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Conda-build contains commands and tools to build your own conda packages. It also provides helpful tools to constrain
or pin versions in recipes. Building a conda package requires installing conda-build and creating a conda recipe. You
then use the conda build command to build the conda package from the conda recipe.

You can build conda packages from a variety of source code projects, most notably Python. For help packing a Python
project, see the packaging.python.org tutorial.

OPTIONAL: If you are planning to upload your packages to anaconda.org, you will need to make an anaconda.org
account and install the Anaconda client.

CONTENTS 1
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CHAPTER

ONE

INSTALLING AND UPDATING CONDA-BUILD

To enable building conda packages:

• install conda

• install conda-build

• update conda and conda-build

1.1 Installing conda-build

To install conda-build, in your terminal window or an Anaconda Prompt, run:

conda install conda-build

1.2 Updating conda and conda-build

Keep your versions of conda and conda-build up to date to take advantage of bug fixes and new features.

To update conda and conda-build, in your terminal window or an Anaconda Prompt, run:

conda update conda
conda update conda-build

For release notes, see the conda-build GitHub page.
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CHAPTER

TWO

CONCEPTS

2.1 Conda channels

Conda-build supports standard conda channel behavior.

2.1.1 Identical channel and package name problem

If the channel and package name are identical, it's possible to encounter a build problem if the short channel name is
used.

Let's say your Anaconda.org username or an organization name is example. And suppose you created a package
example, whose files' layout is similar to:

setup.py
conda/meta.yaml
example/

If your build depends on some other packages inside your channel, you will need to add -c example, however, the
following code:

conda-build ./conda/ -c example

will fail with the following error message (the path will be different):

requests.exceptions.HTTPError: 404 Client Error: None for url:
file:///path/to/your/local/example/noarch/repodata.json
[...]
The remote server could not find the noarch directory for the requested channel with
url: file:///path/to/your/local/example/noarch/repodata.json
[...]
As of conda 4.3, a valid channel must contain a `noarch/repodata.json` and
associated `noarch/repodata.json.bz2` file, even if `noarch/repodata.json`
is empty. please request that the channel administrator create
`noarch/repodata.json` and associated `noarch/repodata.json.bz2` files.

This happens because conda-build will consider the directory ./example/ in your project as a channel. This is by
design due to conda's CI servers, where the build path can be long, complicated, and not predictable prior to build.

There are several ways to resolve this issue.

1. Use the URL of the desired channel:
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conda-build ./conda/ -c https://conda.anaconda.org/example/

2. Run the build from inside the conda recipe directory:

cd conda
conda-build . -c example

3. Use the label specification workaround:

conda-build ./conda/ -c example/label/main

which technically is the same as -c example, since main is the default label, but now it won't mistakenly
find a channel example/label/main on the local filesystem.

2.2 Channels and generating an index

2.2.1 Channel layout

.
channeldata.json
linux-32

| repodata.json
package-0.0.0.tar.bz2

linux-64
| repodata.json

package-0.0.0.tar.bz2
win-64

| repodata.json
package-0.0.0.tar.bz2

win-32
| repodata.json

package-0.0.0.tar.bz2
osx-64

| repodata.json
package-0.0.0.tar.bz2

...

2.2.2 Parts of a channel

• channeldata.json contains metadata about the channel, including:

– What subdirs the channel contains.

– What packages exist in the channel and what subdirs they are in.

• Subdirs are associated with platforms. For example, the linux-64 subdir contains packages for linux-64 systems.

• repodata.json contains an index of the packages in a subdir. Each subdir will have its own repodata.

• Channels have packages as tarballs under corresponding subdirs.

6 Chapter 2. Concepts
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2.2.3 channeldata.json

{
"channeldata_version": 1,
"packages": {
"super-fun-package": {
"activate.d": false,
"binary_prefix": false,
"deactivate.d": false,
"home": "https://github.com/Home/super-fun-package",
"license": "BSD",
"post_link": false,
"pre_link": false,
"pre_unlink": false,
"reference_package": "win-64/super-fun-package-0.1.0-py310_0.tar.bz2",
"run_exports": {},
"subdirs": [
"win-64"

],
"summary": "A fun package! Open me up for rainbows",
"text_prefix": false,
"version": "0.1.0"

},
"subdirs": [
"win-64",
...

]
}

2.2.4 repodata.json

{
"packages": {
"super-fun-package-0.1.0-py310_0.tar.bz2": {
"build": "py37_0",
"build_number": 0,
"depends": [
"some-depends"

],
"license": "BSD",
"md5": "a75683f8d9f5b58c19a8ec5d0b7f796e",
"name": "super-fun-package",
"sha256": "1fe3c3f4250e51886838e8e0287e39029d601b9f493ea05c37a2630a9fe5810f",
"size": 3832,
"subdir": "win-64",
"timestamp": 1530731681870,
"version": "0.1.0"

},
...

}

2.2. Channels and generating an index 7
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2.2.5 How an index is generated

For each subdir:

• Look at all the packages that exist in the subdir.

• Generate a list of packages to add/update/remove.

• Remove all packages that need to be removed.

• For all packages that need to be added/updated:

– Extract the package to access metadata, including full package name, file modification time (mtime), size,
and index.json.

– Aggregate package metadata to repodata collection.

• Apply repodata hotfixes (patches).

• Compute and save the reduced current_index.json index.

2.2.6 Example: Building a channel

To build a local channel and put a package in it, follow the directions below:

1. Make the channel directory.

$ mkdir local-channel
$ cd local-channel

2. Now, download your favorite package. We'll use SciPy in our example. The next steps depend on your platform:

1. Windows

$ mkdir win-64
$ curl -L https://anaconda.org/anaconda/scipy/1.9.1/download/win-64/
→˓scipy-1.9.1-py310h86744a3_0.tar.bz2 -o win-64\scipy-1.9.1-
→˓py310h86744a3_0.tar.bz2

2. Linux

1. Most Linux systems come with curl pre-installed. Let's install it if you don't already have it.

1. Check if you have curl:

$ which curl

2. If curl is not found, then install it:

$ conda install curl

2. Create a local copy of the package you want to include in your channel:

$ mkdir linux-64
$ curl -L https://anaconda.org/anaconda/scipy/1.9.1/download/linux-64/
→˓scipy-1.9.1-py310hd5efca6_0.tar.bz2 -o linux-64\scipy-1.9.1-
→˓py310hd5efca6_0.tar.bz2

3. macOS, Intel chip

8 Chapter 2. Concepts
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$ mkdir osx-64
$ curl -L https://anaconda.org/anaconda/scipy/1.9.1/download/osx-64/
→˓scipy-1.9.1-py310h09290a1_0.tar.bz2 -o osx-64/scipy-1.9.1-
→˓py310h09290a1_0.tar.bz2

4. macOS, Apple chip

$ mkdir osx-arm64
$ curl -L https://anaconda.org/anaconda/scipy/1.9.1/download/osx-arm64/
→˓scipy-1.9.1-py310h20cbe94_0.tar.bz2 -o osx-arm64/scipy-1.9.1-
→˓py310h20cbe94_0.tar.bz2

5. Other

To find the latest SciPy on a platform not included in the list above, go to the Anaconda Packages
file list for SciPy.

3. Run a conda index. This will generate both channeldata.json for the channel and repodata.json for the
linux-64 and osx-64 subdirs, along with some other files:

$ conda index .

4. Check your work by searching the channel:

$ conda search -c file:/<path to>/local-channel scipy

SciPy should be available in several channels, including local-channel.

2.2.7 More details behind the scenes

Caching package metadata

Caching utilizes the existing repodata.json file if it exists. Indexing checks which files to update based on which
files are new, removed, or changed since the last repodata.json was created. When a package is new or changed,
its metadata is extracted and cached in the subdir to which the package belongs. The subfolder is the .cache folder.
This folder has one file of interest: stat.json, which contains results from the stat command for each file. This is
used for understanding when a file has changed and needs to be updated. In each of the other subfolders, the extracted
metadata file for each package is saved as the original package name, plus a .json extension. Having these already
extracted can save a lot of time in fully re-creating the index, should that be necessary.

An aside: one design goal of the .conda package format was to make indexing as fast as possible. To achieve this,
the .conda format separates metadata from the actual package contents. Where the old .tar.bz2 container required
extracting the entire package to obtain the metadata, the new package format allows extraction of metadata without
touching the package contents. This allows indexing speed to be independent of the package size. Large .tar.bz2
packages can take a very long time to extract and index.

It is generally never necessary to manually alter the cache. To force an update/rescan of all cached packages, you can
delete the .cache folder, or you can delete just the .cache/stat.json file. Ideally, you could remove only one package
of interest from the cache, but that functionality does not currently exist.

2.2. Channels and generating an index 9
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Repodata patching

Package repodata is bootstrapped from the index.json file within packages. Unfortunately, that metadata is not al-
ways correct. Sometimes a version bound needs to be added retroactively. The process of altering repodata from the
values derived from package index.json files is called "hotfixing." Hotfixing is tricky, as it has the potential to break
environments that have worked, but it is also sometimes necessary to fix environments that are known not to work.

Repodata patches generated from a python script

On your own server, you're probably fine to run arbitrary python code that you have written to apply your patches. The
advantage here is that the patches are generated on the fly every time the index is generated. That means that any new
packages that have been added since the patch python file was last committed will be picked up and will have hotfixes
applied to them where appropriate.

Anaconda applies hotfixes by providing a python file to conda index that has logic on how to alter metadata. Ana-
conda's repository of hotfixes is at https://github.com/AnacondaRecipes/repodata-hotfixes

Repodata patches applied from a JSON file

Unfortunately, you can't always run your python code directly - other people who host your patches may not allow
you to run code. What you can do instead is package the patches as .json files. These will clobber the entries in the
repodata.json when they are applied.

This is the approach that conda-forge has to take, for example. Their patch creation code is here: https://github.com/
conda-forge/conda-forge-repodata-patches-feedstock/tree/main/recipe

What that code does is to download the current repodata.json, then runs their python logic to generate the patch
JSON file. Those patches are placed into a location where Anaconda's mirroring tools will find them and apply them
to conda-forge's repodata.json at mirroring time.

The downside here is that this JSON file is only as new as the last time that the repodata-patches feedstock last generated
a package. Any new packages that have been added to the index in the meantime will not have any hotfixes applied to
them, because the hotfix JSON file does not know about those files.

Trimming to "current" repodata

The number of packages available is always growing. That means conda is always having to do more and more work.
To slow down this growth, in conda 4.7, we added the ability to have alternate repodata.json files that may represent
a subset of the normal repodata.json. One in particular is current_repodata.json, which represents:

1. the latest version of each package

2. any earlier versions of dependencies needed to make the latest versions satisfiable

current_repodata.json also keeps only one file type: .conda where it is available, and .tar.bz2 where only
.tar.bz2 is available.

For Anaconda's defaults "main" channel, the current_repodata.json file is approximately 1/7 the size of repodata.
json. This makes downloading the repodata faster, and it also makes loading the repodata into its python representation
faster.

For those interested in how this is achieved, please refer to the code at https://github.com/conda/conda-build/blob/
90a6de55d8b9e36fc4a8c471b566d356e07436c7/conda_build/index.py#L695-L737
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2.3 Conda-build recipes

• Conda-build process

• Deep dive

– Templates

– Environments

– Building

– Prefix replacement

– Testing

– Output metadata

To enable building conda packages, install and update conda and conda-build.

Building a conda package requires a recipe. A conda-build recipe is a flat directory that contains the following files:

• meta.yaml — A file that contains all the metadata in the recipe. Only package/name and package/version
are required.

• build.sh — The script that installs the files for the package on macOS and Linux. It is executed using the bash
command.

• bld.bat — The build script that installs the files for the package on Windows. It is executed using cmd.

• run_test.[py,pl,sh,bat] — An optional Python test file, a test script that runs automatically if it is part of
the recipe.

• Optional patches that are applied to the source.

• Other resources that are not included in the source and cannot be generated by the build scripts. Examples are
icon files, readme files and build notes.

Review Defining metadata (meta.yaml) to see a breakdown of the components of a recipe, including:

• Package name

• Package version

• Descriptive metadata

• Where to obtain source code

• How to test the package

Tip: When you use the conda skeleton command, the first 3 files — meta.yaml, build.sh, and bld.bat — are
automatically generated for you.

2.3. Conda-build recipes 11
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2.3.1 Conda-build process

Conda-build performs the following steps:

1. Reads the metadata.

2. Downloads the source into a cache.

3. Extracts the source into the source directory.

4. Applies any patches.

5. Re-evaluates the metadata, if source is necessary to fill any metadata values.

6. Creates a build environment and then installs the build dependencies there.

7. Runs the build script. The current working directory is the source directory with environment variables set. The
build script installs into the build environment.

8. Performs some necessary post-processing steps, such as adding a shebang and rpath.

9. Creates a conda package containing all the files in the build environment that are new from step 5, along with
the necessary conda package metadata.

10. Tests the new conda package — if the recipe includes tests — by doing the following:

• Deletes the build environment and source directory to ensure that the new conda package does not inadver-
tantly depend on artifacts not included in the package.

• Creates a test environment with the package and its dependencies.

• Runs the test scripts.

The archived conda-recipes repo, AnacondaRecipes aggregate repo, and conda-forge feedstocks repo contain example
recipes for many conda packages.

Caution: All recipe files, including meta.yaml and build scripts, are included in the final package archive that
is distributed to users. Be careful not to put sensitive information such as passwords into recipes where it could be
made public.

The conda skeleton command can help to make skeleton recipes for common repositories, such as PyPI.

2.3.2 Deep dive

Let's take a closer look at how conda-build uses a recipe to create a package.

Templates

When you build a conda package, conda-build renders the package by reading a template in the meta.yaml. See
Templating with Jinja.

Templates are filled in using your conda build config, which shows the matrix of things to build against. The conda
build config determines how many builds it has to do. For example, defining a conda_build_config.yaml of
the form and filling it defines a matrix of 4 packages to build:

12 Chapter 2. Concepts
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foo:
- 1.0
- 2.0

bar:
- 1.2.0
- 1.4.0

After this, conda-build determines what the outputs will be. For example, if your conda build config indicates that
you want 2 different versions of Python, conda-build will show you the rendering for each Python version.

Environments

To build the package, conda-build will make an environment for you and install all of the build and run dependencies
in that environment. Conda-build will indicate where you can successfully build the package. The prefix will take the
form:

<file path to conda>/conda-bld/<package name and string>/h_env_placeholder...

Conda-build downloads your package source and then builds the conda package in the context of the build environment.
For example, you may direct it to download from a Git repo or pull down a tarball from another source. See the Source
section for more information.

What conda-build puts into a package depends on what you put into the build, host, or run sections. See the Require-
ments section for more information. Conda-build will use this information to identify dependencies to link to and
identify the run requirements for the package. This allows conda-build to understand what is needed to install the
package.

Building

Once the content is downloaded, conda-build runs the build step. See the Build section for more information. The
build step runs a script. It can be one that you provided. See the Script section for more information on this topic.

If you do not define the script section, then you can create a build.sh or a bld.bat file to be run.

Prefix replacement

The build environment is created in a placeholder prefix. When the package is bundled, the prefix is set to a "dummy"
prefix. Once conda is ready to install the package, it rewrites the dummy prefix with the final one.

Testing

Once a package is built, conda-build has the ability to test it. To do this, it creates another environment and installs the
conda package. The form of this prefix is:

<file path to conda>/conda-bld/<package name + string>/_test_env_placeholder...

At this point, conda-build has all of the information from meta.yaml about what its runtime dependencies are, so those
dependencies are installed as well. This generates a test runner script with a reference to the testing meta.yaml that is
created. See the Test section for more information. That file is run for testing.

2.3. Conda-build recipes 13
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Output metadata

After the package is built and tested, conda-build cleans up the environments created during prior steps and outputs the
metadata. The recipe for the package is also added in the output metadata. The metadata directory is at the top level of
the package contents in the info directory. The metadata contains information about the dependencies of the package
and a list of where all of the files in the package go when it is installed. Conda reads that metadata when it needs to
install.

Running conda install causes conda to:

1. Reach out to the repodata containing the dependencies for the package(s) you are installing.

2. Determine the correct dependencies.

3. Install a list of additional packages determined by those dependencies.

4. For each dependency package being installed: #. Unpack the tarball to look at the information contained within.
#. Verify the file based on metadata in the package. #. Go through each file in the package and put it in the right
location.

For additional information on conda install, please visit the conda documentation deep dive page on that topic.

2.4 Package naming conventions

To facilitate communication and documentation, conda observes the package naming conventions listed below.

Package name The name of a package, without any reference to a particular version. Conda package names are
normalized and they may contain only lowercase alpha characters, numeric digits, underscores, hyphens, or
dots. In usage documentation, these are referred to by package_name.

Package version A version number or string, often similar to X.Y or X.Y.Z, but it may take other forms as well.

Build string An arbitrary string that identifies a particular build of a package for conda. It may contain suggestive
mnemonics, but these are subject to change, and you should not rely on it or try to parse it for any specific
information.

Canonical name The package name, version, and build string joined together by hyphens: name-version-buildstring.
In usage documentation, these are referred to by canonical_name.

Filename Conda package filenames are canonical names, plus the suffix .tar.bz2 or .conda.

The following figure compares a canonical name to a filename:

Fig. 1: Conda package naming

Conda supports both .conda and .tar.bz2 package extensions. The .conda format is generally smaller and more
efficient than .tar.bz2 packages. Read our blog post about it to learn more.
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The build string is created as the package is built. Things that contribute to it are the variants specified either by the
command line or the configuration from the conda_build_config.yaml, and the build number in the recipe. If there
are no variants, then the build string is the build number that is specified in the recipe.

2.4.1 Package specification

A package name together with a package version — which may be partial or absent — joined by an equal sign.

Examples:

• python=2.7.3

• python=2.7

• python

In usage documentation, these are referred to by package_spec.

2.5 What is a “package”?

• A package is anything you install using your package manager.

• A "conda package" is a compressed tarball that contains

– the module to be installed

– information on how to install the package

• You can use conda-build to build a conda package.

2.6 What about channels?

• Channels contain packages.

• They conform to a standard structure and contain an index of available packages.

• An index of the available packages can be generated by running:

$ conda index <path to channel>

• conda is able to install from channels and uses the indexes in the channel to solve for requirements and depen-
dencies.

2.5. What is a “package”? 15
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CHAPTER

THREE

USER GUIDE

Welcome to the conda-build user guide. Here you can find tutorials and recipes as well as information about environ-
ment variables and wheel files.

3.1 Getting started

Before starting the tutorials, consider reviewing how to install and update conda-build and conda-build concepts.

You may also find our resources collection helpful.

3.1.1 Prerequisites

Before starting the tutorials, you need to install:

• Miniconda or Anaconda

• conda-build

• Git

The most straightforward way to do this is to install Miniconda or Anaconda, which contain conda, and then use
conda to install conda-build and Git. Make sure you install these packages into a new environment and not your base
environment.:

conda create -n my-conda-build-environment conda-build git

3.1.2 Tutorial submissions

Have an idea for a tutorial? You can submit your suggestions to Anaconda by emailing us at documenta-
tion@anaconda.com.

To create your own tutorials, follow the writing style guide and tutorial template.

17
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3.2 Tutorials

Before starting the tutorials, review the Getting started guide.

3.2.1 Building conda packages

• Overview

• Who is this for?

• Before you start

• Toolkit

• Developing a build strategy

• Building with a Python version different from your Miniconda installation

• Automated testing

• Building a SEP package with conda and Python 2 or 3

• Building a GDAL package with conda and Python 2 or 3

Overview

This tutorial describes how to use conda-build to create conda packages on Windows, macOS, and Linux using the
examples of SEP and GDAL. Additional Windows-specific instructions are provided in the Toolkit section.

The final built packages from this tutorial are available on anaconda.org (formerly known as Anaconda Cloud):

• SEP

• GDAL

This tutorial also describes writing recipes. You can see the final SEP recipe and the GDAL recipe on GitHub in the
conda-build documentation repository.

Who is this for?

This tutorial is for Windows, macOS, and Linux users who wish to build more complex conda packages. This tutorial
will involve building scientific packages, which require compilers for several different Python versions.

Before you start

Before you start, make sure you have installed:

• Conda

• Conda-build

• Any compilers you want

18 Chapter 3. User guide
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Toolkit

Microsoft Visual Studio

In the standard practices of the conda developers, conda packages for different versions of Python are each built with
their own version of Visual Studio (VS):

• Python 2.7 packages with Visual Studio 2008

• Python 3.4 packages with VS 2010

• Python 3.5 packages with VS 2015, (default) 2017

• Python 3.6 packages with VS 2015, (default) 2017

• Python 3.7 packages with VS 2015, (default) 2017

Using these versions of VS to build packages for each of these versions of Python is also the practice used for the official
python.org builds of Python. Currently VS 2008 and VS 2010 are available only through resellers, while VS 2015 and
VS 2017 can be purchased online from Microsoft. Note there is also a community edition of VS 2015 and VS 2017
which may be used.

Alternatives to Microsoft Visual Studio

There are free alternatives available for each version of the VS compilers:

• Instead of VS 2008, it is often possible to substitute the free Microsoft Visual C++ Compiler for Python 2.7.

• Instead of VS 2010, it is often possible to substitute the free Microsoft Windows SDK for Windows 7 and .NET
Framework 4.

• Make sure that you also install VS 2010 Service Pack 1 (SP1).

• Due to a bug in the VS 2010 SP1 installer, the compiler tools may be removed during installation of VS 2010
SP1. They can be restored as described in Microsoft Visual C++ 2010 Service Pack 1 Compiler Update for the
Windows SDK 7.1.

• Visual Studio 2015 has a full-featured, free Community edition for academic research, open source projects, and
certain other use cases.

The MS Visual C++ Compiler for Python 2.7 and the Microsoft Windows SDK for Windows 7 and .NET Framework
4 are both reasonably well tested. Conda-build is carefully tested to support these configurations, but there are known
issues with the CMake build tool and these free VS 2008 and 2010 alternatives. In these cases, you should prefer the
"NMake Makefile" generator, rather than a Visual Studio solution generator.

Windows versions

You can use any recent version of Windows. These examples were built on Windows 10.

3.2. Tutorials 19

https://www.microsoft.com/en-us/download/details.aspx?id=44266
https://www.microsoft.com/en-us/download/details.aspx?id=8279
https://www.microsoft.com/en-us/download/details.aspx?id=8279
https://www.microsoft.com/en-us/download/details.aspx?id=34677
https://www.microsoft.com/en-us/download/details.aspx?id=4422
https://www.microsoft.com/en-us/download/details.aspx?id=4422
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx


conda-build Documentation, Release 0.0.0.dev0+placeholder

Other tools

Some environments initially lack tools such as patch or Git that may be needed for some build workflows.

On Windows, these can be installed with conda using the following command:

$ conda install git m2-patch

On macOS and Linux, replace m2-patch with patch.

Developing a build strategy

Conda recipes are typically built with a trial-and-error method. Sometimes, the first attempt to build a package will
fail with compiler or linker errors, often caused by missing dependencies. The person writing the recipe then examines
these errors and modifies the recipe to include the missing dependencies, usually as part of the meta.yaml file. Then the
recipe writer attempts the build again and, after a few of these cycles of trial and error, the package builds successfully.

Building with a Python version different from your Miniconda installation

Miniconda2 and Miniconda3 can each build packages for either Python 2 or Python 3 simply by specifying the version
you want. Miniconda2 includes only Python 2 and Miniconda3 includes only Python 3.

Installing only one makes it easier to keep track of the builds, but it is possible to have both installed on the same system
at the same time. If you have both installed, use the where command on Windows, or the which command on macOS
or Linux, to see which version comes first on PATH, since this is the one you will be using:

$ where python

To build a package for a Python version other than the one in your Miniconda installation, use the --python option in
the conda-build command. For example, to build a Python 3.5 package with Miniconda2:

$ conda-build recipeDirectory --python=3.5

Note: Replace recipeDirectory with the name and path of your recipe directory.

Automated testing

After the build, if the recipe directory contains a test file. This test file is named run_test.bat on Windows,
run_test.sh on macOS or Linux, or run_test.py on any platform. The file runs to test the package and any
errors that surface are reported. After seeing "check the output," you can also test if this package was built by using
the command:

$ conda build --test <path to package>.tar.bz2

Note: Use the "test" section of the meta.yaml file to move data files from the recipe directory to the test directory
when the test is run.
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Building a SEP package with conda and Python 2 or 3

The SEP documentation states that SEP runs on Python 2 and 3, and it depends only on NumPy. Searching for SEP on
PyPI shows that there is already a PyPI package for SEP.

Because a PyPI package for SEP already exists, the conda skeleton command can make a skeleton or outline of a
conda recipe based on the PyPI package. The recipe outline can then be completed manually and conda can build a
conda package from the completed recipe.

Install Visual Studio

If you have not already done so, install the appropriate version of Visual Studio:

• For Python 3 — Visual Studio 2017:

1. Choose the "Custom install" option.

2. Under Programming Languages, choose to install Visual C++.

• For Python 2 — Visual Studio 2008:

1. Choose the "Custom install" option.

2. Choose to install X64 Compilers and Tools. Install Service Pack 1.

Make a conda skeleton recipe

1. Run the skeleton command:

$ conda skeleton pypi sep

The skeleton command installs into a newly-created directory called sep.

2. Go to the sep directory to view the files:

$ cd sep

You will see that one skeleton file has been created: meta.yaml

Edit the skeleton files

For this package, bld.bat and build.sh need no changes. You need to edit the meta.yaml file to add the dependency
on NumPy and add an optional test for the built package by importing it. For more information about what can be
specified in meta.yaml, see Defining metadata (meta.yaml).

1. In the requirements section of the meta.yaml file, add a line that adds NumPy as a requirement to build the
package.

2. Add a second line to list NumPy as a requirement to run the package.

3. Set the NumPy version to the letters x.x.

4. Make sure the new line is aligned with - python on the line above it, so as to ensure proper yaml format.

EXAMPLE:
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requirements:
host:
- python
- numpy x.x

run:
- python
- numpy x.x

Notice that there are two types of requirements, host and run (build is another valid parameter, but is not shown in
this example). host represents packages that need to be specific to the target platform when the target platform is not
necessarily the same as the native build platform. run represents the dependencies that should be installed when the
package is installed.

Note: Using the letters x.x instead of a specific version such as 1.11 pins NumPy dynamically, so that the actual
version of NumPy is taken from the build command. Currently, NumPy is the only package that can be pinned dynam-
ically. Pinning is important for SEP because this package uses NumPy's C API through Cython. That API changes
between NumPy versions, so it is important to use the same NumPy version at runtime that was used at build time.

Optional: Add a test for the built package

Adding this optional test will test the package at the end of the build by making sure that the Python statement import
sep runs successfully:

1. Add - sep, checking to be sure that the indentation is consistent with the rest of the file:

test:
# Python imports
imports:
- sep

Build the package

Build the package using the recipe you just created:

$ conda build sep

Check the output

1. Check the output to make sure that the build completed successfully. The output contains the location of the final
package file and a command to upload the package to Anaconda Cloud. The output will look something like:

# Automatic uploading is disabled
# If you want to upload package(s) to anaconda.org later, type:
anaconda upload /Users/builder/miniconda3/conda-bld/osx-64/sep-1.0.3-np111py36_0.
→˓tar.bz2
# To have conda build upload to anaconda.org automatically, use
# $ conda config --set anaconda_upload yes

(continues on next page)
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(continued from previous page)

anaconda_upload is not set. Not uploading wheels: []
####################################################################################
Resource usage summary:
Total time: 0:00:56.4
CPU usage: sys=0:00:00.7, user=0:00:07.0
Maximum memory usage observed: 220.1M
Total disk usage observed (not including envs): 3.9K
####################################################################################
Source and build intermediates have been left in /Users/builder/miniconda3/conda-
→˓bld.
There are currently 437 accumulated.
To remove them, you can run the ```conda build purge``` command

2. If there are any linker or compiler errors, modify the recipe and build again.

Building a GDAL package with conda and Python 2 or 3

To begin, install Anaconda or Miniconda and conda-build. If you are using a Windows machine, also use conda to
install Git and m2-patch.

$ conda install git
$ conda install m2-patch

Because GDAL includes C and C++, building it on Windows requires Visual Studio. This procedure describes how to
build a package with Python 2 or Python 3. Follow the instructions for the version with which you want to build.

To build a GDAL package:

1. Install Visual Studio:

• For Python 3, install Visual Studio 2017:

• Choose "Custom install".

• Under "Programming Languages", select workloads that come from Visual Studio so that you can choose
the Desktop Development with C++ and Universal Platform C.

• For Python 2, install Visual Studio 2008:

• Choose "Custom install".

• Choose to install X64 Compilers and Tools.

• Install Visual Studio 2008 Service Pack 1.

2. Install Git. Because the GDAL package sources are retrieved from GitHub for the build, you must install Git:

$ conda install git m2-patch conda-build

3. Get gdal-feedstock. For the purpose of this tutorial, we will be using a recipe from Anaconda:

$ git clone https://github.com/AnacondaRecipes/gdal-feedstock.git

4. Use conda-build to build the gdal-feedstock:

$ conda build gdal-feedstock
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5. Check the output to make sure that the build completed successfully. The output also contains the location of the
final package file and a command to upload the package to Cloud. For this package in particular, there should be
two packages outputted: libgdal and GDAL.

6. In case of any linker or compiler errors, modify the recipe and run it again.

Let's take a closer look at what's happening inside the gdal-feedstock, specifically in the meta.yaml file.

The first interesting bit happens under source in the patches section:

patches:
# BUILT_AS_DYNAMIC_LIB.
- 0001-windowshdf5.patch
# Use multiple cores on Windows.
- 0002-multiprocessor.patch
# disable 12 bit jpeg on Windows as we aren't using internal jpeg
- 0003-disable_jpeg12.patch

This section is basically saying "when this package is being built on a Windows platform, apply the following patch
files". Notice that the patch files are in the patches directory of the recipe. These patches will only be applied to
Windows since the # [win] selector is applied to each of the patch entries. For more about selectors, see Preprocessing
selectors.

In the requirements section, notice how there are both a build and host set of requirements (run is another valid
parameter, but is not shown in this example). For this recipe, all the compilers required to build the package are listed
in the build requirements. Normally, this section will list out packages required to build the package. GDAL requires
CMake on Windows, as well as C compilers. Notice that the C compilers are pulled into the recipe using the syntax
{{ compiler('c') }}. Since conda-build 3, conda-build defines a jinja2 function compiler() to specify compiler
packages dynamically. So, using the compiler('c') function in a conda recipe will pull in the correct compiler for
any build platform. For more information about compilers with conda-build see compiler-tools.

Also note that the compilers used by conda-build can be specified using a conda_build_config.yaml. For more
information about how to do that, see Using your customized compiler package with conda-build 3.

Notice that this package has an outputs section. This section is a list of packages to output as a result of building this
package. In this case, the packages libgdal and GDAL will be built. Similar to a normal recipe, the outputs can have
build scripts, tests scripts, and requirements specified. For more information on how outputs work, see the Outputs
section.

Now, let's try to build GDAL against some build matrix. We will specify building against Python 3.7 and 3.5 using a
conda-build config. Add the following to your conda_build_config.yaml:

python:
- 3.7
- 3.5

Now you can build GDAL using conda-build with the command:

$ conda build gdal-feedstock

Or explicitly set the location of the conda-build variant matrix:

$ conda build gdal-feedstock --variant-config-file conda_build_config.yaml

If you want to know more about build variants and conda_build_config.yaml, including how to specify a config
file and what can go into it, take a look at Creating conda-build variant config files.
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3.2.2 Building conda packages with conda skeleton

• Overview

• Who is this for?

• Before you start

• Building a simple package with conda skeleton pypi

• Optional---Building for a different Python version

• Optional---Converting conda package for other platforms

• Optional---Uploading packages to Anaconda.org

• Troubleshooting a sample issue

• More information

Overview

This tutorial describes how to quickly build a conda package for a Python module that is already available on PyPI.

In the first procedure, building a simple package, you build a package that can be installed in any conda environment of
the same Python version as your root environment. The remaining optional procedures describe how to build packages
for other Python versions and other architectures, as well as how to upload packages to your Anaconda.org account.

Note: You may consider using Docker to run the tutorial.

Who is this for?

This tutorial is for Windows, macOS, and Linux users who wish to build a conda package from a PyPI package. No
prior knowledge of conda-build or conda recipes is required.

Before you start

Before you start, check the Prerequisites.

Building a simple package with conda skeleton pypi

The conda skeleton command picks up the PyPI package metadata and prepares the conda-build recipe. The final
step is to build the package itself and install it into your conda environment.

It is easy to build a skeleton recipe for any Python package that is hosted on PyPI, the official third-party software
repository for the Python programming language.

In this section you are going to use conda skeleton to generate a conda recipe, which informs conda-build about where
the source files are located and how to build and install the package.

You'll be working with a package named Click that is hosted on PyPI. Click is a tool for exposing Python functions to
create command line interfaces.

First, in your user home directory, run the conda skeleton command:
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conda skeleton pypi click

The two arguments to conda skeleton are the hosting location, in this case pypi, and the name of the package.

This creates a directory named click and creates one skeleton file in that directory: meta.yaml. Many other files
can be added there as necessary, such as build.sh and bld.bat, test scripts, or anything else you need to build your
software. For simple, pure-Python recipes, these extra files are unnecessary and the build/script section in the meta.
yaml is sufficient. Use the ls command on macOS or Linux or the dir command on Windows to verify that this file
has been created. The meta.yaml file has been populated with information from the PyPI metadata and in many cases
will not need to be edited.

Files in the folder with meta.yaml are collectively referred to as the "conda-build recipe":

• meta.yaml---Contains all the metadata in the recipe. Only the package name and package version sections are
required---everything else is optional.

• bld.bat---Windows commands to build the package.

• build.sh---macOS and Linux commands to build the package.

Now that you have the conda-build recipe ready, you can use conda-build to create the package:

conda-build click

When conda-build is finished, it displays the exact path and filename of the conda package. See Troubleshooting a
sample issue if the conda-build command fails.

Windows example file path:

C:\Users\jsmith\miniconda\conda-bld\win-64\click-7.0-py37_0.tar.bz2

macOS example file path:

/Users/jsmith/miniconda/conda-bld/osx-64/click-7.0-py37_0.tar.bz2

Linux example file path:

/home/jsmith/miniconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2

Note: Your path and filename will vary depending on your installation and operating system. Save the path and
filename information for the next step.

Now you can install your newly built package in your conda environment by using the use-local flag:

conda install --use-local click

Notice that Click is coming from the local conda-build channel.

(click) 0561:~ jsmith$ conda list
# packages in environment at /Users/Jsmith/miniconda/envs/click:
# Name Version Build Channel
ca-certificates 2019.1.23 0
certifi 2019.3.9 py37_0
click 7.0 py37_0 local

Now verify that Click installed successfully:
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conda list

Scroll through the list until you find Click.

At this point you now have a conda package for Click that can be installed in any conda environment of the same Python
version as your root environment. The remaining optional sections show you how to make packages for other Python
versions and other architectures and how to upload them to your Anaconda.org account.

Optional---Building for a different Python version

By default, conda-build creates packages for the version of Python installed in the root environment. To build packages
for other versions of Python, you use the --python flag followed by a version. For example, to explicitly build a version
of the Click package for Python 2.7, use:

conda-build --python 2.7 click

Notice that the file printed at the end of the conda-build output has changed to reflect the requested version of Python.
conda install will look in the package directory for the file that matches your current Python version.

Windows example file path:

C:\Users\jsmith\Miniconda\conda-bld\win-64\click-7.0-py27_0.tar.bz2

macOS example file path:

/Users/jsmith/miniconda/conda-bld/osx-64/click-7.0-py27_0.tar.bz2

Linux example file path:

/home/jsmith/miniconda/conda-bld/linux-64/click-7.0-py27_0.tar.bz2

Note: Your path and filename will vary depending on your installation and operating system. Save the path and
filename information for the next task.

Optional---Converting conda package for other platforms

Now that you have built a package for your current platform with conda-build, you can convert it for use on other
platforms with the conda convert command. This works only for pure Python packages where there is no compiled
code. Conda convert does nothing to change compiled code, it only adapts file paths to take advantage of the fact that
Python scripts are mostly platform independent. Conda convert accepts a platform specifier from this and a platform
specifier from this list:

• osx-64.

• linux-32.

• linux-64.

• win-32.

• win-64.

• all.
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In the output directory, 1 folder will be created for each of the 1 or more platforms you chose and each folder will
contain a .tar.bz2 package file for that platform.

Windows:

conda convert -f --platform all C:\Users\jsmith\miniconda\conda-bld\win-64\click-7.0-
→˓py37_0.tar.bz2
-o outputdir\

macOS and Linux:

conda convert --platform all /home/jsmith/miniconda/conda-bld/linux-64/click-7.0-py37_0.
→˓tar.bz2
-o outputdir/

Note: Change your path and filename to the exact path and filename you saved in Optional---Building for a different
Python version.

To use these packages, you need to transfer them to other computers and place them in the correct conda-bld/$ARCH
directory for the platform, where $ARCH can be osx-64, linux-32, linux-64, win-32, or win-64.

A simpler way is to upload all of the bz2 files to Anaconda.org as described in the next task.

If you find yourself needing to use conda convert, you might instead prefer to change your recipe to make your
package a "noarch" package. Noarch packages run anywhere and do not require conda convert. Some of the ecosystem
tools don't yet support noarch packages but, for the most part, noarch packages are a better way to go.

Optional---Uploading packages to Anaconda.org

Anaconda.org is a repository for public or private packages. Uploading to Anaconda.org allows you to easily install
your package in any environment with just the conda install command, rather than manually copying or moving
the tarball file from one location to another. You can choose to make your files public or private. For more information
about Anaconda.org, see the Anaconda.org documentation.

1. Create a free Anaconda.org account and record your new Anaconda.org username and password.

2. Run conda install anaconda-client and enter your Anaconda.org username and password.

3. Log into your Anaconda.org account from your terminal with the command anaconda login.

Now you can upload the new local packages to Anaconda.org.

Windows:

anaconda upload C:\Users\jsmith\miniconda\conda-bld\win-64\click-7.0-py37_0.tar.bz2

macOS and Linux:

anaconda upload /home/jsmith/miniconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2

Note: Change your path and filename to the exact path and filename you saved in Optional---Building for a different
Python version. Your path and filename will vary depending on your installation and operating system.
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If you created packages for multiple versions of Python or used conda convert to make packages for each supported
architecture, you must use the anaconda upload command to upload each one. It is considered best practice to create
packages for Python versions 2.7, 3.4, and 3.5 along with all of the architectures.

Tip: If you want to always automatically upload a successful build to Anaconda.org, run: conda config --set
anaconda_upload yes

You can log out of your Anaconda.org account with the command:

anaconda logout

Troubleshooting a sample issue

Conda-build may produce the error message "Build Package missing."

To explore this error:

1. Create a conda skeleton package for skyfield. The conda skeleton command is:

conda skeleton pypi skyfield

This command creates the skyfield conda-build recipe.

2. Run conda-build skyfield and observe that it fails with the following output:

Removing old build environment
Removing old work directory
BUILD START: skyfield-0.8-py35_0
Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata: ......
Solving package specifications: .
Error: Package missing in current osx-64 channels:
- sgp4 >=1.4

In this example, the conda recipe requires sgp4 for the skyfield package. The skyfield recipe was created by conda
skeleton. This error means that conda could not find the sgp4 package and install it.

Since many PyPI packages depend on other PyPI packages to build or run, the solution is sometimes as simple as using
conda skeleton to create a conda recipe for the missing package and then building it:

conda skeleton sgp4
conda build sgp4

You may also try using the --recursive flag with conda skeleton, but this makes conda recipes for all required
packages, even those that are already available to conda install.

3.2. Tutorials 29



conda-build Documentation, Release 0.0.0.dev0+placeholder

More information

For more options, see the full conda skeleton command documentation.

3.2.3 Building conda packages from scratch

• Overview

• Who is this for?

• Before you start

• Editing the meta.yaml file

• Writing the build script files build.sh and bld.bat

• Building and installing

• Converting a package for use on all platforms

• Optional---Using PyPI as the source instead of GitHub

• Optional---Uploading new packages to Anaconda.org

• More information

Overview

This tutorial describes how to build a conda package for Click by writing the required files in the conda-build recipe.

Who is this for?

This tutorial is for Windows, macOS, and Linux users who wish to generate a conda package by writing the necessary
files. Prior knowledge of conda-build and conda recipes is helpful.

Before you start

• Check the Prerequisites.

• You should have already completed Building conda packages with conda skeleton.

Editing the meta.yaml file

1. Make a new directory for this tutorial named click, and then change to the new directory:

mkdir click
cd click

2. To create a new meta.yaml file, open your favorite editor. Create a new text file and insert the information shown
below. A blank sample meta.yaml follows the table to make it easier to match up the information.

Note: To allow correct sorting and comparison, specify version as a string.
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name click
version "7.0" (or latest from https://github.com/pallets/click/releases)
git_rev 6.7 (or latest from https://github.com/pallets/click/releases)
git_url https://github.com/pallets/click.git
imports click
home https://github.com/pallets/click
license BSD

package:
name:
version:

source:
git_rev:
git_url:

requirements:
build:
- python
- setuptools

run:
- python

test:
imports:
-

about:
home:

3. Save the file in the same click directory as meta.yaml. It should match this meta.yaml file.

Writing the build script files build.sh and bld.bat

Besides meta.yaml, 2 files are required for a build:

• build.sh---Shell script for macOS and Linux.

• bld.bat---Batch file for Windows.

These 2 build files contain all the variables, such as for 32-bit or 64-bit architecture---the ARCH variable---and the build
environment prefix---PREFIX. The 2 files build.sh and bld.bat must be in the same directory as your meta.yaml
file.

This tutorial describes how to make both build.sh and bld.bat so that other users can build the appropriate package
for their architecture.

1. Open a text editor and create a new file named bld.bat. Type the text exactly as shown:

"%PYTHON%" setup.py install
if errorlevel 1 exit 1
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Note: In bld.bat, the best practice is to to add if errorlevel 1 exit 1 after every command so that if
the command fails, the build fails.

2. Save this new file bld.bat to the same directory where you put your meta.yaml file.

3. Open a text editor and create a new file named build.sh. Enter the text exactly as shown:

$PYTHON setup.py install # Python command to install the script.

4. Save your new build.sh file to the same directory where you put the meta.yaml file.

You can run build.sh with bash -x -e. The -x makes it echo each command that is run, and the -e makes it exit
whenever a command in the script returns nonzero exit status. If you need to revert this in the script, use the set
command in build.sh.

Building and installing

Now that you have your 3 new build files ready, you are ready to create your new package with conda-build and install
the package on your local computer.

1. Run conda-build:

conda-build click

If you are already in the click folder, you can type conda build ..

When conda-build is finished, it displays the package filename and location. In this case the file is saved to:

~/anaconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2

Note: Save this path and file information for the next task. The exact path and filename vary depending on your
operating system and whether you are using Anaconda or Miniconda. The conda-build command tells you the
exact path and filename.

2. Install your newly built program on your local computer by using the use-local flag:

conda install --use-local click

If there are no error messages, Click installed successfully.

Note: Explicitly installing a local package bypasses the dependency resolver, as such the package's run depen-
dencies will not be evaluated. See conda install --help or the install command reference page for more info.
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Converting a package for use on all platforms

Now that you have built a package for your current platform with conda-build, you can convert it for use on other
platforms by using the 2 build files, build.sh and bld.bat.

Use the conda convert command with a platform specifier from the list:

• osx-64.

• linux-32.

• linux-64.

• win-32.

• win-64.

• all.

EXAMPLE: Using the platform specifier all:

conda convert --platform all ~/anaconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2 -o␣
→˓outputdir/

Note: Change your path and filename to the path and filename you saved in Building and installing.

Optional---Using PyPI as the source instead of GitHub

You can use PyPI or another repository instead of GitHub. There is little difference to conda-build between building
from Git versus building from a tarball on a repository like PyPI. Because the same source is hosted on PyPI and
GitHub, you can easily find a script on PyPI instead of GitHub.

Replace this source section:

git_rev: v0.6.7
git_url: https://github.com/pallets/click.git

With the following:

url: https://files.pythonhosted.org/packages/f8/5c/
→˓f60e9d8a1e77005f664b76ff8aeaee5bc05d0a91798afd7f53fc998dbc47/Click-7.0.tar.gz
sha256: 5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7

Note: The url and sha256 are found on the PyPI Click page.
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Optional---Uploading new packages to Anaconda.org

After converting your files for use on other platforms, you may choose to upload your files to Anaconda.org, formerly
known as binstar.org. It only takes a minute to do if you have a free Anaconda.org account.

1. If you have not done so already, open a free Anaconda.org account and record your new user name and password.

2. Run the command conda install anaconda-client, and then enter your Anaconda.org username and pass-
word.

3. Log into your Anaconda.org account with the command:

anaconda login

4. Upload your package to Anaconda.org:

anaconda upload ~/miniconda/conda-bld/linux-64/click-7.0-py37_0.tar.bz2

Note: Change your path and filename to the path and filename you saved in Building and installing.

Tip: To save time, you can set conda to always upload a successful build to Anaconda.org with the command:
conda config --set anaconda_upload yes.

More information

• For more information about all the possible values that can go into the meta.yaml file, see Defining metadata
(meta.yaml).

3.2.4 Building R packages with skeleton CRAN

• Overview

• Who is this for?

• Before you start

• Building a simple package with conda skeleton CRAN

• Building an R package with dependencies

• Optional---Building for a different R version

• Optional---Uploading packages to Anaconda.org

• More information
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Overview

This tutorial describes how to quickly build an R-language package on macOS for an R module that is already available
on CRAN.

