1872

	reduce scope of git try/except block so that GIT_FULL_HASH is available even if tags are not. #1873

	fix license family comparison, especially for public-domain #1875

	Remove python header being added to all run_test.* files #1876

Contributors

	@abretaud

	@jjhelmus

	@mingwandroid

	@msarahan

	@stuertz

	@wulmer

3.0.0alpha1 (2017-03-23)

Bug fixes

	remove build and test envs after each packaging step, to avoid unsatisfiable errors #1866

	remove version pins from requirements added by run_test files (again avoid unsatisfiable errors) #1866

	fix prefix file detection picking up too many files due to env recreation #1866

	fix missing r_bin, make run_test.r scripts work #1869

Contributors

	@msarahan

3.0.0alpha0 (2017-03-22)

This is a complete revolution in the dynamic rendering capabilities of conda-build. More information is in the docs PR at https://github.com/conda/conda-docs/pull/414. There will be a blog post soon, perhaps coupled with a screencast.

Enhancements

	greatly extended Jinja2 templating capabilities #1585

	record environment variables at top of build.sh [http://build.sh], similar to what is done with bld.bat in win. #1765

Bug fixes

	fix symlinks to folders in packaging #1775

	fix detection of patch level when maxlevel=0 #1796

	properly copy permissions when extracting zip files #1855

	Add more important Windows environment variables to the test environment #1859, #1863

Contributors

	@jjhelmus

	@kalefranz

	@mingwandroid

	@msarahan

	@pkgw

	@stuarteberg

	@ukoethe

	@wulmer

2.1.7 (2017-03-14)

Enhancements

	pass WINDIR env var through on Windows #1837

	make long test prefix an option (default disabled) #1838

Bug fixes

	monkeypatch ensure_use_local to avoid conda-build import clobbering conda CLI arguments #1834

	Fix context conda_build attr error with older conda #1813

	Fix legacy noarch shebang replacement code to account for long prefix paths #1813

	properly initialize ‘system’ key in linkage inspecting #1839

	backport try mmap from master #1764

	fix wheel output not respecting --output-folder CLI argument #1838

	catch csv dialect sniffing error, try to fallback to to excel_tab. Might work? #1840

Contributors

	@kalefranz

	@mcs07

	@msarahan

2.1.6 (2017-03-08)

Enhancements

	tests on linux/mac now use 255-character prefix when creating test environment #1799

	allow test/imports for R and lua packages #1806

Bug fixes

	Fix case comparison in license_family.py #1761

	Fix symlinked folders not being included in packages #1770

	Fix extraction of tarballs containing unicode filenames #1779, #1804

	fix unicode in delimiter for noarch py_file_map #1789

	Clean up conda interface #1791

	Confine conda-build 2.1.x to conda >4.1,<=4.3 #1792

	fix detection of patch strip level when maxlevel = 0 #1796

	fix attribute error in exception handling for missing dependencies #1800

	fix osx python_app test for python 3.6 #1801

	don’t die when unicode found in patch files #1802

	clarify error messaging when git is not found #1803

	fix shebangs in entry point scripts using legacy noarch_python #1806

	fix test environment variables being set to build prefix values #1806

	fix inspect linkages breaking due to conda index keys changing to different objects in conda 4.3 #1810

Contributors

	@gbrener

	@kalefranz

	@msarahan

	@pkgw

	@stuertz

2.1.5 (2017-02-20)

Enhancements

	don’t crash on unknown selector. Warn, but evaluate as False. #1753

	allow default conda packaging behavior for split package whose name matches top-level name, but lacks both files and script entry. #1758

Bug fixes

	unify license family text with Anaconda-Verify #1744

	apply post-processing to each split package, not just to post-build prefix files. #1747

	provide fallback lock directory in user’s home folder. Allows central installs. #1749

	fix quoting for test paths. Allows croot with spaces. #1750

	fix pypi skeleton recursion #1754

	fix assertion error about leading period when Jinja2 variables have default values #1757

	set default twine target to pypitest to avoid accidental uploads #1758

Contributors

	@gabm

	@msarahan

2.1.4 (2017-02-07)

Enhancements

	Allow relative paths for --croot option #1736

Bug fixes

	Rename package_metadata.json file to link.json to more accurately reflect contents #1720

	Fix converted packages from unix to Windows having broken entry points #1721

	Fix an infinite loop when creating the test environment failed #1739

	Fix conda 4.3 incompatibility with --pin-depends option #1740

Contributors

	@gabm

	@kalefranze

	@msarahan

2.1.3 (2017-01-31)

Enhancements

	Add --extra-specs to conda skeleton. Use when a package needs to be available in the temporary env that parses setup.py [http://setup.py] to make the skeleton. #1697

	Allow wheels as a source format #1700

	Allow github urls as CRAN skeleton sources #1710

Bug fixes

	exclude package/name field from uses_vcs_in_{meta,build} checks #1696

	Fix conda convert wrt info/paths.json (for conda 4.3 compatibility) #1701

	update cpan skeleton to use newer API url, fix conda exception handling #1704

	update R default version to 3.3.2 #1707

	fix attribute error on exception handling (better fix on the way) #1709

	fix bundle_conda removing project files when conda recipe was in the source tree, and utilized relative paths #1715

	fix glob trying to interpret filenames that look like glob patterns #1717

Contributors

	@ElliotJH

	@jerowe

	@kalefranz

	@mingwandroid

	@minrk

	@msarahan

	@rainwoodman

2.1.2 (2017-01-20)

Enhancements

	iron out compatibility with conda 4.3 #1667

	pytest improvements for a cleaner CI experience #1686 #1687

Bug fixes

	Avoid trailing semicolon in MSYS2_ARG_CONV_EXCL variable setting #1651

	filter .git directories more strictly (keep x.git folders, not .git) #1657

	fix 404’s killing CPAN skeleton with newer conda versions #1667

	use pythonw to run tests on OSX when osx_is_app is defined in meta.yaml #1669

	ignore obnoxious .DS_Store files when packaging #1670

	fix --source argument to download source specified in meta.yaml #1671

	fix slashes in file prefix replacement on Windows #1680

	fix multiple source url fallbacks (handle CondaHTTPErrors) #1683

	fix bizarre encoding errors on Windows with projects that embed binary in setup files #1685

	fix CPAN JSON file encoding issue on windows #1688

	revise retry when conda is missing files from a package #1690

Contributors

	@dfroger

	@kalefranz

	@mingwandroid

	@msarahan

	@nicoddemus

	@pkgw

2.1.1 (2017-01-12)

Bug fixes

	Fix package conversion consistency, wrt entry points #1609

	Fix about.json contents regarding development versions of conda/conda-build #1625

	Fix Appveyor for testing against source branches of conda #1628

	Raise exception when SRC_DIR is used in tests, but meta.yaml has no test/source_files entry. SRC_DIR points at test work folder at test time, for minimal needed changes to recipes - just add test/source_files entry with desired files. #1630

	Fix features list not allowed to be None in bdist_conda #1636

	Fix undefined reference to locks in copy_into #1637

	Fix version comparison in cpan skeleton #1638

	Add dependency on beautifulsoup4 and chardet to better support strangely encoded text files. #1641

	Fix not-yet-fully-rendered versions starting with . from raising exception #1644

	Consolidate _check_call and check_call_env in utils. Fix coercion to string that was missing in latter. #1645

Contributors

	@gomyhr

	@jakirkham

	@kalefranz

	@msarahan

2.1.0 (2017-01-02)

(includes changes since 2.0.12, including those already listed under 2.1.0beta1)

Enhancements

	Consolidate package metadata from extra.json and noarch.json into package_metadata.json #1535 #1539

	finalize paths.json, (formerly files.json), which supersedes the older separate files for tracking file data #1535

	Support output of multiple packages from one recipe #1576

	Support output of wheels #1576

	Add --prefix-length to conda-build. This allows one to set the prefix length manually. It should be used sparingly, preferring creation of a temporary folder on non-encrypted locations, and setting --croot to that temporary folder. #1579

	Add --no-prefix-length-fallback option to conda-build, to fail builds that encounter short prefixes, rather than falling back to the short prefix #1579