You will build a simple package that can be installed in any conda environment of the same R version as your root
environment. The tutorial will also tell you how to build the dependencies that may arise while building the package.

Who is this for?

This tutorial is for macOS users who wish to build an R-language package from CRAN. No prior knowledge of conda-
build or conda recipes is required.

Before you start

Before you start, check the prerequisites.

Building a simple package with conda skeleton CRAN

The conda skeleton command picks up the CRAN package metadata and prepares the conda-build recipe. The final
step is to build the package itself and install it into your conda environment.

It is easy to build a skeleton recipe for any R package that is hosted on CRAN. In this section you are going to use
conda skeleton to generate a conda recipe, which informs conda-build about where the source files are located and how
to build and install the package.

You'll be working with a package that is hosted on CRAN named fansi, a tool that accounts for the effects of ANSI text
formatting control sequences.

First, in your user home directory, run the conda skeleton command:

conda skeleton cran fansi

The two arguments to conda skeleton are the type of hosting location, in this case cran, and the name of the package.

This creates a directory named r-fansi and creates 1 skeleton file in that directory: meta.yaml. Many other files
can be added there as necessary, such as build.sh and bld.bat, test scripts, or anything else you need to build your
software. Use the ls command to verify that this file has been created. The meta.yaml file has been populated with
information from the CRAN metadata and in many cases will not need to be edited.

Files in the folder with meta.yaml are collectively referred to as the "conda-build recipe":

• meta.yaml---Contains all the metadata in the recipe. The package name and package version sections are
required---everything else is optional.

• bld.bat---Windows commands to build the package.

• build.sh---macOS and Linux commands to build the package.

Now that you have the conda-build recipe ready, you can use conda-build to create the package:

conda-build r-fansi

When conda-build is finished, it displays the exact path and filename of the conda package. See Troubleshooting a
sample issue if the conda-build command fails. If you receive an error with SDK on macOS, review our resources
for macOS and SDK .

Example file path:
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/Users/jsmith/anaconda3/conda-bld/osx-64/r-fansi-0.4.0-r353h46e59ec_0.tar.bz2

Note: Your path and filename will vary depending on your installation and operating system. Save the path and
filename information for the next step.

Now you can install your newly built package in your conda environment by using the use-local flag:

conda install --use-local r-fansi

Now verify that fansi installed successfully:

conda list

Scroll through the list until you find r-fansi.

Notice that fansi is coming from the local conda-build channel.

(base) 0561:~ jsmith$ conda list
# packages in environment at /Users/Jsmith/anaconda3:
# Name Version Build Channel
qtpy 1.5.0 py37_0
r-base 3.5.1 h539fb6c_1
r-fansi 0.4.0 r353h46e59ec_0 local

The version of R will be what you have in your base environment.

See Optional---Building for a different R version to set your own R version.

At this point you now have a conda package for fansi that can be installed in any conda environment of its R version.

Building an R package with dependencies

The fansi package was a simple one that didn’t have dependencies. To build an R package with dependencies, let’s look
at the example of janitor. Janitor is a package hosted on CRAN that is used for examining and cleaning up data.

To begin building it, type:

conda skeleton cran janitor

This creates a directory named r-janitor and creates one skeleton file in that directory: meta.yaml. Many other
files can be added there as necessary, such as build.sh and bld.bat, test scripts, or anything else you need to build
your software. Use the ls command to verify that this file has been created. The meta.yaml file has been populated
with information from the CRAN metadata and in many cases will not need to be edited.

Now that you have the conda-build recipe ready, you can use conda-build to create the package:

conda-build r-janitor

What may happen at this point is that you will have dependencies of this package that do not exist as conda packages
yet. They need to be turned into conda packages. Use conda skeleton to recursively build out recipes for the packages
that it depends on:

conda skeleton cran janitor --recursive

You can manually build each package individually by typing:

36 Chapter 3. User guide



conda-build Documentation, Release 0.0.0.dev0+placeholder

conda-build package-name

Note: Replace "package-name" with the name of each package.

Once all of the package dependencies are resolved, you can build the R package by using:

conda-build .

Now you can install your newly built package in your conda environment by using the use-local flag:

conda install --use-local r-janitor

The remaining optional sections show you how to make R packages for other R versions and other architectures and
how to upload them to your Anaconda.org account.

Optional---Building for a different R version

By default, conda-build creates packages for the version of R installed in the root environment. To build packages for
other versions of R, you use the --R flag followed by a version.

For example, to explicitly build a version of the fansi package for R 3.6.1, use:

conda-build --R 3.6.1 r-fansi

Notice that the file printed at the end of the conda-build output has changed to reflect the requested version of R. Conda
install will look in the package directory for the file that matches your current R version.

Example file path:

/Users/jsmith/anaconda3/conda-bld/osx-64/r-fansi-0.4.0-r353h46e59ec_0.tar.bz2

Note: Your path and filename will vary depending on your installation and operating system. Save the path and
filename information for the next task.

Optional---Uploading packages to Anaconda.org

Anaconda.org is a repository for public or private packages. Uploading to Anaconda.org allows you to easily install
your package in any environment with just the conda install command, rather than manually copying or moving
the tarball file from one location to another. You can choose to make your files public or private.

For more information about Anaconda.org, see the Anaconda.org documentation.

1. Create a free Anaconda.org account and record your new Anaconda.org username and password.

2. Run conda install anaconda-client and enter your Anaconda.org username and password.

3. Log into your Anaconda.org account from your terminal with the command anaconda login.

Now you can upload the new local packages to Anaconda.org.

anaconda upload /Users/jsmith/anaconda3/conda-bld/osx-64/r-fansi-0.4.0-r353h46e59ec_0.
→˓tar.bz2
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Note: Change your path and filename to the exact path and filename you saved in Optional---Building for a different R
version. Your path and filename will vary depending on your installation and operating system. If you created packages
for multiple versions of R, you must use the anaconda upload command to upload each one.

Tip: If you want to always automatically upload a successful build to Anaconda.org, run: conda config --set
anaconda_upload yes

You can log out of your Anaconda.org account with the command:

anaconda logout

More information

For more options, see the full conda skeleton command documentation.

3.3 Recipes

Review recipe concepts for more information about conda-build recipes.

3.3.1 Building a package without a recipe (bdist_conda)

• Setup options

– Build number

– Build string

– Import tests

– Command line tests

– Binary files relocatable

– Preserve egg directory

• Command line options

– Build number

• Notes

You can use conda-build to build packages for Python to install rather than conda by using setup.py bdist_conda.
This is a quick way to build packages without using a recipe, but it has limitations. The script is limited to the Python
version used in the build and it is not as reproducible as using a recipe. We recommend using a recipe with conda-build.

Note: If you use Setuptools, you must first import Setuptools and then import conda_build.bdist_conda, because
Setuptools monkey patches distutils.dist.Distribution.

EXAMPLE: A minimal setup.py file using the setup options name and version:
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from setuptools import setup
import conda_build.bdist_conda

setup(
name="foo",
version="1.0",
distclass=conda_build.bdist_conda.CondaDistribution,
conda_buildnum=1,

)

Setup options

You can pass the following options to setup(). You must include distclass=conda_build.bdist_conda.
CondaDistribution.

Build number

The number of the build. Can be overridden on the command line with the --buildnum flag. Defaults to 0.

conda_buildnum=1

Build string

The build string. Default is generated automatically from the Python version, NumPy version---if relevant---and the
build number, such as py34_0.

conda_buildstr=py34_0

Import tests

Whether to automatically run import tests. The default is True, which runs import tests for all the modules in packages.
Also allowed are False, which runs no tests, or a list of module names to be tested on import.

conda_import_tests=False

Command line tests

Command line tests to run. Default is True, which runs command --help for each command in the console_scripts
and gui_scripts entry_points. Also allowed are False, which does not run any command tests, or a list of command
tests to run.

conda_command_tests=False
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Binary files relocatable

Whether binary files should be made relocatable, using install_name_tool on macOS or patchelf on Linux. The default
is True.

conda_binary_relocation=False

For more information, see Making packages relocatable.

Preserve egg directory

Whether to preserve the egg directory as installed by Setuptools. The default is True if the package depends on
Setuptools or has Setuptools entry_points other than console_scripts and gui_scripts.

conda_preserve_egg_dir=False

Command line options

Build number

Set the build number. Defaults to the conda_buildnum passed to setup() or 0. Overrides any conda_buildnum passed
to setup().

--buildnum=1

Notes

• You must install bdist_conda into a root conda environment, as it imports conda and conda_build. It is
included as part of the conda-build package.

• All metadata is gathered from the standard metadata from the setup() function. Metadata that are not directly
supported by setup() can be added using one of the options specified above.

• By default, import tests are run for each subpackage specified by packages, and command line tests command
--help are run for each setuptools entry_points command. This is done to ensure that the package is
built correctly. You can disable or change these using the conda_import_tests and conda_command_tests
options specified above.

• The Python version used in the build must be the same as where conda is installed, as bdist_conda uses
conda-build.

• bdist_conda uses the metadata provided to the setup() function.

• If you want to pass any bdist_conda specific options to setup(), in setup() you must set
distclass=conda_build.bdist_conda.CondaDistribution.
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3.3.2 Sample recipes

Conda offers you the flexibility of being able to build things that are not Python related. The first 2 sample recipes,
boost and libtiff, are examples of non-Python libraries, meaning they do not require Python to run or build.

• boost is an example of a popular programming library and illustrates the use of selectors in a recipe.

• libtiff is another example of a compiled library, which shows how conda can apply patches to source directories
before building the package.

• msgpack, blosc, and cytoolz are examples of Python libraries with extensions.

• toolz, sympy, six, and gensim are examples of Python-only libraries.

gensim works on Python 2, and all of the others work on both Python 2 and Python 3.

3.3.3 Debugging conda recipes

Recipes are something that you'll rarely get exactly right on the first try. Something about the build will be wrong, and
the build will break. Maybe you only notice a problem during tests, but you need more info than you got from the tests
running in conda-build. Conda-build 3.17.0 added the subcommand, conda debug, that is designed to facilitate the
recipe debugging process.

Fundamentally, debugging is a process of getting into or recreating the environment and set of shell environment
variables that conda-build creates during its build or test processes. This has been possible for a very long time---you
could observe the build output, figure out where the files from your build were placed, navigate there, and finally,
activate the appropriate environment(s). Then you might also need to set some environment variables manually.

What conda debug does is to create environments for you and provide you with a single command line that you can
copy/paste to enter a debugging environment.

Usage

The conda debug command accepts 1 of 2 kinds of inputs: a recipe folder or a path to a built package.

If a path to a recipe folder is provided, conda debug creates the build and host environments. It provisions any source
code that your recipe specifies. It leaves the build-time scripts in the work folder for you. When complete, conda
debug prints something like this:

################################################################################
Build and/or host environments created for debugging. To enter a debugging environment:

cd /Users/UserName/miniconda3/conda-bld/debug_1542385789430/work && source /Users/
→˓UserName/miniconda3/conda-bld/debug_1542385789430/work/build_env_setup.sh

To run your build, you might want to start with running the conda_build.sh file.
################################################################################

If a path to a built package is provided, conda debug creates the test environment. It prepares any test files that the
recipe specified. When complete, conda debug prints something like this:

################################################################################
Test environment created for debugging. To enter a debugging environment:

cd /Users/UserName/miniconda3/conda-bld/conda-build_1542302975704/work && source /Users/
→˓UserName/miniconda3/conda-bld/conda-build_1542302975704/work/build_env_setup.sh

(continues on next page)
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(continued from previous page)

To run your tests, you might want to start with running the conda_test_runner.sh file.
################################################################################

Next steps

Given the output above, you can now enter an environment to start debugging. Copy paste from your terminal and go:

cd /Users/UserName/miniconda3/conda-bld/debug_1542385789430/work && source /Users/
→˓UserName/miniconda3/conda-bld/debug_1542385789430/work/build_env_setup.sh

This is where you'll hopefully know what build commands you want to run to help you debug. Every build is different
so your experience will vary. However, if you have no idea at all, you could probably start by running the appropriate
build or test script, as mentioned in the output. If you do this, remember that these scripts might be written to exit on
error, which may close your shell session. It may be wise to only run these scripts in an explicit subshell:

bash conda_build.sh
bash conda_test_runner.sh

Complications with multiple outputs

Multiple outputs effectively give the recipe many build phases to consider. The --output-id argument is the mecha-
nism to specify which of these should be used to create the debug envs and scripts. The --output-id argument accepts
an fnmatch pattern. You can match any part of the output filenames. This really only works for conda packages, not
other output types, such as wheels, because conda-build can't currently predict their filenames without actually carrying
out a build.

For example, our NumPy recipe has multiple outputs. If we wanted to debug the NumPy-base output, we would specify
it with a command like:

conda debug numpy-feedstock --output-id="numpy-base*"

If you have a matrix build, you may need to be more specific:

Specified --output-id matches more than one output (['/Users/msarahan/miniconda3/conda-
→˓bld/debug_1542387301945/osx-64/numpy-base-1.14.6-py27h1a60bec_4.tar.bz2', '/Users/
→˓msarahan/miniconda3/conda-bld/debug_1542387301945/osx-64/numpy-base-1.14.6-
→˓py27h8a80b8c_4.tar.bz2', '/Users/msarahan/miniconda3/conda-bld/debug_1542387301945/osx-
→˓64/numpy-base-1.14.6-py36h1a60bec_4.tar.bz2', '/Users/msarahan/miniconda3/conda-bld/
→˓debug_1542387301945/osx-64/numpy-base-1.14.6-py36h8a80b8c_4.tar.bz2', '/Users/msarahan/
→˓miniconda3/conda-bld/debug_1542387301945/osx-64/numpy-base-1.14.6-py37h1a60bec_4.tar.
→˓bz2', '/Users/msarahan/miniconda3/conda-bld/debug_1542387301945/osx-64/numpy-base-1.14.
→˓6-py37h8a80b8c_4.tar.bz2']). Please refine your output id so that only a single␣
→˓output is found.

You could either reduce your matrix by changing your conda_build_config.yaml, or making a simpler one and
passing it on the CLI, or by using the CLI to reduce it.

conda debug numpy-feedstock --output-id="numpy-base*" --python=3.6 --variants="{blas_
→˓impl: openblas}"
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Specified --output-id matches more than one output (['/Users/UserName/miniconda3/conda-
→˓bld/debug_1542387443190/osx-64/numpy-base-1.14.6-py36h28eea48_4.tar.bz2', '/Users/
→˓UserName/miniconda3/conda-bld/debug_1542387443190/osx-64/numpy-base-1.14.6-
→˓py36ha711998_4.tar.bz2']). Please refine your output id so that only a single output␣
→˓is found.

However, this is still not enough as our matrix includes two BLAS implementations, MKL and OpenBLAS.

Further reduction:

conda debug numpy-feedstock --output-id="numpy-base*" --python=3.6 --variants="{blas_
→˓impl: 'openblas'}"

Cleanup

Debugging folders are named in a way that the conda build purge command will find and clean up. If you use the
-p/--path CLI argument, conda-build will not detect these and you'll need to manually clean up yourself. conda build
purge-all will also remove previously built packages.

Quirks

You can specify where you want the root of your debugging stuff to go with the -p/--path CLI argument. The way
this works is that conda-build treats that as its "croot" where packages get cached as necessary, as well as potentially
indexed. When using the --path argument, you may see folders like "osx-64" or other platform subdirs in the path you
specify. It is safe to remove them or ignore them.

3.4 Environment variables

• Dynamic behavior based on state of build process

• Environment variables set during the build process

• Git environment variables

• Mercurial environment variables

• Inherited environment variables

• Environment variables that affect the build process

• Environment variables that affect the test process
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3.4.1 Dynamic behavior based on state of build process

There are times when you may want to process a single file in different ways at more than 1 step in the render-build-test
flow of conda-build. Conda-build sets the CONDA_BUILD_STATE environment variable during each of these phases.
The possible values are:

• RENDER---Set during evaluation of the meta.yaml file.

• BUILD---Set during processing of the bld.bat or build.sh script files.

• TEST---Set during the running of any run_test scripts, which also includes any commands defined in meta.
yaml in the test/commands section.

The CONDA_BUILD_STATE variable is undefined outside of these locations.

3.4.2 Environment variables set during the build process

During the build process, the following environment variables are set, on Windows with bld.bat and on macOS and
Linux with build.sh. By default, these are the only variables available to your build script. Unless otherwise noted,
no variables are inherited from the shell environment in which you invoke conda-build. To override this behavior,
see Inherited environment variables.

44 Chapter 3. User guide



conda-build Documentation, Release 0.0.0.dev0+placeholder

ARCH Either 32 or 64, to specify whether the build is 32-bit or 64-bit. The value depends on the
ARCH environment variable and defaults to the architecture the interpreter running conda
was compiled with.

CMAKE_GENERATORThe CMake generator string for the current build environment. On Linux systems, this
is always Unix Makefiles. On Windows, it is generated according to the Visual Studio
version activated at build time, for example, Visual Studio 9 2008 Win64.

CONDA_BUILD=1 Always set.
CPU_COUNT The number of CPUs on the system, as reported by multiprocessing.cpu_count().
SHLIB_EXT The shared library extension.
DIRTY Set to 1 if the --dirty flag is passed to the conda-build command. May be used to skip

parts of a build script conditionally for faster iteration time when developing recipes. For
example, downloads, extraction and other things that need not be repeated.

HTTP_PROXY Inherited from your shell environment.
HTTPS_PROXY Inherited from your shell environment.
LANG Inherited from your shell environment.
MAKEFLAGS Inherited from your shell environment. May be used to set additional arguments to make,

such as -j2, which uses 2 CPU cores to build your recipe.
PY_VER Python version building against. Set with the --python argument or with the CONDA_PY

environment variable.
NPY_VER NumPy version to build against. Set with the --numpy argument or with the CONDA_NPY

environment variable.
PATH Inherited from your shell environment and augmented with $PREFIX/bin.
PREFIX Build prefix to which the build script should install.
PKG_BUILDNUM Build number of the package being built.
PKG_NAME Name of the package being built.
PKG_VERSION Version of the package being built.
PKG_BUILD_STRING Complete build string of the package being built, including hash. EXAMPLE:

py27h21422ab_0 . Conda-build 3.0+.
PKG_HASH Hash of the package being built, without leading h. EXAMPLE: 21422ab . Conda-build

3.0+.
PYTHON Path to the Python executable in the host prefix. Python is installed only in the host prefix

when it is listed as a host requirement.
PY3K 1 when Python 3 is installed in the build prefix, otherwise 0.
R Path to the R executable in the build prefix. R is only installed in the build prefix when it is

listed as a build requirement.
RECIPE_DIR Directory of the recipe.
SP_DIR Python's site-packages location.
SRC_DIR Path to where source is unpacked or cloned. If the source file is not a recognized file type--

-zip, tar, tar.bz2, or tar.xz---this is a directory containing a copy of the source file.
STDLIB_DIR Python standard library location.
build_platform The native subdir of the conda executable

Unix-style packages on Windows, which are usually statically linked to executables, are built in a special Library
directory under the build prefix. The environment variables listed in the following table are defined only on Windows.
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CYGWIN_PREFIX Same as PREFIX, but as a Unix-style path, such as /cygdrive/c/path/to/prefix.
LIBRARY_BIN <build prefix>\Library\bin.
LIBRARY_INC <build prefix>\Library\include.
LIBRARY_LIB <build prefix>\Library\lib.
LI-
BRARY_PREFIX

<build prefix>\Library.

SCRIPTS <build prefix>\Scripts.
VS_MAJOR The major version number of the Visual Studio version activated within the build, such as

9.
VS_VERSION The version number of the Visual Studio version activated within the build, such as 9.0.
VS_YEAR The release year of the Visual Studio version activated within the build, such as 2008.

The environment variables listed in the following table are defined only on macOS and Linux.

HOME Standard $HOME environment variable.
PKG_CONFIG_PATH Path to pkgconfig directory.

The environment variables listed in the following table are defined only on macOS.

CFLAGS -arch flag.
CXXFLAGS Same as CFLAGS.
LDFLAGS Same as CFLAGS.
MA-
COSX_DEPLOYMENT_TARGET

Same as the Anaconda Python macOS deployment target. Currently 10.9.

OSX_ARCH i386 or x86_64, depending on Python build.

The environment variable listed in the following table is defined only on Linux.

LD_RUN_PATH <build prefix>/lib.

3.4.3 Git environment variables

The environment variables listed in the following table are defined when the source is a git repository, specifying the
source either with git_url or path.

GIT_BUILD_STR String that joins GIT_DESCRIBE_NUMBER and GIT_DESCRIBE_HASH by an under-
score.

GIT_DESCRIBE_HASHThe current commit short-hash as displayed from git describe --tags.
GIT_DESCRIBE_NUMBERString denoting the number of commits since the most recent tag.
GIT_DESCRIBE_TAGString denoting the most recent tag from the current commit, based on the output of git

describe --tags.
GIT_FULL_HASH String with the full SHA1 of the current HEAD.

These can be used in conjunction with templated meta.yaml files to set things---such as the build string---based on
the state of the git repository.
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3.4.4 Mercurial environment variables

The environment variables listed in the following table are defined when the source is a mercurial repository.

HG_BRANCH String denoting the presently active branch.
HG_BUILD_STR String that joins HG_NUM_ID and HG_SHORT_ID by an underscore.
HG_LATEST_TAG String denoting the most recent tag from the current commit.
HG_LATEST_TAG_DISTANCEString denoting number of commits since the most recent tag.
HG_NUM_ID String denoting the revision number.
HG_SHORT_ID String denoting the hash of the commit.

3.4.5 Inherited environment variables

Other than those mentioned above, no variables are inherited from the environment in which you invoke conda-build.
You can choose to inherit additional environment variables by adding them to meta.yaml:

build:
script_env:
- TMPDIR
- LD_LIBRARY_PATH # [linux]
- DYLD_LIBRARY_PATH # [osx]

If an inherited variable is missing from your shell environment, it remains unassigned, but a warning is issued noting
that it has no value assigned.

Additionally, values can be set by including = followed by the desired value:

build:
script_env:
- MY_VAR=some value

Warning: Inheriting environment variables can make it difficult for others to reproduce binaries from source with
your recipe. Use this feature with caution or explicitly set values using the = syntax.

Note: If you split your build and test phases with --no-test and --test, you need to ensure that the environment
variables present at build time and test time match. If you do not, the package hashes may use different values and your
package may not be testable because the hashes will differ.

3.4.6 Environment variables that affect the build process

CONDA_PY The Python version used to build the package. Should be 27, 34, 35, 36, or 37.
CONDA_NPY The NumPy version used to build the package, such as 19, 110, or 111.
CONDA_PREFIX The path to the conda environment used to build the package, such as /path/to/conda/

env. Useful to pass as the environment prefix parameter to various conda tools, usually
labeled -p or --prefix.
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3.4.7 Environment variables that affect the test process

All of the above environment variables are also set during the test process, using the test prefix instead of the build
prefix.

3.5 Using wheel files with conda

If you have software in a Python wheel file and want to use it with conda or install it in a conda environment, there are
3 ways.

The best way is to obtain the source code for the software and build a conda package from the source and not from a
wheel. This helps ensure that the new package uses other conda packages to satisfy its dependencies.

The second best way is to build a conda package from the wheel file. This tells conda more about the files present than
a pip install. It is also less likely than a pip install to cause errors by overwriting (or "clobbering") files. Building a
conda package from the wheel file also has the advantage that any clobbering is more likely to happen at build time
and not runtime.

The third way is to use pip to install a wheel file into a conda environment. Some conda users have used this option
safely. The first 2 ways are still the safest and most reliable.

3.5.1 Building a conda package from a wheel file

To build a conda package from a wheel file, install the .whl file in the conda recipe's bld.bat or build.sh file.

You may download the .whl file in the source section of the conda recipe's meta.yaml file.

You may instead put the URL directly in the pip install command.

EXAMPLE: The conda recipe for TensorFlow has a pip install command in build.sh with the URL of a .whl file.
The meta.yaml file does not download or list the .whl file.

Note: It is important to pip install only the one desired package. Whenever possible, install dependencies with
conda and not pip.

You must use the --no-deps option in the pip install command in order to avoid bundling dependencies into your
conda-package.

If you run pip install without the --no-deps option, pip will often install dependencies in your conda recipe and
those dependencies will become part of your package. This wastes space in the package and increases the risk of file
overlap, file clobbering, and broken packages.

Tutorials

The tutorials will guide you through how to build conda packages — whether you're creating a package with compilers,
using conda skeleton, creating from scratch, or building R packages using skeleton CRAN.

Recipes

Conda-build uses recipes to create conda packages. We have guides on debugging conda recipes, sample recipes for
you to use, and information on how to build a package without a recipe.

Environment variables

Use our environment variables guide to understand which environment variables are available, set, and inherited, and
how they affect different processes.
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Wheel files

The user guide includes information about wheel files and how to build conda packages from them.
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CHAPTER

FOUR

RESOURCES

These resources will help you accomplish more using conda-build. We provide information on topics including build
scripts, build variants, making packages relocatable, and defining metadata in the meta.yaml. We also provide guide-
lines and a template for submitting your own documentation.

4.1 Build scripts (build.sh, bld.bat)

The build.sh file is the build script for Linux and macOS and bld.bat is the build script for Windows. These scripts
contain the logic that carries out your build steps. Traditionally it has also included install steps. With the traditional
one-package-per-recipe way of doing things, anything that your build script copies into the $PREFIX or %PREFIX%
folder will be included in your output package. For example, this build.sh:

mkdir -p $PREFIX/bin
cp $RECIPE_DIR/my_script_with_recipe.sh $PREFIX/bin/super-cool-script.sh

If you don't care about deploying your package with pip on PyPI, this can save you a lot of time in figuring out the
proper way to include additional files with setup.py.

There are many environment variables defined for you to use in build.sh and bld.bat. Please see Environment variables
for more information.

As of conda-build 2.1, you can also define multiple output packages. Each package has its own script or list of files to
include. The rules for these outputs are documented at Outputs section. When any output is defined, this overrides the
default behavior of bundling anything in $PREFIX. So to output multiple packages from a single recipe, remove any
installation steps from build.sh or bld.bat and do them instead in your install script(s) for each output.

build.sh and bld.bat are optional. You can instead use the build/script key in your meta.yaml, with each
value being either a string command or a list of string commands. Any commands you put there must be able to run
on every platform for which you build. For example, you can't use the cp command because cmd.exe won't understand
it in Windows.

build.sh is run with bash and bld.bat is run with cmd.exe.

There is some development towards the ability to use bash scripts in Windows, but this is not currently supported. You
may write your script as a .sh file, and then call it in your bld.bat file, but there is no way to directly run build.sh on
Windows. The conda recipe at https://github.com/AnacondaRecipes/conda-feedstock/tree/master/recipe is an example
of this method.
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4.2 Anaconda compiler tools

Anaconda 5.0 switched from OS-provided compiler tools to our own toolsets. This allows improved compiler capabil-
ities, including better security and performance. This page describes how to use these tools and enable these benefits.

4.2.1 Compiler packages

Before Anaconda 5.0, compilers were installed using system tools such as XCode or yum install gcc. Now there
are conda packages for Linux and macOS compilers. Unlike the previous GCC 4.8.5 packages that included GCC, g++,
and GFortran all in the same package, these conda packages are split into separate compilers:

macOS:

• clang_osx-64.

• clangxx_osx-64.

• gfortran_osx-64.

Linux:

• gcc_linux-64.

• gxx_linux-64.

• gfortran_linux-64.

A compiler's "build platform" is the platform where the compiler runs and builds the code.

A compiler's "host platform" is the platform where the built code will finally be hosted and run.

Notice that all of these package names end in a platform identifier which specifies the host platform. All compiler
packages are specific to both the build platform and the host platform.

4.2.2 Using the compiler packages

The compiler packages can be installed with conda. Because they are designed with (pseudo) cross-compiling in mind,
all of the executables in a compiler package are "prefixed." Instead of gcc, the executable name of the compiler you
use will be something like x86_64-conda_cos6-linux-gnu-gcc. These full compiler names are shown in the build
logs, recording the host platform and helping prevent the common mistake of using the wrong compiler.

Many build tools such as make and CMake search by default for a compiler named simply gcc, so we set environment
variables to point these tools to the correct compiler.

We set these variables in conda activate.d scripts, so any environment in which you will use the compilers must first
be activated so the scripts will run. Conda-build does this activation for you using activation hooks installed with the
compiler packages in CONDA_PREFIX/etc/conda/activate.d, so no additional effort is necessary.

You can activate the root environment with the command conda activate root.
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4.2.3 macOS SDK

The macOS compilers require the macOS 10.9 SDK or above. The SDK license prevents it from being bundled in the
conda package. We know of 2 current sources for the macOS SDKs:

• https://github.com/devernay/xcodelegacy

• https://github.com/phracker/MacOSX-SDKs

We usually install the 10.10 SDK at /opt/MacOSX10.10.sdk but you may install it anywhere. Edit your
conda_build_config.yaml file to point to it, like this:

CONDA_BUILD_SYSROOT:
- /opt/MacOSX10.10.sdk # [osx]

At Anaconda, we have this configuration setting in a centralized conda_build_config.yaml at the root of our recipe
repository. Since we run build commands from that location, the file and the setting are used for all recipes. The
conda_build_config.yaml search order is described further at Creating conda-build variant config files.

Build scripts for macOS should make use of the variables MACOSX_DEPLOYMENT_TARGET and
CONDA_BUILD_SYSROOT, which are set by conda-build (see Environment variables). These variables should be
translated into correct compiler arguments, e.g. for Clang this would be:

clang .. -isysroot ${CONDA_BUILD_SYSROOT} -mmacosx-version-min=${MACOSX_DEPLOYMENT_
→˓TARGET} ..

Most build tools, e.g. CMake and distutils (setuptools), will automatically pick up MACOSX_DEPLOYMENT_TARGET
but you need to pass CONDA_BUILD_SYSROOT explicitly. For CMake, this can be done with the option
-DCMAKE_OSX_SYSROOT=${CONDA_BUILD_SYSROOT}. When building Python extensions with distutils, one should
always extend CFLAGS before calling setup.py:

export CFLAGS="${CFLAGS} -i sysroot ${CONDA_BUILD_SYSROOT}"

When building C++ extensions with Cython, CXXFLAGS must be similarly modified.

4.2.4 Backward compatibility

Some users want to use the latest Anaconda packages but do not yet want to use the Anaconda compilers. To enable
this, the latest Python package builds have a default _sysconfigdata file. This file sets the compilers provided by the
system, such as gcc and g++, as the default compilers. This way allows legacy recipes to keep working.

Python packages also include an alternative _sysconfigdata file that sets the Anaconda compilers as the default
compilers. The Anaconda Python executable itself is made with these Anaconda compilers.

The compiler packages set the environment variable _PYTHON_SYSCONFIGDATA_NAME, which tells Python which
_sysconfigdata file to use. This variable is set at activation time using the activation hooks described above.

The new _sysconfigdata customization system is only present in recent versions of the Python package. Conda-
build automatically tries to use the latest Python version available in the currently configured channels, which normally
gets the latest from the default channel. If you're using something other than conda-build while working with the new
compilers, conda does not automatically update Python, so make sure you have the correct _sysconfigdata files by
updating your Python package manually.
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4.2.5 Anaconda compilers and conda-build 3

The Anaconda 5.0 compilers and conda-build 3 are designed to work together.

Conda-build 3 defines a special jinja2 function, compiler(), to make it easy to specify compiler packages dynamically
on many platforms. The compiler function takes at least 1 argument, the language of the compiler to use:

requirements:
build:
- {{ compiler('c') }}

"Cross-capable" recipes can be used to make packages with a host platform different than the build platform where
conda-build runs. To write cross-capable recipes, you may also need to use the "host" section in the requirements
section. In this example we set "host" to "zlib" to tell conda-build to use the zlib in the conda environment and not the
system zlib. This makes sure conda-build uses the zlib for the host platform and not the zlib for the build platform.

requirements:
build:
- {{ compiler('c') }}

host:
- zlib

Generally, the build section should include compilers and other build tools and the host section should include every-
thing else, including shared libraries, Python, and Python libraries.

4.2.6 An aside on CMake and sysroots

Anaconda's compilers for Linux are built with something called crosstool-ng. They include not only GCC, but also a
"sysroot" with glibc, as well as the rest of the toolchain (binutils). Ordinarily, the sysroot is something that your system
provides, and it is what establishes the libc compatibility bound for your compiled code. Any compilation that uses
a sysroot other than the system sysroot is said to be "cross-compiling." When the target OS and the build OS are the
same, it is called a "pseudo-cross-compiler." This is the case for normal builds with Anaconda's compilers on Linux.

Unfortunately, some software tools do not handle sysroots in intuitive ways. CMake is especially bad for this. Even
though the compiler itself understands its own sysroot, CMake insists on ignoring that. We've filed issues at:

• https://gitlab.kitware.com/cmake/cmake/issues/17483

Additionally, this Stack Overflow issue has some more information: https://stackoverflow.com/questions/36195791/
cmake-missing-sysroot-when-cross-compiling

In order to teach CMake about the sysroot, you must do additional work. As an example, please see our recipe for
libnetcdf at https://github.com/AnacondaRecipes/libnetcdf-feedstock/tree/master/recipe

In particular, you'll need to copy the cross-linux.cmake file there, and reference it in your build.sh file:

CMAKE_PLATFORM_FLAGS+=(-DCMAKE_TOOLCHAIN_FILE="${RECIPE_DIR}/cross-linux.cmake")

cmake -DCMAKE_INSTALL_PREFIX=${PREFIX} \
${CMAKE_PLATFORM_FLAGS[@]} \
${SRC_DIR}
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4.2.7 Customizing the compilers

The compiler packages listed above are small packages that only include the activation scripts and list most of the
software they provide as runtime dependencies.

This design is intended to make it easy for you to customize your own compiler packages by copying these recipes and
changing the flags. You can then edit the conda_build_config.yaml file to specify your own packages.

We have been careful to select good, general purpose, secure, and fast flags. We have also used them for all packages
in Anaconda Distribution 5.0.0, except for some minor customizations in a few recipes. When changing these flags,
remember that choosing the wrong flags can reduce security, reduce performance, and cause incompatibilities.

With that warning in mind, let's look at good ways to customize Clang.

1. Download or fork the code from https://github.com/anacondarecipes/aggregate. The Clang package recipe is in
the clang folder. The main material is in the llvm-compilers-feedstock folder.

2. Edit clang/recipe/meta.yaml:

package:
name: clang_{{ target_platform }}
version: {{ version }}

The name here does not matter but the output names below do. Conda-build expects any compiler to follow the
BASENAME_PLATFORMNAME pattern, so it is important to keep the {{target_platform}} part of the
name.

{{ version }} is left as an intentionally undefined jinja2 variable. It is set later in conda_build_config.
yaml.

3. Before any packaging is done, run the build.sh script: https://github.com/AnacondaRecipes/aggregate/blob/
master/clang/build.sh

In this recipe, values are changed here. Those values are inserted into the activate scripts that are installed later.

#!/bin/bash

CHOST=${macos_machine}

FINAL_CPPFLAGS="-D_FORTIFY_SOURCE=2 -mmacosx-version-min=${macos_min_version}"
FINAL_CFLAGS="-march=core2 -mtune=haswell -mssse3 -ftree-vectorize -fPIC -fPIE -
→˓fstack-protector-strong -O2 -pipe"
FINAL_CXXFLAGS="-march=core2 -mtune=haswell -mssse3 -ftree-vectorize -fPIC -fPIE -
→˓fstack-protector-strong -O2 -pipe -stdlib=libc++ -fvisibility-inlines-hidden -
→˓std=c++14 -fmessage-length=0"
# These are the LDFLAGS for when the linker is being called directly, without "-Wl,"
FINAL_LDFLAGS="-pie -headerpad_max_install_names"
# These are the LDFLAGS for when the linker is being driven by a compiler, with "-
→˓Wl,"
FINAL_LDFLAGS_CC="-Wl,-pie -Wl,-headerpad_max_install_names"
FINAL_DEBUG_CFLAGS="-Og -g -Wall -Wextra -fcheck=all -fbacktrace -fimplicit-none -
→˓fvar-tracking-assignments"
FINAL_DEBUG_CXXFLAGS="-Og -g -Wall -Wextra -fcheck=all -fbacktrace -fimplicit-none -
→˓fvar-tracking-assignments"
FINAL_DEBUG_FFLAGS="-Og -g -Wall -Wextra -fcheck=all -fbacktrace -fimplicit-none -
→˓fvar-tracking-assignments"

(continues on next page)
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(continued from previous page)

find "${RECIPE_DIR}" -name "*activate*.sh" -exec cp {} . \;

find . -name "*activate*.sh" -exec sed -i.bak "s|@CHOST@|${CHOST}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@CPPFLAGS@|${FINAL_CPPFLAGS}|g" ␣
→˓ "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@CFLAGS@|${FINAL_CFLAGS}|g" ␣
→˓ "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@DEBUG_CFLAGS@|${FINAL_DEBUG_
→˓CFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@CXXFLAGS@|${FINAL_CXXFLAGS}|g" ␣
→˓ "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@DEBUG_CXXFLAGS@|${FINAL_DEBUG_
→˓CXXFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@DEBUG_CXXFLAGS@|${FINAL_DEBUG_
→˓CXXFLAGS}|g" "{}" \;
# find . -name "*activate*.sh" -exec sed -i.bak "s|@FFLAGS@|${FINAL_FFLAGS}|g" ␣
→˓ "{}" \;
# find . -name "*activate*.sh" -exec sed -i.bak "s|@DEBUG_FFLAGS@|${FINAL_DEBUG_
→˓FFLAGS}|g" "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@LDFLAGS@|${FINAL_LDFLAGS}|g" ␣
→˓ "{}" \;
find . -name "*activate*.sh" -exec sed -i.bak "s|@LDFLAGS_CC@|${FINAL_LDFLAGS_CC}|g
→˓" "{}" \;
find . -name "*activate*.sh.bak" -exec rm "{}" \;

4. With those changes to the activate scripts in place, it's time to move on to installing things. Look back at the
clang folder's meta.yaml. Here's where we change the package name. Notice what comes before the {{
target_platform }}.

outputs:
- name: super_duper_clang_{{ target_platform }}
script: install-clang.sh
requirements:

- clang {{ version }}

The script reference here is another place you might add customization. You'll either change the contents of those
install scripts or change the scripts that those install scripts are installing.

Note that we make the package clang in the main material agree in version with our output version. This is
implicitly the same as the top-level recipe. The clang package sets no environment variables at all, so it may be
difficult to use directly.

5. Let's examine the script install-clang.sh:

#!/bin/bash

set -e -x

CHOST=${macos_machine}

mkdir -p "${PREFIX}"/etc/conda/{de,}activate.d/
cp "${SRC_DIR}"/activate-clang.sh "${PREFIX}"/etc/conda/activate.d/activate_"${PKG_
→˓NAME}".sh

(continues on next page)
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(continued from previous page)

cp "${SRC_DIR}"/deactivate-clang.sh "${PREFIX}"/etc/conda/deactivate.d/deactivate_"$
→˓{PKG_NAME}".sh

pushd "${PREFIX}"/bin
ln -s clang ${CHOST}-clang

popd

Nothing here is too unusual.

Activate scripts are named according to our package name so they won't conflict with other activate scripts.

The symlink for Clang is a Clang implementation detail that sets the host platform.

We define macos_machine in aggregate's conda_build_config.yaml: https://github.com/AnacondaRecipes/
aggregate/blob/master/conda_build_config.yaml#L79

The activate scripts that are being installed are where we actually set the environment variables. Remember that
these have been modified by build.sh.

6. With any of your desired changes in place, go ahead and build the recipe.

You should end up with a super_duper_clang_osx-64 package. Or, if you're not on macOS and are modifying a
different recipe, you should end up with an equivalent package for your platform.

4.2.8 Using your customized compiler package with conda-build 3

Remember the Jinja2 function, {{ compiler('c') }}? Here's where that comes in. Specific keys
in conda_build_config.yaml are named for the language argument to that jinja2 function. In your
conda_build_config.yaml, add this:

c_compiler:
- super_duper_clang

Note that we're not adding the target_platform part, which is separate. You can define that key, too:

c_compiler:
- super_duper_clang

target_platform:
- win-64

With those two keys defined, conda-build will try to use a compiler package named super_duper_clang_win-64.
That package needs to exist for your native platform. For example, if you're on macOS, your native platform is osx-64.

The package subdirectory for your native platform is the build platform. The build platform and the target_platform
can be the same, and they are the same by default, but they can also be different. When they are different, you're cross-
compiling.

If you ever needed a different compiler key for the same language, remember that the language key is arbitrary. For
example, we might want different compilers for Python and for R within one ecosystem. On Windows, the Python
ecosystem uses the Microsoft Visual C compilers, while the R ecosystem uses the Mingw compilers.

Let's start in conda_build_config.yaml:

python_c_compiler:
- vs2015

r_c_compiler:
(continues on next page)
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(continued from previous page)

- m2w64-gcc
target_platform:
- win-64

In Python recipes, you'd have:

requirements:
build:
- {{ compiler('python_c') }}

In R recipes, you'd have:

requirements:
build:
- {{ compiler('r_c') }}

This example is a little contrived, because the m2w64-gcc_win-64 package is not available. You'd need to create
a metapackage m2w64-gcc_win-64 to point at the m2w64-gcc package, which does exist on the msys2 channel on
repo.anaconda.com.

4.2.9 Anaconda compilers implicitly add RPATH pointing to the conda environment

You might want to use the Anaconda compilers outside of conda-build so that you use the same versions, flags, and
configuration, for maximum compatibility with Anaconda packages (but in a case where you want simple tarballs, for
example). In this case, there is a gotcha.

Even if Anaconda compilers are used from outside of conda-build, the GCC specs are customized so that, when
linking an executable or a shared library, an RPATH pointing to lib/ inside the current enviroment prefix directory
($CONDA_PREFIX/lib) is added. This is done by changing the link_libgcc: section inside GCC specs file, and
this change is done so that LD_LIBRARY_PATH isn't required for basic libraries.

conda-build knows how to make this automatically relocatable, so that this RPATH will be changed to point to the
environment where the package is being installed (at installation time, by conda). But if you only pack this binary
in a tarball, it will continue containing this hardcoded RPATH to an environment in your machine. In this case, it is
recommended to manually remove the RPATH.

4.3 Defining metadata (meta.yaml)

• Package section

• Source section

• Build section

• Requirements section

• Test section

• Outputs section

• About section

• App section
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• Extra section

• Templating with Jinja

• Preprocessing selectors

All the metadata in the conda-build recipe is specified in the meta.yaml file. See the example below:

{% set version = "1.1.0" %}

package:
name: imagesize
version: {{ version }}

source:
url: https://pypi.io/packages/source/i/imagesize/imagesize-{{ version }}.tar.gz
sha256: f3832918bc3c66617f92e35f5d70729187676313caa60c187eb0f28b8fe5e3b5

build:
noarch: python
number: 0
script: python -m pip install --no-deps --ignore-installed .

requirements:
host:
- python
- pip

run:
- python

test:
imports:
- imagesize

about:
home: https://github.com/shibukawa/imagesize_py
license: MIT
summary: 'Getting image size from png/jpeg/jpeg2000/gif file'
description: |
This module analyzes jpeg/jpeg2000/png/gif image header and
return image size.

dev_url: https://github.com/shibukawa/imagesize_py
doc_url: https://pypi.python.org/pypi/imagesize
doc_source_url: https://github.com/shibukawa/imagesize_py/blob/master/README.rst

All sections are optional except for package/name and package/version.

Headers must appear only once. If they appear multiple times, only the last is remembered. For example, the package:
header should appear only once in the file.
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4.3.1 Package section

Specifies package information.

Package name

The lower case name of the package. It may contain "-", but no spaces.

package:
name: bsdiff4

Package version

The version number of the package. Use the PEP-386 verlib conventions. Cannot contain "-". YAML interprets version
numbers such as 1.0 as floats, meaning that 0.10 will be the same as 0.1. To avoid this, put the version number in quotes
so that it is interpreted as a string.

package:
version: "1.1.4"

Note: Post-build versioning: In some cases, you may not know the version, build number, or build string of the package
until after it is built. In these cases, you can perform Templating with Jinja or utilize Git environment variables and
Inherited environment variables.

4.3.2 Source section

Specifies where the source code of the package is coming from. The source may come from a tarball file, git, hg, or
svn. It may be a local path and it may contain patches.

Source from tarball or zip archive

source:
url: https://pypi.python.org/packages/source/b/bsdiff4/bsdiff4-1.1.4.tar.gz
md5: 29f6089290505fc1a852e176bd276c43
sha1: f0a2c9a30073449cfb7d171c57552f3109d93894
sha256: 5a022ff4c1d1de87232b1c70bde50afbb98212fd246be4a867d8737173cf1f8f

If an extracted archive contains only 1 folder at its top level, its contents will be moved 1 level up, so that the extracted
package contents sit in the root of the work folder.
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Source from git

The git_url can also be a relative path to the recipe directory.

source:
git_url: https://github.com/ilanschnell/bsdiff4.git
git_rev: 1.1.4
git_depth: 1 # (Defaults to -1/not shallow)

The depth argument relates to the ability to perform a shallow clone. A shallow clone means that you only download
part of the history from Git. If you know that you only need the most recent changes, you can say, git_depth: 1,
which is faster than cloning the entire repo. The downside to setting it at 1 is that, unless the tag is on that specific
commit, then you won't have that tag when you go to reference it in git_rev (for example). If your git_depth is
insufficient to capture the tag in git_rev, you'll encounter an error. So in the example above, unless the 1.1.4 is the
very head commit and the one that you're going to grab, you may encounter an error.