	Change CRAN-skeleton to follow conda-forge style #1596

	Allow relative paths to files in source/url field #1614

Bug fixes

	Rework locks to be more robust #1540

	Call make_hardlink_copy on Windows to prevent conda failures #1575

	Delete the work folder before running the test suite. Exposes faulty links to source files more easily. #1581

	Add support for Python 3.6 in selector expressions #1592

	Don’t try to compile pyc files when python is not installed in the build env #1593

	Fix a function call leading to corrupted meta.yaml output #1589

	Fix logger to be package-local. Fixes logger output not showing up. #1583

	Disallow leading periods in package version #1594

	Fix reference to undefined need_source_download #1595

	Disallow - in feature names, to avoid conflicts with conda’s handling of package names #1600

	Remove help text about passing multiple --python options or “all” - this has been broken for some time. Replacement coming in 3.0.0. #1610

	Fix clobbering of no_link variable. #1611

	Fix index when --output-folder is specified #1613

	Fix python_d.exe incompatibility with conda 4.3 #1615

Contributors

	@asmeurer

	@hajs

	@johanneskoester

	@kalefranz

	@mingwandroid

	@msarahan

	@mwiebe

	@soapy1

2.1.0beta1 (2016-12-20)

Enhancements

	Consolidate package metadata from extra.json and noarch.json into package_metadata.json #1535 #1539

	finalize paths.json, (formerly files.json), which supersedes the older separate files for tracking file data #1535

	Support output of multiple packages from one recipe #1576

	Support output of wheels #1576

	Add --prefix-length to conda-build. This allows one to set the prefix length manually. It should be used sparingly, preferring creation of a temporary folder on non-encrypted locations, and setting --croot to that temporary folder. #1579

	Add --no-prefix-length-fallback option to conda-build, to fail builds that encounter short prefixes, rather than falling back to the short prefix #1579

	Change CRAN-skeleton to follow conda-forge style #1596

Bug fixes

	Rework locks to be more robust #1540

	Call make_hardlink_copy on Windows to prevent conda failures #1575

	Delete the work folder before running the test suite. Exposes faulty links to source files more easily. #1581

	Add support for Python 3.6 in selector expressions #1592

	Don’t try to compile pyc files when python is not installed in the build env #1593

	Fix a function call leading to corrupted meta.yaml output #1589

	Fix logger to be package-local. Fixes logger output not showing up. #1583

	Disallow leading periods in package version #1594

	Fix reference to undefined need_source_download #1595

	Disallow - in feature names, to avoid conflicts with conda’s handling of package names #1600

Contributors

	@asmeurer

	@hajs

	@johanneskoester

	@kalefranz

	@mingwandroid

	@msarahan

	@mwiebe

	@soapy1

2.0.12 (2016-12-12)

Enhancements

	Whitelist, rather than hardcode, MACOSX_DEPLOYMENT_TARGET. Default to 10.7 #1561

	Allow local relative paths to be passed as channel arguments #1565

Bug fixes

	Keep CONDA_PATH_BACKUP as allowed variable in build/test env activation. Necessary to make deactivation work correctly. #1560

	Define nomkl selector when FEATURE_NOMKL environment variable is not set #1562

	Move test removal of packaged recipe until after test completes #1563

	Allow source_files in recognized meta.yaml fields #1572

Contributors

	@jakirkham

	@mingwandroid

	@msarahan

2.0.11 (2016-11-28)

Enhancements

	Further develop and update files.json #1501

	New command line option: --output-folder allows moving artifact after build (to facilitate CI) #1538

	support globs in ignore_prefix_files, has_prefix_files, always_include_files, binary_has_prefix_files #1554

	decouple ignore_prefix_files from binary_relocation; make binary_relocation also accept a list of files or globs #1555

Bug fixes

	rename short_path key in files.json to path #1501

	allow ! in package version (used in epoch) #1542

	don’t compute SHA256 for folders #1544

	fix merge check for dst starting with src #1546

	use normpath when comparing utils.relative (fixes git clone issue) #1547

	disallow softlinks for conda (>=v.4.2) in conda-build created environments #1548

Contributors

	@mingwandroid

	@msarahan

	@soapy1

2.0.10 (2016-11-14)

Bug fixes

	Fix backwards incompatibility with conda 4.1 #1528

Contributors

	@msarahan

2.0.9 (2016-11-11)

Enhancements

	break build string construction out into standalone function for external usage (Concourse CI project) #1513

	add conda-verify support. Defaults to enabled. Adds conda-verify as runtime requirement.

	

Bug fixes

	handle creation of intermediate folders when filenames provided as build/source_files arguments #1511

	Fix passing of version argument to pypi skeleton arguments #1516

	break symlinks and copy files if symlinks point to executable outside of same path (fix RPATH misbehavior on linux/mac, because ld.so [http://ld.so] follows symlinks) #1521

	specify conda executable name more specifically when getting about.json info. It was not being found in some cases without the file extension. #1525

Contributors

	@jhprinz

	@msarahan

	@soapy1

2.0.8 (2016-11-03)

Enhancements

	Support otool -h changes in MacOS 10.12 #1479

	Fix lists of empty strings created by ensure_list (patches failing due to empty patch list) #1493

	Improved logic to guess the appropriate license_family to add to package’s index. This improves filtering. #1495 #1503

	Logic for the license_family is now shared between open-source conda-build, and proprietary cas-mirror packages. #1495 #1503

Bug fixes

	Centralize locks in memory to avoid lock timeouts within a single process #1496

	fix overly broad regex in detecting whether a recipe uses version control systems #1498

	clarify error message when extracting egg fails due to overlapping file names #1500

	fix regression where subdir was not respecting non-x86 arch (values other than 32 or 64) #1506

Contributors

	@caseyclements

	@minrk

	@msarahan

2.0.7 (2016-10-24)

Enhancements

	populate SHLIB_EXT environment variable. For example, .so, .dll, .dylib file extensions use this for their native ending. #1478

Bug fixes

	fix metapackage not going through api, thus not showing output file path. #1470

	restore script exe creation on Windows. These are for standalone scripts installed by distutils or setuptools in setup.py [http://setup.py]. #1471

	fix noarch value propagation from meta.yaml to config. Was causing noarch to not be respected in some cases. #1472

	fix calls to subprocess not converting unicode to str #1473

	restore detect_binary_files_with_prefix behavior - in particular, respect it when false. # 1477

Contributors

	@jschueller

	@mingwandroid

	@msarahan

2.0.6 (2016-10-13)

Bug fixes

	fix erroneous import that was only compatible with conda 4.2.x #1460

Contributors

	@msarahan

2.0.5 (2016-10-13)

Enhancements

	Add new jinja function for extracting information from files with regular expressions #1443

Bug fixes

	Quote paths in activation of build and test envs #1448

	Fix source re-copy (leading to IOError) with test as a separate step #1452

	Call conda with an absolute path when gathering metadata for package about.json #1455

	Don’t strictly require conda-env to be present for about.json data #1455

	Fix version argument to skeletons not being respected #1456

	Fix infinite recursion when missing dependency is either r or python #1458

Contributors

	@bryanwweber

	@msarahan

2.0.4 (2016-10-07)

Enhancements

	Add build/skip_compile_pyc meta.yaml option. Use to skip compilation on pyc files listed therein. #1169

	Add build environment metadata to about.json (conda, conda-build versions, channels, root pkgs) #1407

	Make subdir member of config a derived property, so that setting platform or bits is more direct #1427

	Use subprocess call to windows del function to clear .trash folder, rather than conda. Big speedup. #1438

Bug fixes

	fix regression regarding ‘config’ in pypi skeleton for recipes with entry points #1430

	don’t load setup.py [http://setup.py] data when considering entry points (use only info from meta.yaml) #1431

	fall back to trying to copy files without attributes or metadata if those fail #1436

	Fix permissions on packaged files to be user and group writable, and other readable. #1437

	fix conda develop not respecting python version of target environment #1440

Contributors

	@mingwandroid

	@msarahan

2.0.3 (2016-09-27)

Enhancements

	add support for noarch: python #1366

Bug fixes

	convert popen args to bytestrings if unicode #1413

	Fix perl file access error on win skeleton cpan #1414

	Catch patchelf failures in post #1418

	fix path walking in get_ext_files #1422

Contributors

	@mingwandroid

	@msarahan

	@soapy1

2.0.2 (2016-09-27)