Source from hg

source:
hg_url: ssh://hg@bitbucket.org/ilanschnell/bsdiff4
hg_tag: 1.1.4

Source from svn

source:
svn_url: https://github.com/ilanschnell/bsdiff
svn_rev: 1.1.4 # (defaults to head)
svn_ignore_externals: True # (defaults to False)
svn_username: username # Optional, if set must also have svn_password
svn_password: password # Optional, if set must also have svn_username

To access a restricted SVN repository, specify both svn_username and svn_password.

Caution: Storing credentials in plaintext carries risks. Alternatively, consider using environment variables:

source:
svn_username: {{ environ["SVN_USERNAME"] }}
svn_password: {{ environ["SVN_PASSWORD"] }}

Source from a local path

If the path is relative, it is taken relative to the recipe directory. The source is copied to the work directory before
building.

source:
path: ../src

If the local path is a git or svn repository, you get the corresponding environment variables defined in your build
environment. The only practical difference between git_url or hg_url and path as source arguments is that git_url and
hg_url would be clones of a repository, while path would be a copy of the repository. Using path allows you to build
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packages with unstaged and uncommitted changes in the working directory. git_url can build only up to the latest
commit.

Patches

Patches may optionally be applied to the source.

source:
#[source information here]
patches:
- my.patch # the patch file is expected to be found in the recipe

Conda-build automatically determines the patch strip level.

Destination path

Within conda-build's work directory, you may specify a particular folder to place source into. This feature is new in
conda-build 3.0. Conda-build will always drop you into the same folder (build folder/work), but it's up to you whether
you want your source extracted into that folder, or nested deeper. This feature is particularly useful when dealing with
multiple sources, but can apply to recipes with single sources as well.

source:
#[source information here]
folder: my-destination/folder

Filename

The filename key is fn. It was formerly required with URL source types. It is not required now.

If the fn key is provided, the file is saved on disk with that name. If the fn key is not provided, the file is saved on disk
with a name matching the last part of the URL.

For example, http://www.something.com/myfile.zip has an implicit filename of myfile.zip. Users may
change this by manually specifying fn.

source:
url: http://www.something.com/myfile.zip
fn: otherfilename.zip

Source from multiple sources

Some software is most easily built by aggregating several pieces. For this, conda-build 3.0 has added support for
arbitrarily specifying many sources.

The syntax is a list of source dictionaries. Each member of this list follows the same rules as the single source for
earlier conda-build versions (listed above). All features for each member are supported.

Example:

source:
- url: https://package1.com/a.tar.bz2
folder: stuff

(continues on next page)
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(continued from previous page)

- url: https://package1.com/b.tar.bz2
folder: stuff

- git_url: https://github.com/conda/conda-build
folder: conda-build

Here, the two URL tarballs will go into one folder, and the git repo is checked out into its own space. Git will not clone
into a non-empty folder.

Note: Dashes denote list items in YAML syntax.

4.3.3 Build section

Specifies build information.

Each field that expects a path can also handle a glob pattern. The matching is performed from the top of the build envi-
ronment, so to match files inside your project you can use a pattern similar to the following one: "**/myproject/**/*.txt".
This pattern will match any .txt file found in your project.

Note: The quotation marks ("") are required for patterns that start with a *.

Recursive globbing using ** is supported only in conda-build >= 3.0.

Build number and string

The build number should be incremented for new builds of the same version. The number defaults to 0. The build
string cannot contain "-". The string defaults to the default conda-build string plus the build number.

build:
number: 1
string: abc

A hash will appear when the package is affected by one or more variables from the conda_build_config.yaml file. The
hash is made up from the "used" variables - if anything is used, you have a hash. If you don't use these variables then
you won't have a hash. There are a few special cases that do not affect the hash, such as Python and R or anything that
already had a place in the build string.

The build hash will be added to the build string if these are true for any dependency:

• package is an explicit dependency in build, host, or run deps

• package has a matching entry in conda_build_config.yaml which is a pin to a specific version, not a lower bound

• that package is not ignored by ignore_version

OR

• package uses {{ compiler() }} jinja2 function

You can also influence which variables are considered for the hash with:

4.3. Defining metadata (meta.yaml) 63



conda-build Documentation, Release 0.0.0.dev0+placeholder

build:
force_use_keys:

- package_1
force_ignore_keys:

- package_2

This will ensure that the value of package_2 will not be considered for the hash, and package_1 will be, regardless
of what conda-build discovers is used by its inspection.

This may be useful to further split complex multi-output builds, to ensure each package is built, or to ensure the right
package hash when using more complex templating or scripting.

Python entry points

The following example creates a Python entry point named "bsdiff4" that calls bsdiff4.cli.main_bsdiff4().

build:
entry_points:
- bsdiff4 = bsdiff4.cli:main_bsdiff4
- bspatch4 = bsdiff4.cli:main_bspatch4

Python.app

If osx_is_app is set, entry points use python.app instead of Python in macOS. The default is False.

build:
osx_is_app: True

Track features

Adding track_features to one or more of the options will cause conda to de-prioritize it or “weigh it down.” The lowest
priority package is the one that would cause the most track_features to be activated in the environment. The default
package among many variants is the one that would cause the least track_features to be activated.

No two packages in a given subdir should ever have the same track_feature.

build:
track_features:

- feature2

Preserve Python egg directory

This is needed for some packages that use features specific to setuptools. The default is False.

build:
preserve_egg_dir: True
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Skip compiling some .py files into .pyc files

Some packages ship .py files that cannot be compiled, such as those that contain templates. Some packages also ship
.py files that should not be compiled yet, because the Python interpreter that will be used is not known at build time.
In these cases, conda-build can skip attempting to compile these files. The patterns used in this section do not need the
** to handle recursive paths.

build:
skip_compile_pyc:

- "*/templates/*.py" # These should not (and cannot) be compiled
- "*/share/plugins/gdb/*.py" # The python embedded into gdb is unknown

No link

A list of globs for files that should always be copied and never soft linked or hard linked.

build:
no_link:
- bin/*.py # Don't link any .py files in bin/

Script

Used instead of build.sh or bld.bat. For short build scripts, this can be more convenient. You may need to use
selectors to use different scripts for different platforms.

build:
script: python setup.py install --single-version-externally-managed --record=record.txt

RPATHs

Set which RPATHs are used when making executables relocatable on Linux. This is a Linux feature that is ignored on
other systems. The default is lib/.

build:
rpaths:

- lib/
- lib/R/lib/

Force files

Force files to always be included, even if they are already in the environment from the build dependencies. This may
be needed, for example, to create a recipe for conda itself.

build:
always_include_files:
- bin/file1
- bin/file2
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Relocation

Advanced features. You can use the following 4 keys to control relocatability files from the build environment to the
installation environment:

• binary_relocation.

• has_prefix_files.

• binary_has_prefix_files.

• ignore_prefix_files.

For more information, see Making packages relocatable.

Binary relocation

Whether binary files should be made relocatable using install_name_tool on macOS or patchelf on Linux. The default
is True. It also accepts False, which indicates no relocation for any files, or a list of files, which indicates relocation
only for listed files.

build:
binary_relocation: False

Detect binary files with prefix

Binary files may contain the build prefix and need it replaced with the install prefix at installation time. Conda can
automatically identify and register such files. The default is True.

Note: The default changed from False to True in conda build 2.0. Setting this to Falsemeans that binary relocation-
--RPATH---replacement will still be done, but hard-coded prefixes in binaries will not be replaced. Prefixes in text files
will still be replaced.

build:
detect_binary_files_with_prefix: False

Windows handles binary prefix replacement very differently than Unix-like systems such as macOS and Linux. At this
time, we are unaware of any executable or library that uses hardcoded embedded paths for locating other libraries or
program data on Windows. Instead, Windows follows DLL search path rules or more natively supports relocatability
using relative paths. Because of this, conda ignores most prefixes. However, pip creates executables for Python entry
points that do use embedded paths on Windows. Conda-build thus detects prefixes in all files and records them by de-
fault. If you are getting errors about path length on Windows, you should try to disable detect_binary_files_with_prefix.
Newer versions of Conda, such as recent 4.2.x series releases and up, should have no problems here, but earlier versions
of conda do erroneously try to apply any binary prefix replacement.
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Binary has prefix files

By default, conda-build tries to detect prefixes in all files. You may also elect to specify files with binary prefixes
individually. This allows you to specify the type of file as binary, when it may be incorrectly detected as text for some
reason. Binary files are those containing NULL bytes.

build:
binary_has_prefix_files:
- bin/binaryfile1
- lib/binaryfile2

Text files with prefix files

Text files---files containing no NULL bytes---may contain the build prefix and need it replaced with the install prefix
at installation time. Conda will automatically register such files. Binary files that contain the build prefix are generally
handled differently---see Binary has prefix files---but there may be cases where such a binary file needs to be treated as
an ordinary text file, in which case they need to be identified.

build:
has_prefix_files:

- bin/file1
- lib/file2

Ignore prefix files

Used to exclude some or all of the files in the build recipe from the list of files that have the build prefix replaced with
the install prefix.

To ignore all files in the build recipe, use:

build:
ignore_prefix_files: True

To specify individual filenames, use:

build:
ignore_prefix_files:
- file1

This setting is independent of RPATH replacement. Use the Detect binary files with prefix setting to control that
behavior.

Skipping builds

Specifies whether conda-build should skip the build of this recipe. Particularly useful for defining recipes that are
platform specific. The default is False.

build:
skip: True # [not win]
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Architecture independent packages

Allows you to specify "no architecture" when building a package, thus making it compatible with all platforms and
architectures. Noarch packages can be installed on any platform.

Starting with conda-build 2.1, and conda 4.3, there is a new syntax that supports different languages. Assigning the
noarch key as generic tells conda to not try any manipulation of the contents.

build:
noarch: generic

noarch: generic is most useful for packages such as static javascript assets and source archives. For pure Python
packages that can run on any Python version, you can use the noarch: python value instead:

build:
noarch: python

The legacy syntax for noarch_python is still valid, and should be used when you need to be certain that your package
will be installable where conda 4.3 is not yet available. All other forms of noarch packages require conda >=4.3 to
install.

build:
noarch_python: True

Warning: At the time of this writing, noarch packages should not make use of preprocess-selectors: noarch
packages are built with the directives which evaluate to True in the platform it was built, which probably will result
in incorrect/incomplete installation in other platforms.

Include build recipe

The full conda-build recipe and rendered meta.yaml file is included in the Package metadata by default. You can
disable this with:

build:
include_recipe: False

Use environment variables

Normally the build script in build.sh or bld.bat does not pass through environment variables from the command
line. Only environment variables documented in Environment variables are seen by the build script. To "white-list"
environment variables that should be passed through to the build script:

build:
script_env:
- MYVAR
- ANOTHER_VAR

If a listed environment variable is missing from the environment seen by the conda-build process itself, a UserWarning
is emitted during the build process and the variable remains undefined.

Additionally, values can be set by including = followed by the desired value:
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build:
script_env:
- MY_VAR=some value

Note: Inheriting environment variables can make it difficult for others to reproduce binaries from source with your
recipe. Use this feature with caution or explicitly set values using the = syntax.

Note: If you split your build and test phases with --no-test and --test, you need to ensure that the environment
variables present at build time and test time match. If you do not, the package hashes may use different values, and
your package may not be testable, because the hashes will differ.

Export runtime requirements

Some build or host Requirements section will impose a runtime requirement. Most commonly this is true for shared
libraries (e.g. libpng), which are required for linking at build time, and for resolving the link at run time. With
run_exports (new in conda-build 3) such a runtime requirement can be implicitly added by host requirements (e.g.
libpng exports libpng), and with run_exports/strong even by build requirements (e.g. GCC exports libgcc).

# meta.yaml of libpng
build:
run_exports:
- libpng

Here, because no specific kind of run_exports is specified, libpng's run_exports are considered "weak." This means
they will only apply when libpng is in the host section, when they will add their export to the run section. If libpng
were listed in the build section, the run_exports would not apply to the run section.

# meta.yaml of gcc compiler
build:
run_exports:
strong:
- libgcc

Strong run_exports are used for things like runtimes, where the same runtime needs to be present in the host and the
run environment, and exactly which runtime that should be is determined by what's present in the build section. This
mechanism is how we line up appropriate software on Windows, where we must match MSVC versions used across all
of the shared libraries in an environment.

# meta.yaml of some package using gcc and libpng
requirements:
build:
- gcc # has a strong run export

host:
- libpng # has a (weak) run export
# - libgcc <-- implicitly added by gcc

run:
# - libgcc <-- implicitly added by gcc
# - libpng <-- implicitly added by libpng

You can express version constraints directly, or use any of the Jinja2 helper functions listed at Extra Jinja2 functions.
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For example, you may use Pinning expressions to obtain flexible version pinning relative to versions present at build
time:

build:
run_exports:
- {{ pin_subpackage('libpng', max_pin='x.x') }}

With this example, if libpng were version 1.6.34, this pinning expression would evaluate to >=1.6.34,<1.7.

If build and link dependencies need to impose constraints on the run environment but not necessarily pull in additional
packages, then this can be done by altering the Run_constrained entries. In addition to weak/strong run_exports
which add to the run requirements, weak_constrains and strong_constrains add to the run_constrained
requirements. With these, e.g., minimum versions of compatible but not required packages (like optional plugins for
the linked dependency, or certain system attributes) can be expressed:

requirements:
build:
- build-tool # has a strong run_constrained export

host:
- link-dependency # has a weak run_constrained export

run:
run_constrained:
# - system-dependency >=min <-- implicitly added by build-tool
# - optional-plugin >=min <-- implicitly added by link-dependency

Note that run_exports can be specified both in the build section and on a per-output basis for split packages.

run_exports only affects directly named dependencies. For example, if you have a metapackage that includes a
compiler that lists run_exports, you also need to define run_exports in the metapackage so that it takes effect when
people install your metapackage. This is important, because if run_exports affected transitive dependencies, you
would see many added dependencies to shared libraries where they are not actually direct dependencies. For example,
Python uses bzip2, which can use run_exports to make sure that people use a compatible build of bzip2. If people
list python as a build time dependency, bzip2 should only be imposed for Python itself and should not be automatically
imposed as a runtime dependency for the thing using Python.

The potential downside of this feature is that it takes some control over constraints away from downstream users. If an
upstream package has a problematic run_exports constraint, you can ignore it in your recipe by listing the upstream
package name in the build/ignore_run_exports section:

build:
ignore_run_exports:
- libstdc++

You can also list the package the run_exports constraint is coming from using the build/
ignore_run_exports_from section:

build:
ignore_run_exports_from:
- {{ compiler('cxx') }}
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Pin runtime dependencies

The pin_depends build key can be used to enforce pinning behavior on the output recipe or built package.

There are 2 possible behaviors:

build:
pin_depends: record

With a value of record, conda-build will record all requirements exactly as they would be installed in a file called
info/requires. These pins will not show up in the output of conda render and they will not affect the actual run
dependencies of the output package. It is only adding in this new file.

build:
pin_depends: strict

With a value of strict, conda-build applies the pins to the actual metadata. This does affect the output of conda
render and also affects the end result of the build. The package dependencies will be strictly pinned down to the build
string level. This will supersede any dynamic or compatible pinning that conda-build may otherwise be doing.

Ignoring files in overlinking/overdepending checks

The overlinking_ignore_patterns key in the build section can be used to ignore patterns of files for the overlinking
and overdepending checks. This is sometimes useful to speed up builds that have many files (large repackage jobs) or
builds where you know only a small fraction of the files should be checked.

Glob patterns are allowed here, but mind your quoting, especially with leading wildcards.

Use this sparingly, as the overlinking checks generally do prevent you from making mistakes.

build:
overlinking_ignore_patterns:
- "bin/*"

Whitelisting shared libraries

The missing_dso_whitelist build key is a list of globs for dynamic shared object (DSO) files that should be ignored
when examining linkage information.

During the post-build phase, the shared libraries in the newly created package are examined for linkages which are not
provided by the package's requirements or a predefined list of system libraries. If such libraries are detected, either a
warning --no-error-overlinking or error --error-overlinking will result.

build:
missing_dso_whitelist:

These keys allow additions to the list of allowed libraries.

The runpath_whitelist build key is a list of globs for paths which are allowed to appear as runpaths in the package's
shared libraries. All other runpaths will cause a warning message to be printed during the build.

build:
runpath_whitelist:
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4.3.4 Requirements section

Specifies the build and runtime requirements. Dependencies of these requirements are included automatically.

Versions for requirements must follow the conda match specification. See Package match specifications.

Build

Tools required to build the package. These packages are run on the build system and include things such as revision
control systems (Git, SVN) make tools (GNU make, Autotool, CMake) and compilers (real cross, pseudo-cross, or
native when not cross-compiling), and any source pre-processors.

Packages which provide "sysroot" files, like the CDT packages (see below) also belong in the build section.

requirements:
build:
- git
- cmake

Host

This section was added in conda-build 3.0. It represents packages that need to be specific to the target platform when
the target platform is not necessarily the same as the native build platform. For example, in order for a recipe to be
"cross-capable", shared libraries requirements must be listed in the host section, rather than the build section, so that
the shared libraries that get linked are ones for the target platform, rather than the native build platform. You should
also include the base interpreter for packages that need one. In other words, a Python package would list python here
and an R package would list mro-base or r-base.

requirements:
build:
- {{ compiler('c') }}
- {{ cdt('xorg-x11-proto-devel') }} # [linux]

host:
- python

Note: When both build and host sections are defined, the build section can be thought of as "build tools" - things
that run on the native platform, but output results for the target platform. For example, a cross-compiler that runs on
linux-64, but targets linux-armv7.

The PREFIX environment variable points to the host prefix. With respect to activation during builds, both the host and
build environments are activated. The build prefix is activated before the host prefix so that the host prefix has priority
over the build prefix. Executables that don't exist in the host prefix should be found in the build prefix.

As of conda-build 3.1.4, the build and host prefixes are always separate when both are defined, or when {{ compiler()
}} Jinja2 functions are used. The only time that build and host are merged is when the host section is absent, and no {{
compiler() }} Jinja2 functions are used in meta.yaml. Because these are separate, you may see some build failures
when migrating your recipes. For example, let's say you have a recipe to build a Python extension. If you add the
compiler Jinja2 functions to the build section, but you do not move your Python dependency from the build section
to the host section, your recipe will fail. It will fail because the host environment is where new files are detected, but
because you have Python only in the build environment, your extension will be installed into the build environment.
No files will be detected. Also, variables such as PYTHON will not be defined when Python is not installed into the
host environment.
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On Linux, using the compiler packages provided by Anaconda Inc. in the defaults meta-channel can prevent your
build system leaking into the built software by using our CDT (Core Dependency Tree) packages for any "system"
dependencies. These packages are repackaged libraries and headers from CentOS6 and are unpacked into the sysroot
of our pseudo-cross compilers and are found by them automatically.

Note that what qualifies as a "system" dependency is a matter of opinion. The Anaconda Distribution chose not to
provide X11 or GL packages, so we use CDT packages for X11. Conda-forge chose to provide X11 and GL packages.

On macOS, you can also use {{ compiler() }} to get compiler packages provided by Anaconda Inc. in the
defaults meta-channel. The environment variables MACOSX_DEPLOYMENT_TARGET and CONDA_BUILD_SYSROOT
will be set appropriately by conda-build (see Environment variables). CONDA_BUILD_SYSROOT will specify a folder
containing a macOS SDK. These settings achieve backwards compatibility while still providing access to C++14 and
C++17. Note that conda-build will set CONDA_BUILD_SYSROOT by parsing the conda_build_config.yaml. For
more details, see Anaconda compiler tools.

TL;DR: If you use {{ compiler() }} Jinja2 to utilize our new compilers, you must also move anything that is not
strictly a build tool into your host dependencies. This includes Python, Python libraries, and any shared libraries that
you need to link against in your build. Examples of build tools include any {{ compiler() }}, Make, Autoconf, Perl
(for running scripts, not installing Perl software), and Python (for running scripts, not for installing software).

Run

Packages required to run the package. These are the dependencies that are installed automatically whenever the package
is installed. Package names should follow the package match specifications.

requirements:
run:
- python
- argparse # [py26]
- six >=1.8.0

To build a recipe against different versions of NumPy and ensure that each version is part of the package dependencies,
list numpy x.x as a requirement in meta.yaml and use conda-build with a NumPy version option such as --numpy
1.7.

The line in the meta.yaml file should literally say numpy x.x and should not have any numbers. If the meta.yaml
file uses numpy x.x, it is required to use the --numpy option with conda-build.

requirements:
run:
- python
- numpy x.x

Note: Instead of manually specifying run requirements, since conda-build 3 you can augment the packages used in
your build and host sections with run_exports which are then automatically added to the run requirements for you.
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Run_constrained

Packages that are optional at runtime but must obey the supplied additional constraint if they are installed.

Package names should follow the package match specifications.

requirements:
run_constrained:
- optional-subpackage =={{ version }}

For example, let's say we have an environment that has package "a" installed at version 1.0. If we install package "b"
that has a run_constrained entry of "a>1.0", then conda would need to upgrade "a" in the environment in order to install
"b".

This is especially useful in the context of virtual packages, where the run_constrained dependency is not a package that
conda manages, but rather a virtual package that represents a system property that conda can't change. For example, a
package on linux may impose a run_constrained dependency on __glibc>=2.12. This is the version bound consistent
with CentOS 6. Software built against glibc 2.12 will be compatible with CentOS 6. This run_constrained dependency
helps conda tell the user that a given package can't be installed if their system glibc version is too old.

4.3.5 Test section

If this section exists or if there is a run_test.[py,pl,sh,bat] file in the recipe, the package is installed into a test
environment after the build is finished and the tests are run there.

Test files

Test files that are copied from the recipe into the temporary test directory and are needed during testing. If providing
a path, forward slashes must be used.

test:
files:
- test-data.txt

Source files

Test files that are copied from the source work directory into the temporary test directory and are needed during testing.

test:
source_files:
- test-data.txt
- some/directory
- some/directory/pattern*.sh

This capability was added in conda-build 2.0.

74 Chapter 4. Resources

https://conda.io/projects/conda/en/latest/user-guide/concepts/pkg-specs.html#package-match-specifications
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html


conda-build Documentation, Release 0.0.0.dev0+placeholder

Test requirements

In addition to the runtime requirements, you can specify requirements needed during testing. The runtime requirements
that you specified in the "run" section described above are automatically included during testing.

test:
requires:
- nose

Test commands

Commands that are run as part of the test.

test:
commands:
- bsdiff4 -h
- bspatch4 -h

Python imports

List of Python modules or packages that will be imported in the test environment.

test:
imports:
- bsdiff4

This would be equivalent to having a run_test.py with the following:

import bsdiff4

Run test script

The script run_test.sh---or .bat, .py, or .pl---is run automatically if it is part of the recipe.

Note: Python .py and Perl .pl scripts are valid only as part of Python and Perl packages, respectively.

Downstream tests

Knowing that your software built and ran its tests successfully is necessary, but not sufficient, for keeping whole systems
of software running. To have confidence that a new build of a package hasn't broken other downstream software, conda-
build supports the notion of downstream testing.

test:
downstreams:
- some_downstream_pkg

This is saying "When I build this recipe, after you run my test suite here, also download and run some_downstream_pkg
which depends on my package." Conda-build takes care of ensuring that the package you just built gets installed into
the environment for testing some_downstream_pkg. If conda-build can't create that environment due to unsatisfiable
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dependencies, it will skip those downstream tests and warn you. This usually happens when you are building a new
version of a package that will require you to rebuild the downstream dependencies.

Downstreams specs are full conda specs, similar to the requirements section. You can put version constraints on your
specs in here:

test:
downstreams:
- some_downstream_pkg >=2.0

More than one package can be specified to run downstream tests for:

test:
downstreams:
- some_downstream_pkg
- other_downstream_pkg

However, this does not mean that these packages are tested together. Rather, each of these are tested for satisfiability
with your new package, then each of their test suites are run separately with the new package.

4.3.6 Outputs section

Explicitly specifies packaging steps. This section supports multiple outputs, as well as different package output types.
The format is a list of mappings. Build strings for subpackages are determined by their runtime dependencies. This
support was added in conda-build 2.1.0.

outputs:
- name: some-subpackage
version: 1.0

- name: some-other-subpackage
version: 2.0

Note: If any output is specified in the outputs section, the default packaging behavior of conda-build is bypassed.
In other words, if any subpackage is specified, then you do not get the normal top-level build for this recipe with-
out explicitly defining a subpackage for it. This is an alternative to the existing behavior, not an addition to it. For
more information, see Implicit metapackages. Each output may have its own version and requirements. Additionally,
subpackages may impose downstream pinning similarly to Pin downstream to help keep your packages aligned.

Specifying files to include in output

You can specify files to be included in the package in 1 of 3 ways:

• Explicit file lists.

• Scripts that move files into the build prefix.

• Both of the above

Explicit file lists are relative paths from the root of the build prefix. Explicit file lists support glob expressions. Directory
names are also supported, and they recursively include contents.
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outputs:
- name: subpackage-name
files:
- a-file
- a-folder
- *.some-extension
- somefolder/*.some-extension

Scripts that create or move files into the build prefix can be any kind of script. Known script types need only specify
the script name. Currently the list of recognized extensions is py, bat, ps1, and sh.

outputs:
- name: subpackage-name
script: move-files.py

The interpreter command must be specified if the file extension is not recognized.

outputs:
- name: subpackage-name
script: some-script.extension
script_interpreter: program plus arguments to run script

For scripts that move or create files, a fresh copy of the working directory is provided at the start of each script execution.
This ensures that results between scripts are independent of one another.

Note: For either the file list or the script approach, having more than 1 package contain a given file is not explicitly
forbidden, but may prevent installation of both packages simultaneously. Conda disallows this condition because it
creates ambiguous runtime conditions.

When both scripts and files are given, the script is first run and then only the files in the explicit file list are packaged.

Subpackage requirements

Like a top-level recipe, a subpackage may have zero or more dependencies listed as build requirements and zero or
more dependencies listed as run requirements.

The dependencies listed as subpackage build requirements are available only during the packaging phase of that sub-
package.

A subpackage does not automatically inherit any dependencies from its top-level recipe, so any build or run require-
ments needed by the subpackage must be explicitly specified.

outputs:

- name: subpackage-name
requirements:
build:
- some-dep

run:
- some-dep

It is also possible for a subpackage requirements section to have a list of dependencies, but no build section or run
section. This is the same as having a build section with this dependency list and a run section with the same dependency
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list.

outputs:
- name: subpackage-name
requirements:
- some-dep

You can also impose runtime dependencies whenever a given (sub)package is installed as a build dependency. For
example, if we had an overarching "compilers" package, and within that, had gcc and libgcc outputs, we could force
recipes that use GCC to include a matching libgcc runtime requirement:

outputs:
- name: gcc
run_exports:
- libgcc 2.*

- name: libgcc

See the Export runtime requirements section for additional information.

Note: Variant expressions are very powerful here. You can express the version requirement in the run_exports entry
as a Jinja function to insert values based on the actual version of libgcc produced by the recipe. Read more about them
at Referencing subpackages.

Implicit metapackages

When viewing the top-level package as a collection of smaller subpackages, it may be convenient to define the top-level
package as a composition of several subpackages. If you do this and you do not define a subpackage name that matches
the top-level package/name, conda-build creates a metapackage for you. This metapackage has runtime requirements
drawn from its dependency subpackages, for the sake of accurate build strings.

EXAMPLE: In this example, a metapackage for subpackage-example will be created. It will have runtime depen-
dencies on subpackage1, subpackage2, some-dep, and some-other-dep.

package:
name: subpackage-example
version: 1.0

requirements:
run:
- subpackage1
- subpackage2

outputs:
- name: subpackage1
requirements:
- some-dep

- name: subpackage2
requirements:
- some-other-dep

- name: subpackage3
requirements:
- some-totally-exotic-dep
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Subpackage tests

You can test subpackages independently of the top-level package. Independent test script files for each separate package
are specified under the subpackage's test section. These files support the same formats as the top-level run_test.*
scripts, which are .py, .pl, .bat, and .sh. These may be extended to support other script types in the future.

outputs:
- name: subpackage-name
test:
script: some-other-script.py

By default, the run_test.* scripts apply only to the top-level package. To apply them also to subpackages, list them
explicitly in the script section:

outputs:
- name: subpackage-name
test:
script: run_test.py

Test requirements for subpackages are not supported. Instead, subpackage tests install their runtime requirements---but
not the run requirements for the top-level package---and the test-time requirements of the top-level package.

EXAMPLE: In this example, the test for subpackage-name installs some-test-dep and subpackage-run-req, but
not some-top-level-run-req.

requirements:
run:
- some-top-level-run-req

test:
requires:
- some-test-dep

outputs:
- name: subpackage-name
requirements:
- subpackage-run-req

test:
script: run_test.py

Output type

Conda-build supports creating packages other than conda packages. Currently that support includes only wheels, but
others may come as demand appears. If type is not specified, the default value is conda.

requirements:
build:
- wheel

outputs:
- name: name-of-wheel-package
type: wheel

Currently you must include the wheel package in your top-level requirements/build section in order to build wheels.
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When specifying type, the name field is optional and it defaults to the package/name field for the top-level recipe.

requirements:
build:
- wheel

outputs:
- type: wheel

Conda-build currently knows how to test only conda packages. Conda-build does support using Twine to upload pack-
ages to PyPI. See the conda-build help output (conda-build --help) for the list of arguments accepted that will be
passed through to Twine.

Note: You must use pip to install Twine in order for this to work.

4.3.7 About section

Specifies identifying information about the package. The information displays in the Anaconda.org channel.

about:
home: https://github.com/ilanschnell/bsdiff4
license: BSD
license_file: LICENSE
summary: binary diff and patch using the BSDIFF4-format

License file

Add a file containing the software license to the package metadata. Many licenses require the license statement to
be distributed with the package. The filename is relative to the source or recipe directory. The value can be a single
filename or a YAML list for multiple license files. Values can also point to directories with license information. Direc-
tory entries must end with a / suffix (this is to lessen unintentional inclusion of non-license files; all of the directory's
contents will be unconditionally and recursively added).

about:
license_file:
- LICENSE
- vendor-licenses/

Prelink Message File

Similar to the license file, the user can add prelink message files to the conda package.

about:
prelink_message:
- prelink_message_file.txt
- folder-with-all-prelink-messages/
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4.3.8 App section

If the app section is present, the package is an app, meaning that it appears in Anaconda Navigator.

Entry point

The command that is called to launch the app in Navigator.

app:
entry: ipython notebook

Icon file

The icon file contained in the recipe.

app:
icon: icon_64x64.png

Summary

Summary of the package used in Navigator.

app:
summary: "The Jupyter Notebook"

Own environment

If True, installing the app through Navigator installs into its own environment. The default is False.

app:
own_environment: True

4.3.9 Extra section

A schema-free area for storing non-conda-specific metadata in standard YAML form.

EXAMPLE: To store recipe maintainer information:

extra:
maintainers:
- name of maintainer
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4.3.10 Templating with Jinja

Conda-build supports Jinja templating in the meta.yaml file.

EXAMPLE: The following meta.yaml would work with the GIT values defined for Git repositores. The recipe is
included at the base directory of the Git repository, so the git_url is ../:

package:
name: mypkg
version: {{ GIT_DESCRIBE_TAG }}

build:
number: {{ GIT_DESCRIBE_NUMBER }}

# Note that this will override the default build string with the Python
# and NumPy versions
string: {{ GIT_BUILD_STR }}

source:
git_url: ../

Conda-build checks if the Jinja2 variables that you use are defined and produces a clear error if it is not.

You can also use a different syntax for these environment variables that allows default values to be set, although it is
somewhat more verbose.

EXAMPLE: A version of the previous example using the syntax that allows defaults:

package:
name: mypkg
version: {{ environ.get('GIT_DESCRIBE_TAG', '') }}

build:
number: {{ environ.get('GIT_DESCRIBE_NUMBER', 0) }}

# Note that this will override the default build string with the Python
# and NumPy versions
string: {{ environ.get('GIT_BUILD_STR', '') }}

source:
git_url: ../

One further possibility using templating is obtaining data from your downloaded source code.

EXAMPLE: To process a project's setup.py and obtain the version and other metadata:

{% set data = load_setup_py_data() %}

package:
name: conda-build-test-source-setup-py-data
version: {{ data.get('version') }}

# source will be downloaded prior to filling in jinja templates
# Example assumes that this folder has setup.py in it
source:
path_url: ../
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These functions are completely compatible with any other variables such as Git and Mercurial.

Extending this arbitrarily to other functions requires that functions be predefined before Jinja processing, which in
practice means changing the conda-build source code. See the conda-build issue tracker.

For more information, see the Jinja2 template documentation and the list of available environment variables.

Jinja templates are evaluated during the build process. To retrieve a fully rendered meta.yaml, use the conda render
command.

Loading data from other files

There are several additional functions available to Jinja2 which can be used to load data from other files. These are
load_setup_py_data, load_file_regex, load_file_data, and load_str_data.

• load_setup_py_data: Loads data from a setup.py file. This can be useful to obtain metadata such as the
version from a project's setup.py file. For example:

{% set data = load_setup_py_data() %}
{% set version = data.get('version') %}
package:
name: foo
version: {{ version }}

• load_file_regex: Searches a file for a regular expression and returns the first match as a Python re.Match
object. For example:

{% set readme_heading = load_file_regex(load_file='README.rst', regex_pattern=r'^#␣
→˓(\S+)') %}
package:
name: {{ readme_heading.string }}

• load_file_data: You can also parse JSON, TOML, or YAML files and load data from them. For example you
can use this to load poetry configurations from pyproject.toml. This is especially useful as setup.py is no
longer the only standard way to define project metadata (see PEP 517 and PEP 518):

{% set pyproject = load_file_data('pyproject.toml') %}
{% set poetry = pyproject.get('tool', {}).get('poetry') %}
package:
name: {{ poetry.get('name') }}
version: {{ poetry.get('version') }}

• load_str_data: Loads and parses data from a string. This is similar to load_file_data, but it takes a string
instead of a file as an argument. This may seem pointless at first, but you can use this to pass more complex data
structures by environment variables. For example:

{% set extra_deps = load_str_data(environ.get("EXTRA_DEPS", []), "json") %}
requirements:
run:
- ...
{% for dep in extra_deps %}
- {{ dep }}
{% endfor %}

Then you can pass the EXTRA_DEPS environment variable to the build like so:

4.3. Defining metadata (meta.yaml) 83

https://github.com/conda/conda-build/issues
http://jinja.pocoo.org/docs/dev/templates/
https://peps.python.org/pep-0517
https://peps.python.org/pep-0518


conda-build Documentation, Release 0.0.0.dev0+placeholder

EXTRA_DEPS='["foo =1.0", "bar >=2.0"]' conda build path/to/recipe

The functions load_setup_py_data, load_file_regex, and load_file_data all take the parameters
from_recipe_dir and recipe_dir. If from_recipe_dir is set to true, then recipe_dir must also be passed.
In that case, the file in question will be searched for relative to the recipe directory. Otherwise the file is searched for
in the source (after it is downloaded and extracted, if necessary). If the given file is an absolute path, neither of the two
directories are searched.

The functions load_file_data and load_str_data also accept *args and **kwargs which are passed verbatim
to the function used to parse the file. For JSON this would be json.load; for TOML, toml.load; and for YAML
yaml.safe_load.

Conda-build specific Jinja2 functions

Besides the default Jinja2 functionality, additional Jinja functions are available during the conda-build process:
pin_compatible, pin_subpackage, compiler, and resolved_packages. Please see Extra Jinja2 functions for
the definition of the first 3 functions. Definition of resolved_packages is given below:

• resolved_packages('environment_name'): Returns the final list of packages (in the form of
package_name version build_string) that are listed in requirements:host or requirements:build.
This includes all packages (including the indirect dependencies) that will be installed in the host or build envi-
ronment. environment_namemust be either host or build. This function is useful for creating meta-packages
that will want to pin all of their direct and indirect dependencies to their exact match. For example:

requirements:
host:
- curl 7.55.1

run:
{% for package in resolved_packages('host') %}
- {{ package }}

{% endfor %}

might render to (depending on package dependencies and the platform):

requirements:
host:

- curl 7.55.1
run:

- ca-certificates 2017.08.26 h1d4fec5_0
- curl 7.55.1 h78862de_4
- libgcc-ng 7.2.0 h7cc24e2_2
- libssh2 1.8.0 h9cfc8f7_4
- openssl 1.0.2n hb7f436b_0
- zlib 1.2.11 ha838bed_2

Here, output of resolved_packages was:

['ca-certificates 2017.08.26 h1d4fec5_0', 'curl 7.55.1 h78862de_4',
'libgcc-ng 7.2.0 h7cc24e2_2', 'libssh2 1.8.0 h9cfc8f7_4',
'openssl 1.0.2n hb7f436b_0', 'zlib 1.2.11 ha838bed_2']
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4.3.11 Preprocessing selectors

You can add selectors to any line, which are used as part of a preprocessing stage. Before the meta.yaml file is read,
each selector is evaluated and if it is False, the line that it is on is removed. A selector has the form # [<selector>]
at the end of a line.

source:
url: http://path/to/unix/source # [not win]
url: http://path/to/windows/source # [win]

Note: Preprocessing selectors are evaluated after Jinja templates.

A selector is a valid Python statement that is executed. The following variables are defined. Unless otherwise stated,
the variables are booleans.

x86 True if the system architecture is x86, both 32-bit and 64-bit, for Intel or AMD chips.
x86_64 True if the system architecture is x86_64, which is 64-bit, for Intel or AMD chips.
linux True if the platform is Linux.
linux32 True if the platform is Linux and the Python architecture is 32-bit and uses x86.
linux64 True if the platform is Linux and the Python architecture is 64-bit and uses x86.
armv6l True if the platform is Linux and the Python architecture is armv6l.
armv7l True if the platform is Linux and the Python architecture is armv7l.
aarch64 True if the platform is Linux and the Python architecture is aarch64.
ppc64le True if the platform is Linux and the Python architecture is ppc64le.
s390x True if the platform is Linux and the Python architecture is s390x.
osx True if the platform is macOS.
arm64 True if the platform is macOS and the Python architecture is arm64.
unix True if the platform is either macOS or Linux.
win True if the platform is Windows.
win32 True if the platform is Windows and the Python architecture is 32-bit.
win64 True if the platform is Windows and the Python architecture is 64-bit.
py The Python version as an int, such as 27 or 36. See the CONDA_PY environment variable.
py3k True if the Python major version is 3.
py2k True if the Python major version is 2.
py27 True if the Python version is 2.7. Use of this selector is discouraged in favor of comparison

operators (e.g. py==27).
py34 True if the Python version is 3.4. Use of this selector is discouraged in favor of comparison

operators (e.g. py==34).
py35 True if the Python version is 3.5. Use of this selector is discouraged in favor of comparison

operators (e.g. py==35).
py36 True if the Python version is 3.6. Use of this selector is discouraged in favor of comparison

operators (e.g. py==36).
np The NumPy version as an integer such as 111. See the CONDA_NPY environment variable.
build_platform The native subdir of the conda executable

The use of the Python version selectors, py27, py34, etc. is discouraged in favor of the more general comparison
operators. Additional selectors in this series will not be added to conda-build.

Because the selector is any valid Python expression, complicated logic is possible:
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source:
url: http://path/to/windows/source # [win]
url: http://path/to/python2/unix/source # [unix and py2k]
url: http://path/to/python3/unix/source # [unix and py>=35]

Note: The selectors delete only the line that they are on, so you may need to put the same selector on multiple lines:

source:
url: http://path/to/windows/source # [win]
md5: 30fbf531409a18a48b1be249052e242a # [win]
url: http://path/to/unix/source # [unix]
md5: 88510902197cba0d1ab4791e0f41a66e # [unix]

Note: To select multiple operating systems use the or statement. While it might be tempting to use skip: True #
[win and osx], this will only work if the platform is both windows and osx simultaneously (i.e. never).

build:
skip: True # [win or osx]

4.4 Adding pre-link, post-link, and pre-unlink scripts

You can add scripts to a recipe. They must be located in the same directory as the meta.yaml file. The following scripts
can be added:

• pre-link---Executed before the package is installed. An error is indicated by a nonzero exit and causes conda
to stop and causes the installation to fail.

• post-link---Executed after the package is installed. An error is indicated by a nonzero exist and causes instal-
lation to fail. If there is an error, conda does not write any package metadata.

• pre-unlink---Executed before the package is removed. An error is indicated by a nonzero exist and causes the
removal to fail.

In addition to being co-located with the meta.yaml file, they must be named simply post-link.sh or post-link.bat.
Conda-build will rename them to .<name>-<action>.sh (or .bat) where <name> is the package name and <action> is
one of the preceeding actions.

These scripts are executed in a subprocess by conda, using %COMSPEC% /c <script> on Windows and /bin/bash
<script> on macOS and Linux.

The convention for the path and filenames of these scripts on Windows is:

Scripts/.<name>-<action>.bat

On Linux and macOS the convention is:

bin/.<name>-<action>.sh

The scripts set the following environment variables:
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PREFIX The install prefix.
PKG_NAME The name of the package.
PKG_VERSION The version of the package.
PKG_BUILDNUM The build number of the package.

The scripts are:

• Windows:

– pre-link.bat

– post-link.bat

– pre-unlink.bat

• macOS and Linux:

– pre-link.sh

– post-link.sh

– pre-unlink.sh

Post-link and pre-unlink scripts should:

• Be avoided whenever possible.

• Not touch anything other than the files being installed.

• Not write anything to stdout or stderr, unless an error occurs.

• Not depend on any installed or to-be-installed conda packages.

• Depend only on simple system tools such as rm, cp, mv, and ln.

The scripts should not write to stdout or stderr unless an error occurs, but they may write to $PREFIX/.messages.txt,
which is shown after conda completes all actions.

4.5 Activate scripts

Recipes are allowed to have activate scripts which will be sourced or called when the environment is activated. It is
generally recommended to avoid using activate scripts when another option is possible because people do not always
activate environments the expected way and these packages may then misbehave.

When using them in a recipe, feel free to name them activate.bat, activate.sh, deactivate.bat, and deactivate.sh in the
recipe. The installed scripts are recommended to be prefixed by the package name and a separating -.

Below is some sample code for Unix and Windows that will make this install process easier.

In build.sh:

# Copy the [de]activate scripts to $PREFIX/etc/conda/[de]activate.d.
# This will allow them to be run on environment activation.
for CHANGE in "activate" "deactivate"
do

mkdir -p "${PREFIX}/etc/conda/${CHANGE}.d"
cp "${RECIPE_DIR}/${CHANGE}.sh" "${PREFIX}/etc/conda/${CHANGE}.d/${PKG_NAME}_$

→˓{CHANGE}.sh"
done
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In build.bat:

setlocal EnableDelayedExpansion

:: Copy the [de]activate scripts to %PREFIX%\etc\conda\[de]activate.d.
:: This will allow them to be run on environment activation.
for %%F in (activate deactivate) DO (

if not exist %PREFIX%\etc\conda\%%F.d mkdir %PREFIX%\etc\conda\%%F.d
copy %RECIPE_DIR%\%%F.bat %PREFIX%\etc\conda\%%F.d\%PKG_NAME%_%%F.bat
:: Copy unix shell activation scripts, needed by Windows Bash users
copy %RECIPE_DIR%\%%F.sh %PREFIX%\etc\conda\%%F.d\%PKG_NAME%_%%F.sh

)

4.6 Making packages relocatable

Often, the most difficult thing about building a conda package is making it relocatable. Relocatable means that the
package can be installed into any prefix. Otherwise, the package would be usable only in the environment in which it
was built.

Conda-build does the following things automatically to make packages relocatable:

• Binary object files are converted to use relative paths using install_name_tool on macOS and patchelf on
Linux.

• Any text file without NULL bytes that contains the build prefix or the placeholder prefix /opt/
anaconda1anaconda2anaconda3 is registered in the info/has_prefix file in the package metadata. When
conda installs the package, any files in info/has_prefix have the registered prefix replaced with the install
prefix. For more information, see Package metadata.

• Any binary file containing the build prefix can automatically be registered in info/has_prefix using build/
detect_binary_files_with_prefix in meta.yaml. Alternatively, individual binary files can be registered
by listing them in build/binary_has_prefix_files in meta.yaml. The registered files will have their build
prefix replaced with the install prefix at install time. This works by padding the install prefix with null terminators,
such that the length of the binary file remains the same. The build prefix must therefore be long enough to
accommodate any reasonable installation prefix. On macOS and Linux, conda-build pads the build prefix to 255
characters by appending _placeholds to the end of the build directory name.

Note: The prefix length was changed in conda-build 2.0 from 80 characters to 255 characters. Legacy packages with
80-character prefixes must be rebuilt to take advantage of the longer prefix.

• There may be cases where conda identified a file as binary, but it needs to have the build prefix replaced as
if it were text---no padding with null terminators. Such files can be listed in build/has_prefix_files in
meta.yaml.
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4.7 Conda package specification

• Package metadata

• Link and unlink scripts

• Repository structure and index

• Package match specifications

A conda package is a bzipped tar archive---.tar.bz2---that contains:

• Metadata under the info/ directory.

• A collection of files that are installed directly into an install prefix.

The format is identical across platforms and operating systems. During the install process, all files are extracted into
the install prefix, with the exception of the ones in info/. Installing a conda package into an environment is similar to
executing the following commands:

cd <environment prefix>
tar xjf some-package-1.0-0.tar.bz2

Only files, including symbolic links, are part of a conda package. Directories are not included. Directories are created
and removed as needed, but you cannot create an empty directory from the tar archive directly.

4.7.1 Package metadata

The info/ directory contains all metadata about a package. Files in this location are not installed under the install
prefix. Although you are free to add any file to this directory, conda only inspects the content of the files discussed
below.

info/index.json

This file contains basic information about the package, such as name, version, build string, and dependencies. The
content of this file is stored in repodata.json, which is the repository index file, hence the name index.json. The
JSON object is a dictionary containing the keys shown below. The filename of the conda package is composed of the
first 3 values, as in: <name>-<version>-<build>.tar.bz2.
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Key Type Description
name string The lowercase name of the package. May contain the "-" character.
version string The package version. May not contain "-". Conda acknowledges PEP 440.
build string The build string. May not contain "-". Differentiates builds of packages with

otherwise identical names and versions, such as:
• A build with other dependencies, such as Python 3.4 instead of Python

2.7.
• A bug fix in the build process.
• Some different optional dependencies, such as MKL versus ATLAS link-

age. Nothing in conda actually inspects the build string. Strings such as
np18py34_1 are designed only for human readability and conda never
parses them.

build_number integer A non-negative integer representing the build number of the package.
Unlike the build string, the build_number is inspected by conda. Conda uses it
to sort packages that have otherwise identical names and versions to determine
the latest one. This is important because new builds that contain bug fixes for
the way a package is built may be added to a repository.

depends list of strings A list of dependency specifications, where each element is a string, as outlined
in Package match specifications.

arch string Optional. The architecture the package is built for.
EXAMPLE: x86_64
Conda currently does not use this key.

platform string Optional. The OS that the package is built for.
EXAMPLE: osx
Conda currently does not use this key. Packages for a specific architecture and
platform are usually distinguished by the repository subdirectory that contains
them---see Repository structure and index.

info/files

Lists all files that are part of the package itself, 1 per line. All of these files need to get linked into the environment. Any
files in the package that are not listed in this file are not linked when the package is installed. The directory delimiter
for the files in info/files should always be "/", even on Windows. This matches the directory delimiter used in the
tarball.

info/has_prefix

Optional file. Lists all files that contain a hard-coded build prefix or placeholder prefix, which needs to be replaced by
the install prefix at installation time.

Note: Due to the way the binary replacement works, the placeholder prefix must be longer than the install prefix.

Each line of this file should be either a path, in which case it is considered a text file with the default placeholder
/opt/anaconda1anaconda2anaconda3, or a space-separated list of placeholder, mode, and path, where:

• Placeholder is the build or placeholder prefix.

• Mode is either text or binary.

• Path is the relative path of the file to be updated.

90 Chapter 4. Resources

https://www.python.org/dev/peps/pep-0440/


conda-build Documentation, Release 0.0.0.dev0+placeholder

EXAMPLE: On Windows:

"Scripts/script1.py"
"C:\Users\username\anaconda\envs\_build" text "Scripts/script2.bat"
"C:/Users/username/anaconda/envs/_build" binary "Scripts/binary"

EXAMPLE: On macOS or Linux:

bin/script.sh
/Users/username/anaconda/envs/_build binary bin/binary
/Users/username/anaconda/envs/_build text share/text

Note: The directory delimiter for the relative path must always be "/", even on Windows. The placeholder may contain
either "\" or "/" on Windows, but the replacement prefix will match the delimiter used in the placeholder. The default
placeholder /opt/anaconda1anaconda2anaconda3 is an exception, being replaced with the install prefix using the
native path delimiter. On Windows, the placeholder and path always appear in quotes to support paths with spaces.

info/license.txt

Optional file. The software license for the package.

info/no_link

Optional file. Lists all files that cannot be linked---either soft-linked or hard-linked---into environments and are copied
instead.

info/about.json

Optional file. Contains the entries in the About section of the meta.yaml file. The following keys are added to info/
about.json if present in the build recipe:

• home.

• dev_url.

• doc_url.

• license_url.

• license.

• summary.

• description.

• license_family.
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info/recipe

A directory containing the full contents of the build recipe.

meta.yaml.rendered

The fully rendered build recipe. See conda render.

This directory is present only when the the include_recipe flag is True in the Build section.

4.7.2 Link and unlink scripts

You may optionally execute scripts before and after the link and unlink steps. For more information, see Adding pre-
link, post-link, and pre-unlink scripts.

4.7.3 Repository structure and index

A conda repository---or channel---is a directory tree, usually served over HTTPS, which has platform subdirectories,
each of which contains conda packages and a repository index. The index file repodata.json lists all conda packages
in the platform subdirectory. Use conda index to create such an index from the conda packages within a directory.
It is simple mapping of the full conda package filename to the dictionary object in info/index.json described in
Adding pre-link, post-link, and pre-unlink scripts.

In the following example, a repository provides the conda package misc-1.0-np17py27_0.tar.bz2 on 64-bit Linux
and 32-bit Windows:

<some path>/linux-64/repodata.json
repodata.json.bz2
misc-1.0-np17py27_0.tar.bz2

/win-32/repodata.json
repodata.json.bz2
misc-1.0-np17py27_0.tar.bz2

Note: Both conda packages have identical filenames and are distinguished only by the repository subdirectory that
contains them.

4.7.4 Package match specifications

This match specification is not the same as the syntax used at the command line with conda install, such as conda
install python=3.4. Internally, conda translates the command line syntax to the spec defined in this section.

EXAMPLE: python=3.4 is translated to python 3.4.*. conda search 'python=3.1' does NOT bring up Python
3.10, only Python 3.1.*.

Package dependencies are specified using a match specification. A match specification is a space-separated string of
1, 2, or 3 parts:

• The first part is always the exact name of the package.

• The second part refers to the version and may contain special characters:
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– | means OR.

EXAMPLE: 1.0|1.2 matches version 1.0 or 1.2.

– * matches 0 or more characters in the version string. In terms of regular expressions, it is the same as
r'.*'.

EXAMPLE: 1.0|1.4* matches 1.0, 1.4 and 1.4.1b2, but not 1.2.

– <, >, <=, >=, ==, and != are relational operators on versions, which are compared using PEP-440. For
example, <=1.0 matches 0.9, 0.9.1, and 1.0, but not 1.0.1. == and != are exact equality.

Pre-release versioning is also supported such that >1.0b4 will match 1.0b5 and 1.0rc1 but not 1.0b4 or
1.0a5.

EXAMPLE: <=1.0 matches 0.9, 0.9.1, and 1.0, but not 1.0.1.

– , means AND.

EXAMPLE: >=2,<3 matches all packages in the 2 series. 2.0, 2.1, and 2.9 all match, but 3.0 and 1.0 do
not.

– , has higher precedence than |, so >=1,<2|>3 means greater than or equal to 1 AND less than 2 or greater
than 3, which matches 1, 1.3 and 3.0, but not 2.2.

Conda parses the version by splitting it into parts separated by |. If the part begins with <, >, =, or !, it is parsed
as a relational operator. Otherwise, it is parsed as a version, possibly containing the "*" operator.

• The third part is always the exact build string. When there are 3 parts, the second part must be the exact version.

Remember that the version specification cannot contain spaces, as spaces are used to delimit the package, version, and
build string in the whole match specification. python >= 2.7 is an invalid match specification. However, "python
>= 2.7" (with double or single quotes) is matched as any version of a package named python>=2.7.

When using the command line, put double or single quotes around any package version specification that contains the
space character or any of the following characters: <, >, *, or |.

EXAMPLE:

conda install numpy=1.11
conda install numpy==1.11
conda install "numpy>1.11"
conda install "numpy=1.11.1|1.11.3"
conda install "numpy>=1.8,<2"

Examples

The OR constraint "numpy=1.11.1|1.11.3" matches with 1.11.1 or 1.11.3.

The AND constraint "numpy>=1.8,<2" matches with 1.8 and 1.9 but not 2.0.

The fuzzy constraint numpy=1.11 matches 1.11, 1.11.0, 1.11.1, 1.11.2, 1.11.18, and so on.

The exact constraint numpy==1.11 matches 1.11, 1.11.0, 1.11.0.0, and so on.

The build string constraint "numpy=1.11.2=*nomkl*" matches the NumPy 1.11.2 packages without MKL but not the
normal MKL NumPy 1.11.2 packages.

The build string constraint "numpy=1.11.1|1.11.3=py36_0" matches NumPy 1.11.1 or 1.11.3 built for Python 3.6 but
not any versions of NumPy built for Python 3.5 or Python 2.7.

The following are all valid match specifications for numpy-1.8.1-py27_0:
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• numpy

• numpy 1.8*

• numpy 1.8.1

• numpy >=1.8

• numpy ==1.8.1

• numpy 1.8|1.8*

• numpy >=1.8,<2

• numpy >=1.8,<2|1.9

• numpy 1.8.1 py27_0

• numpy=1.8.1=py27_0

4.8 Using shared libraries

Shared libraries are libraries that are loosely coupled to the programs and extensions that depend on them. When
loading an executable into memory, an operating system finds all dependent shared libraries and links them to the
executable so that it can run.

Windows, macOS, and Linux all provide a way to build executables and libraries that contain links to the shared libraries
they depend on, instead of directly linking the libraries themselves.

4.8.1 Shared libraries in Windows

Unlike macOS and Linux, Windows does not have the concept of embedding links into binaries. Instead, Windows
depends primarily on searching directories for matching filenames, as documented in Search Path Used by Windows
to Locate a DLL.

There is an alternate configuration, called side-by-side assemblies, that requires specification of DLL versions in either
an embedded manifest or an appropriately named XML file alongside the binary in question. Conda does not currently
use side-by-side assemblies, but it may turn towards that in the future to resolve complications with multiple versions
of the same library on the same system.

For now, most DLLs are installed into (install prefix)\\Library\\bin. This path is added to os.
environ["PATH"] for all Python processes, so that DLLs can be located, regardless of the value of the system's
PATH environment variable.

Note: PATH is searched from left to right, with the first DLL name match being picked up, in the absence of a manifest
specifying otherwise. This means that installing software with other matching DLLs may give you a system that crashes
in unpredictable ways. When troubleshooting or asking for support on Windows, always consider PATH as a potential
source of issues.
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4.8.2 Shared libraries in macOS and Linux

In macOS and Linux, dynamic links are discovered in a similar manner to the way that Python modules are discovered
via PYTHONPATH, and executables are discovered via PATH. A list of search locations is made, and then the library
objects are searched for in the search locations. By default, as well as by design, the system dynamic linker does not
have any special preference for the conda environment lib directories.

You can specify both absolute links and relative links. If the links are absolute paths, such as /Users/UserName/
my_build_env, the library works only on a system where that exact path exists. Therefore, relative links are preferred
in conda packages.

Relative links require a special variable in the link itself:

• On Linux, the $ORIGIN variable allows you to specify "relative to this file as it is being executed".

• On macOS, the variables are:

– @rpath---Allows you to set relative links from the system load paths.

– @loader_path---Equivalent to $ORIGIN.

– @executable_path---Supports the Apple .app directory approach, where libraries know where they live
relative to their calling application.

Conda-build uses @loader_path on macOS and $ORIGIN on Linux because we install into a common root directory and
can assume that other libraries are also installed into that root. The use of the variables allows you to build relocatable
binaries that can be built on one system and sent everywhere.

On Linux, conda-buildmodifies any shared libraries or generated executables to use a relative dynamic link by calling
the patchelf tool. On macOS, the install_name_tool tool is used.

Warning: Setting LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH on macOS can interfere with this
because the dynamic linker short-circuits link resolution by first looking at LD_LIBRARY_PATH.

EXAMPLE: You install an old version of libcurl into your conda environment due to some compatibility issues with
the code you're using. Then, you set export LD_LIBRARY_PATH=/home/UserName/envs/curl_env/lib. From
that point on, every program that you execute in that session will favor this libcurl to your system libcurl because it is
now effectively at the "front" of the dynamic load path.

Including conda environment paths in LD_LIBRARY_PATH or DYLD_LIBRARY_PATH is not recommended.

4.9 Build variants

The nature of binary compatibility (and incompatibility) means that we sometimes need to build binary packages (and
any package containing binaries) with several variants to support different usage environments. For example, using
NumPy's C API means that a package must be used with the same version of NumPy at runtime that was used at build
time.

There has been limited support for this for a long time. Including Python in both build and run requirements resulted in
a package with Python pinned to the version of Python used at build time, and a corresponding addition to the filename
such as "py27". Similar support existed for NumPy with the addition of an x.x pin in the recipe after Conda-build
PR 573 was merged. Before conda-build version 3.0, there were also many longstanding proposals for general support
(Conda-build issue 1142).

As of conda-build 3.0, a new configuration scheme has been added, dubbed "variants." Conceptually, this decouples
pinning values from recipes, replacing them with Jinja2 template variables. It adds support for the notion of "compat-
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ible" pinnings to be integrated with ABI compatibility databases, such as ABI Laboratory. Note that the concept of
"compatible" pinnings is currently still under heavy development.

Variant input is ultimately a dictionary. These dictionaries are mostly very flat. Keys are made directly available in
Jinja2 templates. As a result, keys in the dictionary (and in files read into dictionaries) must be valid jinja2 variable
names (no - characters allowed). This example builds Python 2.7 and 3.5 packages in one build command:

conda_build_config.yaml like:

python:
- 2.7
- 3.5

meta.yaml contents like:

package:
name: compiled-code
version: 1.0

requirements:
build:

- python {{ python }}
run:

- python

The command to build recipes is unchanged relative to earlier conda-build versions. For example, with our shell in the
same folder as meta.yaml and conda_build_config.yaml, we just call the conda build . command.

4.9.1 General pinning examples

There are a few characteristic use cases for pinning. Please consider this a map for the content below.

1. Shared library providing a binary interface. All uses of this library use the binary interface. It is convenient to
apply the same pin to all of your builds. Example: boost

conda_build_config.yaml in your HOME folder:

boost:
- 1.61
- 1.63

pin_run_as_build:
boost: x.x

meta.yaml:

package:
name: compiled-code
version: 1.0

requirements:
build:

- boost {{ boost }}
run:

- boost

This example demonstrates several features:
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• User-wide configuration with a specifically named config file (conda_build_config.yaml in your home
folder). More options below in Creating conda-build variant config files.

• Building against multiple versions of a single library (set versions installed at build time).

• Pinning runtime requirements to the version used at build time. More information below at Pinning at the
variant level.

• Specify granularity of pinning. x.x pins major and minor version. More information at Pinning expres-
sions.

2. Python package with externally accessible binary component. Not all uses of this library use the binary interface
(some only use pure Python). Example: NumPy.

conda_build_config.yaml in your recipe folder (alongside meta.yaml):

numpy:
- 1.11
- 1.12

meta.yaml:

package:
name: numpy_using_pythonAPI_thing
version: 1.0

requirements:
build:

- python
- numpy

run:
- python
- numpy

This example demonstrates a particular feature: reduction of builds when pins are unnecessary. Since the example
recipe above only requires the Python API to NumPy, we will only build the package once and the version of
NumPy will not be pinned at runtime to match the compile-time version. There's more information at Avoiding
unnecessary builds.

For a different package that makes use of the NumPy C API, we will need to actually pin NumPy in this recipe
(and only in this recipe, so that other recipes don't unnecessarily build lots of variants). To pin NumPy, you can
use the variant key directly in meta.yaml:

package:
name: numpy_using_cAPI_thing
version: 1.0

requirements:
build:

- numpy {{ numpy }}
run:

- numpy {{ numpy }}

For legacy compatibility, Python is pinned implicitly without specifying {{ python }} in your recipe. This
is generally intractable to extend to all package names, so in general, try to get in the habit of always using the
Jinja2 variable substitution for pinning using versions from your conda_build_config.yaml file.
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There are also more flexible ways to pin using the Pinning expressions. See Pinning at the recipe level for
examples.

3. One recipe splits into multiple packages, and package dependencies need to be dynamically pinned among one
another. Example: GCC/libgcc/libstdc++/gfortran/etc.

The dynamic pinning is the tricky part. Conda-build provides new ways to refer to other subpackages within a
single recipe.

package:
name: dynamic_supackage
version: 1.0

requirements:
run:

- {{ pin_subpackage('my_awesome_subpackage') }}

outputs:
- name: my_awesome_subpackage
version: 2.0

By referring to subpackages this way, you don't need to worry about what the end version of
my_awesome_subpackage will be. Update it independently and just let conda-build figure it out and keep
things consistent. There's more information below in the Referencing subpackages section.

4.9.2 Transition guide

Let's say we have a set of recipes that currently builds a C library, as well as Python and R bindings to that C library.
xgboost, a recent machine learning library, is one such example. Under conda-build 2.0 and earlier, you needed to have
3 recipes - 1 for each component. Let's go over some simplified meta.yaml files. First, the C library:

package:
name: libxgboost
version: 1.0

Next, the Python bindings:

package:
name: py-xgboost
version: 1.0

requirements:
build:

- libxgboost # you probably want to pin the version here, but there's no dynamic␣
→˓way to do it

- python
run:

- libxgboost # you probably want to pin the version here, but there's no dynamic␣
→˓way to do it

- python

package:
name: r-xgboost
version: 1.0

(continues on next page)
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(continued from previous page)

requirements:
build:

- libxgboost # you probably want to pin the version here, but there's no dynamic␣
→˓way to do it

- r-base
run:

- libxgboost # you probably want to pin the version here, but there's no dynamic␣
→˓way to do it

- r-base

To build these, you'd need several conda-build commands, or a tool like conda-build-all to build out the various Python
versions. With conda-build 3.0 and split packages from conda-build 2.1, we can simplify this to one coherent recipe
that also includes the matrix of all desired Python and R builds.

First, the meta.yaml file:

package:
name: xgboost
version: 1.0

outputs:
- name: libxgboost
- name: py-xgboost
requirements:

- {{ pin_subpackage('libxgboost', exact=True) }}
- python {{ python }}

- name: r-xgboost
requirements:

- {{ pin_subpackage('libxgboost', exact=True) }}
- r-base {{ r_base }}

Next, the conda_build_config.yaml file, specifying our build matrix:

python:
- 2.7
- 3.5
- 3.6

r_base:
- 3.3.2
- 3.4.0

With this updated method, you get a complete build matrix: 6 builds total. One libxgboost library, 3 Python versions,
and 2 R versions. Additionally, the Python and R packages will have exact pins to the libxgboost package that was built
by this recipe.
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4.9.3 Creating conda-build variant config files

Variant input files are yaml files. Search order for these files is the following:

1. A file named conda_build_config.yaml in the user's HOME folder (or an arbitrarily named file specified as
the value for the conda_build/config_file key in your .condarc file).

2. A file named conda_build_config.yaml in the current working directory.

3. A file named conda_build_config.yaml in the same folder as meta.yaml with your recipe.

4. Any additional files specified on the command line with the --variant-config-files or -m command line
flags, which can be passed multiple times for multiple files. The conda build and conda render commands
accept these arguments.

Values in files found later in this search order will overwrite and replace the values from earlier files.

Note: The key conda_build/config_file is a nested value:

conda_build:
config_file: some/path/to/file

4.9.4 Using variants with the conda-build API

Ultimately, a variant is just a dictionary. This dictionary is provided directly to Jinja2 and you can use any declared key
from your variant configuration in your Jinja2 templates. There are two ways that you can feed this information into
the API:

1. Pass the variants keyword argument to API functions. Currently, the build, render,
get_output_file_path, and check functions accept this argument. variants should be a dictionary
where each value is a list of versions to iterate over. These are aggregated as detailed in the Aggregation of
multiple variants section below.

2. Set the variant member of a Config object. This is just a dictionary. The values for fields should be strings or
lists of strings, except "extended keys", which are documented in the Extended keys section below.

Again, with meta.yaml contents like:

package:
name: compiled-code
version: 1.0

requirements:
build:

- python {{ python }}
run:

- python {{ python }}

You could supply a variant to build this recipe like so:

variants = {"python": ["2.7", "3.5"]}
api.build(path_to_recipe, variants=variants)

Note that these Jinja2 variable substitutions are not limited to version numbers. You can use them anywhere, for any
string value. For example, to build against different MPI implementations:
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With meta.yaml contents like:

package:
name: compiled-code
version: 1.0

requirements:
build:

- {{ mpi }}
run:

- {{ mpi }}

You could supply a variant to build this recipe like this (conda_build_config.yaml):

mpi:
- openmpi # version spec here is totally valid, and will apply in the recipe
- mpich # version spec here is totally valid, and will apply in the recipe

Selectors are valid in conda_build_config.yaml, so you can have one conda_build_config.yaml for multiple
platforms:

mpi:
- openmpi # [osx]
- mpich # [linux]
- msmpi # [win]

Jinja is not allowed in conda_build_config.yaml, though. It is the source of information to feed into other Jinja
templates, and the buck has to stop somewhere.

4.9.5 About reproducibility

A critical part of any build system is ensuring that you can reproduce the same output at some future point in time. This
is often essential for troubleshooting bugs. For example, if a package contains only binaries, it is helpful to understand
what source code created those binaries, and thus what bugs might be present.

Since conda-build 2.0, conda-build has recorded its rendered meta.yaml files into the info/recipe folder of each
package it builds. Conda-build 3.0 is no different in this regard, but the meta.yaml that is recorded is a frozen set of
the variables that make up the variant for that build.

Note: Package builders may disable including the recipe with the build/include_recipe key in meta.yaml. If
the recipe is omitted from the package, then the package is not reproducible without the source recipe.

4.9.6 Special variant keys

There are some special keys that behave differently and can be more nested:

• zip_keys: a list of strings or a list of lists of strings. Strings are keys in variant. These couple groups of keys,
so that particular keys are paired, rather than forming a matrix. This is useful, for example, to couple vc version
to Python version on Windows. More info below in the Coupling keys section.

• pin_run_as_build: should be a dictionary. Keys are package names. Values are "pinning expressions" -
explained in more detail in Customizing compatibility. This is a generalization of the numpy x.x spec, so that
you can pin your packages dynamically based on the versions used at build time.
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• extend_keys: specifies keys that should be aggregated, and not replaced, by later variants. These are detailed
below in the Extended keys section.

• ignore_version: list of package names whose versions should be excluded from meta.yaml's require-
ments/build when computing hash. Described further in Avoiding unnecessary builds.

4.9.7 Coupling keys

Sometimes particular versions need to be tied to other versions. For example, on Windows, we generally follow the
upstream Python.org association of Visual Studio compiler version with Python version. Python 2.7 is always compiled
with Visual Studio 2008 (also known as MSVC 9). We don't want a conda_build_config.yaml like the following
to create a matrix of Python/MSVC versions:

python:
- 2.7
- 3.5

vc:
- 9
- 14

Instead, we want 2.7 to be associated with 9, and 3.5 to be associated with 14. The zip_keys key in
conda_build_config.yaml is the way to achieve this:

python:
- 2.7
- 3.5

vc:
- 9
- 14

zip_keys:
- python
- vc

You can also have nested lists to achieve multiple groups of zip_keys:

zip_keys:
-
- python
- vc

-
- numpy
- blas

The rules for zip_keys are:

1. Every list in a group must be the same length. This is because without equal length, there is no way to associate
earlier elements from the shorter list with later elements in the longer list. For example, this is invalid, and will
raise an error:

python:
- 2.7
- 3.5

vc:
- 9

(continues on next page)
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(continued from previous page)

zip_keys:
- python
- vc

2. zip_keys must be either a list of strings, or a list of lists of strings. You can't mix them. For example, this is an
error:

zip_keys:
-
- python
- vc

- numpy
- blas

Rule #1 raises an interesting use case: How does one combine CLI flags like --python with zip_keys? Such a CLI flag
will change the variant so that it has only a single entry, but it will not change the vc entry in the variant configuration.
We'll end up with mismatched list lengths, and an error. To overcome this, you should instead write a very simple
YAML file with all involved keys. Let's call it python27.yaml, to reflect its intent:

python:
- 2.7

vc:
- 9

Provide this file as a command-line argument:

conda build recipe -m python27.yaml

You can also specify variants in JSON notation from the CLI as detailed in the CONDA_* variables and command line
arguments to conda-build section. For example:

conda build recipe --variants "{'python': ['2.7', '3.5'], 'vc': ['9', '14']}"

4.9.8 Avoiding unnecessary builds

To avoid building variants of packages where pinning does not require having different builds, you can use the
ignore_version key in your variant. Then all variants are evaluated, but if any hashes are the same, then they are
considered duplicates, and are deduplicated. By omitting some packages from the build dependencies, we can avoid
creating unnecessarily specific hashes and allow this deduplication.

For example, let's consider a package that uses NumPy in both run and build requirements, and a variant that includes
2 NumPy versions:

variants = [{"numpy": ["1.10", "1.11"], "ignore_version": ["numpy"]}]

meta.yaml:

requirements:
build:

- numpy {{ numpy }}
run:

- numpy
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Here, the variant says that we'll have two builds - one for each NumPy version. However, since this recipe does not pin
NumPy's run requirement (because it doesn't utilize NumPy's C API), it is unnecessary to build it against both NumPy
1.10 and 1.11.

The rendered form of this recipe, with conda-build ignoring NumPy's value in the recipe, is going to be just one build
that looks like:

meta.yaml:

requirements:
build:

- numpy
run:

- numpy

ignore_version is an empty list by default. The actual build performed is probably done with the last 'numpy' list
element in the variant, but that's an implementation detail that you should not depend on. The order is considered
unspecified behavior because the output should be independent of the input versions.

Warning: If the output is not independent of input versions, don't use this key

Any pinning done in the run requirements will affect the hash, and thus builds will be done for each variant in the
matrix. Any package that sometimes is used for its compiled interface and sometimes used for only its Python interface
may benefit from careful use of ignore_version in the latter case.

Note: pin_run_as_build is kind of the opposite of ignore_version. Where they conflict, pin_run_as_build
takes priority.

4.9.9 CONDA_* variables and command line arguments to conda-build

To ensure consistency with existing users of conda-build, environment variables such as CONDA_PY behave as they
always have, and they overwrite all variants set in files or passed to the API.

The full list of respected environment variables are:

• CONDA_PY

• CONDA_NPY

• CONDA_R

• CONDA_PERL

• CONDA_LUA

CLI flags are also still available. These are sticking around for their usefulness in one-off jobs.

• --python

• --numpy

• --R

• --perl

• --lua
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In addition to these traditional options, there's one new flag to specify variants: --variants. This flag accepts a string
of JSON-formatted text. For example:

conda build recipe --variants "{python: [2.7, 3.5], vc: [9, 14]}"

4.9.10 Aggregation of multiple variants

The matrix of all variants is first consolidated from several dicts of lists into a single dict of lists, and then transformed
in a list of dicts (using the Cartesian product of lists), where each value is a single string from the list of potential values.

For example, general input for variants could be something like:

a = {"python": ["2.7", "3.5"], "numpy": ["1.10", "1.11"]}
# values can be strings or lists. Strings are converted to one-element lists internally.
b = {"python": ["3.4", "3.5"], "numpy": "1.11"}

Here, let's say b is found after a, and thus has priority over a. Merging these 2 variants yields:

merged = {"python": ["3.4", "3.5"], "numpy": ["1.11"]}

b's values for python have overwritten a's. From here, we compute the Cartesian product of all input variables. The
end result is a collection of dicts, each with a string for each value. Output would be something like:

variants = [{"python": "3.4", "numpy": "1.11"}, {"python": "3.5", "numpy": "1.11"}]

conda-build would loop over these variants where appropriate, such as when building, outputting package output names,
and so on.

If numpy had had two values instead of one, we'd end up with four output variants: 2 variants for python, times 2
variants for numpy:

variants = [
{"python": "3.4", "numpy": "1.11"},
{"python": "3.5", "numpy": "1.11"},
{"python": "3.4", "numpy": "1.10"},
{"python": "3.5", "numpy": "1.10"},

]

4.9.11 Bootstrapping pins based on an existing environment

To establish your initial variant, you may point to an existing conda environment. Conda-build will examine the contents
of that environment and pin to the exact requirements that make up that environment.

conda build --bootstrap name_of_env

You may specify either environment name or filesystem path to the environment. Note that specifying environment
name does mean depending on conda's environment lookup.
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4.9.12 Extended keys

These are not looped over to establish the build matrix. Rather, they are aggregated from all input variants, and each
derived variant shares the whole set. These are used internally for tracking which requirements should be pinned,
for example, with the pin_run_as_build key. You can add your own extended keys by passing in values for the
extend_keys key for any variant.

For example, if you wanted to collect some aggregate trait from multiple conda_build_config.yaml files, you could
do something like this:

HOME/conda_build_config.yaml:

some_trait:
- dog

extend_keys:
- some_trait

recipe/conda_build_config.yaml:

some_trait:
- pony

extend_keys:
- some_trait

Note that both of the conda_build_config.yaml files need to list the trait as an extend_keys entry. If you list it
in only one of them, an error will be raised to avoid confusion with one conda_build_config.yaml file that would
add entries to the build matrix, and another which would not. For example, this should raise an error:

some_trait:
- dog

recipe/conda_build_config.yaml:

some_trait:
- pony

extend_keys:
- some_trait

When our two proper YAML config files are combined, ordinarily the recipe-local variant would overwrite the user-
wide variant, yielding {'some_trait': 'pony'}. However, with the extend_keys entry, we end up with what
we've always wanted: a dog and pony show: {'some_trait': ['dog', 'pony'])}

Again, this is mostly an internal implementation detail - unless you find a use for it. Internally, it is used to aggregate
the pin_run_as_build and ignore_version entries from any of your conda_build_config.yaml files.

4.9.13 Customizing compatibility

Pinning expressions

Pinning expressions are the syntax used to specify how many parts of the version to pin. They are by convention strings
containing x characters separated by .. The number of version parts to pin is simply the number of things that are
separated by .. For example, "x.x" pins major and minor version. "x" pins only major version.

Wherever pinning expressions are accepted, you can customize both lower and upper bounds.
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# produces pins like >=1.11.2,<1.12
variants = [{"numpy": "1.11", "pin_run_as_build": {"numpy": {"max_pin": "x.x"}}}]

Note that the final pin may be more specific than your initial spec. Here, the spec is 1.11, but the produced pin could
be 1.11.2, the exact version of NumPy that was used at build time.

# produces pins like >=1.11,<2
variants = [

{"numpy": "1.11", "pin_run_as_build": {"numpy": {"min_pin": "x.x", "max_pin": "x"}}}
]

Note that for pre-release versions min_pinwill be ignored and substituted with the exact input version since pre-releases
can never match >=x.x (see Package match specifications for details on pre-release version matching).

Pinning at the variant level

Some packages, such as boost, always need to be pinned at runtime to the version that was present at build time. For
these cases where the need for pinning is consistent, pinning at the variant level is a good option. Conda-build will
automatically pin run requirements to the versions present in the build environment when the following conditions are
met:

1. The dependency is listed in the requirements/build section. It can be pinned, but does not need to be.

2. The dependency is listed by name (no pinning) in the requirements/run section.

3. The pin_run_as_build key in the variant has a value that is a dictionary, containing a key that matches the
dependency name listed in the run requirements. The value should be a dictionary with up to 4 keys: min_pin,
max_pin, lower_bound, upper_bound. The first 2 are pinning expressions. The latter 2 are version numbers,
overriding detection of current version.

An example variant/recipe is shown here:

conda_build_config.yaml:

boost: 1.63
pin_run_as_build:

boost:
max_pin: x.x

meta.yaml:

requirements:
build:

- boost {{ boost }}
run:

- boost

The result here is that the runtime boost dependency will be pinned to >=(current boost 1.63.x version),<1.
64.

More details on the pin_run_as_build function is below in the Extra Jinja2 functions section.

Note that there are some packages that you should not use pin_run_as_build for. Packages that don't always need to
be pinned should be pinned on a per-recipe basis (described in the next section). NumPy is an interesting example here.
It actually would not make a good case for pinning at the variant level. Because you only need this kind of pinning
for recipes that use NumPy's C API, it would actually be better not to pin NumPy with pin_run_as_build. Pinning
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it is over-constraining your requirements unnecessarily when you are not using NumPy's C API. Instead, we should
customize it for each recipe that uses NumPy. See also the Avoiding unnecessary builds section above.

Pinning at the recipe level

Pinning at the recipe level overrides pinning at the variant level, because run dependencies that have pinning values in
meta.yaml (even as Jinja variables) are ignored by the logic handling pin_run_as_build. We expect that pinning
at the recipe level will be used when some recipe's pinning is unusually stringent (or loose) relative to some standard
pinning from the variant level.

By default, with the pin_compatible('package_name') function, conda-build pins to your current version and less
than the next major version. For projects that don't follow the philosophy of semantic versioning, you might want to
restrict things more tightly. To do so, you can pass one of two arguments to the pin_compatible function.

variants = [{"numpy": "1.11"}]

meta.yaml:

requirements:
build:

- numpy {{ numpy }}
run:

- {{ pin_compatible('numpy', max_pin='x.x') }}

This would yield a pinning of >=1.11.2,<1.12.

The syntax for the min_pin and max_pin is a string pinning expression. Each can be passed independently of the
other. An example of specifying both:

variants = [{"numpy": "1.11"}]

meta.yaml:

requirements:
build:

- numpy {{ numpy }}
run:

- {{ pin_compatible('numpy', min_pin='x.x', max_pin='x.x') }}

This would yield a pinning of >=1.11,<1.12.

You can also pass the minimum or maximum version directly. These arguments supersede the min_pin and max_pin
arguments and are thus mutually exclusive.

variants = [{"numpy": "1.11"}]

meta.yaml:

requirements:
build:

- numpy {{ numpy }}
run:

- {{ pin_compatible('numpy', lower_bound='1.10', upper_bound='3.0') }}

This would yield a pinning of >=1.10,<3.0.

108 Chapter 4. Resources



conda-build Documentation, Release 0.0.0.dev0+placeholder

4.9.14 Appending to recipes

As of conda-build 3.0, you can add a file named recipe_append.yaml in the same folder as your meta.yaml file. This
file is considered to follow the same rules as meta.yaml, except that selectors and Jinja2 templates are not evaluated.
Evaluation of selectors and Jinja2 templates will likely be added in future development.

Any contents in recipe_append.yaml will add to the contents of meta.yaml. List values will be extended and
string values will be concatenated. The proposed use case for this is to tweak/extend central recipes, such as those from
conda-forge, with additional requirements while minimizing the actual changes to recipe files so as to avoid merge
conflicts and source code divergence.

4.9.15 Partially clobbering recipes

As of conda-build 3.0, you can add a file named recipe_clobber.yaml in the same folder as your meta.yaml
file. This file is considered to follow the same rules as meta.yaml, except that selectors and Jinja2 templates are not
evaluated. Evaluation of selectors and Jinja2 templates will likely be added in future development.

Any contents in recipe_clobber.yaml will replace the contents of meta.yaml. This can be useful, for example, for
replacing the source URL without copying the rest of the recipe into a fork.

4.9.16 Differentiating packages built with different variants

With only a few things supported, we could just add things to the filename, such as py27 for Python, or np111 for
NumPy. Variants are meant to support the general case, and in the general case this is no longer an option. Instead,
used variant keys and values are hashed using the SHA1 algorithm, and that hash is a unique identifier. The information
that went into the hash is stored with the package in a file at info/hash_input.json. Packages only have a hash
when there are any "used" variables beyond the ones that are already accounted for in the build string (py, np, etc). The
takeaway message is that hashes will appear when binary compatibility matters, but not when it doesn't.

Currently, only the first 7 characters of the hash are stored. Output package names will keep the pyXY and npXYY,
but may have added the 7-character hash. Your package names will look like:

my-package-1.0-py27h3142afe_0.tar.bz2

As of conda-build 3.1.0, this hashing scheme has been simplified. A hash will be added if all of these are true for any
dependency:

• Package is an explicit dependency in build, host, or run deps.

• Package has a matching entry in conda_build_config.yaml which is a pin to a specific version, not a lower
bound.

• That package is not ignored by ignore_version.

OR

• Package uses {{ compiler() }} Jinja2 function.

Since conflicts only need to be prevented within one version of a package, we think this will be adequate. If you run
into hash collisions with this limited subspace, please file an issue on the conda-build issue tracker.

There is a CLI tool that just pretty-prints this JSON file for easy viewing:

conda inspect hash-inputs <package path>

This produces output such as:
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{'python-3.6.4-h6538335_1': {'files': [],
'recipe': {'c_compiler': 'vs2015',

'cxx_compiler': 'vs2015'}}}

4.9.17 Extra Jinja2 functions

Two especially common operations when dealing with these API and ABI incompatibilities are ways of specifying
such compatibility, and of explicitly expressing the compiler to be used. Three new Jinja2 functions are available when
evaluating meta.yaml templates:

• pin_compatible('package_name', min_pin='x.x.x.x.x.x', max_pin='x', lower_bound=None,
upper_bound=None): To be used as pin in run and/or test requirements. Takes package name argument.
Looks up compatibility of named package installed in the build environment and writes compatible range
pin for run and/or test requirements. Defaults to a semver-based assumption: package_name >=(current
version),<(next major version). Pass min_pin or max_pin a Pinning expressions . This will be
enhanced as time goes on with information from ABI Laboratory.

• pin_subpackage('package_name', min_pin='x.x.x.x.x.x', max_pin='x', exact=False): To be
used as pin in run and/or test requirements. Takes package name argument. Used to refer to particular versions of
subpackages built by parent recipe as dependencies elsewhere in that recipe. Can use either pinning expressions,
or exact (including build string).

• compiler('language'): To be used in build requirements most commonly. Run or test as necessary. Takes
language name argument. This is shorthand to facilitate cross-compiler usage. This Jinja2 function ties together
2 variant variables, {language}_compiler and target_platform, and outputs a single compiler package
name. For example, this could be used to compile outputs targeting x86_64 and arm in one recipe, with a
variant.

There are default "native" compilers that are used when no compiler is specified in any variant. These are defined in
conda-build's jinja_context.py file. Most of the time, users will not need to provide compilers in their variants - just
leave them empty and conda-build will use the defaults appropriate for your system.

4.9.18 Referencing subpackages

Conda-build 2.1 brought in the ability to build multiple output packages from a single recipe. This is useful in cases
where you have a big build that outputs a lot of things at once, but those things really belong in their own packages.
For example, building GCC outputs not only GCC, but also GFortran, g++, and runtime libraries for GCC, GFortran,
and g++. Each of those should be their own package to make things as clean as possible. Unfortunately, if there are
separate recipes to repack the different pieces from a larger, whole package it can be hard to keep them in sync. That's
where variants come in. Variants, and more specifically the pin_subpackage(name) function, give you a way to
refer to the subpackage with control over how tightly the subpackage version relationship should be in relation to other
subpackages or the parent package. The following will output 5 conda packages.

meta.yaml:

package:
name: subpackage_demo
version: 1.0

requirements:
run:
- {{ pin_subpackage('subpackage_1') }}
- {{ pin_subpackage('subpackage_2', max_pin='x.x') }}

(continues on next page)
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(continued from previous page)

- {{ pin_subpackage('subpackage_3', min_pin='x.x', max_pin='x.x') }}
- {{ pin_subpackage('subpackage_4', exact=True) }}

outputs:
- name: subpackage_1
version: 1.0.0

- name: subpackage_2
version: 2.0.0

- name: subpackage_3
version: 3.0.0

- name: subpackage_4
version: 4.0.0

Here, the parent package will have the following different runtime dependencies:

• subpackage_1 >=1.0.0,<2 (default uses min_pin='x.x.x.x.x.x, max_pin='x', pins to major version with
default >= current version lower bound)

• subpackage_2 >=2.0.0,<2.1 (more stringent upper bound)

• subpackage_3 >=3.0,<3.1 (less stringent lower bound, more stringent upper bound)

• subpackage_4 4.0.0 h81241af (exact pinning - version plus build string)

4.9.19 Compiler packages

On macOS and Linux, we can and do ship GCC packages. These will become even more powerful with variants
since you can specify versions of your compiler much more explicitly and build against different versions, or with
different flags set in the compiler package's activate.d scripts. On Windows, rather than providing the actual compilers
in packages, we still use the compilers that are installed on the system. The analogous compiler packages on Windows
run any compiler activation scripts and set compiler flags instead of actually installing anything.

Over time, conda-build will require that all packages explicitly list their compiler requirements this way. This is to both
simplify conda-build and improve the tracking of metadata associated with compilers - localize it to compiler packages,
even if those packages are doing nothing more than activating an already-installed compiler, such as Visual Studio.

Note also the run_exports key in meta.yaml. This is useful for compiler recipes to impose runtime constraints
based on the versions of subpackages created by the compiler recipe. For more information, see the Export runtime
requirements section of the meta.yaml docs. Compiler packages provided by Anaconda use the run_exports key
extensively. For example, recipes that include the gcc_linux-cos5-x86_64 package as a build time dependency
(either directly, or through a {{ compilers('c') }} Jinja2 function) will automatically have a compatible libgcc
runtime dependency added.

4.9.20 Compiler versions

Usually the newest compilers are the best compilers, but in some special cases you'll need to use older compilers.

For example, NVIDIA's CUDA libraries only support compilers that they have rigorously tested. Often the latest GCC
compiler is not supported for use with CUDA. If your recipe needs to use CUDA, you'll need to use an older version
of GCC.

There are special keys associated with the compilers. The key name of each special key is the compiler key name plus
_version.
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For example, if your compiler key is c_compiler, the version key associated with it is c_compiler_version. If you
have a recipe for Tensorflow with GPU support, put a conda_build_config.yaml file alongside meta.yaml, with
contents like:

c_compiler_version: # [linux]
- 5.4 # [linux]

cxx_compiler_version: # [linux]
- 5.4 # [linux]

Specify selectors so that this extra version information is not also applied to Windows and macOS. Those platforms
have totally different compilers and could have their own versions if necessary.

It is not necessary to specify c_compiler or cxx_compiler because the default value (gcc on Linux) will be used.
It is necessary to specify both c and cxx versions, even if they are the same, because they are treated independently.

By placing this file in the recipe, it will apply only to this recipe. All other recipes will default to the latest compiler.

Note: The version number you specify here must exist as a package in your currently configured channels.

4.9.21 Cross-compiling

The compiler Jinja2 function is written to support cross-compilers. This depends on setting at least 2 vari-
ant keys: (language)_compiler and target_platform. The target platform is appended to the value of
(language)_compilerwith the _ character. This leads to package names like g++_linux-aarch64. We recommend
a convention for naming your compiler packages as: <compiler name>_<target_platform>.

Using a cross-compiler in a recipe would look like the following:

variants = {
"cxx_compiler": ["g++"],
"target_platform": ["linux-cos5-x86_64", "linux-aarch64"],

}

and a meta.yaml file:

package:
name: compiled-code
version: 1.0

requirements:
build:

- {{ compiler('cxx') }}

This assumes that you have created 2 compiler packages named g++_linux-cos5-x86_64 and g++_linux-aarch64
- all conda-build is providing you with is a way to loop over appropriately named cross-compiler toolchains.
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4.9.22 Self-consistent package ecosystems

The compiler function is also how you could support a non-standard Visual Studio version, such as using
VS 2015 to compile Python 2.7 and packages for Python 2.7. To accomplish this, you need to add the {{
compiler('<language>') }} to each recipe that will make up the system. Environment consistency is maintained
through dependencies - thus it is useful to have the runtime be a versioned package with only one version being able
to be installed at a time. For example, the vc package, originally created by Conda-Forge, is a versioned package (only
one version can be installed at a time), and it installs the correct runtime package. When the compiler package imposes
such a runtime dependency, then the resultant ecosystem is self-consistent.

Given these guidelines, consider a system of recipes using a variant like this:

variants = {"cxx_compiler": ["vs2015"]}

The recipes include a compiler meta.yaml like this:

package:
name: vs2015
version: 14.0

build:
run_exports:

- vc 14

They also include some compiler-using meta.yaml contents like this:

package:
name: compiled-code
version: 1.0

requirements:
build:

# these are the same (and thus redundant) on windows, but different elsewhere
- {{ compiler('c') }}
- {{ compiler('cxx') }}

These recipes will create a system of packages that are all built with the VS 2015 compiler, and which have the vc
package matched at version 14, rather than whatever default is associated with the Python version.
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4.10 Conda-build CLI reference

Command-line interface (CLI) adds onto conda-build's functionality. CLI provides functions enabling you to convert
packages between formats, render recipes, develop an index of packages, and more.

4.10.1 conda-build

4.10.2 conda convert

4.10.3 conda develop

4.10.4 conda index

4.10.5 conda inspect

4.10.6 conda inspect channels

4.10.7 conda inspect linkages

4.10.8 conda inspect objects

4.10.9 conda metapackage

4.10.10 conda render

4.10.11 conda skeleton

4.10.12 conda skeleton cpan

4.10.13 conda skeleton cran

4.10.14 conda skeleton luarocks

4.10.15 conda skeleton pypi

4.11 Adding Windows Start menu items

When a package is installed, it can add a shortcut to the Windows Start menu. Conda and conda-build handle this with
the package menuinst, which currently supports only Windows. For instructions on using menuinst, see the menuinst
wiki.

The easiest way to ensure that a package made with conda constructor does not install any menu shortcuts is to remove
menuinst from the list of conda packages included. To do this, add the following to the constuct.yaml file:

exclude:
- menuinst
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4.12 Writing style guide

Follow these guidelines for submitting or editing conda-build documentation.

4.12.1 Audience

Identify who your audience is, their skill level, and how they can use the information.

4.12.2 Technical language

Match the level of technical language with the audience's level of proficiency. It's better to uderestimate the knowledge
of your readers than overestimate it. Limit technical terms to those the user will encounter. If you must define a large
number of terms, use a glossary to supplement definitions in the text.

4.12.3 Addressing the user

Use the active voice (e.g. Click this) and address users directly (write "you" rather than "the user"). When explaining
an action, use the "command" form of the verb: "Choose an option from the menu and press Enter."

4.12.4 Format

See the tutorial template for the format. Provide descriptive task and subtask titles and do not number headings.