Enhancements

	Consider all recipes when printing output paths with --output #1332

	Lay groundwork for noarch packages with different types allowed (not just noarch_python) #1334

	Improve setting RPATH on Linux - handle relative paths better #1336

	Add GPL as a license family #1340

	Skip fixing rpath for files listed in ignore_prefix_files #1345

	Uniformly use conda’s rm_rf function, not move_to_trash #1355

	Add support for alternate PKGINFO files. Adds pkginfo dependency. #1353

	Add --croot argument to conda build CLI, to specify build root folder #1358

	Do not index pkgs folder #1381 #1388

	Assert that merge destination is not a subdir of source, to avoid recursion problems #1396

	add UUID to token upload test to avoid race condition that caused intermittent CI failure #1392

	Roll source.get_dir into config.work_dir, to avoid confusion. #1400

	Improve locking in several places #1405 #1408

Bug fixes

	Fix guess_license_family to have LGPL -> LGPL, not public domain #1336

	Restore standard behavior with __pycache__ folder and pyc files #1333

	Fix pyver_re to not catch python-* packages #1342

	Fix erroneous file argument to logging call #1344

	Fix convert unix -> win not creating entry point py scripts #1348

	Remove pytest timeout for tests. It is responsible for intermittent CI test crashes. #1351

	Fix retrieval of CONDA_NPY setting (only --numpy flag was being respected) #1356

	Fix --no-build-id argument to conda build that was note being respected #1359

	Fix handling of recipe folder specifications coming out blank or . #1360 #1391

	Handle conda 4.2 exceptions better for LinkErrors and PaddingErrors, better support OpenSSL custom prefix replacement #1362

	Fix indentation error leading to skip-existing not working #1364

	Fix skeletonize not passing arguments from CLI #1384 #1387 #1406

	Check if file exists before trying to use stat on it. Might avoid mmap errors. #1389

	Fix no include recipe option when input is metadata (as opposed to recipe file path) #1398

	Normalize slashes in examining files in tarfiles (always forward slashes) #1404

Contributors

	@gabm

	@jakirkham

	@johanneskoester

	@mingwandroid

	@msarahan

	@mwcraig

	@soapy1

	@sooneecheah

	@yoavram

2.0.1 (2016-09-06)

Enhancements

	Add disable_pip build option to disable conda’s automatic add of pip/setuptools #1311

	Add numpy to pypi env creation if it is imported in setup.py [http://setup.py] #1289

	Improve compatibility with conda >=4.2 regarding prefixes that are too short #1323

	Delete .pyo files prior to compiling pyc files. They are considered harmful. #1328

	Add conda build purge-all command that cleans out built packages and build folders #1329

Bug fixes

	Use source.get_dir instead of config.workdir for source_files (was one level too low) #1288

	Import setuptools in windows.py [http://windows.py] to apply vc9-finding monkeypatch #1290

	Fix convert not updating subdir in index.json #1297

	Update post-build deprecation warning to state 3.0 as release for removal #1298

	Create pkgs folder if it does not exist #1299

	Fix warn_on_old_conda_build to ignore non-final release versions (alpha/beta/rc) #1303 #1315

	Remove coercion of pycache folder into flat pyc files #1304

	Fix metadata retrieval in bdist_conda #1308

	Add supplemental removal of cached packages when conda does not fully remove them #1309

	Simplify updating the package index #1309

	Straighten out when metadata member config is used, relative to config argument #1311

	Catch prefix length errors with OpenSSL’s custom prefix replacement program #1312

	Replace all colons with _ in git mirror folders to avoid Windows path errors #1322

	Fix missing file contents in converted packages. Test. #1325

Contributors

	jakirkham

	mingwandroid

	msarahan

2.0.0 (2016-08-29)

Notes here are a consolidation of all changes between 1.21.14 and 2.0.0.

Enhancements

	Increase placeholder path to 255 bytes (affects only Linux/Mac. Packages need to be rebuilt to support longer embedded paths) #877

	Configuration is local, passed via config argument. No more global config. #953

	Created Python API in conda_build/api.py #953

	Separate build folders per-build to allow parallelism #953

	Add locking to allow safe parallelism #953

	Add build flag to turn off separate build folders (–no-build-id) #953

	Much greater test coverage across all modules #953

	Add CONDA_BUILD_STATE variable that reflects RENDER, BUILD, or TEST state of build #1232

	Add support for HG_ variables in meta.yaml templates (for hg repos) #207 #1234

	Add source_files test argument in meta.yaml to copy files from source into test #1237

	add a numpy.distutils patch to jinja templating, so that fortran projects using numpy can also use jinja2 (thanks @bladwig1) #1252

	Ensure that the build environment is on PATH during all tooling and testing #1256

	Make failure due to pip requirements in meta.yaml clearer #1279

	Allow API to accept either paths to meta.yaml files or MetaData objects, for better compatibility #1281

	Implement tests to verify api stability #1283

	Add build/noarch to recipe metadata. Use for truly platform independent packages - same folder in every install. #1285

Bug fixes

	Fix error converting linux to win packages due to python version mismatch #481

	Fix infinite loop that occurred with circular dependencies being built #953

	Improve test data structures to allow profiling with pytest-profiling #953

	Fix version sorting in pypi skeleton generator #1238

	improve backwards compatibility* prefix build and test envs with _, so that conda can be installed in them #1242

	fix bdist_conda; add smoke test for it to Travis #1243

	fix windows entry points (duplicate bad logic) #1246

	fix inspect entry point in embedded conda.recipe #1251

	create build environment before looking for VCS in it. #1253

	fix a deadlock with recursive environment creation on encountering packages with short prefixes #1257

	with conda commands #1259

	only compile pyc files if python is in the build prefix # 1261

	remove exception catch-all in build CLI, to show actual errors more #1262

	specify full paths to activate scripts to avoid PATH conflicts with virtualenv #1266

	clean up remnants of pipbuild #1267

	remove pyc files from any source_files arguments to test in meta.yaml (avoid __file__ errors) #1272

	copy files and folders when breaking hardlinks (rather than renaming) to avoid cross-filesystem errors #1273

	add Scripts folder to prepended binary paths searched on Windows #1276

	update MACOSX_DEPLOYMENT_TARGET hard-coded value to 10.7 (better fix soon) #1278

	disallow backslashes in meta.yaml fields describing paths (e.g. always_include_files) #1280

	prevent GIT_* env vars from containing newlines #1282

	restore prefix-lengths inspect command (lost in merging) #1283

Restructuring

	CLI scripts have been gutted and moved to conda_build/cli. Content from them is in
conda_build, in scripts without main_ prefix. #953

	Skeleton generators have been broken out of main_skeleton.py, and consolidated into
conda_build/skeletons. The contents of this folder are examined at runtime for pluggability. #953

Contributors

	@bladwig1

	@brentp

	@heather999

	@jakirkham

	@mingwandroid

	@msarahan

	@melund

	@pigmej

Testers

	@dsludwig

	@ericdill

	@jakirkham

	@mingwandroid

	@pitrou

	@srossross

2.0.0beta4 (2016-08-26)

Bug fixes

	improve backwards compatibility with conda commands #1259

	only compile pyc files if python is in the build prefix # 1261

	remove exception catch-all in build CLI, to show actual errors more #1262

	specify full paths to activate scripts to avoid PATH conflicts with virtualenv #1266

	clean up remnants of pipbuild #1267

	remove pyc files from any source_files arguments to test in meta.yaml (avoid __file__ errors) #1272

	copy files and folders when breaking hardlinks (rather than renaming) to avoid cross-filesystem errors #1273

	add Scripts folder to prepended binary paths searched on Windows #1276

	update MACOSX_DEPLOYMENT_TARGET hard-coded value to 10.7 (better fix soon) #1278

Contributors

	@dsludwig (testing)

	@ericdill (testing)

	@jakirkham (testing)

	@mingwandroid (testing)

	@msarahan

	@pitrou (testing)

	@srossross (testing)

2.0.0beta3 (2016-08-23)

Enhancements

	add a numpy.distutils patch to jinja templating, so that fortran projects using numpy can also use jinja2 (thanks @bladwig1) #1252

Bug fixes

	prefix build and test envs with _, so that conda can be installed in them #1242

	fix bdist_conda; add smoke test for it to Travis #1243

	fix windows entry points (duplicate bad logic) #1246

	fix inspect entry point in embedded conda.recipe #1251

	create build environment before looking for VCS in it. #1253

	fix a deadlock with recursive environment creation on encountering packages with short prefixes #1257

Contributors

	@bladwig1

	@ericdill (testing)

	@jakirkham

	@mingwandroid (testing)

	@msarahan

2.0.0beta2 (2016-08-22)

This release includes all current (1.21.14) changes made to the 1.21.x series.