4.13 Tutorial template

• Overview

• Who is this for?

• Before you start

• Tutorial tasks

• More information (optional)

This document describes the steps for creating a tutorial for conda-build.

• Copy the template: https://github.com/conda/conda-build/tree/main/docs/source/resources/tutorial-template.
rst.

• Replace the italicized text with your tutorial content, following the writing style guide.

• Review other tutorials for additional guidance.

• Contact us at documentation@anaconda.com for help.
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4.13.1 Overview

Provide descriptions of the tutorial's:

• Purpose.

• Benefits.

• Application.

4.13.2 Who is this for?

• Who is your audience?

• What skills or prior knowledge do they need?

• How will they use this tutorial?

4.13.3 Before you start

Before you start, check the Prerequisites.

Provide descriptions of and links to requisite programs.

Glossary (optional)

If you're using several technical terms that your readers may be unfamiliar with, provide a glossary of key terms.

Glossary Definition
Term 1 Term 1 defined
Term 2 Term 2 defined
Term 3 Term 3 defined

4.13.4 Tutorial tasks

• Provide descriptive titles for each section.

• Identify the major tasks.

• Separate each major task into subtasks.

• Write a series of steps that walk the user through each subtask.

4.13.5 More information (optional)

• Provide links to related content.

• Add final notes for how to expand upon the tutorial.
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CHAPTER

FIVE

RELEASE NOTES

This information is drawn from the GitHub conda project changelog: https://github.com/conda/conda-build/blob/
main/CHANGELOG.md

5.1 3.25.0 (2023-05-22)

5.1.1 Enhancements

• Noarch packages that use virtual packages have the virtual packages added to the hash contents of the package.
This facilitates the building of noarch packages multiple times for different platforms with platform specific
dependencies. (#4606)

• Add support for svn source credentials (svn_username and svn_password). (#4692)

• Depend on standalone conda-index instead of bundled indexing code. (#4828)

• Switch from setup.py to pyproject.toml and use Hatchling for our build system. (#4840)

• Add Python 3.11 support. (#4852)

5.1.2 Bug fixes

• Ensure tests/commands are also run in the presence of run_test.* (#4429)

• Require the source when rendering a recipe that uses the load_file_data function. (#4817)

• Download packages during build into the correct subdir folder. (#4832)

• Use a unique subdir variable name when rebuilding the index for multi-output builds. (#4862)

5.1.3 Deprecations

• Inline conda index logic is pending deprecation. conda-build still provides conda-index a.k.a. conda
index CLI, but uses standalone conda-index during builds. (#4828)

• Prefer the standalone conda-index package, instead of conda-build index or conda index, to use faster
indexing code. (#4828)

• Mark conda_build.metadata.ns_cfg as pending deprecation. Use conda_build.get_selectors.
get_selectors instead. (#4837)

• Mark conda_build.config.python2_fs_encode as pending deprecation. (#4843)
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• Mark conda_build.config._ensure_dir as pending deprecation. Use stdlib’s pathlib.Path.
mkdir(exist_ok=True) or os.makedirs(exist_ok=True) instead. (#4843)

5.1.4 Other

• Format with black and replaced pre-commit’s darker hook with black. (#4836)

• Format with isort and add pre-commit isort hook. (#4836)

• Minor code simplification for conda_build.index.ChannelIndex._ensuredirs. (#4843)

• Enable xattr test on macOS. (#4845)

5.1.5 Contributors

• @beeankha

• @conda-bot

• @dholth

• @duncanmmacleod

• @ffirmanff made their first contribution in https://github.com/conda/conda-build/pull/4692

• @isuruf

• @jezdez

• @jakirkham

• @jjhelmus

• @kenodegard

• @rishabh11336 made their first contribution in https://github.com/conda/conda-build/pull/4782

• @ryanskeith made their first contribution in https://github.com/conda/conda-build/pull/4843

• @pre-commit-ci[bot]

5.2 3.24.0 (2023-03-22)

5.2.1 Bug fixes

• Fix the failing git clone when source has LFS files. (#4318)

• Fix many false-positives during the detection of Perl core modules in conda skeleton cpan. (#4592)

• conda skeleton cpan now correctly adds a C compiler as dependency if the distribution contains an .xs file.
(#4599)

• Install downstream packages in correct subdir. (#4763, #4803)

• Update supported Python version in setup.py. (#4804)
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5.2.2 Deprecations

• Removed conda <4.13 logic. (#4677)

• conda_build.conda_interface.CrossPlatformStLink is pending deprecation in favor of using os.
stat().st_nlink. (#4728)

• Drop Python 3.7 support. (#4796)

5.2.3 Docs

• Updated broken links to example conda recipes and updated link to the now archived conda-recipes, with addi-
tional links to AnacondaRecipes aggregated feedstocks and conda-forge feedstocks. (#4580)

• Replaced two instances of “Anaconda Cloud” with “anaconda.org”. (#4719)

5.2.4 Other

• Update test matrix to run tests on all supported Python versions on Linux. Only run tests on lower & upper
Python bounds for Windows and macOS. (#4691)

• Re-enable code coverage reporting to codecov. (#4767)

• Eliminate test setup’s manual clone of https://github.com/conda/conda_build_test_recipe in favor of a session
fixture. (#4781)

• Use tomllib (Python 3.11+) or tomli for .toml support. (#4783)

5.2.5 Contributors

• @beeankha

• @conda-bot

• @dbast

• @dholth

• @ernstluring made their first contribution in https://github.com/conda/conda-build/pull/4318

• @xileF1337 made their first contribution in https://github.com/conda/conda-build/pull/4592

• @jezdez

• @jakirkham

• @johnnynunez made their first contribution in https://github.com/conda/conda-build/pull/4804

• @kathatherine

• @kenodegard

• @minrk

• @peetw made their first contribution in https://github.com/conda/conda-build/pull/4662

• @sven6002 made their first contribution in https://github.com/conda/conda-build/pull/4621

• @tttc3 made their first contribution in https://github.com/conda/conda-build/pull/4580

• @dependabot[bot]
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• @pre-commit-ci[bot]

5.3 3.23.3 (2022-12-06)

5.3.1 Bug fixes

• Change Zstd default compression to 19. (#4663)

• Fix build/host environment activation broken in >=3.23.0,<=3.23.2. (#4665)

• Add PREFIX/bin to PATH on Windows and remove PREFIX root from PATH on Unix. (#4665)

5.3.2 Other

• Skip test suite for non-code changes. (#4664)

5.3.3 Contributors

• @jakirkham

• @kenodegard

• @mbargull

5.4 3.23.2 (2022-11-30)

5.4.1 Bug fixes

• conda-build CLI overrode condarc’s zstd_compression_level with the default value. (#4650)

5.4.2 Contributors

• @kenodegard

• @mbargull

• @pre-commit-ci[bot]

5.5 3.23.1 (2022-11-17)

5.5.1 Bug fixes

• Fixed regression when writing link JSON files introduced in #4603. (#4636)

• Update conda dependency. (#4635)
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5.5.2 Contributors

• @jezdez

• @kenodegard

5.6 3.23.0 (2022-11-15)

5.6.1 Enhancements

• Outputs now support both script and files arguments. When both script and an explicit file list are given, the
script is run first and then the files given in the explicit file list are packaged. (#4281)

• Add overlinking_ignore_patterns build parameter to speed up recipes where it is not helpful. (#4576)

• Add win-arm64 as a recognized platform (subdir). (#4579)

• Add opt-in environment variable to run conda in isolated mode (python -I -m conda) when invoked from
conda-build. This is necessary to fix an issue when packaging conda itself. Alternative solutions (see #4628)
are under investigation, so the current implementation will likely change. (#4604, #4625)

• Refactored conda_build.convert.update_lib_contents to use pathlib.Path. Mark test_cli.
test_convert as xfail on Windows (something with the GitHub Windows Runner makes this particularly
flaky). (#4619, #4626)

5.6.2 Deprecations

• Drop cytoolz dependency. (#4556)

• Removed internal usage of the memoized decorator. (#4593, #4615)

• Remove py2 compatibility code and use of six.py code exported from conda. (#4603)

• conda_build.environ.system_vars is marked as pending deprecation. Use conda_build.environ.
os_vars instead. (#4615)

• Conda 4.2 introduced a private conda env that appears to have been a testing environment. This is no longer used
and is only included in conda-build as an informational status. Removing in accordance with the feature pending
deprecation starting with conda 22.11.0. (#4629)

5.6.3 Docs

• Add s390x selector missing from docs. (#4550)

• Update “Channels and generating an index” docs to specify additional platforms. (#4602)

• Link to https://packaging.python.org/en/latest/tutorials/packaging-projects/ over setuptools for how to pack a
project. (#4632)
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5.6.4 Other

• Renamed canary recipe from conda.recipe to recipe. (#4584)

• Introduce canary and review builds as part of GitHub CI. (#4608, #4613)

• Removed unused AppVeyor files. (#4562)

• Removed unused .checkignore. (#4564)

• Removed unused .editorconfig. (#4564)

• Removed unused .gitmodules. (#4564)

• Removed unused .lgtm.yml. (#4564)

• Removed unused .binstar.yml. (#4616)

5.6.5 Contributors

• @chenghlee

• @conda-bot

• @dholth

• @tnabtaf made their first contribution in https://github.com/conda/conda-build/pull/4602

• @erykoff made their first contribution in https://github.com/conda/conda-build/pull/4603

• @isuruf

• @jaimergp made their first contribution in https://github.com/conda/conda-build/pull/4604

• @jezdez

• @kenodegard

• @mariusvniekerk

• @msarahan

• @skupr-anaconda made their first contribution in https://github.com/conda/conda-build/pull/4550

• @pre-commit-ci[bot]

• @brettcannon made their first contribution in https://github.com/conda/conda-build/pull/4632

5.7 3.22.0 (2022-08-02)

5.7.1 Enhancements

• Created function load_file_data available in Jinja templates for meta.yaml (#4465, #4480)

• Created function load_str_data available in Jinja templates for meta.yaml (#4465, #4480)

• Support using --zstd-compression-level to control the compression of v2 style conda packages. (#4467)
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5.7.2 Bug fixes

• When building with Python 3.10, STDLIB_DIR and SP_DIR now refer to python3.10, not the symlink
python3.1. (#4479)

• Reduce verbosity of urllib3 on the default log level. (#4517)

• Fixed issue identifying DSOs from sysroots when cross-compiling. (#4529)

5.7.3 Docs

• Improved documentation for load_setup_py_data (#4465, #4480)

• Added documentation for load_file_regex (#4465, #4480)

• Fix prerequisites for build tutorials link. (#4478)

• Link in contributing docs. (#4532)

5.7.4 Other

• Fix patch tests. (#4495)

• Added patch/m2-patch as a hard dependency. (#4495)

• Update “Artistic-2.0” license test to use a valid package. (#4516)

• Rename master branch to main. (#4515, #4531)

5.7.5 Contributors

• @abrahammurciano made their first contribution in #4465/#4480

• @chrisburr

• @conda-bot

• @duncanmmacleod

• @jezdez

• @jakirkham

• @jugmac00 made their first contribution in #4478

• @kathatherine made their first contribution in #4515

• @kenodegard

• @stuarteberg

• @teake

• @travishathaway

• @pre-commit-ci[bot]
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5.8 3.21.9 (2022-05-27)

5.8.1 Enhancements

• Replace is_dir with scandir for channel_root. (#4273)

• Remove rpaths in PREFIX/../ that doesn’t start with PREFIX. This includes BUILD_PREFIX, SRC_DIR. Previ-
ously it was only BUILD_PREFIX. (#4287)

• Add entry_points to outputs in FIELDS schema. (#4389)

• Support for setuptools 61+. (#4430)

• Use set membership for faster indexing. (#4459)

5.8.2 Bug fixes

• Remove rpaths that occur multiple times. (#4287)

• Enable bdist_conda via entry_point mechanism supported also by setuptools >=60.0.0. Us-
able via from setuptools import setup and setup(distclass=conda_build.bdist_conda.
CondaDistribution, ...). (#4368)

• Patch setuptools’s vendored distutils.core as well. (#4434)

• Resolve conda debug failure when a trailing slash path is provided. (#4448)

• Fix import error caused by conda 4.13.0’s removal of Python 2.7 code. (#4482)

5.8.3 Deprecations

• Usage of bdist_conda via from distutils.core import setup and distclass=distutils.command.
bdist_conda.CondaDistribution, as that only works for setuptools <60.0.0. (#4368)

• Remove Python 2.7 imports removed in conda 4.13.0. (#4482)

5.8.4 Other

• Move Windows tests from Azure to GitHub Actions. (#4353, #4436)

• Add pyupgrade to pre-commit. (#4374)

• Move MacOS tests from Azure to GitHub Actions. (#4412, #4436, #4455)

• Update Makefile for easier testing. (#4425)

• Remove unused Travis CI configs. (#4438)

• Add MyST to the documentation system and render release notes correctly. (#4483)
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5.8.5 Contributors

• @beeankha

• @conda-bot

• @dbast

• @dholth made their first contribution in https://github.com/conda/conda-build/pull/4273

• @isuruf

• @jezdez

• @jakirkham

• @kenodegard

• @remkade made their first contribution in https://github.com/conda/conda-build/pull/4425

• @rchord made their first contribution in https://github.com/conda/conda-build/pull/4353

• @travishathaway made their first contribution in https://github.com/conda/conda-build/pull/4448

• @wimglenn made their first contribution in https://github.com/conda/conda-build/pull/4434

• @pre-commit-ci[bot]

5.9 3.21.8 (2022-01-25)

5.9.1 Enhancements

• Adds --extra-meta key=value option which allows users to save any specified extra metadata to about.
json to e.g. store the repo-url, git-sha1 or the CI run-id a package was built from.

5.9.2 Bug fixes

• Old work directories will be preserved when croot and build_id are set manually

5.9.3 Other

• Separate contributor related documentation into dedicated file

• Migrating to github actions for tests

• Synced file(s) with conda/infra
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5.9.4 Contributors

• @Lnaden

• @jezdez

• @cjmartian

• @beeankha

• @pre-commit

• @conda-bot

5.10 3.21.7 (2021-11-30)

5.10.1 Bug fixes

• Handle an import from the vendored auxlib library in Conda 4.11.0 better.

5.10.2 Other

• cran-skeleton: more unit tests

5.10.3 Contributors

• @kenodegard

• @jdblischak

• @jezdez

• @pre-commit

5.11 3.21.6 (2021-11-09)

5.11.1 Enhancements

• Add limited support for platform_system/sys_platform env markers in PyPI skeleton

• cran-skeleton: Adds a flag --no-comments to remove the instructional comments from the recipe files.

5.11.2 Bug fixes

• When checking for circular dependencies in cross-compiling mode, build requirements are ignored now.

• Make sure symlinked directories are found in always_include_files

• Fix pinning expressions for prerelease builds
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5.11.3 Contributors

• @isuruf

• @mbargull

• @kenodegard

• @jdblischak

• @dbast

• @jezdez

• @ChristofKaufmann

5.12 3.21.5 (2021-08-06)

5.12.1 Enhancements

• Revert “Consider any file containing .yaml in its name as maybe a recipe file” (#4235)

• Support setting build/script_env values containing “=” (#4211)

• Drop Python 2.7 support from setup.py (#4202)

• Make variant configuration error message more informative (#4198)

• Ensure file globs are always sorted (#4186)

• Add preliminary support for prelink_message files in conda packages (#4203)

5.12.2 Bug fixes

• Do not munge rpath for non Mach-O files on macOS (#4238)

• Fix Windows test file extension reported by conda-debug (#4224)

5.12.3 Docs

• Document build/script_env recipe option (#4211)

• Clarify wording about selecting multiple operating systems (#4139)

5.12.4 Contributors

• @chrisburr

• @gabm

• @isuruf

• @jacobtylerwalls

• @katietz

• @kenodegard

• @marcelotrevisani
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• @xhochy

5.13 3.21.4 (2021-01-15)

5.13.1 Enhancements

• Add new centos 7 distribution cleof to rpm skeleton for s390x. (#4181)

5.13.2 Bug fixes

• Fixed bug where symlinks in symlinks caused conda build to exit. (#4180)

5.13.3 Contributors

• @mingwandroid

• @beckermr

• @katietz

• @beckermr

5.14 3.21.3 (2021-01-11)

5.14.1 Enhancements

• Fix stupid error in prefix replacement (#4177)

5.14.2 Contributors

• @mingwandroid

5.15 3.21.2 (2021-01-11)

5.16 3.21.1 (2021-01-11)

5.16.1 Bug fixes

• Fix noarch: python version from version-age determination (#4174)
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5.16.2 Contributors

• @mingwandroid

5.17 3.21.0 (2021-01-10)

5.17.1 Enhancements

• activate_in_script defaults to true (#4120)

• Add Setting and build/noarch_python_build_age and fix tests not finding packages (#4120)

• Allow directories as license_file source (#4153)

• Consider any file containing .yaml in its name as maybe a recipe file (#4120)

• Add weak_constrains and strong_constrains run_exports types (#4125)

• Issue a single command for the upload command (#4120)

• Print hash_inputs after upload info (#4120)

• Add cross-r-base for cross compiling

• Add --build-id-pat option

• macOS: Delete build_prefix rpaths

• Use smarter build_number

• Combine default_structs with FIELDS

• Fix conda render indent from 4 to 2

• macOS: arm64 ci/test-suite setup

• Removing more conda-forge testing deps

• Variants: Be more informative

• more verbosity in tests

• Use MacOSX10.10.sdk, not MacOS10.9.sdk in tests (#4120)

• Warn when files have been removed from the prefix (#4120)

5.17.2 Bug fixes

• Add conda-verify to install_conda_build_test_deps (#4120)

• Add flaky to testing dependencies (#4138)

• Fix tests not finding packages

• Avoid writing to the package cache in package_has_file (collisions) (#4120)

• Change package_has_file to refresh if out of date (#4120)

• Ensure ~/.condarc does not leak into testing_config (#4120)

• Fix applying patches to read-only files (#4140)

• Fix auth in aboutjson (#4137)
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• Fix skeleton URLs for CentOS 6 (EOL) and various CI fixes (#4154)

• Fix typo in cran skeleton (#4143)

• Force channel_targets to be considered used (#4120)

• Fix printing bytes-like object is required, not 'str' when applying patches (#4118)

• Set “platform” in index.json to the target platform for cross-platform builds (#4124)

• Reduce get_rpaths_raw/patchelf disagree warnings (#4131)

• LIEF: Allow parsing static libs to fail (#4149)

• pass cache_dir to api.build (#4120)

• Fix symlinks to directories

• Make post-link run_export/library_nature determination less work when CONDA_OFFLINE=1

• Remove Python 2.7 from CI matrix

• Fix test_pypi_installer_metadata (builds against python 3.9 not 3.7)

• tests: Fix test_render_with_python_arg_reduces_subspace

• tests: Update python 3 from 3.5/6 to 3.9 in many

• Set numpy default to 1.16

• tests: Fix pins for numpy_used

• tests: CI: Win: Circumvent delayed expansion

• Install patch or m2-patch, write .sh files as binary, more Win tests

• tests: Avoid issue with coverage==5.0 on Win+Py2.7

• Assume non-revisible patches

• Add flaky marker and --strict-markers to setup.cfg

• Don’t sort recipes

• Use extra R_ARGS and fix them

• shell check fix

5.17.3 Contributors

• @mingwandroid

• @isuruf

• @mbargull

• @njalerikson

• @cjmartian

• @chrisburr

• @hugobuddel

• @kurtschelfthout
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5.18 3.20.5 (2020-10-26)

5.18.1 Enhancements

• A new feature build/ignore_run_exports_from which will ignore run_exports

• coming from a package listed in build/ignore_run_exports_from. (#4114)

5.18.2 Bug fixes

• Respect PEP440 ~= ‘Compatible release clause’ (#4113)

• Detect amalgamated patches (#4099)

• Handle realpath properly in unsafe patch check (#4099)

• Force channel_targets to be considered used (#4099)

• Look for git in build_prefix in git_info (#4099)

• Fall back to shutil.copy if shutil.copy2 fails when copying patches (#4099)

• Fix indexing by file (#4111)

• Helper functions to extract keys (#4088)

• Simplify find_config_files call (#4086)

• Refactor dict_of_lists_to_lists_of_dict (#4075)

5.18.3 Contributors

• @mingwandroid

• @isuruf

• @njalerikson

• @cjmartian

• @njalerikson

5.19 3.20.4 (2020-10-14)

5.19.1 Enhancements

• Make stats output more easily human-readable (#4069)

• Prefer meta.yaml build/error_overlinking and error_overdepending (#4074)

• Cleanup variant processing code (#4075)

• Add --file option to indexing (#4076)
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5.19.2 Bug Fixes

• Remove old rpath when loader_path is used (#4080)

• Fix MACOSX_DEPLOYMENT_TARGET default for osx-arm64 (#4091)

• Rewrite apply_patch again (#4092)

• Add a .* to conditional_regex (#4092)

5.19.3 Contributors

• @isuruf

• @njalerikson

• @cjmartian

• @mingwandroid

5.20 3.20.3 (2020-09-29)

5.20.1 Enhancements

• Use CONDA_PACKAGE_EXTENSIONS (#4053)

• raise runtimeerror instead of calling sys.exit (#4062)

• Refactor conda_build.build.get_all_replacements (#4055)

5.20.2 Bug fixes

• Do not clobber config argument in conda_build.build.build_tree (#4066)

• Use --dry-run to test that a patch applies. Fixes bug 4054 (#4067)

• Include target_platform in package build string hash (#4065)

• Fix post linking for SDKs with tapi-tbd-v4 (MacOS 11.0 and upwards) (#4048)

5.21 3.20.1 (2020-09-04)

5.21.1 Bug fixes

• Run bash with -e in outputs too #4033

• Add target to recognized fields in outputs #4034

• Various overlinking fixes for Windows #4036

• variants: remove hard-coded default path for CONDA_BUILD_SYSROOT
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5.21.2 Contributors

• @mingwandroid

• @isuruf

• @mbargull

5.22 3.20.0 (2020-08-27)

5.22.1 Enhancements

• enable Python 3.8 on Azure Pipelines (#3841)

• which_package can be passed avoid_canonical_channel_name (#3952)

• make life easier (less shell exit-y) for those who source test scripts (#3952)

• move old host env instead of deleting it when --keep-old-work (#3952)

• convert info.d/.yaml to info/.json (#3952)

• allow manual specification of which binary files to prefix replace (#3952)

• filter out ‘.AppleDouble’ folders from recipe searches (#3952)

• re-wrote apply_patch() to be more robust (#3952)

• many fixes for DSO post-processing (#3952, #3953)

• add support for (limited) tbd parsing (#3953)

• Make sure packages in current repo data w/ features have versions without features (#3957)

• Check all sysroot locations for DSOs (#3969)

• More helpful error message if an empty string is passed as the hash (‘md5’, ‘sha1’ or ‘sha256’ fields) (#3971)

• the GIT_DESCRIBE_HASH variable will be available regardless of whether the sources of the recipe have a git tag
or not (#3982)

• add apple silicon support (#4004, #4015)

• set build_platform for aid in cross compiling (#4005)

• import macho on non apple system for cross compiling (#4025)

• Add ccache as a jinja 2 function (#4026)

• Improve cpan skeleton (#4026)

• Retry moving host prefix due to Windows file locking (#4026)

• Rename ccache method from mklink to sylinks (#4028)
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5.22.2 Bug fixes

• conda_build.metadata: fixed typos in FIELDS (#3866)

• add spaces in CRAN templates (fixes #3943) (#3944)

• raise valid CalledProcessException in macho.otool (#3952)

• cache local_output_folder too for get_build_index (#3952)

• fix relocations when cross compiling (#3995)

• use host_platform instead of sys.platform to facilitate cross compiling (#3997)

• Fix parsing UnsatisfiableError from conda>=4.7.8 (#4001)

• allow packages to depend on themselves when cross compiling (#4011)

• set the correct SHLIB_EXT when cross compiling (#4013, #4021)

• inspect linkages with pyldd when not DLL/EXE files (#4019)

• Respect no_rewrite_stdout_env on Windows (#4026)

• Prefix replacement fixes (#4026)

• Use git am -3 when applying patches (#4026)

• Fix env_var=val assertion (#4026)

• Use exit /B from patch files (#4026)

5.22.3 Docs

• extend docs o generating the index (#3877)

• add details to documentation of run_constrained (#3878)

• remove documentation on bdist_conda and environment variables (#3879)

• update cli help information for conda index (#3931)

• Clarify how to install conda-build (#3976)

• Add note for local package install deps (#3980)

• Clarify multiple OS selection (#3984)

• add aarch64 selector to the docs (#4003)

• add docs on build_platform and arm64 (#4020)

5.22.4 Other

• Enable s390x support (#3949, #4030)

• Add xfail test for non-utf-8 charsets (#3972)

• Improve testing on CI (#3987, #4017, #4027)

• Allow python=3.8 for pypi skeletons (#4014)
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5.23 3.19.3 (2020-04-13)

5.23.1 Bug fixes

• load log prior to calling warn method (#3925)

• test suite fixes and prefix replacement fixes (#3932)

5.23.2 Other

• Enable ppc64 support (#3921)

5.23.3 Docs

• Update cli help information for conda index (#3931)

5.23.4 Contributors

• @beenje

• @jjhelmus

• @mingwandroid

5.24 3.19.2 (2020-04-01)

5.24.1 Bug fixes

• Show a warning instead of failing if a Mach-O file is prouduced by a build running on a platform other than
macOS (#3912)

• Revert #3893, restores behavior of build/binary_has_prefix_files to that found in 3.18.12 (#3916)

5.24.2 Docs

• clarified ‘deletes the build environment’ in concepts/recipe.rst (#3901)

5.24.3 Contributors

• @jjhelmus

• @timsnyder

• @chrisburr
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5.25 3.19.1 (2020-03-17)

5.25.1 Bug fixes

• Fix issues with PREFIX detection in Windows #3899

5.25.2 Other

• Change the CI trigger #3904

5.25.3 Contributors

• @mingwandroid

• @marcelotrevisani

• @jjhelmus

5.26 3.19.0 (2020-03-10)

5.26.1 Enhancements

• Keep python pinning in hashing if there is a space #3895

• ci launcher supporting python d shebangs on Windows #3894

• Allow build/binary_has_prefix_files to specify a list of files #3893

5.26.2 Bug fixes

• Use patchelf to set RPATH by default #3897

5.26.3 Contributors

• @isuruf

• @jjhelmus

• @mingwandroid

5.27 3.18.12 (2020-03-02)

• Keep python pinning in hashing if there is a space #3895

• ci launcher supporting python d shebangs on Windows #3894

• Allow build/binary_has_prefix_files to specify a list of files #3893

• Use patchelf to set RPATH by default #3897

• Prevent non-atomic writes to repodata JSON files #3833
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• Audited and updated all docs with formatting, grammar, and accuracy errors.

• Docs: Removed deprecated page on features

• Fixed issue where symlinks to files that do not exist break conda build #3840

5.27.1 Contributors

• @bdice

• @beckermr

• @chrisburr

• @csoja

• @guidara

• @isuruf

• @jakirkham

• @jjhelmus

• @marcelotrevisani

• @mcg1969

• @mingwandroid

• @msarahan

• @rrigdon

• @saraedum

• @sscherfke

• @zeehio

5.28 3.18.11 (2019-11-01)

• Update build.sh files of skeletons to be shellcheck clean including test to lint future updates.

• Corrected documentation on subpackage test requirements.

• Do not move work dir to work/work/

• fixed a missing .lower() on two tar_xf related util functions

• Fix has_prefix detection for Windows.

• conda_build.inspect_pkg: optimise use of fnmatch

• Do not consider .ignore files when searching with ripgrep

• Remove N*N os.lstat calls in build_info_files_json_v1
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5.28.1 Contributors

• @msarahan

• @rrigdon

• @marcelotrevisani

• @rrigdon

• @soapy1

• @dbast

• @duncanmmacleod

• @beckermr

• @seanyen

• @AndrewAnnex

• @183amir

• @njzjz

5.29 3.18.10 (2019-10-14)

5.29.1 Enhancements

• Added the error message when an invalid pip dependency version expression is used

• Conda skeleton pypi quoting just version, summary and description or attributes with special characters

• Set up CI Azure pipeline for Linux

• Update cran skeleton to match supported optional licenses for license file derivation.

• Migrate Unittests to PyTest

• Update script command on conda skeleton pypi to use {{ PYTHON }} -m pip install . -vv

• Add a warning when a received a file on RECIPE_PATH

• Refactored the skeletons/pypi.py get_package_metadata to be more modular

• added --suppress-variables switch to hide environment variables from console output

5.29.2 Bug fixes

• Fixed build of ‘.conda’ packages enabled via conda config --set conda_build.pkg_format 2

• Workaround for future deprecations of the SafeConfigParser and readfp of the same module.
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5.29.3 Docs

• Remove bzip2 package from build toolkit description.

5.29.4 Contributors

• @msarahan

• @jakirkham

• @marcelotrevisani

• @duncanmmacleod

• @kinow

• @saraedum

• @jjhelmus

• @rrigdon

• @mingwandroid

• @asford

• @timsnyder

• @mcg1969

• @kaitietz

• @stuarteberg

• @isuruf

• @dbast

• @Bezier89

5.30 3.18.9 (2019-07-23)

5.30.1 Enhancements

• add --use-channeldata argument to conda render/build.

• Extract the part in the skeletons pypi responsible to get the package metadata to a free function.

• Creat unittests for the get_package_metadata (skeletons/pypi.py) and for the new functions.
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5.30.2 Bug fixes

• Limit threads to 61 on Windows.

• Do not use channeldata for run_exports unless --use-channeldata specified.

• Finalize top-level metadata if not present as an output.

5.30.3 Docs

• Add 3.18.7 release notes

5.30.4 Other

• Add disable_pip to FIELDS

5.30.5 Contributors

• @rrigdon

• @jjhelmus

• @rrigdon

• @Bezier89

• @jakirkham

• @marcelotrevisani

5.31 3.18.8 (2019-07-18)

5.31.1 Enhancements

• license_file can optionally be a yaml list

5.31.2 Bug fixes

• fix readup of existing index.json in cache while extracting

• fix spurious post build errors/warning message

• merge channeldata from all urls
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5.31.3 Contributors

• @msarahan

• @rrigdon

• @jjhelmus

• @isuruf

• @ddamiani

5.32 3.18.7 (2019-07-09)

5.32.1 Enhancements

• Update authorship for 3.18.7

• Add note on single threading for indexing during build

• Add in fallback for run_exports when channeldata not available

• Make pins for current_repodata additive - always newest, and pins are additions to that

• Limit indexing in build to using one thread

• Speed up by allowing empty run_exports entries in channeldata be valid results

• Bump conda-package-handling to 1.3+

• Add test for run_exports without channeldata

• Fallback to file-based run_exports if channeldata has no results

• Add Mozilla as valid license family

• Add in fallback for run_exports when channeldata not available

• Updated tutorials and resource documentation

5.32.2 Bug fixes

• Flake8 and test fixes from pytest deprecations

• Fix in render.py::_read_specs_from_package

• Fix for pkg_loc

• Fix conda debug output being suppressed
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5.32.3 Contributors

• @msarahan

• @rrigdon

• @rrigdon

• @scopatz

• @mbargull

• @jakirkham

• @oleksandr-pavlyk

5.33 3.18.6 (2019-06-26)

5.33.1 Enhancements

• package sha256 sums are includex in index.html

5.33.2 Bug fixes

• fix bug where package filenames were not included in the index.html

5.33.3 Contributors

• @rrigdon

• @jjhelmus

5.34 3.18.5 (2019-06-25)

5.34.1 Bug fixes

• fix one more keyerror with missing timestamp data

• when indexing, allow .tar.bz2 files to use .conda cache, but not vice versa. This acts as a sanity check on the
.conda files.

• add build/rpaths_patcher to meta.yaml, to allow switching between lief and patchelf for binary mangling
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5.34.2 Contributors

• @mingwandroid

• @msarahan

• @csosborn

5.35 3.18.4 (2019-06-21)

5.35.1 Enhancements

• channeldata reworked a bit to try to capture any available run_exports for all versions available

5.35.2 Bug fixes

• make “timestamp” an optional field in conda index operations

5.35.3 Contributors

• @msarahan

5.36 3.18.3 (2019-06-20)

5.36.1 Enhancements

• Make VS2017 default Visual Studio

• Add hook for customizing the behavior of conda render

• Drop /usr from CDT skeleton path

• Update cran skeleton to use m2w64 compilers for windows instead of toolchain. The linter is telling since long:
Using toolchain directly in this manner is deprecated.

5.36.2 Bug fixes

• Update cran skeleton to not use toolchain for win

• fix package_has_file so it supports .conda files (use cph)

• fix package_has_file function for .conda format

• fix off-by-one path trimming in prefix_files

• disable overlinking checks when no files in the package have any shared library linkage

• try to avoid finalizing top-level metadata twice

• try to address permission errors on Appveyor and Azure by falling back to copy and warning (not erroring) if
removing a file after copying fails

• reduce the files inspected/loaded for channeldata, so that indexing goes faster
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5.36.3 Deprecations

• The repodata2.json file is no longer created as part of indexing. It was not used by anything. It has been removed
as an optimization. Its purpose was to explore namespaces, and we’ll bring its functionality back when we
address that fully.

5.36.4 Contributors

• @mingwandroid

• @msarahan

• @rrigdon

• @rrigdon

• @soapy1

• @mariusvniekerk

• @jakirkham

• @dbast

• @duncanmmacleod

5.37 3.18.2 (2019-05-26)

5.37.1 Bug fixes

• speed up post-link checks

• fix activation not running during tests

• improve indexing to show status better, and fix bug where size/hashes were being mixed up between .tar.bz2 and
.conda files

5.37.2 Contributors

• @mingwandroid

• @msarahan

• @rrigdon

5.38 3.18.1 (2019-05-18)

5.38.1 Enhancements

• rearrange steps in index.py to optimize away unnecessary work

• restore parallel extract and hash in index operations
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5.38.2 Contributors

• @msarahan

5.39 3.18.0 (2019-05-17)

5.39.1 Enhancements

• Set R_USER environment variable when building R packages

• Make Centos 7 default cdt distribution for linux-aarch64

• Bump default python3 version to 3.7 for CI

• Build docs if any docs related file changes

• Add support for conda pkgv2 (.conda) format

• add creation of current_repodata.json - like repodata.json, but only has the newest version of each file

• change repodata layout to support .conda files. They live under the “packages.conda” key and have similar
subkeys to their .tar.bz2 counterparts.

• Always show display actions, regardless of verbosity level

• Ignore registry autorun for all cmd.exe invocations

• Relax default pinning on r-base for benefit of noarch R packages

• Make conda index produce repodata_from_packages.json{,.bz2} which contains unpatched metadata

• Use a shorter environment prefix when testing on unix-like platforms

• Prevent pip from clobbering conda installed python packages by populating .dist_info INSTALLER file

5.39.2 Bug fixes

• Allow build/missing_dso_whitelist section to be empty

• Make conda-debug honor custom channels passed using -c

• Do not attempt linkages inspection via lief if not installed

• Fix all lief related regressions brought in v3.17.x

• Fix ZeroDivisionError in ELF sections that have zero entries

• binary_has_prefix_files and text_has_prefix_files now override the automatically detected prefix
replacement mode

• Handle special characters properly in pypi conda skeleton

• Build recipes in order of dependencies when passed to CB as directories

• Fix run_test script name for recipes with multiple outputs

• Fix recursion error with subpackages and build_id

• Avoid mutating global variable to fix tests on Windows

• Update CRAN license test case (replace r-ruchardet with r-udpipe)

• Update utils.filter_files to filter out generated .conda_trash files
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• Replace stdlib glob with utils.glob. Latter supports recursion (**)

5.39.3 Docs

• Updated Sphinx theme to make notes and warnings more visible

• Added tutorial on building R-language packages using skeleton CRAN

• Add 37 to the list of valid values for CONDA_PY

• Corrected argparse rendering error

• Added tutorials section, reorganized content, and added a Windows tutorial

• Added Concepts section, removed extraneous content

• Added release notes section

• Reorganized sections

• Clarify to use ‘where’ on Windows and ‘which’ on Linux to inspect files in PATH

• Add RPATH information to compiler-tools documentation

• Improve the documentation on how to use the macOS SDK in build scripts.

• Document conda build purge-all.

• Fix user-guide index

• Add example for meta.yaml

• Updated theme

• Reorganized conda-build topics, updated link-scripts

5.39.4 Contributors

• @mingwandroid

• @msarahan

• @rrigdon

• @jjhelmus

• @nehaljwani

• @scopatz

• @Bezier89

• @rrigdon

• @isuruf

• @teake

• @jdblischak

• @bilderbuchi

• @soapy1

• @ESSS

• @tjd2002
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• @tovrstra

• @chrisburr

• @katietz

• @hrzafer

• @zdog234

• @gabrielcnr

• @saraedum

• @uilianries

• @theultimate1

• @scw

• @spalmrot-tic

5.40 3.17.8 (2019-01-26)

5.40.1 Bug fixes

• provide fallback from libarchive back to python tarfile handling for handling tarfiles containing symlinks on
windows

5.40.2 Other

• Rever support added for releasing conda-build

5.40.3 Contributors

• @msarahan

• @jjhelmus

• @scopatz

• @rrigdon

• @ax3l

• @rrigdon

5.41 3.17.7 (2019-01-16)

5.41.1 Bug fixes

• respect context.offline setting #3328

• don’t write bytecode when building noarch: python packages #3330

• escape path separator in repl #3336
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• remove deprecated sudo statement from travis CI configuration #3338

• fix running of test scripts in outputs #3343

• allow overriding one key of zip_keys as long as length of group agrees #3344

• fix compatibility with conda 4.6.0+ #3346

• update centos 7 skeleton (CDT) URL #3350

5.41.2 Contributors

• @iainsgillis

• @isuruf

• @jjhelmus

• @nsoranzo

• @msarahan

• @qwhelan

5.42 3.17.6 (2018-12-19)

5.42.1 Bug fixes

• don’t raise when recipe text can’t be extracted if manual build string is already set #3326

5.42.2 Contributors

• @msarahan

5.43 3.17.5 (2018-12-14)

5.43.1 Bug fixes

• fix pip build isolation / fix absence of “falsey” env vars. Ignore only if empty string or None. #3319

• pass-through VS20XYINSTALLDIR var (used by intel compiler to locate VS2017 installation) #3322

5.43.2 Contributors

• @jjhelmus

• @msarahan
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5.44 3.17.4 (2018-12-12)

5.44.1 Bug fixes

• fix python-3 only JSON decode error handling (make py27 compatible) #3307

• fix too much caching in getting used vars from meta.yaml leading to inaccurate hash contents #3311

• fix merge of build/host not being recognized before an rm_rf call utilized that info #3311

5.44.2 Contributors

• @Lnaden

• @msarahan

5.45 3.17.3 (2018-12-11)

5.45.1 Bug fixes

• ignore non-native binaries in lief for now. Cross-platform inspection still theoretically possible using subdir
parameter. #3306

5.45.2 Contributors

• @msarahanl

5.46 3.17.2 (2018-12-11)

5.46.1 Bug fixes

• fix to ignore unsatisfiable pin_compatible calls for packages in other outputs #3277

• add license files to CRAN recipes generated by conda skeleton #3284

• restrict py-lief to running on linux/macos only for now #3291,

• fix lief operation on files that are missing dynamic section (e.g. go binaries) #3292

• expand instructions on how to setup a dev env for conda-build #3296

• fix file= keyword being passed to a logger call #3298

• add test for standalone DLLs with py-lief, don’t error out on them #3301

• rename windows build script runner to avoid confusion with existing bld.bat files in root dir #3303

• fix file URL handling on Windows #3303

• use conda’s download function rather than requests directly, so that conda’s proxy settings are respected #3303

• silence patch output when output verbosity is False #3305
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5.46.2 Contributors

• @bergtholdt

• @dsludwig

• @jdblischak

• @msarahan

• @nehaljwani

• @sodre

5.47 3.17.1 (2018-12-04)

5.47.1 Bug fixes

• omit LIEF depedency on Windows until it is better tested #3288

• activate host environment #3288

• allow calls to nm to fail #3290

5.47.2 Contributors

• @jjhelmus

• @msarahan

• @nehaljwani

5.48 3.17.0 (2018-11-28)

5.48.1 Enhancements

• tell pip to not go find things on PyPI (turn off downloading) #3109

• new “conda debug” command for creating build/host or test envs for working on recipes #3237

• new package check: “overdepending” - warns or errors out when your run dependencies include unnecessary
shared library packages #3237

• utilize LIEF for analyzing shared object data, extending capabilities beyond pyldd #3237
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5.48.2 Bug fixes

• avoid discarding build string during pin_run_as_build and ensure_valid_spec #3264

• fix conda index’s handling of packages where ‘depends’ key doesn’t exist #3270

• fix bad inversion assumption about pip’s PIP_NO_DEPENDENCIES setting #3271

• fix regex to allow for whitespace after hyphens in outputs section #3274, #3275

• handle unicode decode fails in output rewriting #3279

• fix merge of repodata patches that have keys that don’t exist in repo #3280

5.48.3 Contributors

• @bergtholdt

• @isuruf

• @minrk

• @msarahan

• @mingwandroid

• @nehaljwani

5.49 3.16.3 (2018-11-21)

5.49.1 Enhancements

• rewrite long prefix paths as $PREFIX, etc. for more readable build logs #3258

• make the --output-folder switch configurable in condarc #3265

• make the --long-test-prefix switch configurable in condarc, fix logic error with that argument #3266

5.49.2 Bug fixes

• improve robustness of indexing in face of corrupt package data #3238

• change timeouts to 900 instead of 90 #3239

• add activation to wheel bundling script #3240

• fix PermissionError import from utils, undefined on py2.7 #3247

• fix outputs with custom build string getting hash incorrectly #3250

• fix tests not being run on windows #3257
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5.49.3 Contributors

• @Bezier89

• @gabm

• @isuruf

• @minrk

• @msarahan

• @teake

• @tomashek

• @tschoonj

5.50 3.16.2 (2018-10-29)

5.50.1 Bug fixes

• Remove noarch binary file check (do this in conda-verify instead) #3212

• Fix utf-8 conversion of check_output_env #3213

• fix thread count when indexing causing oversubscription #3217

• fix behavior of try_acquire_locks during lock contention #3224

• fix test env creation improperly prioritizing local channel #3229

• don’t check for error when removing conda-init (in conda recipe for this repo) #3230

• add r-impl to R package template generator #3232

• fix creation of unix and win shell script files for noarch packages #3236

• fix path of python interpreter used for noarch packages being tested on win, when created on linux/mac #3236

5.50.2 Contributors

• @alexandersturm

• @Bezier89

• @dsludwig

• @mandeep

• @mingwandroid

• @msarahan

• @rchateauneu

• @soapy1
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5.51 3.16.1 (2018-10-12)

5.51.1 Enhancements

• expand ~ in source paths #3206

• Use binsort when available to sort file list in tar archives, to optimize compressibility #3210

• allow meta.yaml’s build/rpaths key to function on macOS, not just linux #3206

5.51.2 Bug fixes

• improve docs on behavior of channel arguments #3197

• remove mention in docs about building .RPM and .DEB files. #3199

• fix dist-info errors where dist-info files didn’t match the package name #3206

• fix some hard-coded .tar.bz2 references, to support other compression formats more readily #3206

• batch calls to compiling .pyc files to avoid problems with maximum command length #3206

• use ensure_list in processing files to be extracted #3210

• fix KeyError that happened when a jinja2 rendering error occurred, which hid the rendering error 3211

5.51.3 Contributors

• @mingwandroid

• @msarahan

• @stas00

• @teake

5.52 3.16.0 (2018-10-05)

5.52.1 Enhancements

• incorporate libarchive to support more compression formats (adds libarchive as a package dep) #3163

• add build/ignore_verify_codes key to allow recipes to ignore specific conda-verify error codes #3179

5.52.2 Bug fixes

• fix JSON string encoding error in index cache reading #3156

• restore --variants CLI flag for specifying variants #3168

• handle empty build section in output #3175

• add mro-base_impl as something that causes mro build strings #3163

• fix skeleton PyPI inappropriately dropping package case (needed for URLs) #3163

• fix packages from earlier loops with multiple outputs being removed prior to later loops #3185
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• fix conda-index not removing entries from index that no longer exist on disk #3186 #3188

• clean up tempfiles after indexing #3187

• fix indexing of specific subdirs #3190

• fix pypi skeleton when python constraint has no operator #3191

• fix issues testing packages and recipe folders when done separately from build #3192

• fix source looking for patches in wrong folder when dealing with outputs #3194

5.52.3 Contributors

• @dpryan79

• @gabm

• @mbargull

• @mingwandroid

• @msarahan

• @nehaljwani

5.53 3.15.1 (2018-09-18)

5.53.1 Bug fixes

• sort “removed” fns in index repodata.json #3154

• fix deps being merged instead of clobbered #3154

• Handle corrupt packages during indexing better #3154

5.53.2 Contributors

• @msarahan

5.54 3.15.0 (2018-09-17)

5.54.1 Enhancements

• add CLI flag (–strict-verify) to allow erroring out when conda-verify fails a package #3135

• output text stating that the license file has been successfully found and included with a package #3152
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5.54.2 Bug fixes

• allow channel auth when checking if a package is built #3133

• If local git cache can’t be updated, delete it and barf (for user to re-run) #3136

• clean up duplicate pip requirements produced by skeleton #3138

• replace recipe_log.txt file with recipe_log.json file (for passing recipe history along with package) #3139

• fix decoding to str before passing package contents to JSON loading #3140

• fix loss of “removed” section of index with every other indexing operation #3144

• fix update_index used in tests to index channel, not subdir #3145

• fix ELF sections not included in memory image of process being loaded by pyldd and giving misleading results
#3148

• fix index operations outputting debug log messages #3151

• fix private channels showing 404 errors during test phase #3153

5.54.3 Contributors

• @Bezier89

• @gabm

• @jakirkham

• @jjhelmus

• @kalefranz

• @msarahan

• @stuarteberg

• @teake

5.55 3.14.4 (2018-09-11)

5.55.1 Bug fixes

• fix recipe_log.txt not being filtered from info/files #3134

5.55.2 Contributors

• @msarahan
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5.56 3.14.3 (2018-09-11)

5.56.1 Enhancements

• add support for index patch instructions as tarballs containing subdirs #3129

• add progress bars for indexing (using tqdm) #3130

5.56.2 Bug fixes

• fix log messages being deduplicated too much #3130

• handle permission errors with moving files in indexing more gracefully #3132

5.56.3 Contributors

• @msarahan

5.57 3.14.2 (2018-09-07)

5.57.1 Enhancements

• add support for a “recipe log” file. This will be used at Anaconda to capture the commit activity of a given recipe,
which will be published in the RSS feed. #3123

5.57.2 Bug fixes

• fix indexing of noarch subdir as done by conda-forge #3120

• decode cached index files to utf-8 before reading JSON #3121

• try to address unicode problems in run_exports handling #3121

• skip over index metadata files when they are not present in a package #3125

5.57.3 Contributors

• @msarahan

5.58 3.14.1 (2018-09-06)

5.58.1 Bug fixes

• detect and fall back to old update_index behavior (new is channel-wide; old is specific subdir) #3117

• fix CONDA_BUILD_STATE not being set when load_setup_py_data gets run #3117

• fix channel_name as CLI argument for conda index. It can’t be positional. #3318
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5.58.2 Contributors

• @msarahan

5.59 3.14.0 (2018-09-04)

5.59.1 Enhancements

• refactor indexing to cache more efficiently #3091

• add tags, identifiers, and keywords to about section. Tie them into channeldata.json. #3091

• filter .la files from packages by default #3102

• memoize read_meta_file #3108

5.59.2 Bug fixes

• fix --check for optionally iterable fields #3098

• fix permission problems prior to fixing shebangs #3101

• do not disable pip’s cache directory. Redirect it instead. #3104

• fix usage of config in load_setup_py_data #3110

• show logger message when default numpy is used, to communicate what’s happening to the user #3110

5.59.3 Other

• drop python 3.4, add 3.6, 3.7 to skeleton pypi #3103

5.59.4 Contributors

• @jjhelmus

• @kalefranz

• @msarahan

• @nehaljwani

• @nsoranzo

• @ocefpaf

• @teake
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5.60 3.13.0 (2018-08-20)

5.60.1 Enhancements

• add run_exports and aggregated post-install metadata indexing outputs #3060

• allow whitelisting runpath entries #3072

• consider *_compiler_version entries when looping over variants (allow *_compiler_version to be a used
variable that affects the hash) #3084

5.60.2 Bug fixes

• fix cached git info for variants #3082

• fix linux temporary channel not being added at test time, leaving package unresolvable #3088

5.60.3 Contributors

• @msarahan

• @teake

5.61 3.12.1 (2018-08-06)

5.61.1 Enhancements

• add the “extra” field of a package’s meta.yaml file into the output package’s info/about.json file #3048

• add option to omit local channel in is_package_build (used by c3i) #3051

• add pip env vars to prevent it from pulling in external dependencies when used in build scripts #3053

5.61.2 Bug fixes

• fix local channel always being top priority. Allow user-defined channel orders where local is lower than remotes.
#3049

• Fix conda-verify import error warning showing up in --output text #3052

• fix RPM skeleton test (point to newer CentOS repo) #3054

• fix test/files and test/source_files looking in the wrong place for info/recipe/parent contents (subpackages)
#3061

158 Chapter 5. Release notes



conda-build Documentation, Release 0.0.0.dev0+placeholder

5.61.3 Contributors

• @Bezier89

• @jakirkham

• @mikecormier

• @mingwandroid

• @msarahan

5.62 3.12.0 (2018-07-24)

5.62.1 Enhancements

• Allow user-specified channels to come ahead of local channel #3038

• Add schema for outputs section in FIELDS; provide method for getting rendered recipe text (to support conda-
verify) #3041

• Enable conda-verify by default when it is importable, but only print warnings by default, instead of exiting #3042

• Add --label CLI argument to allow specifying label for uploading packages to #3043

5.62.2 Bug fixes

• fix apply_selectors, leading to excessive detection of used variables #3040

5.62.3 Contributors

• @CJ-Wright

• @msarahan

• @speleo3

5.63 3.11.0 (2018-07-20)

5.63.1 Bug fixes

• improve environment marker support for pypi skeleton #2972

• apply selectors before checking requirements, to better understand per-platform used vars #2973

• Handle conda UnsatisfiableError causing packages to be moved to broken folder without tests actually being run
on them #2974 #2975

• use tempfiles when writing index to reduce risk of corrupt index #2978

• handle conda index recipe info for older versions of conda-build #2979

• allow empty missing_dso_whitelist in build section #2983

• fix host_reqs referring to a detached list, leading to requirements/host not being modified by run_exports
#2987
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• fix for bypassing MITM proxies based on SSL_NO_VERIFY env var #2991

• add missing_dso_whitelist to FIELDS #2994

• Don’t skip logic in pyldd based on CB verbosity (–quiet) #2999

• Convert empty git refs to HEAD, so that git_url behavior is more predictable #3003

• set NPY_DISTUTILS_APPEND_FLAGS=1 so the compiler package flags are respected #3015

• fix script file renaming when converting package from win to unix #3014

• allow fn to be omitted when using multiple url sources #3021

• fix default config settings being shared across Config instances #3022

• force text interpretation of CRAN DESCRIPTION files #3020

• fix is_no_link to honor patterns #3023

• fix test/requires being ignored when --no-copy-test-source-files is specified #3027

• fix up dependencies in CRAN skeleton output #3030 #3032

5.63.2 Enhancements

• change skeleton pypi to generate recipes that use pip for install step. Remove description. #2972

• Set environment variable to disable pip environment isolation to prevent problems #2972

• support multiple exclusive_config_files #3022

5.63.3 Docs

• Fix search order for conda_build_config.yaml #3029

5.63.4 Contributors

• @isuruf

• @j-hartshorn

• @kalefranz

• @mandeep

• @mbargull

• @mcg1969

• @mingwandroid

• @minrk

• @msarahan

• @nehaljwani

• @ocefpaf

• @tjd2002

160 Chapter 5. Release notes



conda-build Documentation, Release 0.0.0.dev0+placeholder

5.64 3.10.9 (2018-06-15)

5.64.1 Other

• docs are moving from the conda-docs repo into conda-build (splitting off from conda docs in general)

5.64.2 Bug fixes

• fix re.escape usage for Python <3.3 #2970

5.64.3 Contributors

• @mbargull

• @msarahan

5.65 3.10.8 (2018-06-12)

5.65.1 Bug fixes

• clean up license field for pypi skeleton #2938

• fix regex to match requirements with trailing spaces #2948

• Check for dash in text with variants #2949

• do not check in build prefix for overlinking when merging build and host #2950

• utils.glob: remove unnecessary normcas, fix test_expand_globs #2952

• add missing “build” fields in FIELDS schema thing #2962

5.65.2 Contributors

• @isuruf

• @mariusvniekerk

• @mbargull

• @mingwandroid

5.66 3.10.7 (2018-06-01)

5.66.1 Enhancements

• replace glob2 by glob for py3 (speed improvement) #2937
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5.66.2 Bug fixes

• Fix folder copying in test/files #2941

5.66.3 Contributors

• @mbargull

• @msarahan

5.67 3.10.6 (2018-05-31)

5.67.1 Enhancements

• several rendering speed improvements #2925

5.67.2 Bug fixes

• add regression test for #2912 #2914

• fix a file handle not being closed #2915

• fix an incorrect syntax RuntimeError #2920

• fix custom compiler languages not being possible #2927

• fix OS vars not correctly respecting test prefix; add test #2932

• fix incorrect python versions showing up in test phase paths (SP_DIR) #2932

• fix test/files functionality for outputs; add test #2934

5.67.3 Contributors

• @mbargull

• @msarahan

• @nicoddemus

• @rainwoodman

• @sodre

• @tomashek
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5.68 3.10.5 (2018-05-23)

5.68.1 Enhancements

• allow ‘*’ as an ignore_run_exports value to ignore all run_exports #2907

5.68.2 Bug fixes

• fix handling of empty run and test requirements #2908

• fix trailing zeroes in version numbers getting lost by yaml interpreting things as floats #2909

• fix regression in host prefix showing up in the test phase, leading to files/executables not being where they should
be #2910

• fix handling of not-yet-available requirements #2912

• fix get_value with default keyword not respecting that user-specified default #2912

5.68.3 Contributors

• @msarahan

5.69 3.10.4 (2018-05-20)

5.69.1 Bug fixes

• fix import tests being run multiple times #2892

• add creative commons as a license family (used to be classified OTHER) #2893

• handle empty packages in checks for duplicated files across subpackages #2894

• set PYTHON and other language path vars based on presence in build/host reqs, rather than binary file in either
env. Allows usage of PYTHON and friends in meta.yaml vars. #2895

• fix entry points incorrecty pointing at build prefix (instead of host), leading to prefix replacement failing #2895

• fix merge_build_host functionality. Adding an empty host section now forces build and host to be split. #2896

5.69.2 Contributors

• @msarahan

• @scopatz
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5.70 3.10.3 (2018-05-17)

5.70.1 Enhancements

• –skip-existing applies to outputs, not just whole collections of packages. Individual outputs that are already built
will be skipped. #2889

• add output of hash contents to what gets printed with conda render (not with --output)

5.70.2 Bug fixes

• fix conda pypi skeleton checking for ‘~’ in None values #2880

• add /B to win exits, so that erroring out of tests does not close out of outer shells #2881

• ensure that merge_build_host is updated correctly for each output #2882

• Remove several env vars from being recorded in about.json, over concerns for GDPR compliance #2883

• remove parent_recipe entry from recipes when recording meta.yaml for output packages, to avoid confusion
over used variables #2886

• xfail get_installed_version for new conda and test_build_with_activate_does_activate when
PATH is too long #2889

• change os.rename to shutil.move so that there is a copy fallback #2889

• fix mutability of config objects passed to test causing bizarre states of variants

• fix win style slashes in paths.json and files that broke things when converting a win package to unix #2891

5.70.3 Contributors

• @mingwandroid

• @msarahan

5.71 3.10.2 (2018-05-08)

5.71.1 Bug fixes

• fix downstream test not using channel list; fix exact specs in downstream testing #2864

• add deprecation notice for msvc_compiler key in meta.yaml. Explain its incompatibility with variants. #2868

• set default cran mirror #2868

• disallow merging of build and host prefixes when host_subdir != build_subdir #2876
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5.71.2 Contributors

• @msarahan

5.72 3.10.1 (2018-05-01)

5.72.1 Bug fixes

• fix handling of downstream testing when downstreams don’t exist yet (e.g. bootstrapping) #2860

• fix handling of downstream testing in tandem with --output-dir or --croot (add locations as file:// urls) #2860

• fix improperly escaped entries in cran template. Clean up unnecessary changes. #2861

5.72.2 Contributors

• @mingwandroid

• @msarahan

5.73 3.10.0 (2018-05-01)

5.73.1 Enhancements

• Warn user about path conflicts during environment building for test phase #2843

• Add conda 4.6 compatibility #2844

• remove conda 4.2 and earlier compatibility #2845

• add info to merge/copy source subdir error #2858

• Add setup for Air Speed Velocity benchmarking #2859

5.73.2 Bug fixes

• fix python handling when python is a tuple (inner python looping) #2854

• fix python not looping in inner packages when top-level doesn’t use it. Fix zip_keys handling. #2856

5.73.3 Contributors

• @kalefranz

• @msarahan
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5.74 3.9.2 (2018-04-27)

5.74.1 Enhancements

• Optimizations to rendering to speed up dealing with lots of recipes #2838 #2848

5.74.2 Bug fixes

• include folder as a field in source for linting purposes #2837

• remove merging of constraints. Keep only the clobbering of groups of constraints by exact constraints (of which
you can have only one) #2839

• ensure u+w permissions before calling install_name_tool #2840

• remove conversion of dash to underscore in pin_run_as_build #2842

5.74.3 Contributors

• @jakirkham

• @mingwandroid

• @msarahan

5.75 3.9.1 (2018-04-24)

5.75.1 Bug fixes

• Revert #2831 (add license file for R packages from CRAN) due to incompatibility with package layout in defaults

• handle OrderedDict dumping to yaml better; further work on preserving dict key order in config yaml files #2834

• consolidate cran default repo settings, respect variant setting better. #2836

• Add conda-build/skeleton_config_yaml key to condarc to control which conda_build_config.yaml
should be used to find the cran_mirror setting. #2836

• Change default cran mirror from mran to cran. #2836

5.75.2 Contributors

• @mingwandroid

• @msarahan
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5.76 3.9.0 (2018-04-24)

5.76.1 Enhancements

• Add new key in test section, downstreams that accepts a list of package specs to test after the current package
is built #2823

• work to prevent unsafe paths in tarballs that would affect paths outside of the work dir #2822

• simplify all constraints for a given package name to a single constraint that represents the tightest combination
of them all #2694

5.76.2 Bug fixes

• fix a misnamed cran skeleton key #2817

• Remove unused index command in rendering path #2818

• fix loss of ordering when using recipe_append #2825

• fix usage of dict for default pin_run_as_build data structure. Losing ordering created noise down the line for
Conda-Forge. #2830

• fix selector regex being too greedy; reporting wrong used vars #2832

5.76.3 Contributors

• @ceball

• @isuruf

• @jamesabbott

• @jdblischak

• @mingwandroid

• @msarahan

5.77 3.8.1 (2018-04-16)

5.77.1 Bug fixes

• fix shebang rewriting so that it only touches python[w]? shebangs #2786

• fix a regression in ignoring python as a build-only dep being “used” and becoming a loop var #2799

• improve config log warning #2801

• skip, but warn about failures in pyldd #2802

• fix whitespace in multi-line help strings #2808

• fix variables in compound selectors not getting detected as “used” #2814
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5.77.2 Contributors

• @bjlittle

• @jbcrail

• @mingwandroid

• @msarahan

5.78 3.8.0 (2018-03-30)

5.78.1 Enhancements

• Add new jinja2 function, resolved_packages, that can be used to pin run or test requirements to indirect
dependencies as well as direct dependencies #2715

5.78.2 Bug fixes

• Fix R/Rscript mixup that broke usage of R env var #2782

• Improve error message when additional modules are needed in root env in order to render a recipe #2784

• Fix handling of FEATURE_NOARCH, which was adding specs that conda’s solver didn’t understand #2787

• allow license_file to be found in either source root or recipe root (common point of confusion) #2792

• fix disable_pip removing setuptools even when it was an explicit dependency. This was due to conda changing
its string representation of MatchSpecs, and our regex didn’t take that into account. #2793

5.78.3 Contributors

• @183amir

• @msarahan

5.79 3.7.2 (2018-03-22)

5.79.1 Enhancements

• add runpath handling to pyldd #2768

• add lgtm.com configuration #2772
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5.79.2 Bug fixes

• fix language issues with finding directory size on windows #2749 #2766 #2760

• ignore non-rendered jinja2 errors when indexing packages #2756

• fix cran skeleton argparse errors when version flag not provided #2751 #2759

• fix exact pinning in subpackages raising errors due to non-final output data conflicting with final top-level data
#2763

• skip test_preferred_env until conda more fully implements it #2722

• Don’t run mk_relative_osx on linux DSO’s #2768

• use Rscript to run R tests, so that console output is shown more clearly. Only add r-base spec if neither r-base
nor mro-base are already in deps. #2764

• don’t filter out .gitignore and .gitmodules when packaging #2774

• fix pin_* regex that was erroneously picking up wrong usages #2775

5.79.3 Contributors

• @bilderbuchi

• @kfranz

• @m-rossi

• @mingwandroid

• @msarahan

• @wikiped

5.80 3.7.1 (2018-03-08)

5.80.1 Enhancements

• Enable glob2.fnmatch for shared library whitelists. Add more Frameworks to whitelist on Mac. #2732

5.80.2 Bug fixes

• Squelch yaml ScannerError when building index can’t read meta.yaml in package #2740

• Fix & simplify “hoisting” of source folders up one level #2741

• Fix build number not getting inherited from top-level metadata #2742

• Allow output creation environment for wheels to be activated #2744

• Fix selector regex for finding “used” variables; was finding too much across lines. #2745

• Ignore empty config files (don’t error out on them) #2746
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5.80.3 Contributors

• @mingwandroid

• @msarahan

• @neok-m4700

5.81 3.7.0 (2018-03-05)

5.81.1 Enhancements

• raise ValueError when pin_subpackage is used, but no matching output is found #2720

• Add new optional CLI argument, --extra-deps, to add test-time dependencies dynamically when splitting build
and test phases (can’t apply variants when phases are split) #2724

5.81.2 Bug fixes

• fix cran skeleton py2 invalid list copy syntax #2720

• reconfigure TravisCI to test against conda master #2720

• fix inaccurately raised problems with pin_subpackage #2720

• coerce boolean values in conda_build_config.yaml to booleans (value.lower() == “true”) #2723

• change r skeleton cran test to a different package (nmf -> acs); nmf got removed

• fix selectors being applied before variable detection, leading to variables in selectors never being detected #2723

• add filesize calculation to converted script files #2727

5.81.3 Contributors

• @mandeep

• @msarahan

5.82 3.6.0 (2018-02-28)

5.82.1 Enhancements

• Allow per-output {pre,post}-{un,}link scripts #2712

• support mro as part of the build string #2711

• improve interpreter guessing for running output packaging scripts #2709

• improve library overlinkage check, add support for whitelists of always-ok libraries to ignore. #2708

• add support for noarch: generic recipes in cran skeleton generator

• add support for using Rtools on windows when building a package from source

• add support for binary repackaging of CRAN/MRAN artifacts
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• add support for cran recipes from source tarballs

• template cran_mirror variable in generated cran output recipes. This allows CRAN and MRAN to easily be
switched out. Default is MRAN. #2710

5.82.2 Bug fixes

• Reverse build/host activation order, to give build executables higher priority. Necessary to support proper R
packaging. Includes better errors for empty packages caused by build env python being used to install python
packages. #2686

• Fix test scripts from subpackage outputs not being detected #2703

• Fix sha in scripts in conversion from linux to windows packages (was not correctly handling hashbang addi-
tion/removal). #2713

• Speed up stat gathering, restrict it more to only build, packaging, and test steps (not arbitrary subprocess calls)
#2714

• Check for incomplete files when inspecting links. Some files that looked like ELF files, but weren’t, would trip
up pyldd and kill the build. #2718

5.82.3 Contributors

• @jjhelmus

• @MatthieuDartiailh

• @mingwandroid

• @msarahan

5.83 3.5.1 (2018-02-22)

5.83.1 Enhancements

• Add relative path support for load_setup_py_data jinja2 function #2700

5.83.2 Bug fixes

• fix hoisting of archives containing folders named same as top-level folder. These subfolders were being removed
inappropriately. #2692

• Fall back gracefully when psutil fails to import. Disk and total time stats still available; memory and CPU time
are not when psutil is unavailable. #2693

• Fix directory size computation not being recursive, use scandir for walk operations on py27 #2699
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5.83.3 Contributors

• @mariusvniekerk

• @msarahan

5.84 3.5.0 (2018-02-20)

5.84.1 Enhancements

• Print resource statistics for each step, as well as whole. CPU time, memory usage, disk usage. #2685

• Record resource statistics to JSON file when --stats-file <output_file_path> argument is provided
#2685

5.84.2 Bug fixes

• save complete parent recipe in info/recipe/parent for packages that are only outputs of a top-level package #2687

5.84.3 Contributors

• @msarahan

5.85 3.4.2 (2018-02-15)

5.85.1 Enhancements

• allow trimming of skipped metadata in rendering to be optional (for sake of conda-forge rendering readme’s on
platforms that are skipped) #2680

• rename the build prefix prior to the test phase. This will precipitate failures when packages embed paths to the
build prefix, which conda does not replace at install time. Fixing these instances is specific enough to packages
that we do not attempt to handle it in conda-build. #2681

• add conda_interface.get_install_version function that facilitates checking if a pkg is in an env, and if
so, what its version is #2682

5.85.2 Bug fixes

• use lookaheads in extraction regexes to avoid capturing unwanted text #2679
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5.85.3 Contributors

• @msarahan

5.86 3.4.1 (2018-02-08)

5.86.1 Bug fixes

• fix interpretation of zip_keys when testing pkgs (ignore empty values) #2673

5.86.2 Contributors

• @msarahan

5.87 3.4.0 (2018-01-31)

5.87.1 Enhancements

• implement “–exclusive-config-file” CLI flag to render & build. This file bypasses detection of config files in
$HOME and cwd, but respects any config files in recipe folders. #2661

• Activate output scripts in meta.yaml ( #2667 ), but only when:

• output has a build/script entry

• output uses {{ compiler() }} jinja2 function in its requirements AND output extension is either .sh or .bat

• output has build/activate_in_script key in meta.yaml set to a truthy value AND output extension is either
.sh or .bat

5.87.2 Bug fixes

• fix AttributeError in overlinking check #2650 #2651

• reorder mmap operations to fix problem with WSL #2655

• fix numpy detection as “used” variable when using pin_compatible jinja2 #2659

• silence conda KeyError warnings when indexing legacy packages that don’t have newer metadata files #2656

• replace “which” with “type -P” in conda-build’s internal recipe. This avoids issues on PowerPC and with long
paths. #2664

• Error out when version computation fails in conda-build’s setup.py. This will help prevent conda-build packages
going out without valid internal versions being recorded (for example, when git is not installed on a build worker).
#2665

• ignore tarcheck errors for files in the info folder that don’t appear in info/files file. Fixes inclusion of arbitrarily
named readme files. #2668

• clean up host prefix in between skeletons when using pypi’s --recursive mode. Conda otherwise throws errors
on the 2nd recipe. #2669
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5.87.3 Contributors

• @kfranz

• @mingwandroid

• @msarahan

• @nehaljwani

• @neok-m4700

• @steamelephant

5.88 3.3.0 (2018-01-23)

5.88.1 Enhancements

• Issue template created for github repo #2632

• Detect overlinking (usage of libraries that are not present in listed dependencies). Warn by default. Error out
with --error-overlinking flag. Conda-build 4.0 will error by default. #2635 #2647

5.88.2 Bug fixes

• fix merge_build_host to always be used in CRAN skeletons #2635

• fix macho filename attribute error #2641

• reorder search through files for compatibility bounds for speed #2638

• cache used vars based also on recipe path, to avoid overly caching results #2643

• normalize slashes in file glob lists for explicit output file lists #2644

• silence conda 4.4 better when using quiet operations, such as --output #2645

• fix pypi_url not affecting the url of the actual skeleton output from conda skeleton pypi #2646

• fix overly broad string matching of “None” that caused problems where None may appear as part of a string in
meta.yaml #2649

5.88.3 Contributors

• @csoja

• @mingwandroid

• @msarahan

• @nehaljwani

• @neok-m4700
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5.89 3.2.2 (2018-01-12)

5.89.1 Enhancements

• Add CLI flag (–merge-build-host) to restore pre-3.1.4 behavior with merging build and host envs #26260

5.89.2 Bug fixes

• Check recipe/metadata skip status in more places, rather than strictly at the top-level #2617

• fix unnecessary conforming of zip keys when distributing variants #2618

• fix matching of unrendered output names when matching rendered names #2618

• fix matching of partial (only used parts) of variants when lining up subpackages #2618

• fix handling of outputs with same name as top level when considering used vars #2618

• exclude top-level run_exports from applying to all outputs #2618

• Fix linking compiler runtimes from build to host prefix (was broken by build/host prefix split in 3.1.4) #2621

• Fix logic errors around merging build/host envs #2623

• fix run_exports in outputs being overwritten #2623

5.89.3 Contributors

• @jjhelmus

• @mingwandroid

• @msarahan

5.90 3.2.1 (2018-01-02)

5.90.1 Enhancements

• Improve “BUILD” environment variable value (especially on powerpc) #2615

• Implement CentOS 7 ppc64le distro for conda skeleton rpm #2615

• Improve handling of outputs that use the build/skip key to skip building #2616

5.90.2 Bug fixes

• Don’t loop in all zipped keys when collecting used vars. Leave it to consumers to decide what to do. #2612

• Fix run_exports using pin_subpackage not applying versioning for the implicit top-level output #2613

• Fix run_exports not applying to build-time environment creation for top-level recipe (as opposed to outputs)
#2613

• Fix CRAN skeleton to better use host/build envs appropriately #2614

5.89. 3.2.2 (2018-01-12) 175



conda-build Documentation, Release 0.0.0.dev0+placeholder

• fix outputs not loading hash input info from files at test time correctly, leading to incorrect hashes and unresolved
packages. #2616

5.90.3 Contributors

• @mingwandroid

• @msarahan

5.91 3.2.0 (2017-12-21)

This release bumps the minor version to reflect the change in splitting the build and host folders originally introduced
by 3.1.4. That change has proven to be disruptive to many users, and we felt it necessary to bump a minor version
to indicate that people should pay attention to this change. There’s more info in our docs at https://conda.io/docs/
user-guide/tasks/build-packages/define-metadata.html#host

5.91.1 Enhancements

• Add log messages for each source of variants, so that you know where values are coming from #2597

5.91.2 Bug fixes

• remove unnecessary looped rm_rf when cleaning out prefixes between outputs #2587

• fix meta.yaml not found errors when trying to test packages built with --no-include-recipe #2590

• fix zipped key group with single entry causing a list to be passed later for single string values #2596

• fix incomplete change to splitting build and host envs #2595

• fix merging of top-level requirements and output reqs when output named same as top-level #2595

• fix handling of outputs with templates in their name (they were losing their requirements) #2595

• fix test file copying to avoid re-provisioning source during tests #2595

• tweak requirements regex to avoid misinterpreting python executable usage in test commands as usage of the
python variant #2595

5.91.3 Contributors

• @msarahan
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5.92 3.1.6 (2017-12-15)

5.92.1 Bug fixes

• fix test files in outputs (was losing reference to absolute path of recipe) #2584

• fix several incorrect references to build_prefix that needed to be host_prefix #2584

5.92.2 Contributors

• @msarahan

5.93 3.1.5 (2017-12-15)

5.93.1 Enhancements

• detect “used” variables in selectors #2581

5.93.2 Bug fixes

• Cache used variables for a given output on a given target platform to avoid recomputing this too often. This
dramatically speeds up operations relative to 3.1.4. #2581

• fix used variable treatment of target_platform #2581

5.93.3 Contributors

• @msarahan

5.94 3.1.4 (2017-12-14)

5.94.1 Enhancements

• detect “used” variables in build.sh, bld.bat and any output scripts, in addition to what already existed in
meta.yaml. Used variables end up in the hash. #2576

• don’t merge build and host prefixes. We used to do this when host subdir == build subdir. Keep them separate,
so that build tools in build prefix won’t ever interfere with software installed to host, to be packaged. #2579
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5.94.2 Bug fixes

• exclude grouped keys from zip_keys when computing hashes. Only direct dependencies affect the hash. #2573

• fix always_include_files usage omitting other ordinarily installed files #2580

5.94.3 Contributors

• @msarahan

5.95 3.1.3 (2017-12-13)

5.95.1 Enhancements

• support environment variable expansion in path-related condarc settings #2563

• speed up “fixing linking” on MacOS by ~98% #2564

• Allow build/script and build/script_env entries in outputs, for simple scripts and for passing env vars into
output scripts #2572

5.95.2 Bug fixes

• fix run_exports from build section not applying to host early enough and causing conflicts #2560

• order outputs based on build, host, and run dependencies, not just run #2561

• fix always_include_files when used in output sections #2569

• add jinja2 to dependencies in setup.py (not just in conda.recipe) #2570

5.95.3 Contributors

• @akovner

• @mingwandroid

• @msarahan

• @nehaljwani

• @rlizzo 2017-12-9 3.1.2:

5.95.4 Bug fixes

• fix copying of relative paths with source_files in test section #2551

• fix handling of too many x’s in max_pin field. If more x’s than actual places were present, the incrementing
broke. #2552

• refactor upstream pinning, fix extraction of outputs so that run_exports and pin_compatible work with them
#2556

• fix bug that occurred when an output had the same name as the top level recipe. Ended up extracting wrong part
of recipe with wrong regex. #2556
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• fix copying of recipe losing folder structure in the destination copy of the recipe #2557

5.95.5 Contributors

• @msarahan

• @nehaljwani

5.96 3.1.1 (2017-12-06)

5.96.1 Bug fixes

• fix info files filters on windows #2542

• fix icon.png files that needed to be included in the app section of recipes, for usage with Navigator #2545

• fix package matching regex for packages with - in them (regex should find either - or _) #2546

• fix detection of used variant variables within jinja2 conditionals #2547

• fix output extraction regex (was picking up whole outputs section, not just one output). Also, fix top-level vari-
ables not being carried into later outputs. #2549

5.96.2 Contributors

• @jjhelmus

• @msarahan

5.97 3.1.0 (2017-12-05)

5.97.1 Enhancements

• Speed up package inspection by optimizing package file lookup #2535

• Simplify hashing scheme. A hash will be added if all of these are true for any dependency:

• package is an explicit dependency in build, host, or run deps

• package has a matching entry in conda_build_config.yaml which is a pin to a specific version, not a lower
bound

• that package is not ignored by ignore_version OR

• package uses {{ compiler() }} jinja2 function All other packages will no longer have hashes. The takeaway
message is that hashes will appear when binary compatibility matters, but not when it doesn’t. #2537
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5.97.2 Bug fixes

• Allow packages to store files in info folder #2538

• Fix source_files not working correctly when using test files in packages #2539

5.97.3 Contributors

• @mingwandroid

• @msarahan

5.98 3.0.31 (2017-11-30)

5.98.1 Enhancements

• expose time and datetime modules in jinja2 context, for use in meta.yaml #2513

• jinja: permit recipes to check for existence of a variable without erroring #2529

• add method for getting all variant values used by a recipe, not just those variants with more than one value. #2531

5.98.2 Bug fixes

• allow SSL_NO_PROXY env var to disable SSL checking on proxied connections #2505

• Fix source hoisting issues (incorrectly flattening directory structure of extracted archives) #2507

• Fix build env for output getting lost when output name == top-level name #2511

• add global pin_run_as_build for R (x.x.x) to keep legacy R pinning behavior #2518

• Fix path conversion issues going from windows to unix #2522

• only insert variant versions when testing runtime availability for packages that are also present in build (not just
run) #2527

5.98.3 Contributors

• @anton-malakhov

• @bheklilr

• @mandeep

• @msarahan

• @stuarteberg
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5.99 3.0.30 (2017-11-15)

5.99.1 Bug fixes

• write all ‘about’ metadata fields out, not just select few #2488

• fix lists getting nested during merging of configs, leading to TypeErrors #2494

• make always_include_files act on host_prefix, not build_prefix #2497

• warn users when script_env passes env vars through #2502

• fix build string pyXY being just pyX when input didn’t have full python version #2504

5.99.2 Contributors

• @jakirkham

• @msarahan

5.100 3.0.29 (2017-11-10)

5.100.1 Enhancements

• interpret ~= in pypi skeletons, map to compatible expressions #2427

• add arm and ppc architectures to conda convert #2472, #2474

• add indentation to index.json and hash_input.json for easier reading #2476

• check arch in index.json for platforms other than linux, mac, win #2478

• update cran skeletonizer for new compilers, add flags for updating, rather than replacing recipe. #2481

5.100.2 Bug fixes

• fix implicit pinning not taking effect in outputs, fix incorrect matching of hashed subpackages #2455

• exclude python from build requirements for purposes of hash computation. This was causing recipes that used
python as a build tool to build too many similar packages. #2455

• Support GIT_* vars even when source folders are specified #2477

• silence warnings about .* being added to vc deps #2483

• fix non-finalized recipe being used for creating build env, resulting in too few variants in output #2485
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5.100.3 Contributors

• @mandeep

• @mingwandroid

• @msarahan

• @stuarteberg

5.101 3.0.28 (2017-11-02)

5.101.1 Enhancements

• Implement “subspace selection” - so you can reduce a larger central set of variants to some smaller subset. Fixes
--python=X.Y on windows, with its zip_keys. #2466

• Update cpan skeleton #2156

• Pass through VSXY0COMNTOOLS env vars, so they’re available in activate scripts called from outputs #2453

• Add additional index-related files for Anaconda Navigator to use #2463

• Add back CONDA_PY, CONDA_NPY, and friends, for backcompat with conda-build-all #2469

5.101.2 Bug fixes

• Fix build_folder selection in dirty envs #2445

• Fix an os.rename back to copy_into for cross-volume compatibility #2451

• Clean up leftovers created by utils.get_recipe_abspath #2459

• fix path globbing and filtering replacing prefix not at start of path, which broke file copying #2468

• Don’t recreate envs unnecessarily for recipes with no outputs section #2470

5.101.3 Contributors

• @jerowe

• @kalefranz

• @msarahan

• @neok-m4700

• @rendinam
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5.102 3.0.27 (2017-10-17)

5.102.1 Enhancements

• For windows error checks, assert that the errorlevel is 0, rather than GEQ 1. Makes negative return codes fail
builds. #2442

• allow channels to be passed to the metapackage command. Note that channels are not recorded to the package,
and need to be passed at package install time, as well as metapackage creation time. #2443

5.102.2 Bug fixes

• Fix windows bits dictionary indexing incorrect type #2441

5.102.3 Contributors

• @msarahan

5.103 3.0.26 (2017-10-16)

5.103.1 Enhancements

• Conda index now generates html index pages in addition to repodata.json #2395

• make bash verbosity (-x flag) depend on setting of --debug flag #2426

• pass test and build sections in any outputs through wholesale, rather than picking out individual fields from them.
#2429

• make conda-verify opt-in, rather than opt-out. Use --verify cli argument or verify keyword to api. #2436

• implement requires_features and provides_features, for compatibility with conda 4.4’s new key-value
feature #2440

5.103.2 Bug fixes

• fix FEATURE_* variables not working due to a type error #2428

• fix misleading error when download_url present but empty #2434

• check HTTP status code of PyPI pkg manifest request before decoding it, to improve error message #2435

• fix 64-bit exe’s showing up in 32-bit win packages due to not accounting for host_arch with script files #2439

• fix hardlink-breaking bug where path was being copied instead of specific file. Use better tempdir. #2437
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5.103.3 Contributors

• @Bezier89

• @eklitzke

• @kalefranz

• @maddenp

• @msarahan

• @nehaljwani

5.104 3.0.25 (2017-10-06)

5.104.1 Bug fixes

• unify usage of conda_43, learn to let the tests run. #2424

5.104.2 Contributors

• @msarahan

5.105 3.0.24 (2017-10-06)

5.105.1 Enhancements

• add get_used_loop_vars() function to MetaData object, to show which loop variables are actually used by
recipe #2410

• Allow multiple file extensions for pypi skeletons, not just .tar.gz #2412

5.105.2 Bug fixes

• make build reqs equivalent to host when cross-compiling and no host section present (helps reduce need to modify
python-only recipes) #2406

• reduce logging output from filelock and conda #2418 #2422

• Don’t strip files in noarch: python when they are not known file types #2420

• fix infinite loop when trying to build dep from found recipe, but that recipe is wrong version #2423

• update perl used on appveyor for testing to 5.26
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5.105.3 Contributors

• @minrk

• @msarahan

• @nehaljwani

5.106 3.0.23 (2017-09-29)

5.106.1 Bug fixes

• simplify handling of blank fields in CRAN metadata #2393

• load conda_build_config.yaml from inside package when testing package separately from build process
#2399

• use sets instead of lists for field descriptions #2403

• fix noarch_python packages getting pinned to a specific python version #2409

5.106.2 Contributors

• @Bezier89

• @CJ-Wright

• @jdblischak

• @msarahan

5.107 3.0.22 (2017-09-20)

5.107.1 Bug fixes

• fix filename_hashing setting being ignored when using conda-build API #2385

• fix relpath causing cross-drive issues on windows #2386

• examine .a files when considering prefix replacement #2390

• fix run/test deps check looking at build_subdir rather than host_subdir (broke cross compiling) #2391

5.107.2 Contributors

• @Bezier89

• @mingwandroid

• @msarahan
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5.108 3.0.21 (2017-09-18)

5.108.1 Bug fixes

• Fix strong run_exports from build being applied to host too late, running into conflicts (especially with VC
features) #2383

• crash properly when patching fails, rather than proceeding with build #2384

5.108.2 Contributors

• @msarahan

5.109 3.0.20 (2017-09-16)

5.109.1 Bug fixes

• Never activate build or host env when building conda, so that symlinks or .bat files are never created. #2381

• Apply “strong” run_exports from build section to host section, not just run section. This is necessary for
ensuring that features activated by packages in the build section are used to line up the host section also. #2382

5.109.2 Contributors

• @msarahan

5.110 3.0.19 (2017-09-15)

5.110.1 Bug fixes

• write info/files for noarch. Always sanity check info/files. #2379

• fix build_prefix -> host_prefix in write_pth, fixes cross compiling python packages #2380

5.110.2 Contributors

• @Bezier89

• @msarahan
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5.111 3.0.18 (2017-09-14)

5.111.1 Bug fixes

• fix source hash not being verified #2367

• fix several references to arch that should be host_arch to support cross compiling (win-32 on win-64, for
example) #2369, #2368

• replace recipe run requirements with contents of index.json’s “depends” when testing packages #2370

• update R and perl versions in DEFAULT_VARIANTS #2373

• fix versioneer showing unknown version on windows due to --match argument #2375

• add subdir to moved work folder dirname, to avoid clobbering when cross compiling #2376

5.111.2 Contributors

• @jjhelmus

• @mingwandroid

• @msarahan

5.112 3.0.17 (2017-09-12)

5.112.1 Enhancements

• add track_features and features to output options, to allow per-output configuration of features #2358

5.112.2 Bug fixes

• Fix conda symlinks misbehaving when building conda package #2359

5.112.3 Contributors

• @msarahan

5.113 3.0.16 (2017-09-12)

5.113.1 Enhancements

• allow env check to be bypassed when rendering (for c3i) #2353

• provide mechanism for compiler version to be passed to compiler jinja2 function (match name with _version)
#2356
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5.113.2 Bug fixes

• use host_subdir instead of build_subdir when setting selectors #2345

• remove downloaded files from source cache if they failed at any download step #2349

• fix variants being merged across multiple builds due to modification of global #2350

• disable pyldd disagrees warning output for now #2352

5.113.3 Contributors

• @mingwandroid

• @msarahan

5.114 3.0.15 (2017-09-04)

5.114.1 Bug fixes

• fix relative paths for croot argument to CLI; test #2335

• fix several issues with zip_keys #2340

• fix output build number never applying #2340

• fix ensure_matching_hashes for strong/weak run_exports #2340

• fix indexing of channels, especially before testing packages #2341

• copy wheels and unextractable files (.sh) into the workdir with their original, un-hashed filename, for simplicity
in working with them. #2343

• avoid attempting to overwrite existing files in the source cache #2343

• avoid unsatisfiable requirement errors by adding .* to specs that lack .* or >/</>=/<= #2344

5.114.2 Contributors

• @gabm

• @msarahan

5.115 3.0.14 (2017-08-29)

5.115.1 Bug fixes

• fix config.arch comparison being wrong data type #2325

• fix run_exports handling with dict of lists #2325

• pyldd: disambiguate java .class files from Mach-O fat files (same magic number) #2328

• fix hash regex for downloaded files in src_cache #2330

• fix zip_keys becoming a loop dimension when variants passed as object rather than loaded from file #2333
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• fix windows always warning about old compiler activation. Now only warns if is not used. #2333

• Add LD_RUN_PATH back into Linux variables for now (may remove later, but will have deprecation cycle) #2334

5.115.2 Contributors

• @mingwandroid

• @msarahan

• @neok-m4700

5.116 3.0.13 (2017-08-26)

5.116.1 Enhancements

• allow output build number and string to be set independently of top-level metadata #2311

• add file hash to source cache filenames to avoid collisions #2312

• add notion of “strong” or “weak” run exports. Strong apply to run whether parent is in build or host. Weak apply
only if in host, or in build with no host present. #2320

5.116.2 Bug fixes

• Fix PY3K value changing from 0/1 to True/False. Keep 0/1.

• make work_dir the cwd when running output bundling scripts. It was the host prefix before now.

• start tmpdir prefixes when getting dependency versions with _ so that conda can be one of the deps #2321

• avoid setting empty compiler variables #2322

• remove meaningless error with glob_files and always_include_files during env creation #2323

5.116.3 Contributors

• @msarahan

5.117 3.0.12 (2017-08-23)

5.117.1 Enhancements

• update default MACOSX_DEPLOYMENT_TARGET to 10.9 #2293

• modernize pin_depends so that it works with conda render #2294

• environment variable pass-throughs now respect variant (env var highest priority; variant, finally default) #2310
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5.117.2 Bug fixes

• fix run_exports getting picked up transitively #2298

• fix default compiler not having platform #2300

• fix CONDA_PY formatting (should not have period). PY_VER does have period. #2304

• update index before testing a package, so that that package is conda-installable. #2308

• update index after moving a package after test failure, so that the index is current. #2308

• fix --output-folder not being respected by --output preview of output path #2309

5.117.3 Contributors

• @mingwandroid

• @msarahan

5.118 3.0.11 (2017-08-17)

5.118.1 Enhancements

• set BUILD environment variable (triplet used by cross-compiling) #2285

• respect condarc cache_dir setting for changing the source cache dir location #2278

• run selectors before returning meta.yaml extractions #2284

5.118.2 Bug fixes

• fix CRAN skeleton field truncation with ; characters #2274

• Warn about overlapping files in subpackages within a recipe #2275

• fix --override-channels not taking effect #2277

• fix double-activation on Windows for cross compiling #2280

• fix variant entry duplication with zipped keys #2280

• fix folder hoisting when folder name in archive matches package name #2281

• fix test env showing old cached packages when test env has actually been removed #2282

• fix source code not being present for render when source necessary for render and more than one variant #2283

• fix binary_relocation not allowing lists of files #2288

• fix incorrect python (or none at all) being used for pyc compilation with python only in host reqs #2290
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5.118.3 Contributors

• @dsludwig

• @jdblischak

• @jjhelmus

• @mingwandroid

• @msarahan

5.119 3.0.10 (2017-08-11)

5.119.1 Enhancements

• Provide variant variables for use in selector expressions #2258

5.119.2 Bug fixes

• fix ordering of recipe elements in skeletonized pypi recipes #2230

• Trim empty variant sections (due to selectors) prior to zipping keys #2258

• Don’t set blank env vars in build scripts #2259

• Fix testing with recipe paths #2262

• add newlines to test scripts #2265

• Fix render command not considering provided channels #2267

• fix get_value being hardcoded to only first entry #2268

• fix setting target (target platform) in output section causing tarcheck validation error #2271

• don’t add setuptools to runtime dependencies in skeletonized pypi recipes (only build) #2272

5.119.3 Contributors

• @chaubold

• @msarahan

• @mwcraig

• @neok-m4700

• @ratstache

• @stuarteberg
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5.120 3.0.9 (2017-08-02)

5.120.1 Enhancements

• store test files specifed by test/source_files directly in packages. This allows testing of packages that do
not include recipes. Recommendation: make subpackages for large data files. #2232

• add new syntax to get_value for accessing list items, such as multiple sources #2247

• add independently configurable source cache path (–cache-dir) #2249

• add PKG_HASH env var, available in meta.yaml. Use this to put the package hash where you want it in your custom
build/string field in meta.yaml. #2250

5.120.2 Bug fixes

• Fix test python using incorrect metadata config object, and then using wrong prefix #2226

• Allow testing multiple conda packages or folders at once with wildcard CLI arguments #2227

• Fallback path for ruamel_yaml to ruamel.yaml #2233

• raise exception when both build/script in meta.yaml and build script (build.sh/bld.bat) are provided #2238

• Fix unclosed file handle when loading setup.py data #2242

• Fix ‘path’ source with multiple source #2247

• improve compatibility with conda 4.4 #2248

• remove hash from manually-specified build/string fields. Use new PKG_HASH env var instead. #2250

• fix windows activate scripts getting included in windows packages #2251

• ignore feature records in index for ‘conda inspect’ #2253

• fix variant handling when variants affect the downloaded source (need re-extract, re-parse with new source at
each step) #2254

5.120.3 Contributors

• @Bezier89

• @jjhelmus

• @kalefranz

• @msarahan

• @mandeep

• @mingwandroid

• @stuarteberg

192 Chapter 5. Release notes

http://build.sh/bld.bat
http://setup.py


conda-build Documentation, Release 0.0.0.dev0+placeholder

5.121 3.0.8 (2017-07-20)

5.121.1 Bug fixes

• Fix internal conda-build recipe to include missing setuptools and not use pip #2221

• Try to avoid downloading anything until we absolutely need it for rendering or build #2222

• Fix regexes that were leading to unsatisfiable dependencies, especially with perl #2222

• Tweak internal recipe to include more git info; adjust regex accordingly for this practice #2223

5.121.2 Contributors

@msarahan

5.122 3.0.7 (2017-07-20)

5.122.1 Enhancements

• Rewrite skeleton pypi template; match conda-forge standard #2205

5.122.2 Bug fixes

• Remove entry point links to avoid write-through to root envs #2209

• Properly insert variant versions for x.x in outputs (not just parent recipe) #2210

• Relax version constraints for lua and R in default variant #2213

• fix test of package directly using wrong config object #2214

• Don’t check test env satisfiability when --no-test is passed #2218

• Iron out prefix when noarch as host env. Was creating separate build/host envs inappropriately. #2219

• Fix skipping finalization with finalize=False (for c3i speedup). #2219

• Fix implicit variant looping - wasn’t keeping track of “used variables” that are used implicitly. #2219

5.122.3 Contributors

• @mandeep

• @mwcraig

• @msarahan
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5.123 3.0.6 (2017-07-14)

5.123.1 Bug fixes

• Find git more intelligently, because build_prefix isn’t always on PATH #2196

• Fix up assorted RPM skeleton issues #2196

• Fix and test “numpy x.x” recipes #2198

• Fix and test --skip-existing. Ensure that it also works with --croot. #2200

• Fix and test “python x.x” recipes #2201

• Fix inappropriate insertion of variant versions that led to conflicts (for example, numpy) #2202

5.123.2 Contributors

• @mingwandroid

• @msarahan

5.124 3.0.5 (2017-07-12)

5.124.1 Bug fixes

• Fix --skip-existing (was not matching output-dir/croot locations correctly) #2192

• Fix numpy x.x getting .* appended, resulting in unsatisfiable numpy #2193

5.124.2 Contributors

• @msarahan

5.125 3.0.4 (2017-07-11)

5.125.1 Bug fixes

• Don’t symlink conda when building conda (clobbers actual scripts) #2167

• Fix pyldd following links #2170

• Preserve mode bit on noarch python bin/Scripts files #2171

• remove logging output showing up with --output option #2174

• Fix CONDA_* variables without . #2176

• pass croot to extraction (file path length issue on win) #2178

• fix uncorrect unpacking of tuples with --skip-existing #2179

• Fix priority of setup.cfg over setup.py #2180

• Remove overly aggressive removal of test prefix at end of test phase #2182
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• Fix upper bound increment to account for pre-release versions (alpha, beta, rc, etc.) #2183

5.125.2 Contributors

• @jjhelmus

• @mingwandroid

• @msarahan

5.126 3.0.3 (2017-07-07)

5.126.1 Bug fixes

• fix loss of setup.cfg reading due to bad merge #2163

• avoid error when attempting to sort list, and that list consists of dicts #2163

5.126.2 Contributors

• @msarahan

5.127 3.0.2 (2017-07-06)

5.127.1 Enhancements

• Add SSL_CERT_FILE and REQUESTS_CA_BUNDLE env vars to passed-through variables #2142

• Sort several package aspects for package reproducibility #2143 #2149 #2154

• Add glob2 dependency to allow recursive globs in fields specifying filenames/paths #2146

• Add conda skeleton rpm for creating recipes to repackage RPMs as conda packages #2147

• Improve error messaging when git describe fails due to lack of annotated tags #2158

5.127.2 Bug fixes

• drop setup.py data that is not JSON serializable #2141

• enhance support for recipes containing unicode or non-ascii characters in meta.yaml #2148

• CRAN skeleton: allow some keys to be blank without throwing exceptions #2153

• Fix incorrect arguments passed to pyldd (use keywords) #2160

• fix incorrect distribution of variants when more than one variant key matched #2161

5.126. 3.0.3 (2017-07-07) 195

http://setup.py


conda-build Documentation, Release 0.0.0.dev0+placeholder

5.127.3 Contributors

• @aburgm

• @dougalsutherland

• @dhirschfeld

• @mandeep

• @MatthieuDartiailh

• @mingwandroid

• @msarahan

• @nehaljwani

5.128 2.1.17 (2017-06-30)

5.128.1 Bug fixes

• Fix disable_pip removing packages even when they are explicit dependencies #2129

• Remove any pyc files for entry point scripts that pip may have created #2134

• Ignore unserializable data when reading setup.py data #2141

5.128.2 Contributors

• @mandeep

• @msarahan

5.129 3.0.1 (2017-06-29)

This release includes all changes to the 2.1.x branch up to and including the 2.1.16 release.