Enhancements

	Configuration is local, passed via config argument. No more global config. #953

	Created Python API in conda_build/api.py #953

	Separate build folders per-build to allow parallelism #953

	Add locking to allow safe parallelism #953

	Add build flag to turn off separate build folders (–no-build-id) #953

	Much greater test coverage across all modules #953

	Add CONDA_BUILD_STATE variable that reflects RENDER, BUILD, or TEST state of build #1232

	Add support for HG_ variables in meta.yaml templates (for hg repos) #207 #1234

	Add source_files test argument in meta.yaml to copy files from source into test #1237

Bug fixes

	Fix error converting linux to win packages due to python version mismatch #481

	Fix infinite loop that occurred with circular dependencies being built #953

	Improve test data structures to allow profiling with pytest-profiling #953

	Fix version sorting in pypi skeleton generator #1238

Restructuring

	CLI scripts have been gutted and moved to conda_build/cli. Content from them is in
conda_build, in scripts without main_ prefix. #953

	Skeleton generators have been broken out of main_skeleton.py, and consolidated into
conda_build/skeletons. The contents of this folder are examined at runtime for pluggability. #953

Contributors

	@melund

	@msarahan

	@pigmej

1.21.14 (2016-08-18)

Bug fixes

	fix pyc compilation when egg files/folders are present #1225

Contributors

	@msarahan

1.21.13 (2016-08-18)

Enhancements

	use git -am when applying git patches, so that patches better retain git history #1222

	allow relatively pathed git submodules #1222

	add guess_license_family to pypi skeleton generator #1222

Bug fixes

	fix typo in convert.py [http://convert.py]

Contributors

	@mingwandroid

	@msarahan

1.21.12 (2016-08-17)

Enhancements

	Whitelist the CPU_COUNT environment variable. #1149

	Add tool for examining prefix length in existing packages #1195

	Add a conda interface layer for better compatibility with conda 4.2 #1200 #1203 #1206

	Document how to run tests #1205

	Update default versions for R (3.3.1) and Perl (5.20.3) builds #1220

Bug fixes

	Don’t compile .py files in executable locations. Compile one at a time. #1186

	Don’t force download if vcs is used as a source #1212

	Break hardlinks as a post-install step. Hard links can cause problems at package install time. #1215

	Make environment variables used by conda in environment creation always be bytestrings #1216 #1219

Contributors

	@jakirkham

	@kalefranz

	@msarahan

1.21.11 (2016-08-06)

Bug fixes

	Correct logic for printout of meta.dist determination #1174

	Attempt to use src_dir instead of WORK_DIR for directory creation #1175

	Fix escaping problem with PY_VCRUNTIME_REDIST setting #1172

	Set build prefix for win by path, not name #1172

	Quote INCLUDE and LIB env var settings for win better #1172

	Fix pypi skeleton package search #1181

Contributors

	@msarahan

	@pelson

1.21.10 (2016-08-02)

Bug fixes

	Compile files ending with .py, not py. #1163

	Move root logger to entry points, to not interfere with conda #1164 #1166

	Use setuptools entry points, rather than pre-defined scripts #1165

	Always use the long build prefix to avoid confusion #1168

Contributors

	@mingwandroid

	@msarahan

1.21.9 (2016-08-01)

Bug fixes

	Add debug option that shows conda output during build. Hide output otherwise. #1159

	Add regression test for conda metapackage command, fix missing token and user args. #1160

	Create croot (conda-bld) folder if missing before locking in render and skeleton. #1161

Contributors

	@msarahan

1.21.8 (2016-07-31)

Bug fixes

	Fix --source argument to build - was building when should only download source. #1152

	Don’t try to create work folder when it exists (but is empty) #1153

	Fix a logic error with need_source_download not existing #1148

New Things

	Don’t exit on compileall failure #1146

	Add CONDA_BUILD_RENDERING environment variable that is set during recipe rendering #1154

	Change pyc compilation to only affect files that would be packaged (not all of site-packages). Compile pyc files on py3. #1155

	Rename load_setuptools to load_setup_py_data (keep load_setuptools for compat; but show warning) #1156

	Test that condarc channels are respected in build #1157

Contributors

	@daler

	@minrk

	@msarahan

1.21.7 (2016-07-22)

Bug fixes

	Add test of requirements.txt parsing for runtime requirements #1127

	Set PY_VCRUNTIME_REDIST for VS 2015+, so that DLL linkage is used #1129

	Use os.path.normpath in find_lib #1132

	Fix path prepending in test (use only PATH, and use consolidated code) #1135

	Add dist split for channel names #1136

	Provide fallback path to render recipe when build environment is necessary for rendering #1140

	Sort package versions coming from PyPI for skeleton #1141

Contributors

	@mingwandroid

	@msarahan

1.21.6 (2016-07-14)

New Things

	Allow pass-through of setup.py [http://setup.py] options in conda skeleton pypi #680

	Allow specification of pinning numpy in conda skeleton pypi #680

	Support PEP420 namespace packages (don’t barf on existing folders.) Do barf on existing files. #1074

Bug fixes

	Fix handling of quotes in selectors #1104

	Fix load_setuptools in jinja context. Problem was incorrect cwd in function. #1106

	Make Win activate script file extensions explicit #1107

	Warn users on failed git repo info failure, rather than crash #1108

	Remove killing MSBuild.exe at end of win build. Remove psutil dependency. #1109

	Prepend PATH before creating env, to ensure post-link script success. #1115, #1118

	Make Python tests drop out on failure appropiately on win #1122

	Make hyphenation consistent with include_recipe in meta.yaml #1124

	Use full path of test env when activating #1125

Contributors

	@ikalev

	@msarahan

	@mwcraig

1.21.5 (2016-07-07)

Bug fixes

	Make --skip-existing respect remote channels (s3, file, anaconda.org [http://anaconda.org]) #1102

	Reduce always_include_files glob fail exit to a warning #1101

	Fail more gracefully when finding a vcs executable fails #1100

	Add better error when PyPI fails with XMLRPC. Add tests for published examples. #1098

	Fix lack of ‘call’ in windows test activate script that was terminating tests early #1097

	Take newest version from PyPI when creating skeleton #1092

	Fix unicode encoding error in conda skeleton pypi #1092

	Support PEP420 namespace packages (write into existing folders,
but raise error rather than overwrite existing files. #1090

	Fix an error where an intermediate None value broke jinja2 rendering #1088

	Add missing support for include_recipe in meta.yaml #1085

Contributors

	@ikalev

	@msarahan

1.21.4 (2016-07-05)

Bug fixes

	Choose newest Pypi skeleton version; fix unicode encoding in pypi metadata #1092

	Add Numpy 1.11 to all_versions dict for autocompletion #1078

	Fix MSVC 3.3/3.4 builds when Win7SDK not installed #1072

	Fix an error with build number, when build number is None or otherwise invalid #1088

Known issues

	Environment activation requires conda >=4.1.6. The activate.bat script does not look in the right place for the activate.d folder.

	The test suite on Linux and Mac fails the python-build, python-run, and python-build-run tests, because an errant __conda-version__.txt file is somehow present. It is not clear where it comes from, and each of these tests pass when run individually. If you have mysterious issues, and you use __conda-version__.txt or files like it, please file an issue.

Contributors

	@adament

	@aleksey

	@ikalev

	@msarahan

1.21.3 (2016-06-27)

Bug fixes

	Fix a regression in Windows, where a compiler was a hard requirement, and was not always showing up, anyway. #1049
Contributors:

	@msarahan

1.21.2 (2016-06-24)

Bug fixes / Improvements

	revert some MSVC activation logic to still call vcvarsall directly in build script

	fix Windows testing for binary prefix replacement (not done on win)

	Add a warning message when conda-build can’t create an environment due to unsatisfiable dependencies

	Improve notion of whether a recipe uses a VCS in its metadata, or in its build

Known issues

	Environment activation on Windows will not work until Conda 4.1.4 is released. The activate.bat script does not look in the right place for the activate.d folder.