5.129.1 Enhancements

• Raise errors prior to build if any run or test deps are unsatisfiable #2102

• Add skeleton function for RPM packages, to be used for things like Xorg #2109

• Improve test coverage of workdir removal #2111 #2112

• Match variants in conda_build_config.yaml with dep names (implicit jinja2 version spec) #2124
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5.129.2 Bug fixes

• fix reference to cc.subdir (it is just subdir) #2015

• fix failing test when using filename_hashing=False (non-existent json file) #2087

• fix dependencies specified to conda-convert not being added #2090

• fix disable_pip removing packages even when they are explicit recipe deps #2129

• fix pin_compatible jinja2 function not respecting lower_bound as None correctly #2138

5.129.3 Contributors

• @jakirkham

• @mandeep

• @mingwandroid

• @msarahan

• @neok-m4700

5.130 2.1.16 (2017-06-23)

5.130.1 Enhancements

• add CLI flag and condarc setting to disable --force for anaconda upload #2047

• add doc_source_url to allowed fields in about section #2048

• add a second pass for getting information from setup.py that is performed in the build environment, so that
version-specific logic in setup.py should work. #2071

• add semicolons to print statements in test files to avoid errors with Perl. #2012 #2089

• pass through more CPU-specific environment variables on windows #2072

• pass through DISPLAY environment variable on Linux #2098

• Improve conda_interface for better conda 4.4 and later 4.3.x releases #2113

• skeleton pypi & lua: replace legacy noarch syntax with conda 4.3 style #2120

• Restore --keep-old-work flag: works like --dirty to leave your build intermediaries, but does not reuse build
folders like --dirty. #2119

• Speed up and fix-up conda-convert #2116 #2123
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5.130.2 Bug fixes

• fix test/imports with multiple language entries #1967

• add missing six dependency in conda recipe for conda-build #2063

• fix dependency addition when converting packages #2091

• don’t set build_id in test phase when --no-build-id is given #2100

• fix handling of string literals not being lists in test requirements from setup.py #2107

5.130.3 Contributors

• @aburgm

• @AndresGuzman-Ballen

• @gqmelo

• @isuruf

• @kalefranz

• @mandeep

• @mingwandroid

• @msarahan

• @nehaljwani

• @nsoranzo

• @timsnyder

• @vinjana

5.131 3.0.0 (2017-05-23)

These release notes are an aggregation of all older pre-releases of conda-build 3.0.0. All changes from 2.1.15 and
below have been incorporated.

5.131.1 Breaking changes

• Support for post-build metadata (__conda_version__.txt and the like) has been removed.

• pin_downstream has been renamed to run_exports #1911

• exclude_from_build_hash has been renamed to ignore_version #1911

• Package signing and verification have been removed, to follow their removal from conda 4.3. #1950
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5.131.2 Enhancements

• greatly extended Jinja2 templating capabilities #1585

• record environment variables at top of build.sh, similar to what is done with bld.bat in win. #1765

• use symlinks when copying to improve performance #1867

• load setup.cfg data in load_setup_py_data #1878

• calculate checksum and simplify cran skeleton #1879

• Check that files are executable when finding them #1899

• use rm_rf to remove prefixes for more cleanliness and better speed #1915

• add support for multiple sources in one meta.yaml #1929

• allow exact keyword for pin_compatible jinja2 function #1929

• allow selectors in variant conda_build_config.yaml files #1937

• Avoid duplicate recreation of package index. Speedup of 0-50%, depending on how extensively the recipe uses
Jinja2 features. #1954

• Allow per-subpackage specification of target subdir #1961

• Add basic environment marker support to conda skeleton pypi #1984

• allow about section for each subpackage #1987

• add support for optional dependencies (conda 4.4) #2001

• fix windows entry point exe’s for unicode #2045

• allow strings for pin_run_as_build values (e.g. x.x) rather than just dictionaries #2042

• add meta.yaml entry to override run_exports pins #2073

• add several condarc entries that can be used to control conda-build behavior #2074

• add new pyldd tool and use it when ldd/otool fail #2082

• Allow configuration of conda-build’s loggers by logging configuration files. Default to debug,info going to
stdout, warn,error going to stderr. #2078

• rename work dir before tests, rather than removing it, so that build intermediates can be inspected if tests fail.
#2078

5.131.3 Bug fixes

• fix symlinks to folders in packaging #1775

• fix detection of patch level when maxlevel=0 #1796

• properly copy permissions when extracting zip files #1855

• Add more important Windows environment variables to the test environment #1859, #1863

• remove build and test envs after each packaging step, to avoid unsatisfiable errors #1866

• remove version pins from requirements added by run_test files (again avoid unsatisfiable errors) #1866

• fix prefix file detection picking up too many files due to env recreation #1866

• fix missing r_bin, make run_test.r scripts work #1869
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• fix R’s binary path on Windows #1870

• remove tab completion on CLI for compatibility with conda 4.4 #1795

• reduce scope of git try/except block so that GIT_FULL_HASH is available, even if tags are not #1873

• Fix “compiler” jinja2 looping, so that it is respected in subpackages #1874

• Fix license family comparison - case matching #1875

• Fix inspect linkages when multiple packages contain a library #1884

• avoid unnecessary computation of hashing #1888

• fix python imports not being run in test phase #1896

• fix path omission in paths.json for noarch packages #1895

• standardize entry point script template to match pip #1908

• fix cleanup happening even when build fails #1909

• fix bin/conda getting included in conda-build release tarballs #1913

• fix mmap/file problems on virtualbox shared folders #1914

• Correct rendering with --dirty flag if recipe name appears as substring of another’s name #1931

• don’t set language env vars (PERL, R, LUA, PYTHON) when those packages are not installed #1932

• exclude language env vars from variant being set #1944

• Fix cleanup of folders in outer variant loop - was causing incorrect packages on 2nd variant in windows builds
#1950

• Remove variant functionality from bdist_conda. Its split packaging approach is incompatible. #1950

• Fix import of _toposort from conda, reroute through conda_interface #1952

• Match folder substrings more intelligently, for finding previous builds with --dirty #1953

• Fix type error with --skip-existing and some conda recipes (Conda-build’s internal conda.recipe was one). #1956

• Fix non-python packages creating python tests where they should not have #1967

• Don’t add python.app to run reqs multiple times #1972

• Fix incorrect removal of cc in conda_interface.py #1971

• Fix ORIGIN replacement - trailing slash was messing things up #1982

• Pipe stdin when calling subprocess, in hopes of getting better ctrl-c handling with conda. #1986

• Ensure that lock files are removed after build exit (or crash) to avoid permission errors on central installs #2002

• Process line endings in bytes mode rather than text mode #2035

• add a warning to find_recipe when multiple meta.yaml files are found (bioconda style) #2040

• When applying patches, try 3 line ending options on the patch: 1. unchanged; 2. convert patch to unix line
endings; 3. convert patch to windows line endings. #2052

• fix empty target_platform variant entry leading to empty builds #2056

• fix host activation for cross-capable recipes #2060

• fix handling of circularity in subpackages #2065

• fix subdir handling for subdirs with more than one - character #2066

• Install build and host deps when using cross-capable recipe on strictly native (not cross) build #2070
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• reduce verbosity of git error messages that people never care about #2075

• hash only direct inputs of subpackages, rather than all files. This limits creation of identical packages with similar
hashes. #2079

5.131.4 Contributors

• @abretaud

• @evhub

• @groutr

• @jjhelmus

• @kalefranz

• @ma-ba

• @mandeep

• @mingwandroid

• @minrk

• @msarahan

• @pkgw

• @pwwang

• @rolando

• @stuarteberg

• @tatome

• @ukoethe

• @waltonseymour

• @wulmer

5.132 3.0.0rc1 (2017-05-23)

These release notes are an aggregation of all older pre-releases of conda-build 3.0.0, plus changes since 3.0.0rc0. All
changes from 2.1.15 and below have been incorporated.

5.132.1 Breaking changes

• Support for post-build metadata (__conda_version__.txt and the like) has been removed.

• pin_downstream has been renamed to run_exports #1911

• exclude_from_build_hash has been renamed to ignore_version #1911

• Package signing and verification have been removed, to follow their removal from conda 4.3. #1950
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5.132.2 Enhancements

• greatly extended Jinja2 templating capabilities #1585

• record environment variables at top of build.sh, similar to what is done with bld.bat in win. #1765

• use symlinks when copying to improve performance #1867

• load setup.cfg data in load_setup_py_data #1878

• calculate checksum and simplify cran skeleton #1879

• Check that files are executable when finding them #1899

• use rm_rf to remove prefixes for more cleanliness and better speed #1915

• add support for multiple sources in one meta.yaml #1929

• allow exact keyword for pin_compatible jinja2 function #1929

• allow selectors in variant conda_build_config.yaml files #1937

• Avoid duplicate recreation of package index. Speedup of 0-50%, depending on how extensively the recipe uses
Jinja2 features. #1954

• Allow per-subpackage specification of target subdir #1961

• Add basic environment marker support to conda skeleton pypi #1984

• allow about section for each subpackage #1987

• add support for optional dependencies (conda 4.4) #2001

• fix windows entry point exe’s for unicode #2045

• allow strings for pin_run_as_build values (e.g. x.x) rather than just dictionaries #2042

5.132.3 Bug fixes

• fix symlinks to folders in packaging #1775

• fix detection of patch level when maxlevel=0 #1796

• properly copy permissions when extracting zip files #1855

• Add more important Windows environment variables to the test environment #1859, #1863

• remove build and test envs after each packaging step, to avoid unsatisfiable errors #1866

• remove version pins from requirements added by run_test files (again avoid unsatisfiable errors) #1866

• fix prefix file detection picking up too many files due to env recreation #1866

• fix missing r_bin, make run_test.r scripts work #1869

• fix R’s binary path on Windows #1870

• remove tab completion on CLI for compatibility with conda 4.4 #1795

• reduce scope of git try/except block so that GIT_FULL_HASH is available, even if tags are not #1873

• Fix “compiler” jinja2 looping, so that it is respected in subpackages #1874

• Fix license family comparison - case matching #1875

• Fix inspect linkages when multiple packages contain a library #1884

• avoid unnecessary computation of hashing #1888
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• fix python imports not being run in test phase #1896

• fix path omission in paths.json for noarch packages #1895

• standardize entry point script template to match pip #1908

• fix cleanup happening even when build fails #1909

• fix bin/conda getting included in conda-build release tarballs #1913

• fix mmap/file problems on virtualbox shared folders #1914

• Correct rendering with --dirty flag if recipe name appears as substring of another’s name #1931

• don’t set language env vars (PERL, R, LUA, PYTHON) when those packages are not installed #1932

• exclude language env vars from variant being set #1944

• Fix cleanup of folders in outer variant loop - was causing incorrect packages on 2nd variant in windows builds
#1950

• Remove variant functionality from bdist_conda. Its split packaging approach is incompatible. #1950

• Fix import of _toposort from conda, reroute through conda_interface #1952

• Match folder substrings more intelligently, for finding previous builds with --dirty #1953

• Fix type error with --skip-existing and some conda recipes (Conda-build’s internal conda.recipe was one). #1956

• Fix non-python packages creating python tests where they should not have #1967

• Don’t add python.app to run reqs multiple times #1972

• Fix incorrect removal of cc in conda_interface.py #1971

• Fix ORIGIN replacement - trailing slash was messing things up #1982

• Pipe stdin when calling subprocess, in hopes of getting better ctrl-c handling with conda. #1986

• Ensure that lock files are removed after build exit (or crash) to avoid permission errors on central installs #2002

• Process line endings in bytes mode rather than text mode #2035

• add a warning to find_recipe when multiple meta.yaml files are found (bioconda style) #2040

• When applying patches, try 3 line ending options on the patch: 1. unchanged; 2. convert patch to unix line
endings; 3. convert patch to windows line endings. #2052

• fix empty target_platform variant entry leading to empty builds #2056

5.132.4 Contributors

• @abretaud

• @evhub

• @groutr

• @jjhelmus

• @kalefranz

• @ma-ba

• @mandeep

• @mingwandroid

• @minrk
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• @msarahan

• @pkgw

• @pwwang

• @rolando

• @stuarteberg

• @tatome

• @ukoethe

• @wulmer

5.133 3.0.0rc0 (2017-05-16)

These release notes are an aggregation of all older pre-releases of conda-build 3.0.0, plus changes since 3.0.0beta1. All
changes from 2.1.13 and below have been incorporated.

5.133.1 Breaking changes

• Support for post-build metadata (__conda_version__.txt and the like) has been removed.

• pin_downstream has been renamed to run_exports #1911

• exclude_from_build_hash has been renamed to ignore_version #1911

• Package signing and verification have been removed, to follow their removal from conda 4.3. #1950

5.133.2 Enhancements

• greatly extended Jinja2 templating capabilities #1585

• record environment variables at top of build.sh, similar to what is done with bld.bat in win. #1765

• use symlinks when copying to improve performance #1867

• load setup.cfg data in load_setup_py_data #1878

• calculate checksum and simplify cran skeleton #1879

• Check that files are executable when finding them #1899

• use rm_rf to remove prefixes for more cleanliness and better speed #1915

• add support for multiple sources in one meta.yaml #1929

• allow exact keyword for pin_compatible jinja2 function #1929

• allow selectors in variant conda_build_config.yaml files #1937

• Avoid duplicate recreation of package index. Speedup of 0-50%, depending on how extensively the recipe uses
Jinja2 features. #1954

• Allow per-subpackage specification of target subdir #1961

• Add basic environment marker support to conda skeleton pypi #1984

• allow about section for each subpackage #1987

• add support for optional dependencies (conda 4.4) #2001
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5.133.3 Bug fixes

• fix symlinks to folders in packaging #1775

• fix detection of patch level when maxlevel=0 #1796

• properly copy permissions when extracting zip files #1855

• Add more important Windows environment variables to the test environment #1859, #1863

• remove build and test envs after each packaging step, to avoid unsatisfiable errors #1866

• remove version pins from requirements added by run_test files (again avoid unsatisfiable errors) #1866

• fix prefix file detection picking up too many files due to env recreation #1866

• fix missing r_bin, make run_test.r scripts work #1869

• fix R’s binary path on Windows #1870

• remove tab completion on CLI for compatibility with conda 4.4 #1795

• reduce scope of git try/except block so that GIT_FULL_HASH is available, even if tags are not #1873

• Fix “compiler” jinja2 looping, so that it is respected in subpackages #1874

• Fix license family comparison - case matching #1875

• Fix inspect linkages when multiple packages contain a library #1884

• avoid unnecessary computation of hashing #1888

• fix python imports not being run in test phase #1896

• fix path omission in paths.json for noarch packages #1895

• standardize entry point script template to match pip #1908

• fix cleanup happening even when build fails #1909

• fix bin/conda getting included in conda-build release tarballs #1913

• fix mmap/file problems on virtualbox shared folders #1914

• Correct rendering with --dirty flag if recipe name appears as substring of another’s name #1931

• don’t set language env vars (PERL, R, LUA, PYTHON) when those packages are not installed #1932

• exclude language env vars from variant being set #1944

• Fix cleanup of folders in outer variant loop - was causing incorrect packages on 2nd variant in windows builds
#1950

• Remove variant functionality from bdist_conda. Its split packaging approach is incompatible. #1950

• Fix import of _toposort from conda, reroute through conda_interface #1952

• Match folder substrings more intelligently, for finding previous builds with --dirty #1953

• Fix type error with --skip-existing and some conda recipes (Conda-build’s internal conda.recipe was one). #1956

• Fix non-python packages creating python tests where they should not have #1967

• Don’t add python.app to run reqs multiple times #1972

• Fix incorrect removal of cc in conda_interface.py #1971

• Fix ORIGIN replacement - trailing slash was messing things up #1982

• Pipe stdin when calling subprocess, in hopes of getting better ctrl-c handling with conda. #1986
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• Ensure that lock files are removed after build exit (or crash) to avoid permission errors on central installs #2002

5.133.4 Contributors

• @abretaud

• @evhub

• @groutr

• @jjhelmus

• @kalefranz

• @ma-ba

• @mingwandroid

• @msarahan

• @pkgw

• @pwwang

• @stuarteberg

• @tatome

• @ukoethe

• @wulmer

5.134 2.1.13 (2017-05-10)

5.134.1 Bug fixes

• fix missing argument to get_site_packages function; add test coverage #2009

• pin codecov on appveyor to 2.0.5 for now #2009

• fix lock removal (just don’t create locks for temporary directories) #2009

5.134.2 Contributors

• @msarahan

5.135 2.1.12 (2017-05-09)

5.135.1 Bug fixes

• Clean up lock files for temporary directories also
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5.135.2 Contributors

• @msarahan

5.136 2.1.11 (2017-05-09)

5.136.1 Enhancements

• add libgcc to build dependencies for R skeleton recipes that require compilation $1969

5.136.2 Bug fixes

• fix entry points, test commands, test imports from top-level recipe from applying to subpackages #1933

• fix preferred_env in index.json #1941

• do not add python.app to run_reqs multiple times #1981

• Fix $ORIGIN replacement from extra trailing slash #1981

• Remove error when _license package exists in folder where conda index is called #2005

• fix STDLIB_DIR so that it is always defined (based on python version in configuration) #2006

• Clean up lock files after builds complete or fail to avoid permission errors #2007

5.136.3 Contributors

• @johanneskoester

• @kalefranz

• @mingwandroid

• @msarahan

5.137 3.0.0beta1 (2017-04-25)

5.137.1 Breaking changes

• Package signing and verification have been removed, to follow their removal from conda 4.3. #1950

5.137.2 Enhancements

• Avoid duplicate recreation of package index. Speedup of 0-50%, depending on how extensively the recipe uses
Jinja2 features. #1954
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5.137.3 Bug fixes

• Fix cleanup of folders in outer variant loop - was causing incorrect packages on 2nd variant in windows builds
#1950

• Remove variant functionality from bdist_conda. Its split packaging approach is incompatible. #1950

• Fix import of _toposort from conda, reroute through conda_interface #1952

• Match folder substrings more intelligently, for finding previous builds with --dirty #1953

• Fix type error with --skip-existing and some conda recipes (Conda-build’s internal conda.recipe was one). #1956

5.137.4 Contributors

• @kalefranz

• @msarahan

• @rendinam

5.138 3.0.0beta0 (2017-04-20)

5.138.1 Breaking changes

• pin_downstream has been renamed to run_exports #1911

• exclude_from_build_hash has been renamed to ignore_version #1911

5.138.2 Enhancements

• use rm_rf to remove prefixes for more cleanliness and better speed #1915

• add support for multiple sources in one meta.yaml #1929

• allow exact keyword for pin_compatible jinja2 function #1929

• allow selectors in variant conda_build_config.yaml files #1937

5.138.3 Bug fixes

• fix mmap/file problems on virtualbox shared folders #1914

• Correct rendering with --dirty flag if recipe name appears as substring of another’s name #1931

• don’t set language env vars (PERL, R, LUA, PYTHON) when those packages are not installed #1932

• exclude language env vars from variant being set #1944
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5.138.4 Contributors

• @mingwandroid

• @msarahan

• @rendinam

5.139 2.1.10 (2017-04-17)

5.139.1 Enhancements

• Inspect linkages will now warn when multiple packages contain the same library #1884, #1921

5.139.2 Bug fixes

• Fix bin/conda getting included in packages that also had entry point scripts or binaries starting with ‘conda’
#1923

• Fix empty create_env, for compatibility with conda 4.4 #1924

• Adapt to Conda’s new MatchSpec implementation #1927

• Fix unbound local variables when --no-locking option used. #1928

• Don’t set language env vars (PERL, R, LUA, etc.) when packages for those languages are not installed #1930

5.139.3 Contributors

• @jjhelmus

• @kalefranz

• @msarahan

5.140 3.0.0alpha2 (2017-04-05)

5.140.1 Breaking changes

• Support for post-build metadata (__conda_version__.txt and the like) has been removed.

5.140.2 Enhancements

• use symlinks when copying to improve performance #1867

• load setup.cfg data in load_setup_py_data #1878

• calculate checksum and simplify cran skeleton #1879
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5.140.3 Bug fixes

• fix R’s binary path on Windows #1870

• remove tab completion on CLI for compatibility with conda 4.4 #1795

• reduce scope of git try/except block so that GIT_FULL_HASH is available, even if tags are not #1873

• Fix “compiler” jinja2 looping, so that it is respected in subpackages #1874

• Fix license family comparison - case matching #1875

• Fix inspect linkages when multiple packages contain a library #1884

• avoid unnecessary computation of hashing #1888

• fix python imports not being run in test phase #1896

• fix path omission in paths.json for noarch packages #1895

5.140.4 Contributors

• @abretaud

• @groutr

• @jjhelmus

• @kalefranz

• @ma-ba

• @mingwandroid

• @msarahan

5.141 2.1.9 (2017-04-04)

5.141.1 Enhancements

• calculate checksum and simplify cran skeleton #1879

• backport usage of symlinks for speed from master branch #1881

5.141.2 Bug fixes

• fix import tests not being run, test this functionality #1897
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5.141.3 Contributors

• @isuruf

• @jjhelmus

• @johanneskoester

• @msarahan

5.142 2.1.8 (2017-03-24)

5.142.1 Enhancements

• use symlinks when copying files from files sources to improve performance #1867

5.142.2 Bug fixes

• reset build folder for each built package (fixes building multiple recipes in one command) #1842

• wrap copy of test/source_files so that errors don’t prevent a successful build #1843

• Restore permissions when extracting from zipfiles #1855

• pass through several Windows-specific environment variables #1859, #1862

• python 2 os.environ string type compatibility fix #1861

• fix indentation breaking perl package testing #1872

• reduce scope of git try/except block so that GIT_FULL_HASH is available even if tags are not. #1873

• fix license family comparison, especially for public-domain #1875

• Remove python header being added to all run_test.* files #1876

5.142.3 Contributors

• @abretaud

• @jjhelmus

• @mingwandroid

• @msarahan

• @stuertz

• @wulmer
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5.143 3.0.0alpha1 (2017-03-23)

5.143.1 Bug fixes

• remove build and test envs after each packaging step, to avoid unsatisfiable errors #1866

• remove version pins from requirements added by run_test files (again avoid unsatisfiable errors) #1866

• fix prefix file detection picking up too many files due to env recreation #1866

• fix missing r_bin, make run_test.r scripts work #1869

5.143.2 Contributors

• @msarahan

5.144 3.0.0alpha0 (2017-03-22)

This is a complete revolution in the dynamic rendering capabilities of conda-build. More information is in the docs PR
at https://github.com/conda/conda-docs/pull/414. There will be a blog post soon, perhaps coupled with a screencast.

5.144.1 Enhancements

• greatly extended Jinja2 templating capabilities #1585

• record environment variables at top of build.sh, similar to what is done with bld.bat in win. #1765

5.144.2 Bug fixes

• fix symlinks to folders in packaging #1775

• fix detection of patch level when maxlevel=0 #1796

• properly copy permissions when extracting zip files #1855

• Add more important Windows environment variables to the test environment #1859, #1863

5.144.3 Contributors

• @jjhelmus

• @kalefranz

• @mingwandroid

• @msarahan

• @pkgw

• @stuarteberg

• @ukoethe

• @wulmer
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5.145 2.1.7 (2017-03-14)

5.145.1 Enhancements

• pass WINDIR env var through on Windows #1837

• make long test prefix an option (default disabled) #1838

5.145.2 Bug fixes

• monkeypatch ensure_use_local to avoid conda-build import clobbering conda CLI arguments #1834

• Fix context conda_build attr error with older conda #1813

• Fix legacy noarch shebang replacement code to account for long prefix paths #1813

• properly initialize ‘system’ key in linkage inspecting #1839

• backport try mmap from master #1764

• fix wheel output not respecting --output-folder CLI argument #1838

• catch csv dialect sniffing error, try to fallback to to excel_tab. Might work? #1840

5.145.3 Contributors

• @kalefranz

• @mcs07

• @msarahan

5.146 2.1.6 (2017-03-08)

5.146.1 Enhancements

• tests on linux/mac now use 255-character prefix when creating test environment #1799

• allow test/imports for R and lua packages #1806

5.146.2 Bug fixes

• Fix case comparison in license_family.py #1761

• Fix symlinked folders not being included in packages #1770

• Fix extraction of tarballs containing unicode filenames #1779, #1804

• fix unicode in delimiter for noarch py_file_map #1789

• Clean up conda interface #1791

• Confine conda-build 2.1.x to conda >4.1,<=4.3 #1792

• fix detection of patch strip level when maxlevel = 0 #1796

• fix attribute error in exception handling for missing dependencies #1800
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• fix osx python_app test for python 3.6 #1801

• don’t die when unicode found in patch files #1802

• clarify error messaging when git is not found #1803

• fix shebangs in entry point scripts using legacy noarch_python #1806

• fix test environment variables being set to build prefix values #1806

• fix inspect linkages breaking due to conda index keys changing to different objects in conda 4.3 #1810

5.146.3 Contributors

• @gbrener

• @kalefranz

• @msarahan

• @pkgw

• @stuertz

5.147 2.1.5 (2017-02-20)

5.147.1 Enhancements

• don’t crash on unknown selector. Warn, but evaluate as False. #1753

• allow default conda packaging behavior for split package whose name matches top-level name, but lacks both
files and script entry. #1758

5.147.2 Bug fixes

• unify license family text with Anaconda-Verify #1744

• apply post-processing to each split package, not just to post-build prefix files. #1747

• provide fallback lock directory in user’s home folder. Allows central installs. #1749

• fix quoting for test paths. Allows croot with spaces. #1750

• fix pypi skeleton recursion #1754

• fix assertion error about leading period when Jinja2 variables have default values #1757

• set default twine target to pypitest to avoid accidental uploads #1758

214 Chapter 5. Release notes



conda-build Documentation, Release 0.0.0.dev0+placeholder

5.147.3 Contributors

• @gabm

• @msarahan

5.148 2.1.4 (2017-02-07)

5.148.1 Enhancements

• Allow relative paths for --croot option #1736

5.148.2 Bug fixes

• Rename package_metadata.json file to link.json to more accurately reflect contents #1720

• Fix converted packages from unix to Windows having broken entry points #1721

• Fix an infinite loop when creating the test environment failed #1739

• Fix conda 4.3 incompatibility with --pin-depends option #1740

5.148.3 Contributors

• @gabm

• @kalefranze

• @msarahan

5.149 2.1.3 (2017-01-31)

5.149.1 Enhancements

• Add --extra-specs to conda skeleton. Use when a package needs to be available in the temporary env that parses
setup.py to make the skeleton. #1697

• Allow wheels as a source format #1700

• Allow github urls as CRAN skeleton sources #1710

5.149.2 Bug fixes

• exclude package/name field from uses_vcs_in_{meta,build} checks #1696

• Fix conda convert wrt info/paths.json (for conda 4.3 compatibility) #1701

• update cpan skeleton to use newer API url, fix conda exception handling #1704

• update R default version to 3.3.2 #1707

• fix attribute error on exception handling (better fix on the way) #1709
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• fix bundle_conda removing project files when conda recipe was in the source tree, and utilized relative paths
#1715

• fix glob trying to interpret filenames that look like glob patterns #1717

5.149.3 Contributors

• @ElliotJH

• @jerowe

• @kalefranz

• @mingwandroid

• @minrk

• @msarahan

• @rainwoodman

5.150 2.1.2 (2017-01-20)

5.150.1 Enhancements

• iron out compatibility with conda 4.3 #1667

• pytest improvements for a cleaner CI experience #1686 #1687

5.150.2 Bug fixes

• Avoid trailing semicolon in MSYS2_ARG_CONV_EXCL variable setting #1651

• filter .git directories more strictly (keep x.git folders, not .git) #1657

• fix 404’s killing CPAN skeleton with newer conda versions #1667

• use pythonw to run tests on OSX when osx_is_app is defined in meta.yaml #1669

• ignore obnoxious .DS_Store files when packaging #1670

• fix --source argument to download source specified in meta.yaml #1671

• fix slashes in file prefix replacement on Windows #1680

• fix multiple source url fallbacks (handle CondaHTTPErrors) #1683

• fix bizarre encoding errors on Windows with projects that embed binary in setup files #1685

• fix CPAN JSON file encoding issue on windows #1688

• revise retry when conda is missing files from a package #1690
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5.150.3 Contributors

• @dfroger

• @kalefranz

• @mingwandroid

• @msarahan

• @nicoddemus

• @pkgw

5.151 2.1.1 (2017-01-12)

5.151.1 Bug fixes

• Fix package conversion consistency, wrt entry points #1609

• Fix about.json contents regarding development versions of conda/conda-build #1625

• Fix Appveyor for testing against source branches of conda #1628

• Raise exception when SRC_DIR is used in tests, but meta.yaml has no test/source_files entry. SRC_DIR
points at test work folder at test time, for minimal needed changes to recipes - just add test/source_files
entry with desired files. #1630

• Fix features list not allowed to be None in bdist_conda #1636

• Fix undefined reference to locks in copy_into #1637

• Fix version comparison in cpan skeleton #1638

• Add dependency on beautifulsoup4 and chardet to better support strangely encoded text files. #1641

• Fix not-yet-fully-rendered versions starting with . from raising exception #1644

• Consolidate _check_call and check_call_env in utils. Fix coercion to string that was missing in latter.
#1645

5.151.2 Contributors

• @gomyhr

• @jakirkham

• @kalefranz

• @msarahan
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5.152 2.1.0 (2017-01-02)

(includes changes since 2.0.12, including those already listed under 2.1.0beta1)

5.152.1 Enhancements

• Consolidate package metadata from extra.json and noarch.json into package_metadata.json #1535 #1539

• finalize paths.json, (formerly files.json), which supersedes the older separate files for tracking file data #1535

• Support output of multiple packages from one recipe #1576

• Support output of wheels #1576

• Add --prefix-length to conda-build. This allows one to set the prefix length manually. It should be used
sparingly, preferring creation of a temporary folder on non-encrypted locations, and setting --croot to that
temporary folder. #1579

• Add --no-prefix-length-fallback option to conda-build, to fail builds that encounter short prefixes, rather
than falling back to the short prefix #1579

• Change CRAN-skeleton to follow conda-forge style #1596

• Allow relative paths to files in source/url field #1614

5.152.2 Bug fixes

• Rework locks to be more robust #1540

• Call make_hardlink_copy on Windows to prevent conda failures #1575

• Delete the work folder before running the test suite. Exposes faulty links to source files more easily. #1581

• Add support for Python 3.6 in selector expressions #1592

• Don’t try to compile pyc files when python is not installed in the build env #1593

• Fix a function call leading to corrupted meta.yaml output #1589

• Fix logger to be package-local. Fixes logger output not showing up. #1583

• Disallow leading periods in package version #1594

• Fix reference to undefined need_source_download #1595

• Disallow - in feature names, to avoid conflicts with conda’s handling of package names #1600

• Remove help text about passing multiple --python options or “all” - this has been broken for some time. Replace-
ment coming in 3.0.0. #1610

• Fix clobbering of no_link variable. #1611

• Fix index when --output-folder is specified #1613

• Fix python_d.exe incompatibility with conda 4.3 #1615
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5.152.3 Contributors

• @asmeurer

• @hajs

• @johanneskoester

• @kalefranz

• @mingwandroid

• @msarahan

• @mwiebe

• @soapy1

5.153 2.1.0beta1 (2016-12-20)

5.153.1 Enhancements

• Consolidate package metadata from extra.json and noarch.json into package_metadata.json #1535 #1539

• finalize paths.json, (formerly files.json), which supersedes the older separate files for tracking file data #1535

• Support output of multiple packages from one recipe #1576

• Support output of wheels #1576

• Add --prefix-length to conda-build. This allows one to set the prefix length manually. It should be used
sparingly, preferring creation of a temporary folder on non-encrypted locations, and setting --croot to that
temporary folder. #1579

• Add --no-prefix-length-fallback option to conda-build, to fail builds that encounter short prefixes, rather
than falling back to the short prefix #1579

• Change CRAN-skeleton to follow conda-forge style #1596

5.153.2 Bug fixes

• Rework locks to be more robust #1540

• Call make_hardlink_copy on Windows to prevent conda failures #1575

• Delete the work folder before running the test suite. Exposes faulty links to source files more easily. #1581

• Add support for Python 3.6 in selector expressions #1592

• Don’t try to compile pyc files when python is not installed in the build env #1593

• Fix a function call leading to corrupted meta.yaml output #1589

• Fix logger to be package-local. Fixes logger output not showing up. #1583

• Disallow leading periods in package version #1594

• Fix reference to undefined need_source_download #1595

• Disallow - in feature names, to avoid conflicts with conda’s handling of package names #1600
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5.153.3 Contributors

• @asmeurer

• @hajs

• @johanneskoester

• @kalefranz

• @mingwandroid

• @msarahan

• @mwiebe

• @soapy1

5.154 2.0.12 (2016-12-12)

5.154.1 Enhancements

• Whitelist, rather than hardcode, MACOSX_DEPLOYMENT_TARGET. Default to 10.7 #1561

• Allow local relative paths to be passed as channel arguments #1565

5.154.2 Bug fixes

• Keep CONDA_PATH_BACKUP as allowed variable in build/test env activation. Necessary to make deactivation
work correctly. #1560

• Define nomkl selector when FEATURE_NOMKL environment variable is not set #1562

• Move test removal of packaged recipe until after test completes #1563

• Allow source_files in recognized meta.yaml fields #1572

5.154.3 Contributors

• @jakirkham

• @mingwandroid

• @msarahan

5.155 2.0.11 (2016-11-28)

5.155.1 Enhancements

• Further develop and update files.json #1501

• New command line option: --output-folder allows moving artifact after build (to facilitate CI) #1538

• support globs in ignore_prefix_files, has_prefix_files, always_include_files,
binary_has_prefix_files #1554
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• decouple ignore_prefix_files from binary_relocation; make binary_relocation also accept a list
of files or globs #1555

5.155.2 Bug fixes

• rename short_path key in files.json to path #1501

• allow ! in package version (used in epoch) #1542

• don’t compute SHA256 for folders #1544

• fix merge check for dst starting with src #1546

• use normpath when comparing utils.relative (fixes git clone issue) #1547

• disallow softlinks for conda (>=v.4.2) in conda-build created environments #1548

5.155.3 Contributors

• @mingwandroid

• @msarahan

• @soapy1

5.156 2.0.10 (2016-11-14)

5.156.1 Bug fixes

• Fix backwards incompatibility with conda 4.1 #1528

5.156.2 Contributors

• @msarahan

5.157 2.0.9 (2016-11-11)

5.157.1 Enhancements

• break build string construction out into standalone function for external usage (Concourse CI project) #1513

• add conda-verify support. Defaults to enabled. Adds conda-verify as runtime requirement.

•
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5.157.2 Bug fixes

• handle creation of intermediate folders when filenames provided as build/source_files arguments #1511

• Fix passing of version argument to pypi skeleton arguments #1516

• break symlinks and copy files if symlinks point to executable outside of same path (fix RPATH misbehavior on
linux/mac, because ld.so follows symlinks) #1521

• specify conda executable name more specifically when getting about.json info. It was not being found in some
cases without the file extension. #1525

5.157.3 Contributors

• @jhprinz

• @msarahan

• @soapy1

5.158 2.0.8 (2016-11-03)

5.158.1 Enhancements

• Support otool -h changes in MacOS 10.12 #1479

• Fix lists of empty strings created by ensure_list (patches failing due to empty patch list) #1493

• Improved logic to guess the appropriate license_family to add to package’s index. This improves filtering.
#1495 #1503

• Logic for the license_family is now shared between open-source conda-build, and proprietary cas-mirror
packages. #1495 #1503

5.158.2 Bug fixes

• Centralize locks in memory to avoid lock timeouts within a single process #1496

• fix overly broad regex in detecting whether a recipe uses version control systems #1498

• clarify error message when extracting egg fails due to overlapping file names #1500

• fix regression where subdir was not respecting non-x86 arch (values other than 32 or 64) #1506

5.158.3 Contributors

• @caseyclements

• @minrk

• @msarahan

222 Chapter 5. Release notes

http://ld.so


conda-build Documentation, Release 0.0.0.dev0+placeholder

5.159 2.0.7 (2016-10-24)

5.159.1 Enhancements

• populate SHLIB_EXT environment variable. For example, .so, .dll, .dylib file extensions use this for their native
ending. #1478

5.159.2 Bug fixes

• fix metapackage not going through api, thus not showing output file path. #1470

• restore script exe creation on Windows. These are for standalone scripts installed by distutils or setuptools in
setup.py. #1471

• fix noarch value propagation from meta.yaml to config. Was causing noarch to not be respected in some cases.
#1472

• fix calls to subprocess not converting unicode to str #1473

• restore detect_binary_files_with_prefix behavior - in particular, respect it when false. # 1477

5.159.3 Contributors

• @jschueller

• @mingwandroid

• @msarahan

5.160 2.0.6 (2016-10-13)

5.160.1 Bug fixes

• fix erroneous import that was only compatible with conda 4.2.x #1460

5.160.2 Contributors

• @msarahan

5.161 2.0.5 (2016-10-13)

5.161.1 Enhancements

• Add new jinja function for extracting information from files with regular expressions #1443
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5.161.2 Bug fixes

• Quote paths in activation of build and test envs #1448

• Fix source re-copy (leading to IOError) with test as a separate step #1452

• Call conda with an absolute path when gathering metadata for package about.json #1455

• Don’t strictly require conda-env to be present for about.json data #1455

• Fix version argument to skeletons not being respected #1456

• Fix infinite recursion when missing dependency is either r or python #1458

5.161.3 Contributors

• @bryanwweber

• @msarahan

5.162 2.0.4 (2016-10-07)

5.162.1 Enhancements

• Add build/skip_compile_pyc meta.yaml option. Use to skip compilation on pyc files listed therein. #1169

• Add build environment metadata to about.json (conda, conda-build versions, channels, root pkgs) #1407

• Make subdir member of config a derived property, so that setting platform or bits is more direct #1427

• Use subprocess call to windows del function to clear .trash folder, rather than conda. Big speedup. #1438

5.162.2 Bug fixes

• fix regression regarding ‘config’ in pypi skeleton for recipes with entry points #1430

• don’t load setup.py data when considering entry points (use only info from meta.yaml) #1431

• fall back to trying to copy files without attributes or metadata if those fail #1436

• Fix permissions on packaged files to be user and group writable, and other readable. #1437

• fix conda develop not respecting python version of target environment #1440

5.162.3 Contributors

• @mingwandroid

• @msarahan
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5.163 2.0.3 (2016-09-27)

5.163.1 Enhancements

• add support for noarch: python #1366

5.163.2 Bug fixes

• convert popen args to bytestrings if unicode #1413

• Fix perl file access error on win skeleton cpan #1414

• Catch patchelf failures in post #1418

• fix path walking in get_ext_files #1422

5.163.3 Contributors

• @mingwandroid

• @msarahan

• @soapy1

5.164 2.0.2 (2016-09-27)

5.164.1 Enhancements

• Consider all recipes when printing output paths with --output #1332

• Lay groundwork for noarch packages with different types allowed (not just noarch_python) #1334

• Improve setting RPATH on Linux - handle relative paths better #1336

• Add GPL as a license family #1340

• Skip fixing rpath for files listed in ignore_prefix_files #1345

• Uniformly use conda’s rm_rf function, not move_to_trash #1355

• Add support for alternate PKGINFO files. Adds pkginfo dependency. #1353

• Add --croot argument to conda build CLI, to specify build root folder #1358

• Do not index pkgs folder #1381 #1388

• Assert that merge destination is not a subdir of source, to avoid recursion problems #1396

• add UUID to token upload test to avoid race condition that caused intermittent CI failure #1392

• Roll source.get_dir into config.work_dir, to avoid confusion. #1400

• Improve locking in several places #1405 #1408
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5.164.2 Bug fixes

• Fix guess_license_family to have LGPL -> LGPL, not public domain #1336

• Restore standard behavior with __pycache__ folder and pyc files #1333

• Fix pyver_re to not catch python-* packages #1342

• Fix erroneous file argument to logging call #1344

• Fix convert unix -> win not creating entry point py scripts #1348

• Remove pytest timeout for tests. It is responsible for intermittent CI test crashes. #1351

• Fix retrieval of CONDA_NPY setting (only --numpy flag was being respected) #1356

• Fix --no-build-id argument to conda build that was note being respected #1359

• Fix handling of recipe folder specifications coming out blank or . #1360 #1391

• Handle conda 4.2 exceptions better for LinkErrors and PaddingErrors, better support OpenSSL custom prefix
replacement #1362

• Fix indentation error leading to skip-existing not working #1364

• Fix skeletonize not passing arguments from CLI #1384 #1387 #1406

• Check if file exists before trying to use stat on it. Might avoid mmap errors. #1389

• Fix no include recipe option when input is metadata (as opposed to recipe file path) #1398

• Normalize slashes in examining files in tarfiles (always forward slashes) #1404

5.164.3 Contributors

• @gabm

• @jakirkham

• @johanneskoester

• @mingwandroid

• @msarahan

• @mwcraig

• @soapy1

• @sooneecheah

• @yoavram

5.165 2.0.1 (2016-09-06)

5.165.1 Enhancements

• Add disable_pip build option to disable conda’s automatic add of pip/setuptools #1311

• Add numpy to pypi env creation if it is imported in setup.py #1289

• Improve compatibility with conda >=4.2 regarding prefixes that are too short #1323

• Delete .pyo files prior to compiling pyc files. They are considered harmful. #1328
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• Add conda build purge-all command that cleans out built packages and build folders #1329

5.165.2 Bug fixes

• Use source.get_dir instead of config.workdir for source_files (was one level too low) #1288

• Import setuptools in windows.py to apply vc9-finding monkeypatch #1290

• Fix convert not updating subdir in index.json #1297

• Update post-build deprecation warning to state 3.0 as release for removal #1298

• Create pkgs folder if it does not exist #1299

• Fix warn_on_old_conda_build to ignore non-final release versions (alpha/beta/rc) #1303 #1315

• Remove coercion of pycache folder into flat pyc files #1304

• Fix metadata retrieval in bdist_conda #1308

• Add supplemental removal of cached packages when conda does not fully remove them #1309

• Simplify updating the package index #1309

• Straighten out when metadata member config is used, relative to config argument #1311

• Catch prefix length errors with OpenSSL’s custom prefix replacement program #1312

• Replace all colons with _ in git mirror folders to avoid Windows path errors #1322

• Fix missing file contents in converted packages. Test. #1325

5.165.3 Contributors

• jakirkham

• mingwandroid

• msarahan

5.166 2.0.0 (2016-08-29)

Notes here are a consolidation of all changes between 1.21.14 and 2.0.0.