	The test suite on Linux and Mac fails the python-build, python-run, and python-build-run tests, because an errant __conda-version__.txt file is somehow present. It is not clear where it comes from, and each of these tests pass when run individually. If you have mysterious issues, and you use __conda-version__.txt or files like it, please file an issue.

Contributors

	@msarahan

	@patricksnape

1.21.1 (2016-06-22)

Bug fixes / Improvements

	Simplify MSVC activation, using distutil’s existing logic #1036

	Correctly interpret paths returned from git on windows, trying cygpath, falling back to conda regex #1037

	Fix ability to disable anaconda upload in condarc #1043

	Change environment activation to call activation in scripts, rather than having Python store variables #1044

Contributors

	@msarahan

	@mwcraig

	@patricksnape

1.21.0 (2016-06-15)

New stuff

	Add FEATURE_ environment variables for MKL, opt and debugging #978

	add info/about.json file that contains the “about” section of meta.yaml #941

	allow --dirty flag to be passed to conda build command. Skips
download, and provides DIRTY environment variable in build scripts. #973

	Add msys2 paths to build and test environments #979

	add new x86 and x86_64 selectors for Intel platforms #986

	keep original meta.yaml in recipe folder of package; create meta.yaml.rendered in recipe folder. Neither exist when recipe not included. #1004

	add ignore_prefix_files key to build in meta.yaml. Can ignore list of files,
or True to ignore all prefix files. #1008 #1009

	Automatically determine patch strip level #1011

Bug fixes/Improvements

	Lightened requirement that x.x be defined in both build and runtime sections. #650

	Remove info/recipe.json from build conda packages. Superseded by info/recipe/meta.yaml.rendered. #781

	Search for single and double backslashes when finding files that need prefix replacement #962

	Track undefined jinja variables and use them to decide whether to download source #964

	handle patches with p0 or p1 #969, #1011, #1020

	only set os.environ for non-None variables #981

	Don’t use long prefixes on windows #985

	Fix missing encoding argument #987

	Respect proxy variables more appropriately #989

	Search packages on PyPI, rather than listing them all. Should avoid some timeout errors there. #991

	Fix unix-style paths returned from git on Windows preventing relative paths from providing Jinja2 metadata #995

	improve logic handling “dirty” downloading. Always download when not dirty. #995

	Fix post-build variables when no build section existed in original meta.yaml #999

	Activate _build and _test environments approriately, rather than manipulating PATH directly #1002

	Don’t clone git submodules until after first checkout #1025

	Move check_install over from conda.install #1027

Deprecations

	__conda_version__.txt and other post-build methods of altering the build
string are marked as deprecated. Prefer Jinja2 templates where possible.
Create issues if this breaks your work.

Contributors

	@filmor

	@ilanschnell

	@jschueller

	@mingwandroid

	@msarahan

	@pelson

	@stuarteberg

	@whitequark

2.0.0beta (2016-06-05)

Compatibility breaks

	Increase placeholder path to 255 bytes (affects only Linux/Mac. Packages need to be rebuilt to support longer embedded paths) #877

Bug fixes/Improvements

	Respect proxy variables more appropriately #989

	Fix post-build variables when no build section existed in original meta.yaml #999

	Fix unix-style paths returned from git on Windows preventing relative paths from providing Jinja2 metadata #995

	improve logic handling “dirty” downloading. Always download when not dirty. #995

	Search packages on PyPI, rather than listing them all. Should avoid some timeout errors there. #991

	Lightened requirement that x.x be defined in both build and runtime sections. #650

	Search for single and double backslashes when finding files that need prefix replacement #962

	Fix missing encoding argument #987

	Don’t use long prefixes on windows #985

	only set os.environ for non-None variables #981

	Track undefined jinja variables and use them to decide whether to download source #964

	handle patches with p0 or p1 #969

New stuff

	Add FEATURE_ environment variables for MKL, opt and debugging #978

	add new x86 and x86_64 selectors for Intel platforms #986

	add info/about.json file that contains the “about” section of meta.yaml #941

	Add msys2 paths to build and test environments #979

	allow --dirty flag to be passed to conda build command. Skips download, and provides DIRTY environment variable in build scripts. #973

Contributors

	@filmor

	@heather999

	@ilanschnell

	@jschueller

	@mingwandroid

	@msarahan

	@pelson

	@stuarteberg

	@whitequark

1.20.3 (2016-05-13)

Enhancements

	use posix metapackage for cran skeleton packaging (#956)

Bug fixes

	fix output of package paths (extra output was breaking tools). Add tests. (#950)

	change default of no_download_source in build.py [http://build.py] (for compatibility with conda-build-all) (#950)

	fix regression in [] being confused for selectors (#957)

1.20.2 (2016-05-13)

Enhancements

	added --token and --user flags to pass corresponding information to anaconda upload (#921)

	added conda render command that outputs a fully-rendered meta.yaml to either stdout, or to file (with --file) (#908)

	support source checkout tools specified in meta.yaml. If source checkout fails at the rendering phase, source checkout and rendering are re-done after the build environment is created. (#843, #946)

	fn is now optional when a URL specifies a filename. (#942)

	CRAN skeleton generator now uses MSYS2 for Windows support (#942)

	conda build & conda render both recursively look for meta.yaml (support conda-forge feedstock submodules) (#908)

	Whitelist MAKEFLAGS environment variable. Setting this outside conda build should take effect in your build. Parallelize on *nix by adding -j here, instead of -j${CPU_COUNT} in your build.sh [http://build.sh]. This helps on CI’s, where CPU_COUNT is not always well-behaved. (#917)

	Run python_d executable on windows when debug feature is active (#724)

	add conda build flag --keep-old-work that temporarily moves your last build, then moves it back after completion. For debugging, when more than one package is involved. (#833)

	Allow selectors in imported jinja templates (#739)

Bug fixes

	fixed several instances wherein --skip-existing did not work (#897, #945)

	Fully render recipe before outputting build string * fixes empty spots where GIT_* info should have been (#923)

	Add MSYS2 path conversion filters to avoid issues with Win 7.1 SDK (#900)

	Address PyPI’s change of URL format (#922,

	Fix invalid gcc “-m 32” flag (#916)

	Fix empty section (due to selectors) handling regression (#919)

	Fix regression in handling of VS2008 Pro (not Express + VC for Python 2.7). It is important to at least try to run vcvarsall.bat. (#913)

	Fix CPAN skeleton generator (handle missing sections better) (#912)

	Make test/requires versions match build/requires without additional pinning (#907)

	Remove hard-coded CYGWIN path from conda-build’s custom PATH (#903)

	Source is downloaded before testing, fixing an issue where if build machine and some other test machine had different source, strange things happened. (#946)

	Fix regression with Python 3.x fixing shebangs (#892)

	Fix conda inspect crashes by using conda-meta info rather than filenames or dist names for package info (#947)

Other

	restore AppVeyor testing for Windows builds (#864)

	Build py3.5 on Appveyor (#938)

	PEP8 cleanup; use flake8 rather than pyflakes (#938)

	limited scope of project locking to avoid lock conflicts between build and rendering (#923)

	set up anaconda.org [http://anaconda.org] build infrastructure (#924)

	on Windows, environment variables are written to the temporary bld.bat in the source work folder. (#933)

1.20.1 (2016-04-21)

	fix source/path and GIT_* issues, #801

	fix invalid assertion, #855

	environ.py [http://environ.py] refactor/clenup, #856

	Better messaging for yaml parsing errors, #862

	fix typo, #863

	make CONDA_PY and CONDA_NPY available in build.sh [http://build.sh], #837

	execute source fetchers (e.g., git, hg) in the _build environment, #843

	use memory map rather than read() to reduce memory usage, #866

	fix svn url on Windows in checkout tool test, #867

	fix empty files bug, #869

	improve Visual Studio logic, #861

	add files in order of increasing size to improve access times to tar, #870

	VS_YEAR, VS_VERSION, VS_MAJOR and CMAKE_GENERATOR environment variables, #872

1.20.0 (2016-03-25)

	support for Lua as a built-in language (Alex Wiltschko), #719

	allow additional keys in “about” section, #831

	fix Examples directory in noarch_python, #838

	revert OS X SIP fix, part of #808, #844

	fixed race condition between removal and creation of tmp_dir on win, #847

1.19.2 (2016-03-10)

	silence some errors when subprocessing git #790

	fixes conda skeleton cran under python3 #817

	fixes some bugs introduced with the #808 otools refactor, #821, #825

	fixes #818 conda-build 1.19.1 breaks C compilation, #825

	actually fix #807 recurisive builds after conda 4.0 release, #826

	fixes #820 crash when building from a git repo on Windows, #824

1.19.1 (2016-03-09)

	Environment variables defined in the ‘script_env’ build section of
the meta.yaml file were previously assigned the value ‘’
if not found in the environment. Now they are left unset and a
warning is raised instead, #763.

 Contributing to conda-build

Contributing to conda-build

New Issues

If your issue is a bug report or a feature request for:

	a specific conda package: please file it at https://github.com/ContinuumIO/anaconda-issues/issues

	anaconda.org [http://anaconda.org]: please file it at https://anaconda.org/contact/report

	repo.anaconda.com [http://repo.anaconda.com]: please file it at https://github.com/ContinuumIO/anaconda-issues/issues

	commands under conda env and all other conda commands: please file it at https://github.com/conda/conda/issues

Code of Conduct

The conda organization adheres to the NumFOCUS Code of Conduct [https://www.numfocus.org/code-of-conduct].

Contributing

Contributions to conda-build are always welcome! Please fork the
conda/conda-build repository, and submit a pull request (PR).

If a PR is a work in progress, please put [WIP] in the title. Contributions are
expected to pass flake8 and test suites run on the GitHub Actions Pipeline. Contributors also
need to have signed our Contributor License Agreement [https://conda.io/en/latest/contributing.html#conda-contributor-license-agreement].

Setting Up Your Environment

There are two ways to set up your environment for development/testing. The first
is to reuse your base environment; this is probably the easiest option but comes
with the risk of potentially breaking conda/conda-build. The second option is to
create a development environment where we install conda/conda-build, which won’t
impact the functionality of conda/conda-build installed in your base environment.

Using the Base Environment:

 # activate/install into base env
 $ conda activate base
 (base) $ conda install --file tests/requirements.txt --channel defaults

 # run tests
 (base) $ pytest

 # install as editable so you can play around with it
 (base) $ pip install -e .
 (base) $ conda-build --version
 conda-build 3.21.5+17.gcde7b306

Creating a Development Environment:

 # create/activate standalone dev env
 $ ENV_NAME=conda-build make setup
 $ conda activate conda-build

 # Run all tests on Linux and Mac OS X systems (this can take a long time)
 (conda-build) $ make test

 # install as editable so you can play around with it
 (conda-build) $ pip install -e .
 (conda-build) $ conda-build --version
 conda-build 3.21.5+17.gcde7b306

Testing

Follow the installation instructions above to properly set up your environment for testing.

The test suite runs with pytest. The following are some useful commands for running specific
tests, assuming you are in the conda-build root folder:

Run all tests:

 # On Linux and Mac OS X
 make test

Run one test file:

 pytest tests/test_api_build.py

Run one test function:

 pytest tests/test_api_build.py::test_early_abort

Run one parameter of one parametrized test function:

Several tests are parametrized, to run some small change, or build several
recipe folders. To choose only one of them::

 pytest tests/test_api_build.py::test_recipe_builds.py[entry_points]

Note that our tests use pytest fixtures extensively. These sometimes trip up IDE
style checkers about unused or redefined variables. These warnings are safe to
ignore.

Releasing

Releases of conda-buildmay be performed via the rever command [https://regro.github.io/rever-docs/].
Rever is configured to perform the activities for a typical conda-build release.
To cut a release, simply run rever <X.Y.Z> where <X.Y.Z> is the
release number that you want bump to. For example, rever 1.2.3. However,
it is always good idea to make sure that the you have permissions everywhere
to actually perform the release. So it is customary to run rever check before
the release, just to make sure. The standard workflow is thus:

 rever check
 rever 1.2.3

If for some reason a release fails partway through, or you want to claw back a
release that you have made, rever allows you to undo activities. If you find yourself
in this pickle, you can pass the --undo option a comma-separated list of
activities you’d like to undo. For example:

 rever --undo tag,changelog,authors 1.2.3

Happy releasing!

 Index

Index

 B
 | C
 | F
 | P
 | T

B

 	
 	Build string

C

 	
 	Canonical name

F

 	
 	Filename

P

 	
 	Package name

 	
 package spec

 	
 see also package specification

 	
 	
 package specification

 	terminology

 	Package version

T

 	
 	
 terminology

 	package specification

_static/plus.png

_static/file.png

_static/minus.png

_images/conda_names.png
File Name

Canonical Name

gevent-websocket-0.3.6-py27_0.tar.bz2

Package Name Version Build String

nav.xhtml

 Table of Contents

 		
 Conda-build documentation

 		
 Installing and updating conda-build

 		
 Way of working

 		
 Explanation

 		
 Other considerations

 		
 Installing conda-build

 		
 Updating conda and conda-build

 		
 Concepts

 		
 Conda channels

 		
 Identical channel and package name problem

 		
 Channels and generating an index

 		
 Channel layout

 		
 Parts of a channel

 		
 channeldata.json

 		
 repodata.json

 		
 How an index is generated

 		
 Example: Building a channel

 		
 More details behind the scenes

 		
 Conda-build recipes

 		
 Conda-build process

 		
 Deep dive

 		
 Package naming conventions

 		
 Package specification

 		
 What is a “package”?

 		
 What about channels?

 		
 User guide

 		
 Tutorials

 		
 Recipes

 		
 Environment variables

 		
 Wheel files

 		
 Resources

 		
 Build scripts (build.sh, bld.bat)

 		
 Anaconda compiler tools

 		
 Compiler packages

 		
 Using the compiler packages

 		
 macOS SDK

 		
 Backward compatibility

 		
 Anaconda compilers and conda-build 3

 		
 An aside on CMake and sysroots

 		
 Customizing the compilers

 		
 Using your customized compiler package with conda-build 3

 		
 Expressing the relation between compiler and its standard library

 		
 Anaconda compilers implicitly add RPATH pointing to the conda environment

 		
 Defining metadata (meta.yaml)

 		
 Package section

 		
 Source section

 		
 Build section

 		
 Requirements section

 		
 Test section

 		
 Outputs section

 		
 About section

 		
 App section

 		
 Extra section

 		
 Templating with Jinja

 		
 Preprocessing selectors

 		
 Adding pre-link, post-link, and pre-unlink scripts

 		
 Activate scripts

 		
 Making packages relocatable

 		
 Conda package specification

 		
 Package metadata

 		
 Link and unlink scripts

 		
 Repository structure and index

 		
 Package match specifications

 		
 Using shared libraries

 		
 Shared libraries in Windows

 		
 Shared libraries in macOS and Linux

 		
 Build variants

 		
 General pinning examples

 		
 Transition guide

 		
 Creating conda-build variant config files

 		
 Using variants with the conda-build API

 		
 About reproducibility

 		
 Special variant keys

 		
 Coupling keys

 		
 Avoiding unnecessary builds

 		
 CONDA_* variables and command line arguments to conda-build

 		
 Aggregation of multiple variants

 		
 Bootstrapping pins based on an existing environment

 		
 Extended keys

 		
 Customizing compatibility

 		
 Appending to recipes

 		
 Partially clobbering recipes

 		
 Differentiating packages built with different variants

 		
 Extra Jinja2 functions

 		
 Referencing subpackages

 		
 Compiler packages

 		
 Compiler versions

 		
 Cross-compiling

 		
 Self-consistent package ecosystems

 		
 Conda-build CLI reference

 		
 conda-build

 		
 conda convert

 		
 conda develop

 		
 conda index

 		
 conda inspect

 		
 conda inspect channels

 		
 conda inspect linkages

 		
 conda inspect objects

 		
 conda metapackage

 		
 conda render

 		
 conda skeleton

 		
 conda skeleton cpan

 		
 conda skeleton cran

 		
 conda skeleton luarocks

 		
 conda skeleton pypi

 		
 Adding Windows Start menu items

 		
 Writing style guide

 		
 Audience

 		
 Technical language

 		
 Addressing the user

 		
 Format

 		
 Tutorial template

 		
 Overview

 		
 Who is this for?