5.166.1 Enhancements

• Increase placeholder path to 255 bytes (affects only Linux/Mac. Packages need to be rebuilt to support longer
embedded paths) #877

• Configuration is local, passed via config argument. No more global config. #953

• Created Python API in conda_build/api.py #953

• Separate build folders per-build to allow parallelism #953

• Add locking to allow safe parallelism #953

• Add build flag to turn off separate build folders (–no-build-id) #953

• Much greater test coverage across all modules #953
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• Add CONDA_BUILD_STATE variable that reflects RENDER, BUILD, or TEST state of build #1232

• Add support for HG_ variables in meta.yaml templates (for hg repos) #207 #1234

• Add source_files test argument in meta.yaml to copy files from source into test #1237

• add a numpy.distutils patch to jinja templating, so that fortran projects using numpy can also use jinja2 (thanks
@bladwig1) #1252

• Ensure that the build environment is on PATH during all tooling and testing #1256

• Make failure due to pip requirements in meta.yaml clearer #1279

• Allow API to accept either paths to meta.yaml files or MetaData objects, for better compatibility #1281

• Implement tests to verify api stability #1283

• Add build/noarch to recipe metadata. Use for truly platform independent packages - same folder in every install.
#1285

5.166.2 Bug fixes

• Fix error converting linux to win packages due to python version mismatch #481

• Fix infinite loop that occurred with circular dependencies being built #953

• Improve test data structures to allow profiling with pytest-profiling #953

• Fix version sorting in pypi skeleton generator #1238

• improve backwards compatibility* prefix build and test envs with _, so that conda can be installed in them #1242

• fix bdist_conda; add smoke test for it to Travis #1243

• fix windows entry points (duplicate bad logic) #1246

• fix inspect entry point in embedded conda.recipe #1251

• create build environment before looking for VCS in it. #1253

• fix a deadlock with recursive environment creation on encountering packages with short prefixes #1257

• with conda commands #1259

• only compile pyc files if python is in the build prefix # 1261

• remove exception catch-all in build CLI, to show actual errors more #1262

• specify full paths to activate scripts to avoid PATH conflicts with virtualenv #1266

• clean up remnants of pipbuild #1267

• remove pyc files from any source_files arguments to test in meta.yaml (avoid __file__ errors) #1272

• copy files and folders when breaking hardlinks (rather than renaming) to avoid cross-filesystem errors #1273

• add Scripts folder to prepended binary paths searched on Windows #1276

• update MACOSX_DEPLOYMENT_TARGET hard-coded value to 10.7 (better fix soon) #1278

• disallow backslashes in meta.yaml fields describing paths (e.g. always_include_files) #1280

• prevent GIT_* env vars from containing newlines #1282

• restore prefix-lengths inspect command (lost in merging) #1283
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5.166.3 Restructuring

• CLI scripts have been gutted and moved to conda_build/cli. Content from them is in conda_build, in scripts
without main_ prefix. #953

• Skeleton generators have been broken out of main_skeleton.py, and consolidated into conda_build/
skeletons. The contents of this folder are examined at runtime for pluggability. #953

5.166.4 Contributors

• @bladwig1

• @brentp

• @heather999

• @jakirkham

• @mingwandroid

• @msarahan

• @melund

• @pigmej

5.166.5 Testers

• @dsludwig

• @ericdill

• @jakirkham

• @mingwandroid

• @pitrou

• @srossross

5.167 2.0.0beta4 (2016-08-26)

5.167.1 Bug fixes

• improve backwards compatibility with conda commands #1259

• only compile pyc files if python is in the build prefix # 1261

• remove exception catch-all in build CLI, to show actual errors more #1262

• specify full paths to activate scripts to avoid PATH conflicts with virtualenv #1266

• clean up remnants of pipbuild #1267

• remove pyc files from any source_files arguments to test in meta.yaml (avoid __file__ errors) #1272

• copy files and folders when breaking hardlinks (rather than renaming) to avoid cross-filesystem errors #1273

• add Scripts folder to prepended binary paths searched on Windows #1276

• update MACOSX_DEPLOYMENT_TARGET hard-coded value to 10.7 (better fix soon) #1278
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5.167.2 Contributors

• @dsludwig (testing)

• @ericdill (testing)

• @jakirkham (testing)

• @mingwandroid (testing)

• @msarahan

• @pitrou (testing)

• @srossross (testing)

5.168 2.0.0beta3 (2016-08-23)

5.168.1 Enhancements

• add a numpy.distutils patch to jinja templating, so that fortran projects using numpy can also use jinja2 (thanks
@bladwig1) #1252

5.168.2 Bug fixes

• prefix build and test envs with _, so that conda can be installed in them #1242

• fix bdist_conda; add smoke test for it to Travis #1243

• fix windows entry points (duplicate bad logic) #1246

• fix inspect entry point in embedded conda.recipe #1251

• create build environment before looking for VCS in it. #1253

• fix a deadlock with recursive environment creation on encountering packages with short prefixes #1257

5.168.3 Contributors

• @bladwig1

• @ericdill (testing)

• @jakirkham

• @mingwandroid (testing)

• @msarahan
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5.169 2.0.0beta2 (2016-08-22)

This release includes all current (1.21.14) changes made to the 1.21.x series.

5.169.1 Enhancements

• Configuration is local, passed via config argument. No more global config. #953

• Created Python API in conda_build/api.py #953

• Separate build folders per-build to allow parallelism #953

• Add locking to allow safe parallelism #953

• Add build flag to turn off separate build folders (–no-build-id) #953

• Much greater test coverage across all modules #953

• Add CONDA_BUILD_STATE variable that reflects RENDER, BUILD, or TEST state of build #1232

• Add support for HG_ variables in meta.yaml templates (for hg repos) #207 #1234

• Add source_files test argument in meta.yaml to copy files from source into test #1237

5.169.2 Bug fixes

• Fix error converting linux to win packages due to python version mismatch #481

• Fix infinite loop that occurred with circular dependencies being built #953

• Improve test data structures to allow profiling with pytest-profiling #953

• Fix version sorting in pypi skeleton generator #1238

5.169.3 Restructuring

• CLI scripts have been gutted and moved to conda_build/cli. Content from them is in conda_build, in scripts
without main_ prefix. #953

• Skeleton generators have been broken out of main_skeleton.py, and consolidated into conda_build/
skeletons. The contents of this folder are examined at runtime for pluggability. #953

5.169.4 Contributors

• @melund

• @msarahan

• @pigmej

5.169. 2.0.0beta2 (2016-08-22) 231



conda-build Documentation, Release 0.0.0.dev0+placeholder

5.170 1.21.14 (2016-08-18)

5.170.1 Bug fixes

• fix pyc compilation when egg files/folders are present #1225

5.170.2 Contributors

• @msarahan

5.171 1.21.13 (2016-08-18)

5.171.1 Enhancements

• use git -am when applying git patches, so that patches better retain git history #1222

• allow relatively pathed git submodules #1222

• add guess_license_family to pypi skeleton generator #1222

5.171.2 Bug fixes

• fix typo in convert.py

5.171.3 Contributors

• @mingwandroid

• @msarahan

5.172 1.21.12 (2016-08-17)

5.172.1 Enhancements

• Whitelist the CPU_COUNT environment variable. #1149

• Add tool for examining prefix length in existing packages #1195

• Add a conda interface layer for better compatibility with conda 4.2 #1200 #1203 #1206

• Document how to run tests #1205

• Update default versions for R (3.3.1) and Perl (5.20.3) builds #1220
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5.172.2 Bug fixes

• Don’t compile .py files in executable locations. Compile one at a time. #1186

• Don’t force download if vcs is used as a source #1212

• Break hardlinks as a post-install step. Hard links can cause problems at package install time. #1215

• Make environment variables used by conda in environment creation always be bytestrings #1216 #1219

5.172.3 Contributors

• @jakirkham

• @kalefranz

• @msarahan

5.173 1.21.11 (2016-08-06)

5.173.1 Bug fixes

• Correct logic for printout of meta.dist determination #1174

• Attempt to use src_dir instead of WORK_DIR for directory creation #1175

• Fix escaping problem with PY_VCRUNTIME_REDIST setting #1172

• Set build prefix for win by path, not name #1172

• Quote INCLUDE and LIB env var settings for win better #1172

• Fix pypi skeleton package search #1181

5.173.2 Contributors

• @msarahan

• @pelson

5.174 1.21.10 (2016-08-02)

5.174.1 Bug fixes

• Compile files ending with .py, not py. #1163

• Move root logger to entry points, to not interfere with conda #1164 #1166

• Use setuptools entry points, rather than pre-defined scripts #1165

• Always use the long build prefix to avoid confusion #1168
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5.174.2 Contributors

• @mingwandroid

• @msarahan

5.175 1.21.9 (2016-08-01)

5.175.1 Bug fixes

• Add debug option that shows conda output during build. Hide output otherwise. #1159

• Add regression test for conda metapackage command, fix missing token and user args. #1160

• Create croot (conda-bld) folder if missing before locking in render and skeleton. #1161

5.175.2 Contributors

• @msarahan

5.176 1.21.8 (2016-07-31)

5.176.1 Bug fixes

• Fix --source argument to build - was building when should only download source. #1152

• Don’t try to create work folder when it exists (but is empty) #1153

• Fix a logic error with need_source_download not existing #1148

5.176.2 New Things

• Don’t exit on compileall failure #1146

• Add CONDA_BUILD_RENDERING environment variable that is set during recipe rendering #1154

• Change pyc compilation to only affect files that would be packaged (not all of site-packages). Compile pyc files
on py3. #1155

• Rename load_setuptools to load_setup_py_data (keep load_setuptools for compat; but show warning)
#1156

• Test that condarc channels are respected in build #1157
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5.176.3 Contributors

• @daler

• @minrk

• @msarahan

5.177 1.21.7 (2016-07-22)

5.177.1 Bug fixes

• Add test of requirements.txt parsing for runtime requirements #1127

• Set PY_VCRUNTIME_REDIST for VS 2015+, so that DLL linkage is used #1129

• Use os.path.normpath in find_lib #1132

• Fix path prepending in test (use only PATH, and use consolidated code) #1135

• Add dist split for channel names #1136

• Provide fallback path to render recipe when build environment is necessary for rendering #1140

• Sort package versions coming from PyPI for skeleton #1141

5.177.2 Contributors

• @mingwandroid

• @msarahan

5.178 1.21.6 (2016-07-14)

5.178.1 New Things

• Allow pass-through of setup.py options in conda skeleton pypi #680

• Allow specification of pinning numpy in conda skeleton pypi #680

• Support PEP420 namespace packages (don’t barf on existing folders.) Do barf on existing files. #1074

5.178.2 Bug fixes

• Fix handling of quotes in selectors #1104

• Fix load_setuptools in jinja context. Problem was incorrect cwd in function. #1106

• Make Win activate script file extensions explicit #1107

• Warn users on failed git repo info failure, rather than crash #1108

• Remove killing MSBuild.exe at end of win build. Remove psutil dependency. #1109

• Prepend PATH before creating env, to ensure post-link script success. #1115, #1118

• Make Python tests drop out on failure appropiately on win #1122
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• Make hyphenation consistent with include_recipe in meta.yaml #1124

• Use full path of test env when activating #1125

5.178.3 Contributors

• @ikalev

• @msarahan

• @mwcraig

5.179 1.21.5 (2016-07-07)

5.179.1 Bug fixes

• Make --skip-existing respect remote channels (s3, file, anaconda.org) #1102

• Reduce always_include_files glob fail exit to a warning #1101

• Fail more gracefully when finding a vcs executable fails #1100

• Add better error when PyPI fails with XMLRPC. Add tests for published examples. #1098

• Fix lack of ‘call’ in windows test activate script that was terminating tests early #1097

• Take newest version from PyPI when creating skeleton #1092

• Fix unicode encoding error in conda skeleton pypi #1092

• Support PEP420 namespace packages (write into existing folders, but raise error rather than overwrite existing
files. #1090

• Fix an error where an intermediate None value broke jinja2 rendering #1088

• Add missing support for include_recipe in meta.yaml #1085

5.179.2 Contributors

• @ikalev

• @msarahan

5.180 1.21.4 (2016-07-05)

5.180.1 Bug fixes

• Choose newest Pypi skeleton version; fix unicode encoding in pypi metadata #1092

• Add Numpy 1.11 to all_versions dict for autocompletion #1078

• Fix MSVC 3.3/3.4 builds when Win7SDK not installed #1072

• Fix an error with build number, when build number is None or otherwise invalid #1088
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5.180.2 Known issues

• Environment activation requires conda >=4.1.6. The activate.bat script does not look in the right place for the
activate.d folder.

• The test suite on Linux and Mac fails the python-build, python-run, and python-build-run tests, because an errant
__conda-version__.txt file is somehow present. It is not clear where it comes from, and each of these tests
pass when run individually. If you have mysterious issues, and you use __conda-version__.txt or files like
it, please file an issue.

5.180.3 Contributors

• @adament

• @aleksey

• @ikalev

• @msarahan

5.181 1.21.3 (2016-06-27)

5.181.1 Bug fixes

• Fix a regression in Windows, where a compiler was a hard requirement, and was not always showing up, anyway.
#1049 Contributors:

• @msarahan

5.182 1.21.2 (2016-06-24)

5.182.1 Bug fixes / Improvements

• revert some MSVC activation logic to still call vcvarsall directly in build script

• fix Windows testing for binary prefix replacement (not done on win)

• Add a warning message when conda-build can’t create an environment due to unsatisfiable dependencies

• Improve notion of whether a recipe uses a VCS in its metadata, or in its build

5.182.2 Known issues

• Environment activation on Windows will not work until Conda 4.1.4 is released. The activate.bat script does not
look in the right place for the activate.d folder.

• The test suite on Linux and Mac fails the python-build, python-run, and python-build-run tests, because an errant
__conda-version__.txt file is somehow present. It is not clear where it comes from, and each of these tests
pass when run individually. If you have mysterious issues, and you use __conda-version__.txt or files like
it, please file an issue.
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5.182.3 Contributors

• @msarahan

• @patricksnape

5.183 1.21.1 (2016-06-22)

5.183.1 Bug fixes / Improvements

• Simplify MSVC activation, using distutil’s existing logic #1036

• Correctly interpret paths returned from git on windows, trying cygpath, falling back to conda regex #1037

• Fix ability to disable anaconda upload in condarc #1043

• Change environment activation to call activation in scripts, rather than having Python store variables #1044

5.183.2 Contributors

• @msarahan

• @mwcraig

• @patricksnape

5.184 1.21.0 (2016-06-15)

5.184.1 New stuff

• Add FEATURE_ environment variables for MKL, opt and debugging #978

• add info/about.json file that contains the “about” section of meta.yaml #941

• allow --dirty flag to be passed to conda build command. Skips download, and provides DIRTY environment
variable in build scripts. #973

• Add msys2 paths to build and test environments #979

• add new x86 and x86_64 selectors for Intel platforms #986

• keep original meta.yaml in recipe folder of package; create meta.yaml.rendered in recipe folder. Neither exist
when recipe not included. #1004

• add ignore_prefix_files key to build in meta.yaml. Can ignore list of files, or True to ignore all prefix files.
#1008 #1009

• Automatically determine patch strip level #1011
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5.184.2 Bug fixes/Improvements

• Lightened requirement that x.x be defined in both build and runtime sections. #650

• Remove info/recipe.json from build conda packages. Superseded by info/recipe/meta.yaml.rendered. #781

• Search for single and double backslashes when finding files that need prefix replacement #962

• Track undefined jinja variables and use them to decide whether to download source #964

• handle patches with p0 or p1 #969, #1011, #1020

• only set os.environ for non-None variables #981

• Don’t use long prefixes on windows #985

• Fix missing encoding argument #987

• Respect proxy variables more appropriately #989

• Search packages on PyPI, rather than listing them all. Should avoid some timeout errors there. #991

• Fix unix-style paths returned from git on Windows preventing relative paths from providing Jinja2 metadata #995

• improve logic handling “dirty” downloading. Always download when not dirty. #995

• Fix post-build variables when no build section existed in original meta.yaml #999

• Activate _build and _test environments approriately, rather than manipulating PATH directly #1002

• Don’t clone git submodules until after first checkout #1025

• Move check_install over from conda.install #1027

5.184.3 Deprecations

• __conda_version__.txt and other post-build methods of altering the build string are marked as deprecated.
Prefer Jinja2 templates where possible. Create issues if this breaks your work.

5.184.4 Contributors

• @filmor

• @ilanschnell

• @jschueller

• @mingwandroid

• @msarahan

• @pelson

• @stuarteberg

• @whitequark
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5.185 2.0.0beta (2016-06-05)

5.185.1 Compatibility breaks

• Increase placeholder path to 255 bytes (affects only Linux/Mac. Packages need to be rebuilt to support longer
embedded paths) #877

5.185.2 Bug fixes/Improvements

• Respect proxy variables more appropriately #989

• Fix post-build variables when no build section existed in original meta.yaml #999

• Fix unix-style paths returned from git on Windows preventing relative paths from providing Jinja2 metadata #995

• improve logic handling “dirty” downloading. Always download when not dirty. #995

• Search packages on PyPI, rather than listing them all. Should avoid some timeout errors there. #991

• Lightened requirement that x.x be defined in both build and runtime sections. #650

• Search for single and double backslashes when finding files that need prefix replacement #962

• Fix missing encoding argument #987

• Don’t use long prefixes on windows #985

• only set os.environ for non-None variables #981

• Track undefined jinja variables and use them to decide whether to download source #964

• handle patches with p0 or p1 #969

5.185.3 New stuff

• Add FEATURE_ environment variables for MKL, opt and debugging #978

• add new x86 and x86_64 selectors for Intel platforms #986

• add info/about.json file that contains the “about” section of meta.yaml #941

• Add msys2 paths to build and test environments #979

• allow --dirty flag to be passed to conda build command. Skips download, and provides DIRTY environment
variable in build scripts. #973

5.185.4 Contributors

• @filmor

• @heather999

• @ilanschnell

• @jschueller

• @mingwandroid

• @msarahan

• @pelson
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• @stuarteberg

• @whitequark

5.186 1.20.3 (2016-05-13)

5.186.1 Enhancements

• use posix metapackage for cran skeleton packaging (#956)

5.186.2 Bug fixes

• fix output of package paths (extra output was breaking tools). Add tests. (#950)

• change default of no_download_source in build.py (for compatibility with conda-build-all) (#950)

• fix regression in [] being confused for selectors (#957)

5.187 1.20.2 (2016-05-13)

5.187.1 Enhancements

• added --token and --user flags to pass corresponding information to anaconda upload (#921)

• added conda render command that outputs a fully-rendered meta.yaml to either stdout, or to file (with --file)
(#908)

• support source checkout tools specified in meta.yaml. If source checkout fails at the rendering phase, source
checkout and rendering are re-done after the build environment is created. (#843, #946)

• fn is now optional when a URL specifies a filename. (#942)

• CRAN skeleton generator now uses MSYS2 for Windows support (#942)

• conda build & conda render both recursively look for meta.yaml (support conda-forge feedstock submodules)
(#908)

• Whitelist MAKEFLAGS environment variable. Setting this outside conda build should take effect in your build.
Parallelize on *nix by adding -j here, instead of -j${CPU_COUNT} in your build.sh. This helps on CI’s, where
CPU_COUNT is not always well-behaved. (#917)

• Run python_d executable on windows when debug feature is active (#724)

• add conda build flag --keep-old-work that temporarily moves your last build, then moves it back after completion.
For debugging, when more than one package is involved. (#833)

• Allow selectors in imported jinja templates (#739)
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5.187.2 Bug fixes

• fixed several instances wherein --skip-existing did not work (#897, #945)

• Fully render recipe before outputting build string * fixes empty spots where GIT_* info should have been (#923)

• Add MSYS2 path conversion filters to avoid issues with Win 7.1 SDK (#900)

• Address PyPI’s change of URL format (#922,

• Fix invalid gcc “-m 32” flag (#916)

• Fix empty section (due to selectors) handling regression (#919)

• Fix regression in handling of VS2008 Pro (not Express + VC for Python 2.7). It is important to at least try to run
vcvarsall.bat. (#913)

• Fix CPAN skeleton generator (handle missing sections better) (#912)

• Make test/requires versions match build/requires without additional pinning (#907)

• Remove hard-coded CYGWIN path from conda-build’s custom PATH (#903)

• Source is downloaded before testing, fixing an issue where if build machine and some other test machine had
different source, strange things happened. (#946)

• Fix regression with Python 3.x fixing shebangs (#892)

• Fix conda inspect crashes by using conda-meta info rather than filenames or dist names for package info (#947)

5.187.3 Other

• restore AppVeyor testing for Windows builds (#864)

• Build py3.5 on Appveyor (#938)

• PEP8 cleanup; use flake8 rather than pyflakes (#938)

• limited scope of project locking to avoid lock conflicts between build and rendering (#923)

• set up anaconda.org build infrastructure (#924)

• on Windows, environment variables are written to the temporary bld.bat in the source work folder. (#933)

5.188 1.20.1 (2016-04-21)

• fix source/path and GIT_* issues, #801

• fix invalid assertion, #855

• environ.py refactor/clenup, #856

• Better messaging for yaml parsing errors, #862

• fix typo, #863

• make CONDA_PY and CONDA_NPY available in build.sh, #837

• execute source fetchers (e.g., git, hg) in the _build environment, #843

• use memory map rather than read() to reduce memory usage, #866

• fix svn url on Windows in checkout tool test, #867
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• fix empty files bug, #869

• improve Visual Studio logic, #861

• add files in order of increasing size to improve access times to tar, #870

• VS_YEAR, VS_VERSION, VS_MAJOR and CMAKE_GENERATOR environment variables, #872

5.189 1.20.0 (2016-03-25)

• support for Lua as a built-in language (Alex Wiltschko), #719

• allow additional keys in “about” section, #831

• fix Examples directory in noarch_python, #838

• revert OS X SIP fix, part of #808, #844

• fixed race condition between removal and creation of tmp_dir on win, #847

5.190 1.19.2 (2016-03-10)

• silence some errors when subprocessing git #790

• fixes conda skeleton cran under python3 #817

• fixes some bugs introduced with the #808 otools refactor, #821, #825

• fixes #818 conda-build 1.19.1 breaks C compilation, #825

• actually fix #807 recurisive builds after conda 4.0 release, #826

• fixes #820 crash when building from a git repo on Windows, #824

5.191 1.19.1 (2016-03-09)

• Environment variables defined in the ‘script_env’ build section of the meta.yaml file were previously assigned
the value ‘’ if not found in the environment. Now they are left unset and a warning is raised instead, #763.

• fix printing of NumPy 1.10 in help message, #776

• add -m32 to CFLAGS and CXXFLAGS for multilib gcc, #775

• fixes CYGWIN_PREFIX for drive letters other than C:, #788

• fixes for noarch package building on Windows, #799

• work-arounds for System Integrity Protection on OS X El Capitan, #808

• fix recurisive builds after conda 4.0 release, #813
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5.192 1.19.0 (2016-01-29)

• normalize unicode in conda skeleton cran, #681

• use /bin/sh on openbsd, #707

• fail early during patching

• use symlinks=True in copytree() for SVN sources, #665

• support entry points with dots (to suppoer classes), #690

• deprecate conda pipbuild in favor of conda skeleton. #710

• fix Win references to PipBuild scripts, #723

• allow git shallow clones, #604

• remove broken license file detection code, about/license_file expects filename now

• allow pinning dependencies when building a package, #741

• fix to restore building for multiple python versions on Windows, #744

• fix building (git unrelated things) when git is not installed, #745

• enable tab completion for the packages argument of the conda inspect commands, #748

5.193 1.18.2 (2015-11-19)

• move path prepending to function for uniformity, #601

• improve yaml loading, #603

• allow jinja2 templates to be located in current conda environment, #578

• fix NPY_VER for versions >= 1.10 (Should be ‘1.10’, not ‘1.1.0’), #660

• create jinja2 environment with ‘strict’ mode for undefined values, #661

• add a method to shell out and execute a command through subprocess, #621

5.194 1.18.1 (2015-10-16)

• allow config system to handle versions with have more than a single digit in the minor version, #626

• fix None encoding bug, #614

• add missing Python version when adding Python to test specs

• add features to build string

• improve yaml loading (you don’t have to quote version numbers anymore, eg. if the version is 3.1), #603
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5.195 1.18.0 (2015-10-01)

• develop options --build_ext, --clean_build_ext, #512

• fix directory not existing when using --no-include-recipe option

• add support for multiple rpaths on OS X to conda inspect

• don’t add ‘np’ to build string when package depends on numpy, but not a specific version

• be more explicit when numpy version is included in dependency specs, #573

• correctly remove egg directories on Windows, #536

• add new option msvc_compiler to build section for forcing MSVC compiler version

• add new command conda inspect channels --test-installable

• fix a Unicode issue with conda skeleton cpan

• when auto-adding python spec to execute run_test.py, don’t require a specific version

• add uninstall option to conda develop

• give a better error message in skeleton pypi for packages with invalid urls

• don’t try to test skipped recipes

• don’t exit on a skipped recipe

• recursively build packages from unsatisfiable install hints

• make recursive building work better with --skip-existing

• update CONDA_R to 3.2.2

• fix encoding issues with git_info on Windows

• test Python 3.5 in Travis CI

• add support for absolute rpaths on Linux

5.196 1.17.0 (2015-08-24)

• quote set calls in bld.bat

• use the trash on Windows when deleting environments, see #521

• improve documentation in noarch_python source

• rename ‘binstar’ -> ‘anaconda’, see #519

• allow blank sections in meta.yaml, see #533

• add --no-include-recipe option to conda-build, see #535

• add ability to add license file in info/license.txt, see #545

• don’t recursively build recipes more than once, #538

• .git can be a file, #537
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5.197 1.16.0 (2015-07-30)

• handle trailing slashes in package names in conda skeleton cran

• Cygwin git now works correctly.

• the prefix itself is now included in the PATH in the test script on Windows (previously it was just the Scripts
directory)

• by default, recipes that runtime depend on numpy will no longer depend on an explicit version of numpy. The
old behavior is still available by setting the CONDA_NPY environment variable or using conda build --numpy

• add py35 variable to selector namespace

• improve conda-meta untracked files error message

• fix conda build --help in Python 2

• add conda_build.sub_commands object which is a list of conda sub-commands

5.198 1.15.0 (2015-07-22)

• fix conda skeleton cran --update-outdated --output-dir .

• add argcomplete completers for recipes, --python, --numpy, --R, CRAN packages (with conda skeleton cran),
and PyPI packages (with conda skeleton pypi)

• conda develop now relinks object files on OS X (#490)

• allow a glob for always-include-files

• allow an extra section in meta.yaml, with free-form content (#483)

• don’t echo environment variables when building on Windows (#274)

• add conda build --skip-existing

• show default in help for conda skeleton --output-dir

• add --update-outdated option to conda skeleton cran

• skeleton: fix noarch_python option when build_comment is “#”

• don’t allow to build a package with the conda-meta directory

• automatically remove a package of the recipe itself if it is installed as a build dependency

• allow ‘extra’ key in meta.yaml, see #483

• move echo command in Windows build, see #274

• add regex to always included files, see #484

• add strings in conda.config.non_x86_linux_machines, e.g. “ppc64le”, as selector variables (renames
armv6 to armv6l)
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5.199 1.14.1 (2015-06-29)

• add --size option to change RSA modulus length when generating RSA key pairs (defaults to 2048 bit)

• make use of Crypto.Signature.PKCS1_PSS module, see #469

• update default for CONDA_R to 3.2.0

• manually install dependencies of recommended R packages in the build.sh, #457

• fix issues when git commits have non-ASCII characters, #458

• catch tarfile.ReadError in conda index, #460

5.200 1.14.0 (2015-06-16)

• add support for signing packages, and indexing them, #430

• removing LIBRARY_PATH and INCLUDE_PATH build environment variables on Unix, they where originally added
in #228, but are causing problem for some people and are not really necessary

• don’t rename meta.yaml to meta.yaml.orig in the recipe that is copied into built packages

• handle links to libraries that exist in multiple places better on OS X

• add --no-remove option to conda index

• various fixes for --python, --numpy, --perl, and --R

• various cleanups for the command documentation

• fix conda skeleton pypi --pypi-url

• don’t add the module name to the import tests in conda skeleton pypi

• add --groupby option to conda inspect linkages

• fix some incorrect “not found” instances from conda inspect linkages on OS X

• don’t include versions with restrictions in the build string

• don’t fail if conda-build cannot be found for the version check

• remove special logic if the username on Windows is “builder”

• conda skeleton pypi: add --noarch-python

• fix issue with filenames with spaces in conda convert

• place noarch packages in the noarch directory

• handle tests_require in conda skeleton pypi

• pipbuild: don’t check if package already exists

• skeleton pypi: remove --no-download option

• add noarch option to pipbuild

• add ability to sign packages
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5.201 1.13.0 (2015-05-19)

• skeleton pypi: fail better for packages with bad urls

• fix summary in bdist_conda

• fix compiling pyc files in Python 3

• convert: correctly set the subdir key in the metadata

• add --git-tag to skeleton cran

• include LANG in the build environment

• export proxy environment variables

• fix conda skeleton cran --cran-url

• set CONDA_DEFAULT_ENV in the build environment

• fix conda index -c

• correctly extract .tar.Z files

• avoid infinite loops in conda skeleton pypi --recursive

• add --all to conda inspect linkages and conda inspect objects

• add --manual-url to skeleton pypi

• fix issue where ‘conda index’ with old packages would create bad metadata

• resolve circular dependencies in conda-skeleton (#409)

• use versioneer 0.14 (#385)

• always_include_files errors out (exits) on files that aren’t there (#387)

• automatically lowercase the package name in bdist_conda (see aplpy/aplpy#259)

5.202 1.12.1 (2015-04-28)

• fix regression in always_include_files that causes build failure (#386)

5.203 1.12.0 (2015-04-10)

• correctly fix egg directories that are part of the package

• use the --force-rpath flag to patchelf

• update MACOSX_DEPLOYMENT_TARGET to 10.6

• fix running tests for Python packages whose version differs from the version in conda

• fix some Python 3 issues with pipbuild

• don’t allow packages to depend on themselves

• allow to use the r- prefix in conda skeleton cran

• make recommended r packages depend on r-base in skeleton cran
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• new post-build logic on OS X. All libraries on OS X now include LC_RPATH, which points to the environment
lib directory, and use and install name using @rpath

• don’t set DYLD_FALLBACK_LIBRARY_PATH in cran recipes (the new LC_RPATH logic on OS X makes this unnec-
essary)

• fix conda build --build-only when the long build prefix is used

• make conda inspect linkages work on OS X

• don’t hide the traceback for maximum recursion depth exceeded errors

• add conda inspect objects, for inspecting object files in packages (OS X only)

• add --untracked flag to conda inspect linkages

• build R packages against a specific version of R

• decompress .tar.z files

• add support for GitHub urls in conda skeleton cran

5.204 1.11.0 (2015-03-05)

• add script_env key in build section of meta.yaml file, which is a list of environment variable names which
are made available in the build script. If a variable is listed here, but is not in the environment, the value ‘’ is
assigned.

• Handle OSError in conda index

• Fix how the PATH environment variable is set on Windows

• Remove the work directory earlier in the build

• Give a helpful error message for dependencies like “python >= 2.7”

• Add CYGWIN_PREFIX environment variable on Windows

• Handle list requires in skeleton pypi

• Correctly fail if the Windows bld.bat exits 1

• Give a better error message if no urls can be found for a package

• Add __main__ to allow python -m conda_build

•

• Write the build script to the source directory for build/script instead of the recipe directory.

• Handle non-directories in copy_into (avoids an OSError, #332)

• Halt the build on YAML error without jinja2

• Clone git sources with the --recursive option

• Add --channel and --override-channels to conda build. -c is changed to mean --channel instead of --check.

• Add --check-md5 flag to conda index

• Look for vcvarsall.bat from the Microsoft Visual C++ Compiler for Python 2.7

• Use PyPi XMLRCP client search in order to ignore case for PyPi package names in pipbuild
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5.205 1.10.2 (2015-02-10)

• don’t set the GIT_* environment variables when the source is not a git repo

• skeleton cran: add extra metadata from CRAN to the recipe

• skeleton pypi: fix there not being a fragment in a url

• don’t match comment only lines as selectors

5.206 1.10.1 (2015-02-06)

• greatly improved ability to create noarch_python packages, #317

• added ‘subdir’ key to info/index.json

• allow url to be a list or urls, which are tried until one works

• use quotes instead of !!str for versions from the conda skeleton commands

• add conda skeleton cran to generate recipes for packages from CRAN

• add support for adding a readme to a recipe

• add a --quiet option to conda convert

5.207 1.10.0 (2015-01-15)

• automatically convert absolute symlinks to paths in the build prefix to relative ones.

• error if there are symlinks to the source directory.

• use the placeholder prefix in text files rather than the build prefix

• allow non-Python packages to be converted to other platforms with conda convert

• new command conda inspect for inspecting packages. The only subcommand so far is conda inspect linkages,
which shows the dynamic linkages of the shared object files on Linux.

• correctly handle Unix style has_prefixes on Windows

• run the tests in Binstar build

• only modify egg directories that are part of the package being built

• don’t exclude .dylib files from prefix replacement

• ability to build noarch packages

• allow specifying files to always include

• fix for building dependencies in some cases

• print the correct thing for binary files detected with a prefix

250 Chapter 5. Release notes



conda-build Documentation, Release 0.0.0.dev0+placeholder

5.208 1.9.1 (2014-11-18)

• set PYTHONNOUSERSITE=1 while running build scripts

• conda index: add error if they try to mix their packages into Anaconda channel

• fix building recipes with local git urls in Windows

• warn if conda-build is out of date

5.209 1.9.0 (2014-10-22)

• adapt tests for Windows

• don’t use the long build prefix if the short build prefix is already long

• support rewriting library load path for libraries that are in subdirectories of lib/ on OS X

• allow git_rev as a valid key in ‘source’, which is identical in behavior to git_branch and git_tag (all check-
out the given revision)

• also grab the full HEAD sha1 and shove it into the environmental variable GIT_FULL_HASH

• automatically detect text prefix files

• add detect_binary_files_with_prefix flag to meta.yaml to automatically detect binary files with the prefix
and add them to binary_has_prefix_files

• fix git_info when the author or commit message contains Unicode characters

• allow to pass a url to skeleton pypi

• add NPY_VER environment variable

• fix conda convert --show-imports

• give better error message when encountering a corrupt tarfile in conda index

• print{ some more helpful information about what is going on at the beginning of a build

• allow source/path in the meta.yaml to specify a path to the source (which can be relative to the recipe directory)

• support xz files in Python 3 without requiring unxz

• put spaces after skeleton pypi comments

• correctly detect when to preserve the egg directory and depend on setuptools in skeleton pypi

• set LIBRARY_PATH and INCLUDE_PATH when building on Unix

• allow selectors to have text after them if they are in a comment

• add CPU_COUNT environment variable to the build
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5.210 1.8.2 (2014-09-19)

• add substantially more tests

• add ability to set additional rpath directories using build/rpaths

• patch command on windows no-longer takes the --binary option

• fix post processing so that name-space packages can be ‘flattened’ into a single directory

• don’t remove the .svn directory when doing a svn checkout

5.211 1.8.1 (2014-09-03)

• has_prefix paths must always use /, even on Windows

• fix bug in Windows Python 2

• add .travis.yml

• allow recipes to use requirements.txt

• fix building a package that has Mach-O stub files

• fix recursive package building

• handle empty data size in pypi

• allow an explicitly set empty version string

5.212 1.8.0 (2014-08-22)

• add ability to convert Golke’s Windows packages into conda packages, use “conda convert .exe”. See also:
http://www.lfd.uci.edu/~gohlke/pythonlibs/

• handle spaces on Windows better

• add croot to the module level of conda_build.config for backwards compatibility

• changed extra long prefix for building to _placehold...

5.213 1.7.1 (2014-08-20)

• add --all-extras flag to skeleton pypi

• automatically use the long or short build prefix as needed

• fix to allow specification of full major.micro.minor for numpy, python, and perl (only add the build string if it is
an exact major.minor or major.minor.patch version. If it is an inequality, it is not added)
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5.214 1.7.0 (2014-08-05)

• better install_requires parsing for skeleton pypi

• the build environment from conda-build is now called _build___... This is so that recipes with
binary_has_prefix_files build against a sufficiently long prefix.

• don’t overwrite the input file in convert

• fix a bug related to the prefix_files.txt file

• show the download bytes in human form in skeleton pypi

• make patchelf error message clearer

• fix some issues with the git describe environment variables

• improve shebang line modifications with python.app

• show the download bytes in human form in skeleton pypi

5.215 1.6.1 (2014-07-29)

• fix an issue building with a git repository in Python 3

5.216 1.6.0 (2014-07-29)

• don’t fail on MachO stub files on OS X

• add some git describe related environment variables when the source is a git repository

• add --python and --numpy flags to conda build, which do the same thing as setting CONDA_PY and CONDA_NPY

• allow a . in CONDA_PY and CONDA_NPY

• correctly catch RuntimeError

• fix an issue building some packages on Windows

• make skeleton pypi --recursive work with versioned dependencies

• some additional type checking for meta.yaml

• always include numpy in skeleton pypi

5.217 1.5.0 (2014-07-03)

• add bdist_conda

• fix features and track_features

• detect files with the build prefix automatically on Windows
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5.218 1.4.0 (2014-07-01)

• fix skeleton pypi behind a proxy

• add binary_has_prefix_files, which does a binary prefix replacement

• fix skeleton pypi on Windows

• allow the git_url to be a relative path to the recipe directory

5.219 1.3.5 (2014-06-04)

• the yaml script tag was only written if build.sh already existed, see issue #105

• use tests_require to fill in test requirements in the setuptools template, see issue #107

5.220 1.3.4 (2014-06-02)

• add --build-only and --post flags to conda-build

• add conda convert -p all

• allow to set __conda_buildnum__.txt and __conda_buildstr__.txt, analogous to
__conda_version__.txt

5.221 1.3.3 (2014-04-28)

• add SHA256 support for downloaded source

• conda convert now creates platform directories, like win-32/converted_package.tar.bz2

• allow to specify the version of python, numpy, or perl in the meta.yaml (it will ignore the CONDA_PY, CONDA_NPY,
or CONDA_PERL, respectively, in this case)

5.222 1.3.2 (2014-04-15)

• allow changing conda-bld directory (which is by default /conda-bld when the conda root is not writable, and
~/conda-bld otherwise), to be changed by CONDA_BLD_PATH environment variable or conda-build: root-dir: in
condarc file

• add build/has_prefix_files

• remove broken conda-build/build_dest

• fix build in Windows Python 2

• add --quiet option to conda-build

• add check for characters in package name dependencies

• add .class to the object file extension blacklist

• removed build/no_softlink in favor of build/no_link with list of glob syntax
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5.223 1.3.1 (2014-03-25)

• add conda metapackage command

• fix recursive conda building when dependencies are nested more than one level deep.

• fix build in Windows Python 2

• fix skeleton pypi for packages whose setup.py has __future__ imports

• add conda pipbuild command which uses a simple recipe based on pip install to build a conda package

• fix skeleton pypi and pipbuild when package data does not have classifiers

• add a basic conda develop command

• add the --recursive option to conda skeleton pypi

• conda skeleton pypi no longer asks about single line licenses

• conda skeleton pypi now queries pypi case insensitively

• conda skeleton pypi now works in a different conda environment. This avoids anything bad that might happen
when trying to get the metadata from the package from messing up the root environment.

• conda skeleton pypi now patches distribute directly. This is more robust than trying to insert a patch into setup.py,
as was done previously.

• allow to set the version post-build by writing a __conda_version__.txt file to the source directory.

• add ability to skip binary relocation step by setting build/binary_relocation: False in meta.yaml

5.224 1.3.0 (2014-03-14)

• add skeleton for CPAN Perl packages, issue #53. Unlike the PyPI skeleton, it supports a --recursive option to
also generate the recipes for all of the dependencies of a given module/distribution

• add support for run_test.pl and Perl import tests when building Perl packages

• add CONDA_PERL environment variable support for determining which version of Perl to build packages for.
Unlike CONDA_PY, this must include the full version with periods (e.g., 5.18.2)

• automatically build packages for dependencies if the recipe is present in the current working directory

• fix a number of Python 3 compatibility issues, issue #59

• work with source files with uppercase suffixes

• switch from chrpath to patchelf on Linux, issue #57

• don’t use hard-coded msvc path

• sort import tests from skeleton pypi
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5.225 1.2.1 (2014-02-25)

• added conda-build/build_dest option to condarc

5.226 1.2.0 (2014-02-13)

• make sure WORK_DIR exists

• use MSVC 2010 for Python 3

• include the summary with conda skeleton pypi

• fix object detection on Python 3

• update default CONDA_NPY to 18

5.227 1.1.0 (2014-02-06)

• add ability to use templates in conda recipes

• remove fallback to /conda-recipes, i.e. conda-build always expects the full path to the recipe

• export PKG Build Number

• add pre-link to package, when it is found in recipe

• allow to add run_test.sh or run_test.bat, which will be run automatically during the test phase.

• Test commands from the test/commands section of meta.yaml are run from bash on Linux and OS X and batch
on Windows (previously they were run using Python’s subprocess).

• all environment variables from the build process are available during the tests, except with the build prefix re-
placed with the test prefix.

5.228 1.0.0 (2014-01-24)

• initial release

• includes conda-build, conda-convert, conda-index, conda-skeleton

• depends on new conda version 3

• add license to info/index.json object
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CHAPTER

SIX

CONTRIBUTING TO CONDA-BUILD

6.1 New Issues

If your issue is a bug report or a feature request for:

• a specific conda package: please file it at https://github.com/ContinuumIO/anaconda-issues/issues

• anaconda.org: please file it at https://anaconda.org/contact/report

• repo.anaconda.com: please file it at https://github.com/ContinuumIO/anaconda-issues/issues

• commands under conda env and all other conda commands: please file it at https://github.com/conda/
conda/issues

6.2 Code of Conduct

The conda organization adheres to the NumFOCUS Code of Conduct.

6.3 Contributing

Contributions to conda-build are always welcome! Please fork the conda/conda-build repository, and submit a
pull request (PR).

If a PR is a work in progress, please put [WIP] in the title. Contributions are expected to pass flake8 and test suites
run on the GitHub Actions Pipeline. Contributors also need to have signed our Contributor License Agreement.

6.4 Setting Up Your Environment

There are two ways to set up your environment for development/testing. The first is to reuse your base environment; this
is probably the easiest option but comes with the risk of potentially breaking conda/conda-build. The second option
is to create a development environment where we install conda/conda-build, which won’t impact the functionality
of conda/conda-build installed in your base environment.
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6.4.1 Using the Base Environment:

# activate/install into base env
$ conda activate base
(base) $ conda install --file tests/requirements.txt --channel defaults

# run tests
(base) $ pytest

# install as editable so you can play around with it
(base) $ pip install -e .
(base) $ conda-build --version
conda-build 3.21.5+17.gcde7b306

6.4.2 Creating a Development Environment:

# create/activate standalone dev env
$ CONDA_ENV=conda-build make setup
$ conda activate conda-build

# Run all tests on Linux and Mac OS X systems (this can take a long time)
(conda-build) $ make test

# install as editable so you can play around with it
(conda-build) $ pip install -e .
(conda-build) $ conda-build --version
conda-build 3.21.5+17.gcde7b306

6.5 Testing

Follow the installation instructions above to properly set up your environment for testing.

The test suite runs with pytest. The following are some useful commands for running specific tests, assuming you
are in the conda-build root folder:

6.5.1 Run all tests:

# On Linux and Mac OS X
make test
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6.5.2 Run one test file:

pytest tests/test_api_build.py

6.5.3 Run one test function:

pytest tests/test_api_build.py::test_early_abort

6.5.4 Run one parameter of one parametrized test function:

Several tests are parametrized, to run some small change, or build several recipe folders. To choose only one of them::

pytest tests/test_api_build.py::test_recipe_builds.py[entry_points]

Note that our tests use pytest fixtures extensively. These sometimes trip up IDE style checkers about unused or
redefined variables. These warnings are safe to ignore.

6.6 Releasing

Releases of conda-buildmay be performed via the rever command. Rever is configured to perform the activities
for a typical conda-build release. To cut a release, simply run rever <X.Y.Z> where <X.Y.Z> is the release number
that you want bump to. For example, rever 1.2.3. However, it is always good idea to make sure that the you have
permissions everywhere to actually perform the release. So it is customary to run rever check before the release,
just to make sure. The standard workflow is thus:

rever check
rever 1.2.3

If for some reason a release fails partway through, or you want to claw back a release that you have made, rever allows
you to undo activities. If you find yourself in this pickle, you can pass the --undo option a comma-separated list of
activities you’d like to undo. For example:

rever --undo tag,changelog,authors 1.2.3

Happy releasing!
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