 		
 Before you start

 		
 Tutorial tasks

 		
 More information (optional)

 		
 Release notes

 		
 24.1.2 (2024-02-15)

 		
 Bug fixes

 		
 Contributors

 		
 24.1.1 (2024-02-07)

 		
 Bug fixes

 		
 Contributors

 		
 24.1.0 (2024-01-25)

 		
 Enhancements

 		
 Deprecations

 		
 Docs

 		
 Other

 		
 Contributors

 		
 3.28.4 (2024-01-17)

 		
 Bug fixes

 		
 Contributors

 		
 3.28.3 (2024-01-04)

 		
 Bug fixes

 		
 Contributors

 		
 3.28.2 (2023-12-15)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.28.1 (2023-12-06)

 		
 Bug fixes

 		
 Contributors

 		
 3.28.0 (2023-11-30)

 		
 Special announcement

 		
 Enhancements

 		
 Bug fixes

 		
 Deprecations

 		
 Docs

 		
 Other

 		
 Contributors

 		
 3.27.0 (2023-09-26)

 		
 Enhancements

 		
 Bug fixes

 		
 Deprecations

 		
 Docs

 		
 Contributors

 		
 3.26.1 (2023-08-17)

 		
 Bug fixes

 		
 Contributors

 		
 3.26.0 (2023-07-18)

 		
 Enhancements

 		
 Bug fixes

 		
 Deprecations

 		
 Docs

 		
 Other

 		
 Contributors

 		
 3.25.0 (2023-05-22)

 		
 Enhancements

 		
 Bug fixes

 		
 Deprecations

 		
 Other

 		
 Contributors

 		
 3.24.0 (2023-03-22)

 		
 Bug fixes

 		
 Deprecations

 		
 Docs

 		
 Other

 		
 Contributors

 		
 3.23.3 (2022-12-06)

 		
 Bug fixes

 		
 Other

 		
 Contributors

 		
 3.23.2 (2022-11-30)

 		
 Bug fixes

 		
 Contributors

 		
 3.23.1 (2022-11-17)

 		
 Bug fixes

 		
 Contributors

 		
 3.23.0 (2022-11-15)

 		
 Enhancements

 		
 Deprecations

 		
 Docs

 		
 Other

 		
 Contributors

 		
 3.22.0 (2022-08-02)

 		
 Enhancements

 		
 Bug fixes

 		
 Docs

 		
 Other

 		
 Contributors

 		
 3.21.9 (2022-05-27)

 		
 Enhancements

 		
 Bug fixes

 		
 Deprecations

 		
 Other

 		
 Contributors

 		
 3.21.8 (2022-01-25)

 		
 Enhancements

 		
 Bug fixes

 		
 Other

 		
 Contributors

 		
 3.21.7 (2021-11-30)

 		
 Bug fixes

 		
 Other

 		
 Contributors

 		
 3.21.6 (2021-11-09)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.21.5 (2021-08-06)

 		
 Enhancements

 		
 Bug fixes

 		
 Docs

 		
 Contributors

 		
 3.21.4 (2021-01-15)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.21.3 (2021-01-11)

 		
 Enhancements

 		
 Contributors

 		
 3.21.2 (2021-01-11)

 		
 3.21.1 (2021-01-11)

 		
 Bug fixes

 		
 Contributors

 		
 3.21.0 (2021-01-10)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.20.5 (2020-10-26)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.20.4 (2020-10-14)

 		
 Enhancements

 		
 Bug Fixes

 		
 Contributors

 		
 3.20.3 (2020-09-29)

 		
 Enhancements

 		
 Bug fixes

 		
 3.20.1 (2020-09-04)

 		
 Bug fixes

 		
 Contributors

 		
 3.20.0 (2020-08-27)

 		
 Enhancements

 		
 Bug fixes

 		
 Docs

 		
 Other

 		
 3.19.3 (2020-04-13)

 		
 Bug fixes

 		
 Other

 		
 Docs

 		
 Contributors

 		
 3.19.2 (2020-04-01)

 		
 Bug fixes

 		
 Docs

 		
 Contributors

 		
 3.19.1 (2020-03-17)

 		
 Bug fixes

 		
 Other

 		
 Contributors

 		
 3.19.0 (2020-03-10)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.18.12 (2020-03-02)

 		
 Contributors

 		
 3.18.11 (2019-11-01)

 		
 Contributors

 		
 3.18.10 (2019-10-14)

 		
 Enhancements

 		
 Bug fixes

 		
 Docs

 		
 Contributors

 		
 3.18.9 (2019-07-23)

 		
 Enhancements

 		
 Bug fixes

 		
 Docs

 		
 Other

 		
 Contributors

 		
 3.18.8 (2019-07-18)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.18.7 (2019-07-09)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.18.6 (2019-06-26)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.18.5 (2019-06-25)

 		
 Bug fixes

 		
 Contributors

 		
 3.18.4 (2019-06-21)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.18.3 (2019-06-20)

 		
 Enhancements

 		
 Bug fixes

 		
 Deprecations

 		
 Contributors

 		
 3.18.2 (2019-05-26)

 		
 Bug fixes

 		
 Contributors

 		
 3.18.1 (2019-05-18)

 		
 Enhancements

 		
 Contributors

 		
 3.18.0 (2019-05-17)

 		
 Enhancements

 		
 Bug fixes

 		
 Docs

 		
 Contributors

 		
 3.17.8 (2019-01-26)

 		
 Bug fixes

 		
 Other

 		
 Contributors

 		
 3.17.7 (2019-01-16)

 		
 Bug fixes

 		
 Contributors

 		
 3.17.6 (2018-12-19)

 		
 Bug fixes

 		
 Contributors

 		
 3.17.5 (2018-12-14)

 		
 Bug fixes

 		
 Contributors

 		
 3.17.4 (2018-12-12)

 		
 Bug fixes

 		
 Contributors

 		
 3.17.3 (2018-12-11)

 		
 Bug fixes

 		
 Contributors

 		
 3.17.2 (2018-12-11)

 		
 Bug fixes

 		
 Contributors

 		
 3.17.1 (2018-12-04)

 		
 Bug fixes

 		
 Contributors

 		
 3.17.0 (2018-11-28)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.16.3 (2018-11-21)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.16.2 (2018-10-29)

 		
 Bug fixes

 		
 Contributors

 		
 3.16.1 (2018-10-12)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.16.0 (2018-10-05)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.15.1 (2018-09-18)

 		
 Bug fixes

 		
 Contributors

 		
 3.15.0 (2018-09-17)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.14.4 (2018-09-11)

 		
 Bug fixes

 		
 Contributors

 		
 3.14.3 (2018-09-11)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.14.2 (2018-09-07)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.14.1 (2018-09-06)

 		
 Bug fixes

 		
 Contributors

 		
 3.14.0 (2018-09-04)

 		
 Enhancements

 		
 Bug fixes

 		
 Other

 		
 Contributors

 		
 3.13.0 (2018-08-20)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.12.1 (2018-08-06)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.12.0 (2018-07-24)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.11.0 (2018-07-20)

 		
 Bug fixes

 		
 Enhancements

 		
 Docs

 		
 Contributors

 		
 3.10.9 (2018-06-15)

 		
 Other

 		
 Bug fixes

 		
 Contributors

 		
 3.10.8 (2018-06-12)

 		
 Bug fixes

 		
 Contributors

 		
 3.10.7 (2018-06-01)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.10.6 (2018-05-31)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.10.5 (2018-05-23)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.10.4 (2018-05-20)

 		
 Bug fixes

 		
 Contributors

 		
 3.10.3 (2018-05-17)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.10.2 (2018-05-08)

 		
 Bug fixes

 		
 Contributors

 		
 3.10.1 (2018-05-01)

 		
 Bug fixes

 		
 Contributors

 		
 3.10.0 (2018-05-01)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.9.2 (2018-04-27)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.9.1 (2018-04-24)

 		
 Bug fixes

 		
 Contributors

 		
 3.9.0 (2018-04-24)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.8.1 (2018-04-16)

 		
 Bug fixes

 		
 Contributors

 		
 3.8.0 (2018-03-30)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.7.2 (2018-03-22)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.7.1 (2018-03-08)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.7.0 (2018-03-05)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.6.0 (2018-02-28)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.5.1 (2018-02-22)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.5.0 (2018-02-20)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.4.2 (2018-02-15)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.4.1 (2018-02-08)

 		
 Bug fixes

 		
 Contributors

 		
 3.4.0 (2018-01-31)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.3.0 (2018-01-23)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.2.2 (2018-01-12)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.2.1 (2018-01-02)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.2.0 (2017-12-21)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.1.6 (2017-12-15)

 		
 Bug fixes

 		
 Contributors

 		
 3.1.5 (2017-12-15)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.1.4 (2017-12-14)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.1.3 (2017-12-13)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 Bug fixes

 		
 Contributors

 		
 3.1.1 (2017-12-06)

 		
 Bug fixes

 		
 Contributors

 		
 3.1.0 (2017-12-05)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.31 (2017-11-30)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.30 (2017-11-15)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.29 (2017-11-10)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.28 (2017-11-02)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.27 (2017-10-17)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.26 (2017-10-16)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.25 (2017-10-06)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.24 (2017-10-06)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.23 (2017-09-29)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.22 (2017-09-20)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.21 (2017-09-18)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.20 (2017-09-16)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.19 (2017-09-15)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.18 (2017-09-14)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.17 (2017-09-12)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.16 (2017-09-12)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.15 (2017-09-04)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.14 (2017-08-29)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.13 (2017-08-26)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.12 (2017-08-23)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.11 (2017-08-17)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.10 (2017-08-11)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.9 (2017-08-02)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.8 (2017-07-20)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.7 (2017-07-20)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.6 (2017-07-14)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.5 (2017-07-12)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.4 (2017-07-11)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.3 (2017-07-07)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.2 (2017-07-06)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.17 (2017-06-30)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.1 (2017-06-29)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.16 (2017-06-23)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.0 (2017-05-23)

 		
 Breaking changes

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.0rc1 (2017-05-23)

 		
 Breaking changes

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.0rc0 (2017-05-16)

 		
 Breaking changes

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.13 (2017-05-10)

 		
 Bug fixes

 		
 Contributors

 		
 2.1.12 (2017-05-09)

 		
 Bug fixes

 		
 Contributors

 		
 2.1.11 (2017-05-09)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.0beta1 (2017-04-25)

 		
 Breaking changes

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.0beta0 (2017-04-20)

 		
 Breaking changes

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.10 (2017-04-17)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.0alpha2 (2017-04-05)

 		
 Breaking changes

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.9 (2017-04-04)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.8 (2017-03-24)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 3.0.0alpha1 (2017-03-23)

 		
 Bug fixes

 		
 Contributors

 		
 3.0.0alpha0 (2017-03-22)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.7 (2017-03-14)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.6 (2017-03-08)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.5 (2017-02-20)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.4 (2017-02-07)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.3 (2017-01-31)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.2 (2017-01-20)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.1 (2017-01-12)

 		
 Bug fixes

 		
 Contributors

 		
 2.1.0 (2017-01-02)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.1.0beta1 (2016-12-20)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.12 (2016-12-12)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.11 (2016-11-28)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.10 (2016-11-14)

 		
 Bug fixes

 		
 Contributors

 		
 2.0.9 (2016-11-11)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.8 (2016-11-03)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.7 (2016-10-24)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.6 (2016-10-13)

 		
 Bug fixes

 		
 Contributors

 		
 2.0.5 (2016-10-13)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.4 (2016-10-07)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.3 (2016-09-27)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.2 (2016-09-27)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.1 (2016-09-06)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.0 (2016-08-29)

 		
 Enhancements

 		
 Bug fixes

 		
 Restructuring

 		
 Contributors

 		
 Testers

 		
 2.0.0beta4 (2016-08-26)

 		
 Bug fixes

 		
 Contributors

 		
 2.0.0beta3 (2016-08-23)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 2.0.0beta2 (2016-08-22)

 		
 Enhancements

 		
 Bug fixes

 		
 Restructuring

 		
 Contributors

 		
 1.21.14 (2016-08-18)

 		
 Bug fixes

 		
 Contributors

 		
 1.21.13 (2016-08-18)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 1.21.12 (2016-08-17)

 		
 Enhancements

 		
 Bug fixes

 		
 Contributors

 		
 1.21.11 (2016-08-06)

 		
 Bug fixes

 		
 Contributors

 		
 1.21.10 (2016-08-02)

 		
 Bug fixes

 		
 Contributors

 		
 1.21.9 (2016-08-01)

 		
 Bug fixes

 		
 Contributors

 		
 1.21.8 (2016-07-31)

 		
 Bug fixes

 		
 New Things

 		
 Contributors

 		
 1.21.7 (2016-07-22)

 		
 Bug fixes

 		
 Contributors

 		
 1.21.6 (2016-07-14)

 		
 New Things

 		
 Bug fixes

 		
 Contributors

 		
 1.21.5 (2016-07-07)

 		
 Bug fixes

 		
 Contributors

 		
 1.21.4 (2016-07-05)

 		
 Bug fixes

 		
 Known issues

 		
 Contributors

 		
 1.21.3 (2016-06-27)

 		
 Bug fixes

 		
 1.21.2 (2016-06-24)

 		
 Bug fixes / Improvements

 		
 Known issues

 		
 Contributors

 		
 1.21.1 (2016-06-22)

 		
 Bug fixes / Improvements

 		
 Contributors

 		
 1.21.0 (2016-06-15)

 		
 New stuff

 		
 Bug fixes/Improvements

 		
 Deprecations

 		
 Contributors

 		
 2.0.0beta (2016-06-05)

 		
 Compatibility breaks

 		
 Bug fixes/Improvements

 		
 New stuff

 		
 Contributors

 		
 1.20.3 (2016-05-13)

 		
 Enhancements

 		
 Bug fixes

 		
 1.20.2 (2016-05-13)

 		
 Enhancements

 		
 Bug fixes

 		
 Other

 		
 1.20.1 (2016-04-21)

 		
 1.20.0 (2016-03-25)

 		
 1.19.2 (2016-03-10)

 		
 1.19.1 (2016-03-09)

 		
 1.19.0 (2016-01-29)

 		
 1.18.2 (2015-11-19)

 		
 1.18.1 (2015-10-16)

 		
 1.18.0 (2015-10-01)

 		
 1.17.0 (2015-08-24)

 		
 1.16.0 (2015-07-30)

 		
 1.15.0 (2015-07-22)

 		
 1.14.1 (2015-06-29)

 		
 1.14.0 (2015-06-16)

 		
 1.13.0 (2015-05-19)

 		
 1.12.1 (2015-04-28)

 		
 1.12.0 (2015-04-10)

 		
 1.11.0 (2015-03-05)

 		
 1.10.2 (2015-02-10)

 		
 1.10.1 (2015-02-06)

 		
 1.10.0 (2015-01-15)

 		
 1.9.1 (2014-11-18)

 		
 1.9.0 (2014-10-22)

 		
 1.8.2 (2014-09-19)

 		
 1.8.1 (2014-09-03)

 		
 1.8.0 (2014-08-22)

 		
 1.7.1 (2014-08-20)

 		
 1.7.0 (2014-08-05)

 		
 1.6.1 (2014-07-29)

 		
 1.6.0 (2014-07-29)

 		
 1.5.0 (2014-07-03)

 		
 1.4.0 (2014-07-01)

 		
 1.3.5 (2014-06-04)

 		
 1.3.4 (2014-06-02)

 		
 1.3.3 (2014-04-28)

 		
 1.3.2 (2014-04-15)

 		
 1.3.1 (2014-03-25)

 		
 1.3.0 (2014-03-14)

 		
 1.2.1 (2014-02-25)

 		
 1.2.0 (2014-02-13)

 		
 1.1.0 (2014-02-06)

 		
 1.0.0 (2014-01-24)

 		
 Contributing to conda-build

 		
 New Issues

 		
 Code of Conduct

 		
 Contributing

 		
 Setting Up Your Environment

 		
 Using the Base Environment:

 		
 Creating a Development Environment:

 		
 Testing

 		
 Run all tests:

 		
 Run one test file:

 		
 Run one test function:

