

Conda

[image: _images/conda_logo.svg]

Package, dependency and environment management for any
language—Python, R, Ruby, Lua, Scala, Java, JavaScript, C/ C++,
FORTRAN

Conda is an open source package management system and environment
management system that runs on Windows, macOS and Linux. Conda
quickly installs, runs and updates packages and their dependencies.
Conda easily creates, saves, loads and switches between environments
on your local computer. It was created for Python programs, but it
can package and distribute software for any language.

Conda as a package manager helps you find and install packages.
If you need a package that requires a different version of
Python, you do not need to switch to a different environment
manager, because conda is also an environment manager. With just
a few commands, you can set up a totally separate environment to
run that different version of Python, while continuing to run
your usual version of Python in your normal environment.

In its default configuration, conda can install and manage the
thousand packages at repo.continuum.io that are built, reviewed
and maintained by Anaconda®.

Conda can be combined with continuous integration systems such
as Travis CI and AppVeyor to provide frequent, automated testing
of your code.

The conda package and environment manager is included in all versions of
Anaconda®,
Miniconda and
Anaconda Repository [https://docs.continuum.io/anaconda-repository/].
Conda is also included in Anaconda Enterprise [https://www.anaconda.com/enterprise/] , which provides on-site enterprise
package and environment management for Python, R, Node.js, Java and other
application stacks. Conda is also available on PyPI, although
that approach may not be as up to date.

User guide

	Overview

	Concepts

	Getting started with conda

	Installation

	Configuration

	Tasks

	Cheat sheet

	Troubleshooting

Overview

This page provides an overview of how to use conda. For an
overview of what conda is and what it does, please see the
front page.

The quickest way to start using conda is to go through the
20-minute Getting started with conda guide.

The conda command is the primary interface for managing
installations of various packages. It can:

	Query and search the Anaconda package index and current
Anaconda installation.

	Create new conda environments.

	Install and update packages into existing conda environments.

TIP: You can abbreviate many frequently used command options that
are preceded by 2 dashes (--) to just 1 dash and the first
letter of the option. So --name and -n are the same, and
--envs and -e are the same.

For full usage of each command, including abbreviations, see
Command reference. You can see the same information at the
command line by viewing the command-line help.

Concepts

	Conda directory structure

	Conda environments

	Conda packages

Conda directory structure

This section describes the conda system directory structure.

ROOT_DIR

The directory that Anaconda or Miniconda was installed into.

EXAMPLES:

/opt/Anaconda #Linux
C:\Anaconda #Windows

/pkgs

Also referred to as PKGS_DIR. This directory contains
decompressed packages, ready to be linked in conda environments.
Each package resides in a subdirectory corresponding to its
canonical name.

/envs

The system location for additional conda environments to be
created.

The following subdirectories comprise the default Anaconda
environment:

/bin

/include

/lib

/share

Other conda environments usually contain the same subdirectories
as the default environment.

Conda environments

A conda environment is a directory that contains a specific
collection of conda packages that you have installed. For
example, you may have one environment with NumPy 1.7 and its
dependencies, and another environment with NumPy 1.6 for legacy
testing. If you change one environment, your other environments
are not affected. You can easily activate or deactivate
environments, which is how you switch between them. You can also
share your environment with someone by giving them a copy of your
environment.yaml file. For more information, see
Managing environments.

Conda packages

A conda package is a compressed tarball file that contains
system-level libraries, Python or other modules, executable
programs and other components. Conda keeps track of the
dependencies between packages and platforms.

Conda packages are downloaded from remote channels, which are
URLs to directories containing conda packages. The conda
command searches a default set of channels, and packages are
automatically downloaded and updated from
http://repo.continuum.io/pkgs/. You can modify what remote
channels are automatically searched. You might want to do this to
maintain a private or internal channel. For details, see
Channel locations (channels). See also Managing packages.

The conda package format is identical across platforms and
operating systems.

To install conda packages, in the Terminal or an Anaconda Prompt, run:

conda install [packagename]

NOTE: Replace [packagename] with the desired package name.

A conda package includes a link to a tarball or bzipped tar
archive, with the extension “.tar.bz2”, which contains metadata
under the info/ directory and a collection of files that are
installed directly into an install prefix.

During the install process, files are extracted into the
install prefix, except for files in the info/
directory. Installing the files of a conda package into an
environment can be thought of as changing the directory to an
environment, and then downloading and extracting the .zip file
and its dependencies—all with the single
conda install [packagename] command.

Getting started with conda

Conda is a powerful package manager and environment manager that
you use with command line commands at the Anaconda Prompt for Windows,
or in a Terminal window for macOS or Linux.

This 20-minute guide to getting started with conda lets you try out
the major features of conda. You should understand how conda works
when you finish this guide.

SEE ALSO: Getting started with Anaconda Navigator [https://docs.anaconda.com/anaconda/navigator/getting-started], a
graphical user interface that lets you use conda in a web-like interface
without having to enter manual commands. Compare the Getting started
guides for each to see which program you prefer.

Before you start

You should have already installed
Anaconda [https://docs.anaconda.com/anaconda/install/].

Contents

	Starting conda on Windows, macOS or Linux. 2 MINUTES

	Managing conda. Verify that Anaconda is installed and check that conda is updated to the current version. 3 MINUTES

	Managing environments. Create environments and move easily between them. 5 MINUTES

	Managing Python. Create an environment that has a different version of Python. 5 MINUTES

	Managing packages. Find packages available for you to install. Install packages. 5 MINUTES

TOTAL TIME: 20 MINUTES

Starting conda

Windows

	From the Start menu, search for and open “Anaconda Prompt”.

[image: ../_images/anaconda-prompt.png]

On Windows, all commands below are typed into the Anaconda Prompt window.

MacOS

	Open Launchpad, then click the Terminal icon.

On macOS, all commands below are typed into the Terminal window.

Linux

	Open a Terminal window.

On Linux, all commands below are typed into the Terminal window.

Managing conda

Verify that conda is installed and running on your system by typing:

conda --version

Conda displays the number of the version that you have installed. You do not
need to navigate to the Anaconda directory.

EXAMPLE: conda 4.4.9

NOTE: If you get an error message, make sure you closed and re-opened the
Terminal window after installing, or do it now. Then verify that you are logged
into the same user account that you used to install Anaconda or Miniconda.

Update conda to the current version. Type the following:

conda update conda

Conda compares versions and then displays what is available to install.

If a newer version of conda is available, type y to update:

Proceed ([y]/n)? y

TIP: We recommend that you always keep conda updated to the latest version.

Managing Environments

Conda allows you to to create separate environments containing files, packages
and their dependencies that will not interact with other environments.

When you begin using conda, you already have a default environment named
base. You don’t want to put programs into your base environment, though.
Create separate environments to keep your programs isolated from each other.

	Create a new environment and install a package in it.

We will name the environment snowflakes and install the package
BioPython. At the Anaconda Prompt or in your Terminal window, type
the following:

conda create --name snowflakes biopython

Conda checks to see what additional packages (“dependencies”)
Biopython will need, and asks if you want to proceed:

Proceed ([y]/n)? y

Type “y” and press Enter to proceed.

	To use, or “activate” the new environment, type the following:

	Windows: activate snowflakes

	Linux and macOS: source activate snowflakes

Now that you are in your snowflakes environment, any conda
commands you type will go to that environment until
you deactivate it.

	To see a list of all your environments, type:

conda info --envs

A list of environments appears, similar to the following:

conda environments:

 base /home/username/Anaconda3
 snowflakes * /home/username/Anaconda3/envs/snowflakes

TIP: The active environment is the one with an asterisk (*).

	Change your current environment back to the default (base):

	Windows: deactivate

	Linux, macOS: source deactivate

TIP: When the environment is deactivated, its name is no
longer shown in your prompt, and the asterisk (*) returns to base.
To verify, you can repeat the conda info --envs command.

Managing Python

When you create a new environment, conda installs the same Python version you
used when you downloaded and installed Anaconda. If you want to use a different
version of Python, for example Python 3.5, simply create a new environment and
specify the version of Python that you want.

	Create a new environment named “snakes” that contains Python 3.5:

conda create --name snakes python=3.5

When conda asks if you want to proceed, type “y” and press Enter.

	Activate the new environment:

	Windows: activate snakes

	Linux, macOS: source activate snakes

	Verify that the snakes environment has been added and is active:

conda info --envs

Conda displays the list of all environments with an asterisk (*)
after the name of the active environment:

conda environments:
#
base /home/username/anaconda3
snakes * /home/username/anaconda3/envs/snakes
snowflakes /home/username/anaconda3/envs/snowflakes

The active environment is also displayed in front of your prompt in
(parentheses) or [brackets] like this:

(snakes) $

	Verify which version of Python is in your current
environment:

python --version

	Deactivate the snakes environment and return to base environment:

	Windows: deactivate

	Linux, macOS: source deactivate

Managing packages

In this section, you check which packages you have installed,
check which are available and look for a specific package and
install it.

	To find a package you have already installed, first activate the environment
you want to search. Look above for the commands to
activate your snakes environment.

	Check to see if a package you have not installed named
“beautifulsoup4” is available from the Anaconda repository
(must be connected to the Internet):

conda search beautifulsoup4

Conda displays a list of all packages with that name on the Anaconda
repository, so we know it is available.

	Install this package into the current environment:

conda install beautifulsoup4

	Check to see if the newly installed program is in this environment:

conda list

More information

	Conda cheat sheet.

	Full documentation— https://conda.io/docs/ .

	Free community support— https://groups.google.com/a/anaconda.com/forum/#!forum/anaconda .

	Paid support options— https://www.anaconda.com/support/ .

Installation

	System requirements

	Regular installation

	Installing in silent mode

	Installing conda on a system that has other Python installations or packages

The fastest way to obtain conda is to install
Miniconda, a mini version of
Anaconda that includes only conda and
its dependencies. If you prefer to have conda plus over 720 open
source packages, install Anaconda.

We recommend you install Anaconda for the local user, which does
not require administrator permissions and is the most robust
type of installation. You can also install Anaconda system wide,
which does require administrator permissions.

For information on using our graphical installers for
Windows or macOS, see the instructions for
installing Anaconda [http://docs.continuum.io/anaconda/install.html].

System requirements

	32- or 64-bit computer.

	For Miniconda—400 MB disk space.

	For Anaconda—Minimum 3 GB disk space to download and install.

	Windows, macOS or Linux.

	Python 2.7, 3.4, 3.5 or 3.6.

	pycosat.

	PyYaml.

	Requests.

NOTE: You do not need administrative or root permissions to
install Anaconda if you select a user-writable install location.

Regular installation

Follow the instructions for your operating system:

	Windows.

	macOS.

	Linux.

Installing in silent mode

You can use silent installation of
Miniconda or Anaconda for deployment or testing or building
services such as Travis CI and AppVeyor.

Follow the silent-mode instructions for your operating system:

	Windows.

	macOS.

	Linux.

Installing conda on a system that has other Python installations or packages

You do not need to uninstall other Python installations or
packages in order to use conda. Even if you already have a
system Python, another Python installation from a source such as
the macOS Homebrew package manager and globally installed
packages from pip such as pandas and NumPy, you do not need to
uninstall, remove, or change any of them before using conda.

Install Anaconda or Miniconda normally, and let the installer
add the conda installation of Python to your PATH environment
variable. There is no need to set the PYTHONPATH environment
variable.

To see if the conda installation of Python is in your PATH
variable:

	On macOS and Linux, open the Terminal and run—echo $PATH.

	On Windows, open an Anaconda Prompt and run—echo %PATH%.

To see which Python installation is currently set as the default:

	On macOS and Linux, open the Terminal and run—which python.

	On Windows, open an Anaconda Prompt and run—where python.

To see which packages are installed in your current conda
environment and their version numbers, in your Terminal window
or an Anaconda Prompt, run conda list.

Downloading conda

	Anaconda or Miniconda?

	Choosing a version of Anaconda or Miniconda

	GUI versus command line installer

	Choosing a version of Python

	Cryptographic hash verification

You have 3 conda download options:

	Download Anaconda [https://www.anaconda.com/download/]—free.

	Download Miniconda [https://conda.io/miniconda.html]—free.

	Purchase Anaconda Enterprise [https://www.anaconda.com/enterprise/].

You can download any of these 3 options with legacy Python 2.7 or
current Python 3.

You can also choose a version with a GUI or a command line
installer.

TIP: If you are unsure of which option to download, choose the
most recent version of Anaconda3, which includes Python 3.6, the
most recent version of Python. If you are on Windows or macOS,
choose the version with the GUI installer.

Anaconda or Miniconda?

Choose Anaconda if you:

	Are new to conda or Python.

	Like the convenience of having Python and over 150 scientific
packages automatically installed at once.

	Have the time and disk space—a few minutes and 300 MB.

	Do not want to individually install each of the packages you
want to use.

Choose Miniconda if you:

	Do not mind installing each of the packages you want to use
individually.

	Do not have time or disk space to install over 150 packages at
once.

	Want fast access to Python and the conda commands and you wish
to sort out the other programs later.

Choosing a version of Anaconda or Miniconda

	Whether you use Anaconda or Miniconda, select the most recent
version.

	Select an older version from the archive [https://repo.continuum.io/archive/] only if you are testing
or need an older version for a specific purpose.

	To use conda on Windows XP, select Anaconda 2.3.0 and see
Using conda on Windows XP with or without a proxy.

GUI versus command line installer

Both GUI and command line installers are available for Windows,
macOS and Linux:

	If you do not wish to enter commands in a Terminal window,
choose the GUI installer.

	If GUIs slow you down, choose the command line version.

Choosing a version of Python

	The last version of Python 2 is 2.7, which is included with
Anaconda and Miniconda.

	The newest stable version of Python is 3.6, which is included
with Anaconda3 and Miniconda3.

	You can easily set up additional versions of Python such as 3.5
by downloading any version and creating a new environment with
just a few clicks. See Getting started with conda.

Cryptographic hash verification

MD5 checksums are available for
Miniconda [http://repo.continuum.io/miniconda/] and both MD5 and SHA-256
checksums are available for
Anaconda [https://docs.continuum.io/anaconda/install/hashes/].

Download the installer file and before installing verify it as follows:

	macOS: In iTerm or a Terminal window enter md5 filename or shasum -a 256 filename.

NOTE: Replace filename with the actual path and name of the
downloaded installer file.

	Linux: In a Terminal window enter md5sum filename or sha256sum filename.

NOTE: Replace filename with the actual path and name of the
downloaded installer file.

	Windows:

	If you have PowerShell V4 or later:

Open a PowerShell console and verify the file as follows:

Get-FileHash filename -Algorithm MD5

or:

Get-FileHash filename -Algorithm SHA256

NOTE: Replace “filename” with the actual path and name of the downloaded
file.

	If you don’t have PowerShell V4 or later:

Use the free online verifier tool [https://gallery.technet.microsoft.com/PowerShell-File-Checksum-e57dcd67]
on the Microsoft website.

	Download the file and extract it.

	Open a Command Prompt window.

	Navigate to the file.

	Run one of the following commands:

	For MD5:

Start-PsFCIV -Path C:\path\to\file.ext -HashAlgorithm MD5 -Online

	For SHA256:

Start-PsFCIV -Path C:\path\to\file.ext -HashAlgorithm SHA256 -Online

NOTE: In both commands, replace C:\path\to\file.ext with
the actual path, filename and extension.

Installing on Windows

	Download the installer:

	Miniconda installer for
Windows [https://conda.io/miniconda.html].

	Anaconda installer for
Windows [https://www.anaconda.com/download/].

	Double-click the .exe file.

	Follow the instructions on the screen.

If you are unsure about any setting, accept the defaults. You
can change them later.

When installation is finished, from the Start menu, open the
Anaconda Prompt.

	Test your installation.

Installing in silent mode

NOTE: The following instructions are for Miniconda. For Anaconda,
substitute Anaconda for Miniconda in all of the commands.

To run the the Windows installer for Miniconda in
silent mode, use the /S
argument. The following optional arguments are supported:

	/InstallationType=[JustMe|AllUsers]—Default is``JustMe``.

	/AddToPath=[0|1]—Default is 1’

	/RegisterPython=[0|1]—Make this the system’s default
Python.
0 indicates JustMe, which is the default. 1
indicates AllUsers.

	/S—Install in silent mode.

	/D=<installation path>—Destination installation path.
Must be the last argument. Do not wrap in quotation marks.
Required if you use /S.

All arguments are case-sensitive.

EXAMPLE: The following command installs Miniconda for the
current user without registering Python as the system’s default:

start /wait "" Miniconda4-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /D=%UserProfile%\Miniconda3

Updating conda

	Open your Anaconda Prompt from the start menu.

	Navigate to the anaconda directory.

	Run conda update conda.

Uninstalling conda

	In the Windows Control Panel, click Add or Remove Program.

	Select Python X.X (Miniconda), where X.X is your version of Python.

	Click Remove Program.

NOTE: Removing a program is different in Windows 10.

Installing on macOS

	Download the installer:

	Miniconda installer for macOS [https://conda.io/miniconda.html].

	Anaconda installer for macOS [https://www.anaconda.com/download/].

	Install:

	Miniconda—In your Terminal window, run:

bash Miniconda3-latest-MacOSX-x86_64.sh

	Anaconda—Double-click the .pkg file.

	Follow the prompts on the installer screens.

If you are unsure about any setting, accept the defaults. You
can change them later.

	To make the changes take effect, close and then re-open your
Terminal window.

	Test your installation.

Installing in silent mode

NOTE: The following instructions are for Miniconda. For Anaconda,
substitute Anaconda for Miniconda in all of the commands.

To run the silent installation of
Miniconda for macOS or Linux, specify the -b and -p arguments of
the bash installer. The following arguments are supported:

	-b—Batch mode with no PATH modifications to ~/.bashrc.
Assumes that you agree to the license agreement. Does not edit
the .bashrc or .bash_profile files.

	-p—Installation prefix/path.

	-f—Force installation even if prefix -p already exists.

EXAMPLE:

wget https://repo.continuum.io/miniconda/Miniconda3-3.7.0-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda
export PATH="$HOME/miniconda/bin:$PATH"

NOTE: This sets the PATH only for the current session, not
permanently. Trying to use conda when conda is not in your
PATH causes errors such as “command not found.”

In each new bash session, before using conda, set the PATH and
run the activation scripts of your conda packages by running:

source $HOME/miniconda/bin/activate

NOTE: Replace $HOME/miniconda/bin/activate
with the path to the activate script in your conda installation.

To set the PATH permanently, you can add a line to your
.bashrc file. However, this makes it possible to use conda
without running the activation scripts of your conda packages,
which may produce errors.

EXAMPLE:

export PATH="$HOME/miniconda/bin:$PATH"

Updating Anaconda or Miniconda

	Open a Terminal window.

	Navigate to the anaconda directory.

	Run conda update conda.

Uninstalling Anaconda or Miniconda

	Open a Terminal window.

	Remove the entire Miniconda install directory with:

rm -rf ~/miniconda

	You may also:

	OPTIONAL: Edit ~/.bash_profile to remove the Miniconda
directory from your PATH environment variable.

	Remove the following hidden file and folders that may have
been created in the home directory:

	.condarc file

	.conda directory

	.continuum directory

By running:

rm -rf ~/.condarc ~/.conda ~/.continuum

Installing on Linux

	Download the installer:

	Miniconda installer for Linux [https://conda.io/miniconda.html].

	Anaconda installer for Linux [https://www.anaconda.com/download/].

	In your Terminal window, run:

	Miniconda:

bash Miniconda3-latest-Linux-x86_64.sh

	Anaconda:

bash Anaconda-latest-Linux-x86_64.sh

	Follow the prompts on the installer screens.

If you are unsure about any setting, accept the defaults. You
can change them later.

	To make the changes take effect, close and then re-open your
Terminal window.

	Test your installation.

Using with fish shell

To use conda with fish shell, add the following line in your fish.config file:

source (conda info --root)/etc/fish/conf.d/conda.fish

Installing in silent mode

See the instructions for
installing in silent mode on macOS.

Updating Anaconda or Miniconda

	Open a Terminal window.

	Run conda update conda.

Uninstalling Anaconda or Miniconda

	Open a Terminal window.

	Remove the entire miniconda install directory with:

rm -rf ~/miniconda

	OPTIONAL: Edit ~/.bash_profile to remove the Miniconda
directory from your PATH environment variable.

	OPTIONAL: Remove the following hidden file and folders that
may have been created in the home directory:

	.condarc file

	.conda directory

	.continuum directory

By running:

rm -rf ~/.condarc ~/.conda ~/.continuum

Testing your installation

To test your installation, in your Terminal window or Anaconda Prompt, run the command conda list.

For a successful installation, a list of installed packages
appears.

Configuration

	Using the .condarc conda configuration file

	Sample .condarc file

	Administering a multi-user conda installation

	Enabling tab completion

	Using conda on Windows XP with or without a proxy

	Disabling SSL verification

Using the .condarc conda configuration file

	Overview

	General configuration

	Channel locations (channels)

	Allow other channels (allow_other_channels)

	Default channels (default_channels)

	Update conda automatically (auto_update_conda)

	Always yes (always_yes)

	Show channel URLs (show_channel_urls)

	Change command prompt (changeps1)

	Add pip as Python dependency (add_pip_as_python_dependency)

	Use pip (use_pip)

	Configure conda for use behind a proxy server (proxy_servers)

	SSL verification (ssl_verify)

	Offline mode only (offline)

	Advanced configuration

	Disallow soft-linking (allow_softlinks)

	Set a channel alias (channel_alias)

	Always add packages by default (create_default_packages)

	Track features (track_features)

	Disable updating of dependencies (update_dependencies)

	Disallow installation of specific packages (disallow)

	Add Anaconda.org token to automatically see private packages (add_anaconda_token)

	Specify environment directories (envs_dirs)

	Specify package directories (pkgs_dirs)

	Conda build configuration

	Specify conda build output root directory (root-dir)

	Specify conda build build folder (conda-build 3.16.3+) (output_folder)

	Automatically upload conda build packages to Anaconda.org (anaconda_upload)

	Token to be used for Anaconda.org uploads (conda-build 3.0+) (anaconda_token)

	Limit build output verbosity (conda-build 3.0+) (quiet)

	Disable filename hashing (conda-build 3.0+) (filename_hashing)

	Disable recipe and package verification (conda-build 3.0+) (no_verify)

	Disable per-build folder creation (conda-build 3.0+) (set_build_id)

	Skip building packages that already exist (conda-build 3.0+) (skip_existing)

	Omit recipe from package (conda-build 3.0+) (include_recipe)

	Disable activation of environments during build/test (conda-build 3.0+) (activate)

	Disable long prefix during test (conda-build 3.16.3+) (long_test_prefix)

	PyPI upload settings (conda-build 3.0+) (pypirc)

	PyPI repository to upload to (conda-build 3.0+) (pypi_repository)

	Expansion of environment variables

	Obtaining information from the .condarc file

Overview

The conda configuration file, .condarc, is an optional
runtime configuration file that allows advanced users to
configure various aspects of conda, such as which channels it
searches for packages, proxy settings and environment
directories.

The .condarc file is not included by default, but it is
automatically created in your home directory the first time you
run the conda config command.

A .condarc file may also be located in the root environment,
in which case it overrides any in the home directory.

NOTE: A .condarc file can also be used in an
administrator-controlled installation to override the users’
configuration. See Administering a multi-user conda installation.

The .condarc configuration file follows simple
YAML syntax [http://docs.ansible.com/YAMLSyntax.html].

The .condarc file can change many parameters, including:

	Where conda looks for packages.

	If and how conda uses a proxy server.

	Where conda lists known environments.

	Whether to update the bash prompt with the current activated
environment name.

	Whether user-built packages should be uploaded to
Anaconda.org [http://anaconda.org].

	Default packages or features to include in new environments.

To create or modify a .condarc file, use
the conda config command or use a text editor to create a
new file named .condarc and save it to your user home
directory or root directory.

EXAMPLE:

conda config --add channels conda-forge

You can also download a sample .condarc file to edit in your editor and save to your user
home directory or root directory.

To set configuration options, edit the .condarc file directly
or use the conda config --set command.

EXAMPLE: To set the auto_update_conda option to False, run:

conda config --set auto_update_conda False

For a complete list of conda config commands, see the
command reference. The same list
is available at the Terminal or Anaconda Prompt by running
conda config --help.

TIP: Conda supports tab completion
with external packages instead of internal configuration.

General configuration

Channel locations (channels)

Listing channel locations in the .condarc file overrides
conda defaults, causing conda to search only the channels listed
here, in the order given.

Use defaults to automatically include all default channels.
Non-URL channels are interpreted as Anaconda.org user names. You
can change this by modifying the channel_alias as described
in Set a channel alias (channel_alias). The default is just defaults.

EXAMPLE:

channels:
 - <anaconda_dot_org_username>
 - http://some.custom/channel
 - file:///some/local/directory
 - defaults

To select channels for a single environment, put a .condarc
file in the root directory of that environment (or use the
--env option when using conda config).

EXAMPLE: If you have installed Miniconda with Python 3 in your
home directory and the environment is named “flowers”, the
path may be:

~/miniconda3/envs/flowers/.condarc

Allow other channels (allow_other_channels)

The system-level .condarc file may specify a set of allowed
channels, and it may allow users to install packages from other
channels with the boolean flag allow_other_channels. The default
is True.

If allow_other_channels is set to False, only those channels
explicitly specified in the system .condarc file are allowed:

allow_other_channels: False

When allow_other_channels is set to True or not specified,
each user has access to the default channels and to any channels
that the user specifies in their local .condarc file. When
allow_other_channels is set to false, if the user specifies
other channels, the other channels are blocked, and the user
receives a message reporting that channels are blocked. For more
information, see Example administrator-controlled installation.

If the system .condarc file specifies a channel_alias,
it overrides any channel aliases set in a user’s .condarc
file. See Set a channel alias (channel_alias).

Default channels (default_channels)

Normally the defaults channel points to several channels at the
repo.continuum.io [http:repo.continuum.io] repository, but if
default_channels is defined, it sets the new list of default channels.
This is especially useful for air gap and enterprise installations:

default_channels:
 - <anaconda_dot_org_username>
 - http://some.custom/channel
 - file:///some/local/directory

Update conda automatically (auto_update_conda)

When True, conda updates itself any time a user updates or
installs a package in the root environment. When False,
conda updates itself only if the user manually issues a
conda update command. The default is True.

EXAMPLE:

auto_update_conda: False

Always yes (always_yes)

Choose the yes option whenever asked to proceed, such as
when installing. Same as using the --yes flag at the
command line. The default is False.

EXAMPLE:

always_yes: True

Show channel URLs (show_channel_urls)

Show channel URLs when displaying what is going to be downloaded
and in conda list. The default is False.

EXAMPLE:

show_channel_urls: True

Change command prompt (changeps1)

When using activate, change the command prompt from $PS1
to include the activated environment. The default is True.

EXAMPLE:

changeps1: False

Add pip as Python dependency (add_pip_as_python_dependency)

Add pip, wheel and setuptools as dependencies of Python. This
ensures that pip, wheel and setuptools are always installed any
time Python is installed. The default is True.

EXAMPLE:

add_pip_as_python_dependency: False

Use pip (use_pip)

Use pip when listing packages with conda list. This does not
affect any conda command or functionality other than the output
of the command conda list. The default is True.

EXAMPLE:

use_pip: False

Configure conda for use behind a proxy server (proxy_servers)

By default, proxy settings are pulled from the HTTP_PROXY and
HTTPS_PROXY environment variables or the system. Setting them
here overrides that default:

proxy_servers:
 http: http://user:pass@corp.com:8080
 https: https://user:pass@corp.com:8080

To give a proxy for a specific scheme and host, use the
scheme://hostname form for the key. This matches for any request
to the given scheme and exact host name:

proxy_servers:
 'http://10.20.1.128': 'http://10.10.1.10:5323'

If you do not include the user name and password or if
authentication fails, conda prompts for a user name and password.

If your password contains special characters, you need escape
them as described in Percent-encoding reserved characters [https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters] ,
on Wikipedia.

Be careful not to use http when you mean https or
https when you mean http.

SSL verification (ssl_verify)

If you are behind a proxy that does SSL inspection such as a
Cisco IronPort Web Security Appliance (WSA), you may need to use
ssl_verify to override the SSL verification settings.

By default this variable is True, which means that SSL
verification is used and conda verifies certificates for SSL
connections. Setting this variable to False disables the
connection’s normal security and is not recommended:

ssl_verify: False

You can also set ssl_verify to a string path to a certificate,
which can be used to verify SSL connections:

ssl_verify: corp.crt

Offline mode only (offline)

Filters out all channel URLs that do not use the file://
protocol. The default is False.

EXAMPLE:

offline: True

Advanced configuration

Disallow soft-linking (allow_softlinks)

When allow_softlinks is True, conda uses hard-links when
possible and soft-links—symlinks—when hard-links are not
possible, such as when installing on a different file system
than the one that the package cache is on.

When allow_softlinks is False, conda still uses
hard-links when possible, but when it is not possible, conda
copies files. Individual packages can override this option,
specifying that certain files should never be soft-linked.

The default is True.

EXAMPLE:

allow_softlinks: False

Set a channel alias (channel_alias)

Whenever you use the -c or --channel flag to give conda a
channel name that is not a URL, conda prepends the channel_alias
to the name that it was given. The default channel_alias is
https://conda.anaconda.org/.

EXAMPLE: The command:

conda install --channel asmeurer <package>

is the same as:

conda install --channel https://conda.anaconda.org/asmeurer <package>

You can set channel_alias to your own repository.

EXAMPLE: To set channel_alias to your repository at
https://yourrepo.com:

channel_alias: https://your.repo/

On Windows, you must include a slash (“/”) at the end of the URL:

EXAMPLE: https://your.repo/conda/

When channel_alias set to your repository at
https://yourrepo.com:

conda install --channel jsmith <package>

is the same as:

conda install --channel https://yourrepo.com/jsmith <package>

Always add packages by default (create_default_packages)

When creating new environments, add the specified packages by
default. The default packages are installed in every environment
you create. You can override this option at the command prompt
with the --no-default-packages flag. The default is to not
include any packages.

EXAMPLE:

create_default_packages:
 - pip
 - ipython
 - scipy=0.15.0

Track features (track_features)

Enable certain features to be tracked by default. The default is
to not track any features. This is similar to adding mkl to
the create_default_packages list.

EXAMPLE:

track_features:
 - mkl

Disable updating of dependencies (update_dependencies)

By default, conda install updates the given package to the
latest version, and installs any dependencies necessary for
that package. However if dependencies that satisfy the package’s
requirements are already installed, conda will not update those
packages to the latest version.

In this case, if you would prefer that conda update all dependencies
to the latest version that is compatible with the environment,
set update_dependencies to True:

update_dependencies: False

NOTE: Conda still ensures that dependency specifications are
satisfied. Thus, some dependencies may still be updated or,
conversely, this may prevent packages given at the command line
from being updated to their latest versions. You can always
specify versions at the command line to force conda to install a
given version, such as conda install numpy=1.9.3.

To avoid updating only specific packages in an environment, a
better option may be to pin them. For more information, see
Preventing packages from updating (pinning).

Disallow installation of specific packages (disallow)

Disallow the installation of certain packages. The default is to
allow installation of all packages.

EXAMPLE:

disallow:
 - anaconda

Add Anaconda.org token to automatically see private packages (add_anaconda_token)

When the channel alias is Anaconda.org or an Anaconda Server GUI,
you can set the system configuration so that users automatically
see private packages. Anaconda.org was formerly known as
binstar.org. This uses the Anaconda command-line client, which
you can install with conda install anaconda-client, to
automatically add the token to the channel URLs.

The default is True.

EXAMPLE:

add_anaconda_token: False

NOTE: Even when set to True, this setting is enabled only if
the Anaconda command-line client is installed and you are
logged in with the anaconda login command.

Specify environment directories (envs_dirs)

Specify directories in which environments are located. If this
key is set, the root prefix envs_dir is not used unless
explicitly included. This key also determines where the package
caches are located.

For each envs here, envs/pkgs is used as the pkgs cache,
except for the standard envs directory in the root
directory, for which the normal root_dir/pkgs is used.

EXAMPLE:

envs_dirs:
 - ~/my-envs
 - /opt/anaconda/envs

The CONDA_ENVS_PATH environment variable overwrites this setting:

	For macOS and Linux:
CONDA_ENVS_PATH=~/my-envs:/opt/anaconda/envs

	For Windows:
set CONDA_ENVS_PATH=C:\Users\joe\envs;C:\Anaconda\envs

Specify package directories (pkgs_dirs)

Specify directories in which packages are located. If this
key is set, the root prefix pkgs_dirs is not used unless
explicitly included.

EXAMPLE:

pkgs_dirs:
 - /opt/anaconda/pkgs

The CONDA_PKGS_DIRS environment variable overwrites this setting:

	For macOS and Linux:
CONDA_PKGS_DIRS=/opt/anaconda/pkgs

	For Windows:
set CONDA_PKGS_DIRS=C:\Anaconda\pkgs

Conda build configuration

Specify conda build output root directory (root-dir)

Build output root directory. You can also set this with the
CONDA_BLD_PATH environment variable. The default is
<CONDA_PREFIX>/conda-bld/. If you do not have write
permissions to <CONDA_PREFIX>/conda-bld/ , the default is
~/conda-bld/ .

EXAMPLE:

conda-build:
 root-dir: ~/conda-builds

Specify conda build build folder (conda-build 3.16.3+) (output_folder)

Folder to dump output package to. Packages are moved here if build or test
succeeds. If unset, the output folder corresponds to the same directory as
the root build directory (root-dir).

conda-build:
 output_folder: conda-bld

Automatically upload conda build packages to Anaconda.org (anaconda_upload)

Automatically upload packages built with conda build to
Anaconda.org [http://anaconda.org]. The default is False.

EXAMPLE:

anaconda_upload: True

Token to be used for Anaconda.org uploads (conda-build 3.0+) (anaconda_token)

Tokens are a means of authenticating with anaconda.org without logging in.
You can pass your token to conda-build with this condarc setting, or with a CLI
argument. This is unset by default. Setting it implicitly enables
anaconda_upload.

conda-build:
 anaconda_token: gobbledygook

Limit build output verbosity (conda-build 3.0+) (quiet)

Conda-build’s output verbosity can be reduced with the quiet setting. For
more verbosity use the CLI flag --debug.

conda-build:
 quiet: true

Disable filename hashing (conda-build 3.0+) (filename_hashing)

Conda-build 3 adds hashes to filenames to allow greater customization of
dependency versions. If you find this disruptive, you can disable the hashing
with the following config entry:

conda-build:
 filename_hashing: false

NOTE: conda-build does no checking when clobbering packages. If you
utilize conda-build 3’s build matrices with a build configuration that is not
reflected in the build string, packages will be missing due to clobbering.

Disable recipe and package verification (conda-build 3.0+) (no_verify)

By default, conda-build uses conda-verify to ensure that your recipe and package
meet some minimum sanity checks. You can disable these:

conda-build:
 no_verify: true

Disable per-build folder creation (conda-build 3.0+) (set_build_id)

By default, conda-build creates a new folder for each build, named for the
package name plus a timestamp. This allows you to do multiple builds at once. If
you have issues with long paths, you may need to disable this behavior. You
should first try to change the build output root directory with the root-dir
setting described above, but fall back to this as necessary:

conda-build:
 set_build_id: false

Skip building packages that already exist (conda-build 3.0+) (skip_existing)

By default, conda-build builds all recipes that you specify. You can instead
skip recipes that are already built. A recipe is skipped if and only if all of
its outputs are available on your currently configured channels.

conda-build:
 skip_existing: true

Omit recipe from package (conda-build 3.0+) (include_recipe)

By default, conda-build includes the recipe that was used to build the package.
If this contains sensitive or proprietary information, you can omit the recipe.

conda-build:
 include_recipe: false

NOTE: If you do not include the recipe, you cannot use conda-build to test
the package after the build completes. This means that you cannot split your
build and test steps across two distinct CLI commands (conda build --notest
recipe and conda build -t recipe). If you need to omit the recipe and
split your steps, your only option is to remove the recipe files from the
tarball artifacts after your test step. Conda-build does not provide tools for
doing that.

Disable activation of environments during build/test (conda-build 3.0+) (activate)

By default, conda-build activates the build and test environments prior to
executing the build or test scripts. This adds necessary PATH entries, and also
runs any activate.d scripts you may have. If you disable activation, the PATH
will still be modified, but the activate.d scripts will not run. This is not
recommended, but some people prefer this.

conda-build:
 activate: false

Disable long prefix during test (conda-build 3.16.3+) (long_test_prefix)

By default, conda-build uses a long prefix for the test prefix. If you have recipes
that fail in long prefixes but would still like to test them in short prefixes, you
can disable the long test prefix. This is not recommended.

conda-build:
 long_test_prefix: false

The default is true.

PyPI upload settings (conda-build 3.0+) (pypirc)

Unset by default. If you have wheel outputs in your recipe, conda-build will
try to upload them to the PyPI repository specified by the pypi_repository
setting using credentials from this file path.

conda-build:
 pypirc: ~/.pypirc

PyPI repository to upload to (conda-build 3.0+) (pypi_repository)

Unset by default. If you have wheel outputs in your recipe, conda-build will
try to upload them to this PyPI repository using credentials from the file
specified by the pypirc setting.

conda-build:
 pypi_repository: pypi

Expansion of environment variables

Conda expands environment variables in a subset of configuration settings.
These are:

	envs_dirs

	pkgs_dirs

	ssl_verify

	client_cert

	client_cert_key

	proxy_servers

	channels

	custom_channels

	custom_multichannels

	default_channels

	migrated_custom_channels

	whitelist_channels

This allows you to e.g. store the credentials of a private repository in an
environment variable, like so:

channels:
 - https://${USERNAME}:${PASSWORD}@my.private.conda.channel

Obtaining information from the .condarc file

NOTE: It may be necessary to add the “force” option -f to
the following commands.

To get all keys and their values:

conda config --get

To get the value of a specific key, such as channels:

conda config --get channels

To add a new value, such as
http://conda.anaconda.org/mutirri, to a specific key, such as
channels:

conda config --add channels http://conda.anaconda.org/mutirri

To remove an existing value, such as
http://conda.anaconda.org/mutirri from a specific key, such as
channels:

conda config --remove channels http://conda.anaconda.org/mutirri

To remove a key, such as channels, and all of its values:

conda config --remove-key channels

To configure channels and their priority for a single
environment, make a .condarc file in the root directory
of that environment.

Sample .condarc file

This is a sample .condarc file.
It adds the r Anaconda.org channel and enables
the show_channel_urls option.

channel locations. These override conda defaults, i.e., conda will
search *only* the channels listed here, in the order given.
Use "defaults" to automatically include all default channels.
Non-url channels will be interpreted as Anaconda.org usernames
(this can be changed by modifying the channel_alias key; see below).
The default is just 'defaults'.
channels:
 - r
 - defaults

Show channel URLs when displaying what is going to be downloaded
and in 'conda list'. The default is False.
show_channel_urls: True

For more information about this file see:
https://conda.io/docs/user-guide/configuration/use-condarc.html

Administering a multi-user conda installation

By default, conda and all packages it installs, including
Anaconda, are installed locally with a user-specific
configuration. Administrative privileges are not required, and
no upstream files or other users are affected by
the installation.

You can make conda and any number of packages available to a
group of 1 or more users, while preventing these users
from installing unwanted packages with conda:

	Install conda and the allowed packages, if any, in a
location that is under administrator control and
accessible to users.

	Create a
.condarc system configuration file in
the root directory of the installation. This system-level
configuration file will override any user-level configuration
files installed by the user.

Each user accesses the central conda installation, which reads
settings from the user .condarc configuration file located
in their home directory. The path to the user file is the same
as the root environment prefix displayed by conda info,
as shown in User configuration file below. The user
.condarc file is limited by the system .condarc file.

System configuration settings are commonly used in a
system .condarc file but may also be used in a
user .condarc file. All user configuration settings may
also be used in a system .condarc file.

For information about settings in the .condarc file,
see Using the .condarc conda configuration file.

Example administrator-controlled installation

The following example describes how to view the system
configuration file, review the settings, compare it to a user’s
configuration file and determine what happens when the user
attempts to access a file from a blocked channel. It then
describes how the user must modify their configuration file to
access the channels allowed by the administrator.

System configuration file

	The system configuration file must be in the top-level conda
installation directory. Check the path where conda is located:

$ which conda
/tmp/miniconda/bin/conda

	View the contents of the .condarc file in the
administrator’s directory:

cat /tmp/miniconda/.condarc

The following administrative .condarc file
sets allow_other_channels to False, and it specifies
that users may download packages only from the admin
channel:

$ cat /tmp/miniconda/.condarc
allow_other_channels : false
channel_alias: https://conda.anaconda.org/
channels:
 - admin

NOTE: The admin channel can also be expressed as
https://conda.anaconda.org/admin/

Because allow_other_channels is False and the
channel defaults are not explicitly specified, users are
disallowed from downloading packages from the default
channels. You can check this in the next procedure.

User configuration file

	Check the location of the user’s conda installation:

$ conda info
Current conda install:
. . .
 channel URLs : http://repo.continuum.io/pkgs/free/osx-64/
 http://repo.continuum.io/pkgs/pro/osx-64/
 config file : /Users/gergely/.condarc

The conda info command shows that conda is using the
user’s .condarc file, located at
/Users/gergely/.condarc and that the default channels
such as repo.continuum.io are listed as channel URLs.

	View the contents of the administrative .condarc file in
the directory that was located in step 1:

$ cat ~/.condarc
channels:
 - defaults

This user’s .condarc file specifies only the default
channels, but the administrator config file has blocked
default channels by specifying that only admin is
allowed. If this user attempts to search for a package in the
default channels, they get a message telling them what
channels are allowed:

$ conda search flask
Fetching package metadata:
Error: URL 'http://repo.continuum.io/pkgs/pro/osx-64/' not
in allowed channels.
Allowed channels are:
 - https://conda.anaconda.org/admin/osx-64/

This error message tells the user to add the admin channel
to their configuration file.

	The user must edit their local .condarc configuration file
to access the package through the admin channel:

channels:
 - admin

The user can now search for packages in the allowed
admin channel.

Enabling tab completion

Conda versions up to 4.3 supports tab completion in bash shells via the argcomplete
package. Tab completion is deprecated starting with version 4.4. See issue #415 [https://github.com/conda/conda-docs/issues/415].

To enable tab completion:

	Make sure that argcomplete is installed:

conda install argcomplete

	Add the following code to your bash profile:

eval "$(register-python-argcomplete conda)"

	Test it:

	Open a new Terminal window or an Anaconda Prompt.

	Type: conda ins, and then press the Tab key.

The command completes to:

conda install

To get tab completion in zsh, see conda-zsh-completion [https://github.com/esc/conda-zsh-completion].

Using conda on Windows XP with or without a proxy

Although Windows XP mainstream support and Extended Support from
Microsoft have ended, and Windows XP is no longer one of the
target systems supported by Anaconda, some users have had success
using Anaconda on Windows XP with the methods described on this
page.

Anaconda 2.3.0 is the last version of Python 3-based Anaconda
to support Windows XP. Anaconda 2.4 and later have a version of
Python 3 built with Visual Studio 2015, which by default does not
support Windows XP.

You can install Anaconda 2.3.0 and then update it with
conda update conda and conda update --all. Download
Anaconda3-2.3.0-Windows-x86.exe at
https://repo.continuum.io/archive/. Install it in any location,
such as C:\Anaconda.

Using a proxy with Windows XP

To configure conda for use behind a corporate proxy that uses
proxy auto-config (PAC) files and SSL certificates for secure
connections:

	Find a proxy server address from the PAC file:

	Open Internet Explorer.

	From the Tools menu, select Internet Options, and then
click the Connections tab.

	On the Connections tab, click the LAN Settings button.

	In the LAN Settings dialog box, copy the address under
the Use automatic configuration script checkbox.

	Click the Cancel button to close the LAN settings.

	Click the Cancel button to close the Internet Options.

	Paste the address into the Internet Explorer address bar,
then press the Enter key.

	In the PAC file that opens, search for return until you
find what looks like a proxy IP or DNS address with the
port number, which may take some time in a long file.

	Copy the address and port number.

	Follow the .condarc instructions
to create a file named .condarc in your home directory or
the installation directory, such as C:\Anaconda\.condarc.

	Follow the .condarc proxy server instructions to add proxy information to the .condarc
file.

If you decide to include any passwords, be aware of
transformations that can affect special characters.

EXAMPLE: This example shows proxy information with passwords:

proxy_servers:
 http: http://user:pass@corp.com:8080
 https: https://user:pass@corp.com:8080

ssl_verify: False

If you include proxy information without passwords, you will be
asked to answer authentication prompts at the command line.

EXAMPLE: This example shows proxy information without passwords:

proxy_servers:
 http: http://corp.com:8080
 https: https://corp.com:8080

ssl_verify: False

Once the proxy is configured, you can run conda update conda
and then create and manage environments with the Anaconda
Launcher GUI.

Some packages such as flask-login may not be available
through conda, so you may need to use pip to install them:

	To use pip securely over https:

pip install --trusted-host pypi.python.org package-name

	If the secure https proxy fails, you can force pip to use an
insecure http proxy instead:

pip install --index-url=http://pypi.python.org/simple/ --trusted-host pypi.python.org package-name

Disabling SSL verification

Using conda with SSL is strongly recommended, but it is possible to disable SSL
and it may be necessary to disable SSL in certain cases.

Some corporate environments use proxy services that use Man-In-The-Middle
(MITM) attacks to sniff encrypted traffic. These services can interfere with
SSL connections such as those used by conda and pip to download packages from
repositories such as PyPI.

If you encounter this interference, you should set up the proxy service’s
certificates so that the requests package used by conda can recognize and
use the certificates.

For cases where this is not possible, conda-build versions 3.0.31 and higher
have an option that disables SSL certificate verification and allows this
traffic to continue.

conda skeleton pypi can disable SSL verification when pulling packages
from a PyPI server over HTTPS.

WARNING: This option causes your computer to download and execute arbitrary
code over a connection that it cannot verify as secure. This option is not
recommended. Use this option only if necessary. Use this option at your own
risk.

To disable SSL verification when using conda skeleton pypi, set the
SSL_NO_VERIFY environment variable to either 1 or True (case
insensitive).

On *nix systems:

SSL_NO_VERIFY=1 conda skeleton pypi a_package

And on Windows systems:

set SSL_NO_VERIFY=1
conda skeleton pypi a_package
set SSL_NO_VERIFY=

We recommend that you unset this environment variable immediately after use.
If it is not unset, some other tools may recognize it and incorrectly use
unverified SSL connections.

Using this option will cause requests to emit warnings to STDERR about
insecure settings. If you know that what you’re doing is safe, or have been
advised by your IT department that what you’re doing is safe, you may ignore
these warnings.

Tasks

	Managing conda

	Managing environments

	Managing channels

	Creating custom channels

	Managing packages

	Managing Python

	Using conda with Travis CI

	Viewing command-line help

Managing conda

	Verifying that conda is installed

	Determining your conda version

	Updating conda to the current version

Verifying that conda is installed

To verify that conda is installed, in your Terminal window or an Anaconda Prompt, run:

conda --version

Conda responds with the version number that you have installed,
such as conda 3.11.0.

If you get an error message, make sure of the following:

	You are logged into the same user account that you used to
install Anaconda or Miniconda.

	You are in a directory that Anaconda or Miniconda can find.

	You have closed and re-opened the Terminal window after
installing conda.

Determining your conda version

In addition to the conda --version command explained above,
you can determine what conda version is installed by running
one of the following commands in your Terminal window or an Anaconda Prompt:

conda info

OR

conda -V

Updating conda to the current version

To update conda, in your Terminal window or an Anaconda Prompt, run:

conda update conda

Conda compares versions and reports what is available to install.
It also tells you about other packages that will be automatically
updated or changed with the update. If conda reports that a newer
version is available, type y to update:

Proceed ([y]/n)? y

Managing environments

	Creating an environment with commands

	Creating an environment from an environment.yml file

	Cloning an environment

	Building identical conda environments

	Activating an environment

	Deactivating an environment

	Determining your current environment

	Viewing a list of your environments

	Viewing a list of the packages in an environment

	Using pip in an environment

	Saving environment variables

	Sharing an environment

	Removing an environment

With conda, you can create, export, list, remove and update
environments that have different versions of Python and/or
packages installed in them. Switching or moving between
environments is called activating the environment. You can also
share an environment file.

NOTE: There are many options available for the commands described
on this page. For details, see Command reference.

Creating an environment with commands

TIP: By default, environments are installed into the envs
directory in your conda directory. Run conda create --help
for information on specifying a different path.

Use the Terminal or an Anaconda Prompt for the following steps.

	To create an environment:

conda create --name myenv

NOTE: Replace myenv with the environment name.

	When conda asks you to proceed, type y:

proceed ([y]/n)?

This creates the myenv environment in /envs/. This
environment uses the same version of Python that you are
currently using, because you did not specify a version.

To create an environment with a specific version of Python:

conda create -n myenv python=3.4

To create an environment with a specific package:

conda create -n myenv scipy

OR:

conda create -n myenv python
conda install -n myenv scipy

To create an environment with a specific version of a package:

conda create -n myenv scipy=0.15.0

OR:

conda create -n myenv python
conda install -n myenv scipy=0.15.0

To create an environment with a specific version of Python and
multiple packages:

conda create -n myenv python=3.4 scipy=0.15.0 astroid babel

TIP: Install all the programs that you want in this environment
at the same time. Installing 1 program at a time can lead to
dependency conflicts.

To automatically install pip or another program every time a new
environment is created, add the default programs to the
create_default_packages section
of your .condarc configuration file. The default packages are
installed every time you create a new environment. If you do not
want the default packages installed in a particular environment,
use the --no-default-packages flag:

conda create --no-default-packages -n myenv python

TIP: You can add much more to the conda create command.
For details, run conda create --help.

Creating an environment from an environment.yml file

Use the Terminal or an Anaconda Prompt for the following steps.

	Create the environment from the environment.yml file:

conda env create -f environment.yml

The first line of the yml file sets the new environment’s
name. For details see Creating an environment file manually.

	Activate the new environment:

	Windows: activate myenv

	macOS and Linux: source activate myenv

NOTE: Replace myenv with the name of the environment.

	Verify that the new environment was installed correctly:

conda list

Cloning an environment

Use the Terminal or an Anaconda Prompt for the following steps.

You can make an exact copy of an environment by creating a clone
of it:

conda create --name myclone --clone myenv

NOTE: Replace myclone with the name of the new environment.
Replace myenv with the name of the existing environment that
you want to copy.

To verify that the copy was made:

conda info --envs

In the environments list that displays, you should see both the
source environment and the new copy.

Building identical conda environments

You can use explicit specification files to build an identical
conda environment on the same operating system platform, either
on the same machine or on a different machine.

Use the Terminal or an Anaconda Prompt for the following steps.

	Run conda list --explicit to produce a spec list such as:

This file may be used to create an environment using:
$ conda create --name <env> --file <this file>
platform: osx-64
@EXPLICIT
https://repo.continuum.io/pkgs/free/osx-64/mkl-11.3.3-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/numpy-1.11.1-py35_0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/openssl-1.0.2h-1.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/pip-8.1.2-py35_0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/python-3.5.2-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/readline-6.2-2.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/setuptools-25.1.6-py35_0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/sqlite-3.13.0-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/tk-8.5.18-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/wheel-0.29.0-py35_0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/xz-5.2.2-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/zlib-1.2.8-3.tar.bz2

	To create this spec list as a file in the current working
directory, run:

conda list --explicit > spec-file.txt

NOTE: You can use spec-file.txt as the filename or replace
it with a filename of your choice.

An explicit spec file is not usually cross platform, and
therefore has a comment at the top such as # platform: osx-64
showing the platform where it was created. This platform is the
one where this spec file is known to work. On other platforms,
the packages specified might not be available or dependencies
might be missing for some of the key packages already in the
spec.

To use the spec file to create an identical environment on the
same machine or another machine:

conda create --name myenv --file spec-file.txt

To use the spec file to install its listed packages into an
existing environment:

conda install --name myenv --file spec-file.txt

Conda does not check architecture or dependencies when installing
from a spec file. To ensure that the packages work correctly,
make sure that the file was created from a working environment,
and use it on the same architecture, operating system and
platform, such as linux-64 or osx-64.

Activating an environment

To activate an environment:

	On Windows, in your Anaconda Prompt, run activate myenv

	On macOS and Linux, in your Terminal Window, run source activate myenv

Conda prepends the path name myenv onto your system command.

Deactivating an environment

To deactivate an environment:

	On Windows, in your Anaconda Prompt, run deactivate

	On macOS and Linux, in your Terminal Window, run source deactivate

Conda removes the path name myenv from your system command.

TIP: In Windows, it is good practice to deactivate one
environment before activating another.

Determining your current environment

Use the Terminal or an Anaconda Prompt for the following steps.

By default, the active environment—the one you are currently
using—is shown in parentheses () or brackets [] at the
beginning of your command prompt:

(myenv) $

If you do not see this, run:

conda info --envs

In the environments list that displays, your current environment
is highlighted with an asterisk (*).

By default, the command prompt is set to show the name of the
active environment. To disable this option:

conda config --set changeps1 false

To re-enable this option:

conda config --set changeps1 true

Viewing a list of your environments

To see a list of all of your environments, in your Terminal window or an
Anaconda Prompt, run:

conda info --envs

OR

conda env list

A list similar to the following is displayed:

conda environments:
myenv /home/username/miniconda/envs/myenv
snowflakes /home/username/miniconda/envs/snowflakes
bunnies /home/username/miniconda/envs/bunnies

Viewing a list of the packages in an environment

To see a list of all packages installed in a specific environment:

	If the environment is not activated, in your Terminal window or an
Anaconda Prompt, run:

conda list -n myenv

	If the environment is activated, in your Terminal window or an
Anaconda Prompt, run:

conda list

To see if a specific package is installed in an environment, in your Terminal window or an
Anaconda Prompt, run:

conda list -n myenv scipy

Using pip in an environment

To use pip in your environment, in your Terminal window or an
Anaconda Prompt, run:

conda install -n myenv pip
source activate myenv
pip <pip_subcommand>

Saving environment variables

Conda environments can include saved environment variables.

Suppose you want an environment “analytics” to store both a
secret key needed to log in to a server and a path to a
configuration file. The sections below explain how to write a
script named env_vars to do this on Windows and macOS or Linux.

This type of script file can be part of a conda package, in
which case these environment variables become active when an
environment containing that package is activated.

You can name these scripts anything you like. However, multiple
packages may create script files, so be sure to use descriptive
names that are not used by other packages. One popular option is
to give the script a name in the form
packagename-scriptname.sh, or on Windows,
packagename-scriptname.bat.

Windows

	Locate the directory for the conda environment in your
Anaconda Prompt by running in the command shell %CONDA_PREFIX%.

	Enter that directory and create these subdirectories and
files:

cd %CONDA_PREFIX%
mkdir .\etc\conda\activate.d
mkdir .\etc\conda\deactivate.d
type NUL > .\etc\conda\activate.d\env_vars.bat
type NUL > .\etc\conda\deactivate.d\env_vars.bat

	Edit .\etc\conda\activate.d\env_vars.bat as follows:

set MY_KEY='secret-key-value'
set MY_FILE=C:\path\to\my\file

	Edit .\etc\conda\deactivate.d\env_vars.bat as follows:

set MY_KEY=
set MY_FILE=

When you run activate analytics, the environment variables
MY_KEY and MY_FILE are set to the values you wrote into the file.
When you run deactivate, those variables are erased.

macOS and Linux

	Locate the directory for the conda environment in your Terminal window by running in the terminal echo $CONDA_PREFIX.

	Enter that directory and create these subdirectories and
files:

cd $CONDA_PREFIX
mkdir -p ./etc/conda/activate.d
mkdir -p ./etc/conda/deactivate.d
touch ./etc/conda/activate.d/env_vars.sh
touch ./etc/conda/deactivate.d/env_vars.sh

	Edit ./etc/conda/activate.d/env_vars.sh as follows:

#!/bin/sh

export MY_KEY='secret-key-value'
export MY_FILE=/path/to/my/file/

	Edit ./etc/conda/deactivate.d/env_vars.sh as follows:

#!/bin/sh

unset MY_KEY
unset MY_FILE

When you run source activate analytics, the environment
variables MY_KEY and MY_FILE are set to the values you wrote into
the file. When you run source deactivate, those variables are
erased.

Sharing an environment

You may want to share your environment with someone else—for
example, so they can re-create a test that you have done. To
allow them to quickly reproduce your environment, with all of its
packages and versions, give them a copy of your
environment.yml file.

Exporting the environment file

NOTE: If you already have an environment.yml file in your
current directory, it will be overwritten during this task.

	Activate the environment to export:

	On Windows, in your Anaconda Prompt, run activate myenv

	On macOS and Linux, in your Terminal window, run source activate myenv

NOTE: Replace myenv with the name of the environment.

	Export your active environment to a new file:

conda env export > environment.yml

NOTE: This file handles both the environment’s pip packages
and conda packages.

	Email or copy the exported environment.yml file to the
other person.

Creating an environment file manually

You can create an environment file manually to share with others.

EXAMPLE: A simple environment file:

name: stats
dependencies:
 - numpy
 - pandas

EXAMPLE: A more complex environment file:

name: stats2
channels:
 - javascript
dependencies:
 - python=3.4 # or 2.7
 - bokeh=0.9.2
 - numpy=1.9.*
 - nodejs=0.10.*
 - flask
 - pip:
 - Flask-Testing

You can exclude the default channels by adding nodefaults
to the channels list.

channels:
 - javascript
 - nodefaults

This is equivalent to passing the --override-channels option
to most conda commands.

Adding nodefaults to the channels list in environment.yml
is similar to removing defaults from the channels
list in the .condarc file. However,
changing environment.yml affects only one of your conda
environments while changing .condarc affects them all.

For details on creating an environment from this
environment.yml file, see Creating an environment from an environment.yml file.

Removing an environment

To remove an environment, in your Terminal window or an
Anaconda Prompt, run:

conda remove --name myenv --all

(You may instead use conda env remove --name myenv.)

To verify that the environment was removed, in your Terminal window or an
Anaconda Prompt, run:

conda info --envs

The environments list that displays should not show the removed
environment.

Managing channels

Different channels can have the same package, so conda must handle these
channel collisions.

There will be no channel collisions if you use only the defaults channel.
There will also be no channel collisions if all of the channels you use only
contain packages that do not exist in any of the other channels in your list.
The way conda resolves these collisions matters only when you have multiple
channels in your channel list that host the same package.

Before conda 4.1.0

Before conda 4.1.0 was released on June 14, 2016, when two channels
hosted packages with the same name, conda installed the package
with the highest version number. If there were two packages
with the same version number, conda installed the one with the
highest build number. Only if both the version numbers and build
numbers were identical did the channel ordering make a
difference. This approach had 3 problems:

	Build numbers from different channels are not comparable.
Channel A could do nightly builds while Channel B does weekly
builds, so build 2 from Channel B could be newer than build 4
from Channel A.

	Users could not specify a preferred channel. You might consider
Channel B more reliable than Channel A and prefer to get
packages from that channel even if the B version is older than
the package in Channel A. Conda provided no way to choose that
behavior. Only version and build numbers mattered.

	Build numbers conflicted. This is an effect of the other 2
problems. Assume you were happily using package Alpha from
Channel A and package Bravo from Channel B. The provider from
Channel B then added a version of Alpha with a very high build
number. Your conda updates would start installing new versions
of Alpha from Channel B whether you wanted that or not. This
could cause unintentional problems and a risk of deliberate
attacks.

After conda 4.1.0

By default, conda now prefers packages from a higher priority
channel over any version from a lower priority channel.
Therefore, you can now safely put channels at the bottom of your
channel list to provide additional packages that are not in the
default channels, and still be confident that these channels will
not override the core package set.

Conda collects all of the packages with the same name across all
listed channels and processes them as follows:

	Sorts packages from highest to lowest channel priority.

	Sorts tied packages—same channel priority—from highest to
lowest version number.

	Sorts still-tied packages—same channel priority and same
version—from highest to lowest build number.

	Installs the first package on the sorted list that satisfies
the installation specifications.

To make conda use the old method and install the newest version
of a package in any listed channel:

	Add channel_priority: false to your .condarc file.

OR

	Run the equivalent command:

conda config --set channel_priority false

Conda then sorts as follows:

	Sorts the package list from highest to lowest version number.

	Sorts tied packages from highest to lowest channel priority.

	Sorts tied packages from highest to lowest build number.

Because build numbers from different channels are not
comparable, build number still comes after channel priority.

The following command adds the channel “new_channel” to the top
of the channel list, making it the highest priority:

conda config --add channels new_channel

Conda now has an equivalent command:

conda config --prepend channels new_channel

Conda also now has a command that adds the new channel to the
bottom of the channel list, making it the lowest priority:

conda config --append channels new_channel

Creating custom channels

Channels are the path that conda takes to look for packages. The
easiest way to use and manage custom channels is to use a private
or public repository on Anaconda.org [https://anaconda.org/],
formerly known as Binstar.org. If you designate your Anaconda.org
repository as private, then only you and those you grant access
can access your private repository.

If you do not wish to upload your packages to the Internet, you
can build a custom repository served either through a web server
or locally using a file:// URL.

To create a custom channel:

	If you have not yet used conda build, install conda build:

conda install conda-build

	Organize all the packages in subdirectories for the platforms
you wish to serve:

 channel/
linux-64/
 package-1.0-0.tar.bz2
linux-32/
 package-1.0-0.tar.bz2
osx-64/
 package-1.0-0.tar.bz2
win-64/
 package-1.0-0.tar.bz2
win-32/
 package-1.0-0.tar.bz2

	Run conda index on each of the platform subdirectories:

conda index channel/linux-64 channel/osx-64

The conda index command generates a file repodata.json,
saved to each repository directory, which conda uses to get
the metadata for the packages in the channel.

NOTE: Each time you add or modify a package in the channel,
you must rerun conda index for conda to see the update.

	To test custom channels, serve the custom channel using a web
server or using a file:// url to the channel directory.
Test by sending a search command to the custom channel.

EXAMPLE: If you want a file in the custom channel location
/opt/channel/linux-64/, search for files in that location:

conda search -c file://opt/channel/ --override-channels

NOTE: The channel URL does not include the platform, as conda
automatically detects and adds the platform.

NOTE: The option --override-channels ensures that conda
searches only your specified channel and no other channels,
such as default channels or any other channels you may have
listed in your .condarc file.

If you have set up your private repository correctly, you
get the following output:

Fetching package metadata:

This is followed by a list of the conda packages found. This
verifies that you have set up and indexed your private
repository successfully.

Managing packages

	Searching for packages

	Installing packages

	Installing packages from Anaconda.org

	Installing non-conda packages

	Installing commercial packages

	Viewing a list of installed packages

	Updating packages

	Preventing packages from updating (pinning)

	Removing packages

NOTE: There are many options available for the commands described
on this page. For details, see Command reference.

Searching for packages

Use the Terminal or an Anaconda Prompt for the following steps.

To see if a specific package such as SciPy is available for
installation:

conda search scipy

To see if a specific package such as SciPy is available for
installation from Anaconda.org:

conda search --override-channels --channel defaults scipy

To see if a specific package, such as iminuit, exists in a
specific channel, such as http://conda.anaconda.org/mutirri,
and is available for installation:

conda search --override-channels --channel http://conda.anaconda.org/mutirri iminuit

Installing packages

Use the Terminal or an Anaconda Prompt for the following steps.

To install a specific package such as SciPy into an existing
environment “myenv”:

conda install --name myenv scipy

If you do not specify the environment name, which in this
example is done by --name myenv, the package installs
into the current environment:

conda install scipy

To install a specific version of a package such as SciPy:

conda install scipy=0.15.0

To install multiple packages at once, such as SciPy and cURL:

conda install scipy curl

NOTE: It is best to install all packages at once, so that all of
the dependencies are installed at the same time.

To install multiple packages at once and specify the version of
the package:

conda install scipy=0.15.0 curl=7.26.0

To install a package for a specific Python version:

conda install scipy=0.15.0 curl=7.26.0 -n py34_env

If you want to use a specific Python version, it is best to use
an environment with that version. For more information,
see Troubleshooting.

Installing packages from Anaconda.org

Packages that are not available using conda install can be
obtained from Anaconda.org. Formerly Binstar.org, Anaconda.org,
is a package management service for both public and private
package repositories. Anaconda.org is an Anaconda
product, just like Anaconda and Miniconda.

To install a package from Anaconda.org:

	In a browser, go to http://anaconda.org.

	To find the package named bottleneck, type bottleneck
in the top-left box named Search Packages.

	Find the package that you want and click it to go to the
detail page.

The detail page displays the name of the channel. In this
example it is the “pandas” channel.

	Now that you know the channel name, use the conda install
command to install the package. In your Terminal window or an Anaconda Prompt,
run:

conda install -c pandas bottleneck

This command tells conda to install the bottleneck package
from the pandas channel on Anaconda.org.

	To check that the package is installed, in your Terminal window or an Anaconda Prompt,
run:

conda list

A list of packages appears, including bottleneck.

NOTE: For information on installing packages from multiple
channels, see Managing channels.

Installing non-conda packages

If a package is not available from conda or Anaconda.org, you may be able to
find and install the package with another package manager like pip.

Pip packages do not have all the features of conda packages, and we recommend
first trying to install any package with conda. If the package is unavailable
through conda, try installing it with pip. The differences between pip and
conda packages cause certain unavoidable limits in compatibility, but conda
works hard to be as compatible with pip as possible.

NOTE: Both pip and conda are included in Anaconda and Miniconda, so you do not
need to install them separately.

NOTE: Conda environments replace virtualenv, so there is no need to activate a
virtualenv before using pip.

It is possible to have pip installed outside a conda environment or inside a
conda environment.

To gain the benefits of conda integration, be sure to install pip inside the
currently active conda environment, and then install packages with that
instance of pip. The command conda list shows packages installed this way,
with a label showing that they were installed with pip.

You can install pip in the current conda environment with the command
conda install pip, as discussed in Using pip in an environment.

If there are instances of pip installed both inside and outside the current
conda environment, the instance of pip installed inside the current conda
environment is used.

To install a non-conda package:

	Activate the environment where you want to put the program:

	On Windows, in your Anaconda Prompt, run activate myenv.

	On macOS and Linux,in your Terminal window, run source activate myenv.

	To use pip to install a program such as See, in your Terminal window or an Anaconda Prompt,
run:

pip install see

	To verify the package was installed, in your Terminal window or an Anaconda Prompt,
run:

conda list

If the package is not shown, install pip as described in Using pip in an environment
and try these commands again.

Installing commercial packages

Installing a commercial package such as IOPro is the same as
installing any other package. In your Terminal window or an Anaconda Prompt,
run:

conda install --name myenv iopro

This command installs a free trial of one of Anaconda’s
commercial packages called IOPro [https://docs.continuum.io/iopro/], which can speed up your
Python processing. Except for academic use, this free trial
expires after 30 days.

Viewing a list of installed packages

Use the Terminal or an Anaconda Prompt for the following steps.

To list all of the packages in the active environment:

conda list

To list all of the packages in a deactivated environment:

conda list -n myenv

Updating packages

Use conda update command to check to see if a new update is
available. If conda tells you an update is available, you can
then choose whether or not to install it.

Use the Terminal or an Anaconda Prompt for the following steps.

To update a specific package:

conda update biopython

To update Python:

conda update python

To update conda itself:

conda update conda

NOTE: Conda updates to the highest version in its series, so
Python 2.7 updates to the highest available in the 2.x series and
3.6 updates to the highest available in the 3.x series.

To update the Anaconda metapackage:

conda update conda
conda update anaconda

Regardless of what package you are updating, conda compares
versions and then reports what is available to install. If no
updates are available, conda reports “All requested packages are
already installed.”

If a newer version of your package is available and you wish to
update it, type y to update:

Proceed ([y]/n)? y

Preventing packages from updating (pinning)

Pinning a package specification in an environment prevents
packages listed in the pinned file from being updated.

In the environment’s conda-meta directory, add a file
named pinned that includes a list of the packages that you
do not want updated.

EXAMPLE: The file below forces NumPy to stay on the 1.7 series,
which is any version that starts with 1.7, and forces SciPy to
stay at exactly version 0.14.2:

numpy 1.7.*
scipy ==0.14.2

With this pinned file, conda update numpy keeps NumPy at
1.7.1, and conda install scipy=0.15.0 causes an error.

Use the --no-pin flag to override the update restriction on
a package. In the Terminal or an Anaconda Prompt, run:

conda update numpy --no-pin

Because the pinned specs are included with each conda
install, subsequent conda update commands without
--no-pin will revert NumPy back to the 1.7 series.

Removing packages

Use the Terminal or an Anaconda Prompt for the following steps.

To remove a package such as SciPy in an environment such as
myenv:

conda remove -n myenv scipy

To remove a package such as SciPy in the current environment:

conda remove scipy

To remove multiple packages at once, such as SciPy and cURL:

conda remove scipy curl

To confirm that a package has been removed:

conda list

Managing Python

	Viewing a list of available Python versions

	Installing a different version of Python

	Using a different version of Python

	Updating or upgrading Python

Conda treats Python the same as any other package, so it is easy
to manage and update multiple installations.

Anaconda supports Python 2.7, 3.4, 3.5 and 3.6. The default is Python
2.7 or 3.6, depending on which installer you used:

	For the installers “Anaconda” and “Miniconda,” the default is
2.7.

	For the installers “Anaconda3” or “Miniconda3,” the default is
3.6.

Viewing a list of available Python versions

To list the versions of Python that are available to install,
in your Terminal window or an Anaconda Prompt, run:

conda search python

This lists all packages whose names contain the text python.

To list only the packages whose full name is exactly python,
add the --full-name option. In your Terminal window or an Anaconda Prompt,
run:

conda search --full-name python

Installing a different version of Python

To install a different version of Python without overwriting the
current version, create a new environment and install the second
Python version into it:

	Create the new environment:

	To create the new environment for Python 3.6, in your Terminal
window or an Anaconda Prompt, run:

conda create -n py36 python=3.6 anaconda

NOTE: Replace py36 with the name of the environment you
want to create. anaconda is the metapackage that
includes all of the Python packages comprising the Anaconda
distribution. python=3.6 is the package and version you
want to install in this new environment. This could be any
package, such as numpy=1.7, or multiple packages.

	To create the new environment for Python 2.7, in your Terminal window
or an Anaconda Prompt, run:

conda create -n py27 python=2.7 anaconda

	Activate the new environment.

	Verify that the new environment is your current
environment.

	To verify that the current environment uses the new Python
version, in your Terminal window or an Anaconda Prompt, run:

python --version

Using a different version of Python

To switch to an environment that has different version of Python,
activate the environment.

Updating or upgrading Python

Use the Terminal or an Anaconda Prompt for the following steps.

If you are in an environment with Python version 3.4.2, the
following command updates Python to the latest
version in the 3.4 branch:

conda update python

The following command upgrades Python to another
branch—3.6—by installing that version of Python:

conda install python=3.6

Using conda with Travis CI

	The .travis.yml file

	Supporting packages that do not have official builds

	Building a conda recipe

	AppVeyor

If you are already using Travis CI, using conda is a preferable
alternative to using apt-get and pip to install packages. The
Debian repos provided by Travis may not include packages for all
versions of Python or may not be updated as quickly. Installing
such packages with pip may also be undesirable, as this can take
a long time, which can consume a large portion of the 50 minutes
that Travis allows for each build. Using conda also lets you test
the building of conda recipes on Travis.

This page describes how to use conda to test a Python package
on Travis CI. However, you can use conda with any language, not
just Python.

The .travis.yml file

The following code sample shows how to modify the .travis.yml
file to use Miniconda [https://conda.io/miniconda.html] for a
project that supports Python 2.7, 3.5 and 3.6:

language: python
python:
 # We don't actually use the Travis Python, but this keeps it organized.
 - "2.7"
 - "3.5"
 - "3.6"
install:
 - sudo apt-get update
 # We do this conditionally because it saves us some downloading if the
 # version is the same.
 - if [["$TRAVIS_PYTHON_VERSION" == "2.7"]]; then
 wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh -O miniconda.sh;
 else
 wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh;
 fi
 - bash miniconda.sh -b -p $HOME/miniconda
 - export PATH="$HOME/miniconda/bin:$PATH"
 - hash -r
 - conda config --set always_yes yes --set changeps1 no
 - conda update -q conda
 # Useful for debugging any issues with conda
 - conda info -a

 # Replace dep1 dep2 ... with your dependencies
 - conda create -q -n test-environment python=$TRAVIS_PYTHON_VERSION dep1 dep2 ...
 - source activate test-environment
 - python setup.py install

script:
 # Your test script goes here

NOTE: For information about the basic configuration for Travis CI,
see Building a Python Project [http://docs.travis-ci.com/user/languages/python/#Examples].

Supporting packages that do not have official builds

To support a package that does not have official Anaconda builds:

	Build the package yourself.

	Add it to an Anaconda.org [http://Anaconda.org] channel.

	Add the following line to the install steps in .travis.yml
so that it finds the packages on that channel:

- conda config --add channels your_Anaconda_dot_org_username

NOTE: Replace your_Anaconda_dot_org_username with your
user name.

Building a conda recipe

If you support official conda packages for your project, you may
want to use conda build in Travis, so the building of your
recipe is tested as well.

	Include the conda recipe in the same directory as your source
code.

	In your .travis.yml file, replace the following line:

- python setup.py install

with these lines:

- conda build your-conda-recipe
- conda install your-package --use-local

AppVeyor

AppVeyor [http://www.appveyor.com/] is a continuous build
service for Windows built on Azure and is an alternative to using
Travis CI with conda.

For an example project building conda packages on AppVeyor, see
https://github.com/rmcgibbo/python-appveyor-conda-example.

Viewing command-line help

To see a list of supported conda commands, in your Terminal window or an Anaconda Prompt, run:

conda --help

OR

conda -h

To get help for a specific command, type the command name
followed by --help.

EXAMPLE: To see help for the create command, in your Terminal window or an Anaconda Prompt, run:

conda create -h

NOTE: You can see the same command help in Command reference.

Cheat sheet

See the conda cheat sheet PDF
(1 MB) for a single-page summary of the most important
information about using conda.

Troubleshooting

	SSL connection errors

	Permission denied errors during installation

	Permission denied errors after using sudo conda command

	Already installed error message

	Conda reports that a package is installed, but it appears not to be

	pkg_resources.DistributionNotFound: conda==3.6.1-6-gb31b0d4-dirty

	macOS error “ValueError unknown locale: UTF-8”

	AttributeError or missing getproxies

	Shell commands open from the wrong location

	Programs fail due to invoking conda Python instead of system Python

	UnsatisfiableSpecifications error

	Package installation fails from a specific channel

	Conda automatically upgrades to unwanted version

	ValidationError: Invalid value for timestamp

	Unicode error after installing Python 2

SSL connection errors

Cause

Installing packages may produce a “connection failed” error if you do not have
the certificates for a secure connection to the package repository.

Solution

Pip can use the --trusted-host option to indicate that the URL of the
repository is trusted:

pip install --trusted-host pypi.org

Conda has three similar options.

	The option --insecure or -k ignores certificate validation errors for all hosts.

Running conda create --help shows:

Networking Options:
 -k, --insecure Allow conda to perform "insecure" SSL connections and
 transfers. Equivalent to setting 'ssl_verify' to
 'false'.

	The configuration option ssl_verify can be set to False.

Running conda config --describe ssl_verify shows:

ssl_verify (bool, str)
aliases: verify_ssl
Conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required url's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, or (2) a path
to a directory containing certificates of trusted CA.
#
ssl_verify: true

Running conda config --set ssl_verify false modifies ~/.condarc and
sets the -k flag for all future conda operations performed by that user.
Running conda config --help shows other configuration scope options.

When using conda config, the user’s conda configuration file at
~/.condarc is used by default. The flag --system will instead write
to the system configuration file for all users at
<CONDA_BASE_ENV>/.condarc. The flag --env will instead write to the
active conda environment’s configuration file at
<PATH_TO_ACTIVE_CONDA_ENV>/.condarc. If --env is used and no
environment is active, the user configuration file is used.

	The configuration option ssl_verify can be used to install new certificates.

Running conda config --describe ssl_verify shows:

ssl_verify (bool, str)
aliases: verify_ssl
Conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required url's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, or (2) a path
to a directory containing certificates of trusted CA.
#
ssl_verify: true

Your network administrator can give you a certificate bundle for your
network’s firewall. Then ssl_verify can be set to the path of that
certificate authority (CA) bundle, and package installation operations will
complete without connection errors.

When using conda config, the user’s conda configuration file at
~/.condarc is used by default. The flag --system will instead write
to the system configuration file for all users at
<CONDA_BASE_ENV>/.condarc. The flag --env will instead write to the
active conda environment’s configuration file at
<PATH_TO_ACTIVE_CONDA_ENV>/.condarc. If --env is used and no
environment is active, the user configuration file is used.

Permission denied errors during installation

Cause

The umask command determines the mask settings that control
how file permissions are set for newly created files. If you
have a very restrictive umask, such as 077, you get
“permission denied” errors.

Solution

Set a less restrictive umask before calling conda commands.
Conda was intended as a user space tool, but often users need to
use it in a global environment. One place this can go awry is
with restrictive file permissions. Conda creates links when you
install files that have to be read by others on the system.

To give yourself full permissions for files and directories, but
prevent the group and other users from having access:

	Before installing, set the umask to 007.

	Install conda.

	Return the umask to the original setting:

umask 007
conda install
umask 077

For more information on umask, see
http://en.wikipedia.org/wiki/Umask.

Permission denied errors after using sudo conda command

Solution

Once you run conda with sudo, you must use sudo forever. We recommend that you NEVER run conda with sudo.

Already installed error message

Cause

If you are trying to fix conda problems without removing the
current installation and you try to reinstall Miniconda or
Anaconda to fix it, you get an error message that Miniconda
or Anaconda is already installed, and you cannot continue.

Solution

Install using the –force option.

Download and install the appropriate Miniconda
for your operating system from the Miniconda download page [https://conda.io/miniconda.html] using the force option
--force or -f:

bash Miniconda3-latest-MacOSX-x86_64.sh -f

NOTE: Substitute the appropriate filename and version for your
operating system.

NOTE: Be sure that you install to the same install location as
your existing install so it overwrites the core conda files and
does not install a duplicate in a new folder.

Conda reports that a package is installed, but it appears not to be

Sometimes conda claims that a package is already installed, but
it does not appear to be, for example, a Python package that
gives ImportError.

There are several possible causes for this problem, each with its
own solution.

Cause

You are not in the same conda environment as your package.

Solution

	Make sure that you are in the same conda environment as your
package. The conda info command tells you what environment
is currently active—under default environment.

	Verify that you are using the Python from the correct
environment by running:

import sys
print(sys.prefix)

Cause

For Python packages, you have set the PYTHONPATH or PYTHONHOME
variable. These environment variables cause Python to load files
from locations other than the standard ones. Conda works best
when these environment variables are not set, as their typical
use cases are obviated by conda environments and a common issue
is that they cause Python to pick up the wrong versions or broken
versions of a library.

Solution

For Python packages, make sure you have not set the PYTHONPATH
or PYTHONHOME variables. The command conda info -a displays
the values of these environment variables.

	To unset these environment variables temporarily for the
current Terminal session, run unset PYTHONPATH.

	To unset them permanently, check for lines in the files:

	If you use bash—~/.bashrc, ~/.bash_profile,
~/.profile.

	If you use zsh—~/.zshrc`.

	If you use PowerShell on Windows, the file output by
$PROFILE .

Cause

You have site-specific directories or, for Python, you have
so-called site-specific files. These are typically located in
~/.local on Linux and macOS. For a full description of the locations of
site-specific packages, see PEP 370 [http://legacy.python.org/dev/peps/pep-0370/]. As with
PYTHONPATH, Python may try importing packages from this
directory, which can cause issues.

Solution

For Python packages, remove site-specific directories and
site-specific files.

Cause

For C libraries, the following environment variables have been
set:

	macOS—DYLD_LIBRARY_PATH.

	Linux—LD_LIBRARY_PATH.

These act similarly to PYTHONPATH for Python. If they are
set, they can cause libraries to be loaded from locations other
than the conda environment. Conda environments obviate most use
cases for these variables. The command conda info -a shows
what these are set to.

Solution

Unset DYLD_LIBRARY_PATH or LD_LIBRARY_PATH.

Cause

Occasionally, an installed package becomes corrupted. Conda works
by unpacking the packages in the pkgs directory and then
hard-linking them to the environment. Sometimes these get
corrupted, breaking all environments that use them, and also any
additional environments, since the same files are hard-linked
each time.

Solution

Run the command conda install -f to unarchive the package
again and relink it. It also does an md5 verification on the
package. Usually if this is different, it is because your
channels have changed and there is a different package with the
same name, version, and build number.

NOTE: This breaks the links to any other environments that
already had this package installed, so you have to reinstall it
there, too. It also means that running conda install -f a lot
can use up a lot of disk space if you have a lot of environments.

NOTE: The -f flag to conda install (--force) implies
--no-deps, so conda install -f package does not reinstall
any of the dependencies of package.

pkg_resources.DistributionNotFound: conda==3.6.1-6-gb31b0d4-dirty

Cause

The local version of conda needs updating.

Solution

Force reinstall conda. A useful way to work off the development
version of conda is to run python setup.py develop on a
checkout of the conda git repository [https://github.com/conda/conda]. However, if you are not
regularly running git pull, it is a good idea to un-develop,
as you will otherwise not get any regular updates to conda. The
normal way to do this is to run python setup.py develop -u.

However, this command does not replace the conda script
itself. With other packages, this is not an issue, as you can
just reinstall them with conda, but conda cannot be used if
conda is installed.

The fix is to use the ./bin/conda executable in the conda
git repository to force reinstall conda, that is, run
./bin/conda install -f conda. You can then verify with
conda info that you have the latest version of conda, and not
a git checkout—the version should not include any hashes.

macOS error “ValueError unknown locale: UTF-8”

Cause

This is a bug in the macOS Terminal app that shows up only in
certain locales. Locales are country-language combinations.

Solution

	Open Terminal in /Applications/Utilities

	Clear the Set locale environment variables on startup checkbox.

[image: ../_images/conda_locale.jpg]

This sets your LANG environment variable to be empty. This may
cause Terminal use to incorrect settings for your locale. The
locale command in Terminal tells you what settings are used.

To use the correct language, add a line to your bash profile,
which is typically ~/.profile:

export LANG=your-lang

NOTE: Replace your-lang with the correct locale specifier for
your language.

The command locale -a displays all the specifiers. For
example, the language code for US English is en_US.UTF-8. The
locale affects what translations are used when they are available
and also how dates, currencies and decimals are formatted.

AttributeError or missing getproxies

When running a command such as conda update ipython, you may
get an AttributeError: 'module' object has no attribute
'getproxies'.

Cause

This can be caused by an old version of requests or by having
the PYTHONPATH environment variable set.

Solution

Update requests and be sure PYTHONPATH is not set:

	Run conda info -a to show the requests version and
various environment variables such as PYTHONPATH.

	Update the requests version with
pip install -U requests.

	Clear PYTHONPATH:

	On Windows, clear it the environment variable settings.

	On macOS and Linux, clear it by removing it from the bash
profile and restarting the shell.

Shell commands open from the wrong location

When you run a command within a conda environment, conda does not
access the correct package executable.

Cause

In both bash and zsh, when you enter a command, the shell
searches the paths in PATH one by one until it finds the command.
The shell then caches the location, which is called hashing in
shell terminology. When you run command again, the shell does not
have to search the PATH again.

The problem is that before you installed the program, you ran a command which
loaded and hashed another version of that program in some other location on
the PATH, such as /usr/bin. Then you installed the program
using conda install, but the shell still had the old instance
hashed.

Solution

Reactivate the environment or run hash -r (in bash) or
rehash (in zsh).

When you run source activate, conda automatically runs
hash -r in bash and rehash in zsh to clear the hashed
commands, so conda finds things in the new path on the PATH. But
there is no way to do this when conda install is run because
the command must be run inside the shell itself, meaning either
you have to run the command yourself or use source a file that
contains the command.

This is a relatively rare problem, since this happens only in the
following circumstances:

	You activate an environment or use the root environment, and
then run a command from somewhere else.

	Then you conda install a program, and then try to run the
program again without running activate or
deactivate.

The command type command_name always tells you exactly what
is being run. This is better than which command_name, which
ignores hashed commands and searches the PATH directly.
The hash is reset by source activate, or by hash -r in bash or
rehash in zsh.

Programs fail due to invoking conda Python instead of system Python

Cause

After installing Anaconda or Miniconda, programs that run
python switch from invoking the system Python to invoking the
Python in the root conda environment. If these programs rely on
the system Python to have certain configurations or dependencies
that are not in the root conda environment Python, the programs
may crash. For example, some users of the Cinnamon desktop
environment on Linux Mint have reported these crashes.

Solution

Edit your .bash_profile and .bashrc files so that the
conda binary directory, such as ~/miniconda3/bin, is no
longer added to the PATH environment variable. You can still run
conda activate and deactivate by using their full
path names, such as ~/miniconda3/bin/conda.

You may also create a folder with symbolic links to conda,
activate and deactivate, and then edit your
.bash_profile or .bashrc file to add this folder to your
PATH. If you do this, running python will invoke the system
Python, but running conda commands, source activate MyEnv,
source activate root, or source deactivate will work
normally.

After running source activate to activate any environment,
including after running source activate root, running
python will invoke the Python in the active conda environment.

UnsatisfiableSpecifications error

Cause

Some conda package installation specifications are impossible to
satisfy. For example, conda create -n tmp python=3 wxpython=3
produces an “Unsatisfiable Specifications” error because wxPython
3 depends on Python 2.7, so the specification to install Python 3
conflicts with the specification to install wxPython 3.

When an unsatisfiable request is made to conda, conda shows a
message such as this one:

The following specifications were found to be in conflict:
- python 3*
- wxpython 3* -> python 2.7*
Use "conda info <package>" to see the dependencies for each package.

This indicates that the specification to install wxpython 3
depends on installing Python 2.7, which conflicts with the
specification to install python 3.

Solution

Use “conda info wxpython” or “conda info wxpython=3” to show
information about this package and its dependencies:

wxpython 3.0 py27_0

file name : wxpython-3.0-py27_0.tar.bz2
name : wxpython
version : 3.0
build number: 0
build string: py27_0
channel : defaults
size : 34.1 MB
date : 2014-01-10
fn : wxpython-3.0-py27_0.tar.bz2
license_family: Other
md5 : adc6285edfd29a28224c410a39d4bdad
priority : 2
schannel : defaults
url : https://repo.continuum.io/pkgs/free/osx-64/wxpython-3.0-py27_0.tar.bz2
dependencies:
 python 2.7*
 python.app

By examining the dependencies of each package, you should be able
to determine why the installation request produced a conflict and
modify the request so it can be satisfied without conflicts. In
this example, you could install wxPython with Python 2.7:

conda create -n tmp python=2.7 wxpython=3

Package installation fails from a specific channel

Cause

Sometimes it is necessary to install a specific version from a
specific channel because that version is not available from the
default channel.

Solution

The following example describes the problem in detail and its
solution.

Suppose you have a specific need to install the Python
cx_freeze module with Python 3.4. A first step is to create a
Python 3.4 environment:

conda create -n py34 python=3.4

Using this environment you should first attempt:

conda install -n py34 cx_freeze

However, when you do this you get the following error:

Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata
Solving package specifications: .
Error: Package missing in current osx-64 channels:
- cx_freeze

You can search for packages on anaconda.org with

 anaconda search -t conda cx_freeze

The message indicates that cx_freeze cannot be found in the
default package channels. However, there may be a
community-created version available and you can search for it by
running the following command:

$ anaconda search -t conda cx_freeze
Using Anaconda Cloud api site https://api.anaconda.org
Run 'anaconda show <USER/PACKAGE>' to get more details:
Packages:
 Name | Version | Package Types | Platforms
 ------------------------- | ------ | --------------- | ---------------
 inso/cx_freeze | 4.3.3 | conda | linux-64
 pyzo/cx_freeze | 4.3.3 | conda | linux-64, win-32, win-64, linux-32, osx-64
 : http://cx-freeze.sourceforge.net/
 silg2/cx_freeze | 4.3.4 | conda | linux-64
 : create standalone executables from Python scripts
 takluyver/cx_freeze | 4.3.3 | conda | linux-64
Found 4 packages

In this example, there are 4 different places that you could try
to get the package. None of them are officially supported or
endorsed by Anaconda, but members of the conda community have
provided many valuable packages. If you want to go with public
opinion, then the web interface [https://anaconda.org/search?q=cx_freeze] provides more
information:

[image: cx_freeze packages on anaconda.org]

Notice that the pyzo organization has by far the most
downloads, so you might choose to use their package. If so, you
can add their organization’s channel by specifying it on the
command line:

$ conda create -c pyzo -n cxfreeze_py34 cx_freeze python=3.4
Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata:
Solving package specifications:

Package plan for installation in environment /Users/ijstokes/anaconda/envs/cxfreeze_py34:

The following packages will be downloaded:

 package | build
 ---------------------------|-----------------
 cx_freeze-4.3.3 | py34_4 1.8 MB
 setuptools-20.7.0 | py34_0 459 KB
 --
 Total: 2.3 MB

The following NEW packages will be INSTALLED:

 cx_freeze: 4.3.3-py34_4
 openssl: 1.0.2h-0
 pip: 8.1.1-py34_1
 python: 3.4.4-0
 readline: 6.2-2
 setuptools: 20.7.0-py34_0
 sqlite: 3.9.2-0
 tk: 8.5.18-0
 wheel: 0.29.0-py34_0
 xz: 5.0.5-1
 zlib: 1.2.8-0

Now you have a software environment sandbox created with Python
3.4 and cx_freeze.

Conda automatically upgrades to unwanted version

When making a python package for an app, you create an
environment for the app from a file req.txt that sets a
certain version, such as python=2.7.9. However, when you
conda install your package, it automatically upgrades to a
later version, such as 2.7.10.

Cause

If you make a conda package for the app using conda build, you
can set dependencies with specific version numbers. The
requirements lines that say - python could be
- python ==2.7.9 instead. It is important to have 1 space
before the == operator and no space after.

Solution

Exercise caution when coding version requirements.

ValidationError: Invalid value for timestamp

Cause

This happens when certain packages are installed with conda 4.3.28, and then
conda is downgraded to 4.3.27 or earlier.

Solution

See https://github.com/conda/conda/issues/6096.

Unicode error after installing Python 2

Example: UnicodeDecodeError: ‘ascii’ codec can’t decode byte 0xd3 in position 1: ordinal not in range(128)

Cause

Python 2 is incapable of handling unicode properly, especially on Windows. In this case, if any character in your PATH env. var contains anything that is not ASCII then you see this exception.

Solution

Remove all non-ASCII from PATH or switch to Python 3.

Conda Commands

Contents:

	conda create

	conda install

	conda update

	conda remove

	conda info

	conda search

	conda config

	conda list

	conda clean

	conda package

conda create

Create a new conda environment from a list of specified packages. To use the created environment, use ‘source activate envname’ look in that directory first. This command requires either the -n NAME or -p PREFIX option.

Options:

usage: conda create [-h] [--clone ENV] [-n ENVIRONMENT | -p PATH] [-c CHANNEL]
 [--use-local] [--override-channels]
 [--strict-channel-priority] [--no-channel-priority]
 [--no-deps | --only-deps] [--no-pin] [--copy] [-C] [-k]
 [--offline] [-d] [--json] [-q] [-v] [-y] [--download-only]
 [--show-channel-urls] [--file FILE]
 [--no-default-packages]
 [package_spec [package_spec ...]]

Positional Arguments

	package_spec

	Packages to install or update in the conda environment.

Named Arguments

	--clone

	Path to (or name of) existing local environment.

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. –file=file1 –file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config –show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--no-default-packages

	Ignore create_default_packages in the .condarc file.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

Examples:

conda create -n myenv sqlite

conda install

Installs a list of packages into a specified conda environment.

This command accepts a list of package specifications (e.g, bitarray=0.8)
and installs a set of packages consistent with those specifications and
compatible with the underlying environment. If full compatibility cannot
be assured, an error is reported and the environment is not changed.

Conda attempts to install the newest versions of the requested packages. To
accomplish this, it may update some packages that are already installed, or
install additional packages. To prevent existing packages from updating,
use the –freeze-installed option. This may force conda to install older
versions of the requested packages, and it does not prevent additional
dependency packages from being installed.

If you wish to skip dependency checking altogether, use the ‘–no-deps’
option. This may result in an environment with incompatible packages, so
this option must be used with great caution.

conda can also be called with a list of explicit conda package filenames
(e.g. ./lxml-3.2.0-py27_0.tar.bz2). Using conda in this mode implies the
–no-deps option, and should likewise be used with great caution. Explicit
filenames and package specifications cannot be mixed in a single command.

Options:

usage: conda install [-h] [--revision REVISION] [-n ENVIRONMENT | -p PATH]
 [-c CHANNEL] [--use-local] [--override-channels]
 [--strict-channel-priority] [--no-channel-priority]
 [--no-deps | --only-deps] [--no-pin] [--copy] [-C] [-k]
 [--offline] [-d] [--json] [-q] [-v] [-y]
 [--download-only] [--show-channel-urls] [--file FILE]
 [--prune] [--force-reinstall]
 [--freeze-installed | --update-deps | -S | --update-all]
 [-m] [--clobber]
 [package_spec [package_spec ...]]

Positional Arguments

	package_spec

	Packages to install or update in the conda environment.

Named Arguments

	--revision

	Revert to the specified REVISION.

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. –file=file1 –file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config –show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--prune

	Remove packages that have previously been brought into the environment to satisfy dependencies of user-requested packages, but are no longer needed.

	--force-reinstall

	Ensure that any user-requested package for the current operation is uninstalled and reinstalled, even if that package already exists in the environment.

	--freeze-installed, --no-update-deps

	Do not update or change already-installed dependencies.

	--update-deps

	Update dependencies.

	-S, --satisfied-skip-solve

	Exit early and do not run the solver if the requested specs are satisfied. Also skips aggressive updates as configured by ‘aggressive_update_packages’. Similar to the default behavior of ‘pip install’.

	--update-all, --all

	Update all installed packages in the environment.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

	-m, --mkdir

	Create the environment directory if necessary.

	--clobber

	Allow clobbering of overlapping file paths within packages, and suppress related warnings.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

Examples:

conda install -n myenv scipy

conda update

Updates conda packages to the latest compatible version.

This command accepts a list of package names and updates them to the latest
versions that are compatible with all other packages in the environment.

Conda attempts to install the newest versions of the requested packages. To
accomplish this, it may update some packages that are already installed, or
install additional packages. To prevent existing packages from updating,
use the –no-update-deps option. This may force conda to install older
versions of the requested packages, and it does not prevent additional
dependency packages from being installed.

Options:

usage: conda update [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
 [--override-channels] [--strict-channel-priority]
 [--no-channel-priority] [--no-deps | --only-deps]
 [--no-pin] [--copy] [-C] [-k] [--offline] [-d] [--json]
 [-q] [-v] [-y] [--download-only] [--show-channel-urls]
 [--file FILE] [--prune] [--force-reinstall]
 [--freeze-installed | --update-deps | -S | --update-all]
 [--clobber]
 [package_spec [package_spec ...]]

Positional Arguments

	package_spec

	Packages to install or update in the conda environment.

Named Arguments

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. –file=file1 –file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config –show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--prune

	Remove packages that have previously been brought into the environment to satisfy dependencies of user-requested packages, but are no longer needed.

	--force-reinstall

	Ensure that any user-requested package for the current operation is uninstalled and reinstalled, even if that package already exists in the environment.

	--freeze-installed, --no-update-deps

	Do not update or change already-installed dependencies.

	--update-deps

	Update dependencies.

	-S, --satisfied-skip-solve

	Exit early and do not run the solver if the requested specs are satisfied. Also skips aggressive updates as configured by ‘aggressive_update_packages’. Similar to the default behavior of ‘pip install’.

	--update-all, --all

	Update all installed packages in the environment.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

	--clobber

	Allow clobbering of overlapping file paths within packages, and suppress related warnings.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

Examples:

conda update -n myenv scipy

conda remove

Remove a list of packages from a specified conda environment.

This command will also remove any package that depends on any of the
specified packages as well—unless a replacement can be found without
that dependency. If you wish to skip this dependency checking and remove
just the requested packages, add the ‘–force’ option. Note however that
this may result in a broken environment, so use this with caution.

Options:

usage: conda remove [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
 [--override-channels] [--all] [--features]
 [--force-remove] [--no-pin] [--prune] [-C] [-k]
 [--offline] [-d] [--json] [-q] [-v] [-y]
 [package_name [package_name ...]]

Positional Arguments

	package_name

	Package names to remove from the environment.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--all

	Remove all packages, i.e., the entire environment.

	--features

	Remove features (instead of packages).

	--force-remove, --force

	Forces removal of a package without removing packages that depend on it. Using this option will usually leave your environment in a broken and inconsistent state.

	--no-pin

	Ignore pinned file.

	--prune

	Remove packages that have previously been brought into the environment to satisfy dependencies of user-requested packages, but are no longer needed.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

Examples:

conda remove -n myenv scipy

conda info

Display information about current conda install.

Options:

usage: conda info [-h] [--json] [-v] [-q] [-a] [--base] [-e] [-s]
 [--unsafe-channels]

Named Arguments

	-a, --all

	Show all information.

	--base

	Display base environment path.

	-e, --envs

	List all known conda environments.

	-s, --system

	List environment variables.

	--unsafe-channels

	Display list of channels with tokens exposed.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

conda search

	Search for packages and display associated information.

	The input is a MatchSpec, a query language for conda packages.
See examples below.

Options:

usage: conda search [-h] [--envs] [-i] [--subdir SUBDIR] [-c CHANNEL]
 [--use-local] [--override-channels] [-C] [-k] [--offline]
 [--json] [-v] [-q]

Named Arguments

	--envs

	Search all of the current user’s environments. If run as Administrator (on Windows) or UID 0 (on unix), search all known environments on the system.

	-i, --info

	Provide detailed information about each package.

	--subdir, --platform

	Search the given subdir. Should be formatted like ‘osx-64’, ‘linux-32’, ‘win-64’, and so on. The default is to search the current platform.

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

Examples:

Search for a specific package named ‘scikit-learn’:

conda search scikit-learn

Search for packages containing ‘scikit’ in the package name:

conda search scikit

Note that your shell may expand ‘*’ before handing the command over to conda.
Therefore it is sometimes necessary to use single or double quotes around the query.

conda search ‘scikit’
conda search “*scikit”

Search for packages for 64-bit Linux (by default, packages for your current
platform are shown):

conda search numpy[subdir=linux-64]

Search for a specific version of a package:

conda search ‘numpy>=1.12’

Search for a package on a specific channel

conda search conda-forge::numpy
conda search ‘numpy[channel=conda-forge, subdir=osx-64]’

conda config

Modify configuration values in .condarc. This is modeled after the git
config command. Writes to the user .condarc file (/home/docs/.condarc) by default.

Options:

usage: conda config [-h] [--json] [-v] [-q] [--system | --env | --file FILE]
 [--show [SHOW [SHOW ...]] | --show-sources | --validate |
 --describe [DESCRIBE [DESCRIBE ...]] | --write-default]
 [--get [KEY [KEY ...]] | --append KEY VALUE | --prepend
 KEY VALUE | --set KEY VALUE | --remove KEY VALUE |
 --remove-key KEY | --stdin]

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

Config File Location Selection

Without one of these flags, the user config file at ‘/home/docs/.condarc’ is used.

	--system

	Write to the system .condarc file at ‘/home/docs/checkouts/readthedocs.org/user_builds/continuumio-conda/envs/4.6.1/.condarc’.

	--env

	Write to the active conda environment .condarc file (<no active environment>). If no environment is active, write to the user config file (/home/docs/.condarc).

	--file

	Write to the given file.

Config Subcommands

	--show

	Display configuration values as calculated and compiled. If no arguments given, show information for all configuration values.

	--show-sources

	Display all identified configuration sources.

	--validate

	Validate all configuration sources.

	--describe

	Describe given configuration parameters. If no arguments given, show information for all configuration parameters.

	--write-default

	Write the default configuration to a file. Equivalent to conda config –describe > ~/.condarc.

Config Modifiers

	--get

	Get a configuration value.

	--append

	Add one configuration value to the end of a list key.

	--prepend, --add

	Add one configuration value to the beginning of a list key.

	--set

	Set a boolean or string key

	--remove

	
	Remove a configuration value from a list key. This removes

	all instances of the value.

	--remove-key

	Remove a configuration key (and all its values).

	--stdin

	Apply configuration information given in yaml format piped through stdin.

See conda config –describe or https://conda.io/docs/config.html
for details on all the options that can go in .condarc.

Examples:

Display all configuration values as calculated and compiled:

conda config –show

Display all identified configuration sources:

conda config –show-sources

Describe all available configuration options:

conda config –describe

Add the conda-canary channel:

conda config –add channels conda-canary

Set the output verbosity to level 3 (highest) for the current activate environment:

conda config –set verbosity 3 –env

Add the ‘conda-forge’ channel as a backup to ‘defaults’:

conda config –append channels conda-forge

conda list

List linked packages in a conda environment.

Options:

usage: conda list [-h] [-n ENVIRONMENT | -p PATH] [--json] [-v] [-q]
 [--show-channel-urls] [-c] [-f] [--explicit] [--md5] [-e]
 [-r] [--no-pip]
 [regex]

Positional Arguments

	regex

	List only packages matching this regular expression.

Named Arguments

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

	-c, --canonical

	Output canonical names of packages only. Implies –no-pip.

	-f, --full-name

	Only search for full names, i.e., ^<regex>$.

	--explicit

	List explicitly all installed conda packaged with URL (output may be used by conda create –file).

	--md5

	Add MD5 hashsum when using –explicit

	-e, --export

	Output requirement string only (output may be used by conda create –file).

	-r, --revisions

	List the revision history and exit.

	--no-pip

	Do not include pip-only installed packages.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

Examples:

List all packages in the current environment:

conda list

List all packages installed into the environment ‘myenv’:

conda list -n myenv

Save packages for future use:

conda list –export > package-list.txt

Reinstall packages from an export file:

conda create -n myenv –file package-list.txt

conda clean

Remove unused packages and caches.

Options:

usage: conda clean [-h] [-a] [-i] [-l] [-p] [-t] [-f] [-d] [--json] [-q] [-v]
 [-y]

Removal Targets

	-a, --all

	Remove index cache, lock files, unused cache packages, and tarballs.

	-i, --index-cache

	Remove index cache.

	-l, --lock

	Remove all conda lock files.

	-p, --packages

	Remove unused packages from writable package caches. WARNING: This does not check for packages installed using symlinks back to the package cache.

	-t, --tarballs

	Remove cached package tarballs.

	-f, --force-pkgs-dirs

	Remove all writable package caches. This option is not included with the –all flag. WARNING: This will break environments with packages installed using symlinks back to the package cache.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

Examples:

conda clean –tarballs

conda package

Low-level conda package utility. (EXPERIMENTAL)

Options:

usage: conda package [-h] [-n ENVIRONMENT | -p PATH] [-w PATH [PATH ...]] [-r]
 [-u] [--pkg-name PKG_NAME] [--pkg-version PKG_VERSION]
 [--pkg-build PKG_BUILD]

Named Arguments

	-w, --which

	Given some PATH print which conda package the file came from.

	-r, --reset

	Remove all untracked files and exit.

	-u, --untracked

	Display all untracked files and exit.

	--pkg-name

	Package name of the created package.

	--pkg-version

	Package version of the created package.

	--pkg-build

	Package build number of the created package.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Conda Configuration

##
Channel Configuration
##

channels (sequence: str)
aliases: channel
env var string delimiter: ','
The list of conda channels to include for relevant operations.

channels:
- defaults

channel_alias (str)
The prepended url location to associate with channel names.

channel_alias: https://conda.anaconda.org

default_channels (sequence: str)
env var string delimiter: ','
The list of channel names and/or urls used for the 'defaults'
multichannel.

default_channels:
- https://repo.anaconda.com/pkgs/main
- https://repo.anaconda.com/pkgs/free
- https://repo.anaconda.com/pkgs/r

override_channels_enabled (bool)
Permit use of the --overide-channels command-line flag.

override_channels_enabled: true

whitelist_channels (sequence: str)
env var string delimiter: ','
The exclusive list of channels allowed to be used on the system. Use
of any other channels will result in an error. If conda-build channels
are to be allowed, along with the --use-local command line flag, be
sure to include the 'local' channel in the list. If the list is empty
or left undefined, no channel exclusions will be enforced.

whitelist_channels: []

custom_channels (map: str)
A map of key-value pairs where the key is a channel name and the value
is a channel location. Channels defined here override the default
'channel_alias' value. The channel name (key) is not included in the
channel location (value). For example, to override the location of
the 'conda-forge' channel where the url to repodata is
https://anaconda-repo.dev/packages/conda-forge/linux-64/repodata.json,
add an entry 'conda-forge: https://anaconda-repo.dev/packages'.

custom_channels:
pkgs/pro: https://repo.anaconda.com

custom_multichannels (map: list)
A multichannel is a metachannel composed of multiple channels. The two
reserved multichannels are 'defaults' and 'local'. The 'defaults'
multichannel is customized using the 'default_channels' parameter. The
'local' multichannel is a list of file:// channel locations where
conda-build stashes successfully-built packages. Other multichannels
can be defined with custom_multichannels, where the key is the
multichannel name and the value is a list of channel names and/or
channel urls.

custom_multichannels: {}

migrated_channel_aliases (sequence: str)
env var string delimiter: ','
A list of previously-used channel_alias values. Useful when switching
between different Anaconda Repository instances.

migrated_channel_aliases: []

migrated_custom_channels (map: str)
A map of key-value pairs where the key is a channel name and the value
is the previous location of the channel.

migrated_custom_channels: {}

add_anaconda_token (bool)
aliases: add_binstar_token
In conjunction with the anaconda command-line client (installed with
`conda install anaconda-client`), and following logging into an
Anaconda Server API site using `anaconda login`, automatically apply a
matching private token to enable access to private packages and
channels.

add_anaconda_token: true

allow_non_channel_urls (bool)
Warn, but do not fail, when conda detects a channel url is not a valid
channel.

allow_non_channel_urls: false

##
Basic Conda Configuration
##

env_prompt (str)
Template for prompt modification based on the active environment.
Currently supported template variables are '{prefix}', '{name}', and
'{default_env}'. '{prefix}' is the absolute path to the active
environment. '{name}' is the basename of the active environment
prefix. '{default_env}' holds the value of '{name}' if the active
environment is a conda named environment ('-n' flag), or otherwise
holds the value of '{prefix}'. Templating uses python's str.format()
method.

env_prompt: '({default_env}) '

envs_dirs (sequence: str)
aliases: envs_path
env var string delimiter: ':'
The list of directories to search for named environments. When
creating a new named environment, the environment will be placed in
the first writable location.

envs_dirs: []

pkgs_dirs (sequence: str)
env var string delimiter: ','
The list of directories where locally-available packages are linked
from at install time. Packages not locally available are downloaded
and extracted into the first writable directory.

pkgs_dirs: []

##
Network Configuration
##

client_ssl_cert (NoneType, str)
aliases: client_cert
A path to a single file containing a private key and certificate (e.g.
.pem file). Alternately, use client_ssl_cert_key in conjuction with
client_ssl_cert for individual files.

client_ssl_cert:

client_ssl_cert_key (NoneType, str)
aliases: client_cert_key
Used in conjunction with client_ssl_cert for a matching key file.

client_ssl_cert_key:

local_repodata_ttl (bool, int)
For a value of False or 0, always fetch remote repodata (HTTP 304
responses respected). For a value of True or 1, respect the HTTP
Cache-Control max-age header. Any other positive integer values is the
number of seconds to locally cache repodata before checking the remote
server for an update.

local_repodata_ttl: 1

offline (bool)
Restrict conda to cached download content and file:// based urls.

offline: false

proxy_servers (map: NoneType, str)
A mapping to enable proxy settings. Keys can be either (1) a
scheme://hostname form, which will match any request to the given
scheme and exact hostname, or (2) just a scheme, which will match
requests to that scheme. Values are are the actual proxy server, and
are of the form 'scheme://[user:password@]host[:port]'. The optional
'user:password' inclusion enables HTTP Basic Auth with your proxy.

proxy_servers: {}

remote_connect_timeout_secs (float)
The number seconds conda will wait for your client to establish a
connection to a remote url resource.

remote_connect_timeout_secs: 9.15

remote_max_retries (int)
The maximum number of retries each HTTP connection should attempt.

remote_max_retries: 3

remote_read_timeout_secs (float)
Once conda has connected to a remote resource and sent an HTTP
request, the read timeout is the number of seconds conda will wait for
the server to send a response.

remote_read_timeout_secs: 60.0

ssl_verify (bool, str)
aliases: verify_ssl
Conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required url's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, or (2) a path
to a directory containing certificates of trusted CA.

ssl_verify: true

##
Solver Configuration
##

aggressive_update_packages (sequence: str)
env var string delimiter: ','
A list of packages that, if installed, are always updated to the
latest possible version.

aggressive_update_packages:
- ca-certificates
- certifi
- openssl

auto_update_conda (bool)
aliases: self_update
Automatically update conda when a newer or higher priority version is
detected.

auto_update_conda: true

channel_priority (ChannelPriority)
Accepts values of 'strict', 'flexible', and 'disabled'. The default
value is 'flexible'. With strict channel priority, packages in lower
priority channels are not considered if a package with the same name
appears in a higher priority channel. With flexible channel priority,
the solver may reach into lower priority channels to fulfill
dependencies, rather than raising an unsatisfiable error. With channel
priority disabled, package version takes precedence, and the
configured priority of channels is used only to break ties. In
previous versions of conda, this parameter was configured as either
True or False. True is now an alias to 'flexible'.

channel_priority: flexible

create_default_packages (sequence: str)
env var string delimiter: ','
Packages that are by default added to a newly created environments.

create_default_packages: []

disallowed_packages (sequence: str)
aliases: disallow
env var string delimiter: '&'
Package specifications to disallow installing. The default is to allow
all packages.

disallowed_packages: []

pinned_packages (sequence: str)
env var string delimiter: '&'
A list of package specs to pin for every environment resolution. This
parameter is in BETA, and its behavior may change in a future release.

pinned_packages: []

track_features (sequence: str)
env var string delimiter: ','
A list of features that are tracked by default. An entry here is
similar to adding an entry to the create_default_packages list.

track_features: []

prune (bool)
Remove packages that have previously been brought into an environment
to satisfy dependencies of user-requested packages, but are no longer
needed.

prune: false

force_reinstall (bool)
Ensure that any user-requested package for the current operation is
uninstalled and reinstalled, even if that package already exists in
the environment.

force_reinstall: false

##
Package Linking and Install-time Configuration
##

allow_softlinks (bool)
When allow_softlinks is True, conda uses hard-links when possible, and
soft-links (symlinks) when hard-links are not possible, such as when
installing on a different filesystem than the one that the package
cache is on. When allow_softlinks is False, conda still uses hard-
links when possible, but when it is not possible, conda copies files.
Individual packages can override this setting, specifying that certain
files should never be soft-linked (see the no_link option in the build
recipe documentation).

allow_softlinks: false

always_copy (bool)
aliases: copy
Register a preference that files be copied into a prefix during
install rather than hard-linked.

always_copy: false

always_softlink (bool)
aliases: softlink
Register a preference that files be soft-linked (symlinked) into a
prefix during install rather than hard-linked. The link source is the
'pkgs_dir' package cache from where the package is being linked.
WARNING: Using this option can result in corruption of long-lived
conda environments. Package caches are *caches*, which means there is
some churn and invalidation. With this option, the contents of
environments can be switched out (or erased) via operations on other
environments.

always_softlink: false

path_conflict (PathConflict)
The method by which conda handle's conflicting/overlapping paths
during a create, install, or update operation. The value must be one
of 'clobber', 'warn', or 'prevent'. The '--clobber' command-line flag
or clobber configuration parameter overrides path_conflict set to
'prevent'.

path_conflict: clobber

rollback_enabled (bool)
Should any error occur during an unlink/link transaction, revert any
disk mutations made to that point in the transaction.

rollback_enabled: true

safety_checks (SafetyChecks)
Enforce available safety guarantees during package installation. The
value must be one of 'enabled', 'warn', or 'disabled'.

safety_checks: warn

extra_safety_checks (bool)
Spend extra time validating package contents. Currently, runs sha256
verification on every file within each package during installation.

extra_safety_checks: false

shortcuts (bool)
Allow packages to create OS-specific shortcuts (e.g. in the Windows
Start Menu) at install time.

shortcuts: true

non_admin_enabled (bool)
Allows completion of conda's create, install, update, and remove
operations, for non-privileged (non-root or non-administrator) users.

non_admin_enabled: true

##
Conda-build Configuration
##

bld_path (str)
The location where conda-build will put built packages. Same as
'croot', but 'croot' takes precedence when both are defined. Also used
in construction of the 'local' multichannel.

bld_path: ''

croot (str)
The location where conda-build will put built packages. Same as
'bld_path', but 'croot' takes precedence when both are defined. Also
used in construction of the 'local' multichannel.

croot: ''

anaconda_upload (NoneType, bool)
aliases: binstar_upload
Automatically upload packages built with conda build to anaconda.org.

anaconda_upload:

conda_build (map: str)
aliases: conda-build
General configuration parameters for conda-build.

conda_build: {}

##
Output, Prompt, and Flow Control Configuration
##

always_yes (NoneType, bool)
aliases: yes
Automatically choose the 'yes' option whenever asked to proceed with a
conda operation, such as when running `conda install`.

always_yes:

auto_activate_base (bool)
Automatically activate the base environment during shell
initialization.

auto_activate_base: true

changeps1 (bool)
When using activate, change the command prompt ($PS1) to include the
activated environment.

changeps1: true

json (bool)
Ensure all output written to stdout is structured json.

json: false

notify_outdated_conda (bool)
Notify if a newer version of conda is detected during a create,
install, update, or remove operation.

notify_outdated_conda: true

quiet (bool)
Disable progress bar display and other output.

quiet: false

report_errors (NoneType, bool)
Opt in, or opt out, of automatic error reporting to core maintainers.
Error reports are anonymous, with only the error stack trace and
information given by `conda info` being sent.

report_errors:

show_channel_urls (NoneType, bool)
Show channel URLs when displaying what is going to be downloaded.

show_channel_urls:

verbosity (int)
aliases: verbose
Sets output log level. 0 is warn. 1 is info. 2 is debug. 3 is trace.

verbosity: 0

Conda Python API

As of conda 4.4, conda can be installed in any environment, not just environments with names starting with _ (underscore). That change was made, in part, so that conda can be used as a python library.

There are three supported public modules. We support

import conda.cli.python_api.
import conda.api
import conda.exports
The first two should have very long-term stability. The third is guaranteed to be stable throughout the lifetime of a feature release series–i.e. minor version number.

As of conda 4.5, we do not support pip install conda. However, we are considering that as a supported bootstrap method in the future.

Contents:

	conda.api.Solver

	conda.api.python_api

	conda.api

conda.api.Solver

	
class conda.core.solve.DepsModifier

	Flags to enable alternate handling of dependencies.

	
NOT_SET = 'not_set'

	

	
NO_DEPS = 'no_deps'

	

	
ONLY_DEPS = 'only_deps'

	

	
class conda.core.solve.Solver(prefix, channels, subdirs=(), specs_to_add=(), specs_to_remove=())

	A high-level API to conda’s solving logic. Three public methods are provided to access a
solution in various forms.

	solve_final_state()

	solve_for_diff()

	solve_for_transaction()

	
solve_final_state(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null object>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>, force_remove=<auxlib._Null object>)

	Gives the final, solved state of the environment.

	Parameters

	
	update_modifier (UpdateModifier) – An optional flag directing how updates are handled regarding packages already
existing in the environment.

	deps_modifier (DepsModifier) – An optional flag indicating special solver handling for dependencies. The
default solver behavior is to be as conservative as possible with dependency
updates (in the case the dependency already exists in the environment), while
still ensuring all dependencies are satisfied. Options include

	NO_DEPS

	ONLY_DEPS

	UPDATE_DEPS

	UPDATE_DEPS_ONLY_DEPS

	FREEZE_INSTALLED

	prune (bool) – If True, the solution will not contain packages that were
previously brought into the environment as dependencies but are no longer
required as dependencies and are not user-requested.

	ignore_pinned (bool) – If True, the solution will ignore pinned package configuration
for the prefix.

	force_remove (bool) – Forces removal of a package without removing packages that depend on it.

	Returns

	In sorted dependency order from roots to leaves, the package references for
the solved state of the environment.

	Return type

	Tuple[PackageRef]

	
solve_for_diff(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null object>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>, force_remove=<auxlib._Null object>, force_reinstall=<auxlib._Null object>)

	Gives the package references to remove from an environment, followed by
the package references to add to an environment.

	Parameters

	
	deps_modifier (DepsModifier) – See solve_final_state().

	prune (bool) – See solve_final_state().

	ignore_pinned (bool) – See solve_final_state().

	force_remove (bool) – See solve_final_state().

	force_reinstall (bool) –
	For requested specs_to_add that are already satisfied in the environment,

	instructs the solver to remove the package and spec from the environment,
and then add it back–possibly with the exact package instance modified,
depending on the spec exactness.

	Returns

	A two-tuple of PackageRef sequences. The first is the group of packages to
remove from the environment, in sorted dependency order from leaves to roots.
The second is the group of packages to add to the environment, in sorted
dependency order from roots to leaves.

	Return type

	Tuple[PackageRef], Tuple[PackageRef]

	
solve_for_transaction(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null object>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>, force_remove=<auxlib._Null object>, force_reinstall=<auxlib._Null object>)

	Gives an UnlinkLinkTransaction instance that can be used to execute the solution
on an environment.

	Parameters

	
	deps_modifier (DepsModifier) – See solve_final_state().

	prune (bool) – See solve_final_state().

	ignore_pinned (bool) – See solve_final_state().

	force_remove (bool) – See solve_final_state().

	force_reinstall (bool) – See solve_for_diff().

	Returns

	

	Return type

	UnlinkLinkTransaction

conda.api.python_api

	
class conda.cli.python_api.Commands

	
	
CLEAN = 'clean'

	

	
CONFIG = 'config'

	

	
CREATE = 'create'

	

	
HELP = 'help'

	

	
INFO = 'info'

	

	
INSTALL = 'install'

	

	
LIST = 'list'

	

	
REMOVE = 'remove'

	

	
SEARCH = 'search'

	

	
UPDATE = 'update'

	

	
conda.cli.python_api.run_command(command, *arguments, **kwargs)

	Runs a conda command in-process with a given set of command-line interface arguments.

	Differences from the command-line interface:

	Always uses –yes flag, thus does not ask for confirmation.

	Parameters

	
	command – one of the Commands.X

	*arguments – instructions you would normally pass to the conda comamnd on the command line
see below for examples

	**kwargs – special instructions for programmatic overrides
use_exception_handler: defaults to False. False will let the code calling

run_command handle all exceptions. True won’t raise when an exception
has occured, and instead give a non-zero return code

	search_path: an optional non-standard search path for configuration information

	that overrides the default SEARCH_PATH

	stdout: Define capture behavior for stream sys.stdout. Defaults to STRING.

	STRING captures as a string. None leaves stream untouched.
Otherwise redirect to file-like object stdout.

	stderr: Define capture behavior for stream sys.stderr. Defaults to STRING.

	STRING captures as a string. None leaves stream untouched.
STDOUT redirects to stdout target and returns None as stderr value.
Otherwise redirect to file-like object stderr.

	Returns: a tuple of stdout, stderr, and return_code.

	stdout, stderr are either strings, None or the corresponding file-like function argument.

Examples

>> run_command(Commands.CREATE, “-n newenv python=3 flask”, use_exception_handler=True)
>> run_command(Commands.CREATE, “-n newenv”, “python=3”, “flask”)
>> run_command(Commands.CREATE, [“-n newenv”, “python=3”, “flask”], search_path=())

conda.api

	
class conda.api.Solver(prefix, channels, subdirs=(), specs_to_add=(), specs_to_remove=())

	Beta While in beta, expect both major and minor changes across minor releases.

A high-level API to conda’s solving logic. Three public methods are provided to access a
solution in various forms.

	solve_final_state()

	solve_for_diff()

	solve_for_transaction()

	
solve_final_state(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null object>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>, force_remove=<auxlib._Null object>)

	Beta While in beta, expect both major and minor changes across minor releases.

Gives the final, solved state of the environment.

	Parameters

	
	deps_modifier (DepsModifier) – An optional flag indicating special solver handling for dependencies. The
default solver behavior is to be as conservative as possible with dependency
updates (in the case the dependency already exists in the environment), while
still ensuring all dependencies are satisfied. Options include

	NO_DEPS

	ONLY_DEPS

	UPDATE_DEPS

	UPDATE_DEPS_ONLY_DEPS

	FREEZE_INSTALLED

	prune (bool) – If True, the solution will not contain packages that were
previously brought into the environment as dependencies but are no longer
required as dependencies and are not user-requested.

	ignore_pinned (bool) – If True, the solution will ignore pinned package configuration
for the prefix.

	force_remove (bool) – Forces removal of a package without removing packages that depend on it.

	Returns

	In sorted dependency order from roots to leaves, the package references for
the solved state of the environment.

	Return type

	Tuple[PackageRef]

	
solve_for_diff(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null object>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>, force_remove=<auxlib._Null object>, force_reinstall=False)

	Beta While in beta, expect both major and minor changes across minor releases.

Gives the package references to remove from an environment, followed by
the package references to add to an environment.

	Parameters

	
	deps_modifier (DepsModifier) – See solve_final_state().

	prune (bool) – See solve_final_state().

	ignore_pinned (bool) – See solve_final_state().

	force_remove (bool) – See solve_final_state().

	force_reinstall (bool) – For requested specs_to_add that are already satisfied in the environment,
instructs the solver to remove the package and spec from the environment,
and then add it back–possibly with the exact package instance modified,
depending on the spec exactness.

	Returns

	A two-tuple of PackageRef sequences. The first is the group of packages to
remove from the environment, in sorted dependency order from leaves to roots.
The second is the group of packages to add to the environment, in sorted
dependency order from roots to leaves.

	Return type

	Tuple[PackageRef], Tuple[PackageRef]

	
solve_for_transaction(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null object>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>, force_remove=<auxlib._Null object>, force_reinstall=False)

	Beta While in beta, expect both major and minor changes across minor releases.

Gives an UnlinkLinkTransaction instance that can be used to execute the solution
on an environment.

	Parameters

	
	deps_modifier (DepsModifier) – See solve_final_state().

	prune (bool) – See solve_final_state().

	ignore_pinned (bool) – See solve_final_state().

	force_remove (bool) – See solve_final_state().

	force_reinstall (bool) – See solve_for_diff().

	Returns

	

	Return type

	UnlinkLinkTransaction

	
class conda.api.SubdirData(channel)

	Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of repodata.json for subdirs.

	
iter_records()

	Beta While in beta, expect both major and minor changes across minor releases.

	Returns

	
	A generator over all records contained in the repodata.json

	instance. Warning: this is a generator that is exhausted on first use.

	Return type

	Iterable[PackageRecord]

	
query(package_ref_or_match_spec)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific instance of repodata.

	Parameters

	package_ref_or_match_spec (PackageRef or MatchSpec or str) – Either an exact PackageRef to match against, or a MatchSpec
query object. A str will be turned into a MatchSpec automatically.

	Returns

	Tuple[PackageRecord]

	
static query_all(package_ref_or_match_spec, channels=None, subdirs=None)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against all repodata instances in channel/subdir matrix.

	Parameters

	
	package_ref_or_match_spec (PackageRef or MatchSpec or str) – Either an exact PackageRef to match against, or a MatchSpec
query object. A str will be turned into a MatchSpec automatically.

	channels (Iterable[Channel or str] or None) – An iterable of urls for channels or Channel objects. If None, will fall
back to context.channels.

	subdirs (Iterable[str] or None) – If None, will fall back to context.subdirs.

	Returns

	Tuple[PackageRecord]

	
reload()

	Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. repodata.json)
is lazily downloaded/loaded on first use by the other methods of this class. You
should only use this method if you are sure you have outdated data.

	Returns

	SubdirData

	
class conda.api.PackageCacheData(pkgs_dir)

	Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of package caches.

	
static first_writable(pkgs_dirs=None)

	Beta While in beta, expect both major and minor changes across minor releases.

Get an instance object for the first writable package cache.

	Parameters

	pkgs_dirs (Iterable[str]) – If None, will fall back to context.pkgs_dirs.

	Returns

	An instance for the first writable package cache.

	Return type

	PackageCacheData

	
get(package_ref, default=<auxlib._Null object>)

	Beta While in beta, expect both major and minor changes across minor releases.

	Parameters

	
	package_ref (PackageRef) – A PackageRef instance representing the key for the
PackageCacheRecord being sought.

	default – The default value to return if the record does not exist. If not
specified and no record exists, KeyError is raised.

	Returns

	PackageCacheRecord

	
is_writable

	Beta While in beta, expect both major and minor changes across minor releases.

Indicates if the package cache location is writable or read-only.

	Returns

	bool

	
iter_records()

	Beta While in beta, expect both major and minor changes across minor releases.

	Returns

	
	A generator over all records contained in the package

	cache instance. Warning: this is a generator that is exhausted on first use.

	Return type

	Iterable[PackageCacheRecord]

	
query(package_ref_or_match_spec)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific package cache instance.

	Parameters

	package_ref_or_match_spec (PackageRef or MatchSpec or str) – Either an exact PackageRef to match against, or a MatchSpec
query object. A str will be turned into a MatchSpec automatically.

	Returns

	Tuple[PackageCacheRecord]

	
static query_all(package_ref_or_match_spec, pkgs_dirs=None)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against all package caches.

	Parameters

	
	package_ref_or_match_spec (PackageRef or MatchSpec or str) – Either an exact PackageRef to match against, or a MatchSpec
query object. A str will be turned into a MatchSpec automatically.

	pkgs_dirs (Iterable[str] or None) – If None, will fall back to context.pkgs_dirs.

	Returns

	Tuple[PackageCacheRecord]

	
reload()

	Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. contents of
the pkgs_dir) is lazily loaded on first use by the other methods of this class. You
should only use this method if you are sure you have outdated data.

	Returns

	PackageCacheData

	
class conda.api.PrefixData(prefix_path)

	Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of conda environment prefixes.

	
get(package_ref, default=<auxlib._Null object>)

	Beta While in beta, expect both major and minor changes across minor releases.

	Parameters

	
	package_ref (PackageRef) – A PackageRef instance representing the key for the
PrefixRecord being sought.

	default – The default value to return if the record does not exist. If not
specified and no record exists, KeyError is raised.

	Returns

	PrefixRecord

	
is_writable

	Beta While in beta, expect both major and minor changes across minor releases.

Indicates if the prefix is writable or read-only.

	Returns

	True if the prefix is writable. False if read-only. None if the prefix
does not exist as a conda environment.

	Return type

	bool or None

	
iter_records()

	Beta While in beta, expect both major and minor changes across minor releases.

	Returns

	
	A generator over all records contained in the prefix.

	Warning: this is a generator that is exhausted on first use.

	Return type

	Iterable[PrefixRecord]

	
query(package_ref_or_match_spec)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific prefix instance.

	Parameters

	package_ref_or_match_spec (PackageRef or MatchSpec or str) – Either an exact PackageRef to match against, or a MatchSpec
query object. A str will be turned into a MatchSpec automatically.

	Returns

	Tuple[PrefixRecord]

	
reload()

	Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. contents of
the conda-meta directory) is lazily loaded on first use by the other methods of this
class. You should only use this method if you are sure you have outdated data.

	Returns

	PrefixData

Release notes

This information is drawn from the GitHub conda project
changelog: https://github.com/conda/conda/blob/master/CHANGELOG.md

4.6.0 (unreleased)

New Feature Highlights

	resolve #7053 preview support for conda operability with pip (#7067, #7370, #7710)

	conda initialize (#6518, #7388, #7629)

	resolve #7194 add ‘–stack’ flag to ‘conda activate’; remove max_shlvl
config (#7195, #7226, #7233)

	resolve #7087 add non-conda-installed python packages into PrefixData (#7067, #7370)

	resolve #2682 add ‘conda run’ preview support (#7320, #7625)

	resolve #626 conda wrapper for PowerShell (#7794)

Deprecations/Breaking Changes

	resolve #6915 remove ‘conda env attach’ and ‘conda env upload’ (#6916)

	resolve #7061 remove pkgs/pro from defaults (#7162)

	resolve #7078 add deprecation warnings for ‘conda.cli.activate’,
‘conda.compat’, and ‘conda.install’ (#7079)

	resolve #7194 add ‘–stack’ flag to ‘conda activate’; remove max_shlvl
config (#7195)

	resolve #6979, #7086 remove Dist from majority of project (#7216, #7252)

	fix #7362 remove –license from conda info and related code paths (#7386)

	resolve #7309 deprecate ‘conda info package_name’ (#7310)

	remove ‘conda clean –source-cache’ and defer to conda-build (#7731)

	resolve #7724 move windows package cache and envs dirs back to .conda directory (#7725)

Improvements

	import speedups (#7122)

	–help cleanup (#7120)

	fish autocompletion for conda env (#7101)

	remove reference to ‘system’ channel (#7163)

	add http error body to debug information (#7160)

	warn creating env name with space is not supported (#7168)

	support complete MatchSpec syntax in environment.yml files (#7178)

	resolve #4274 add option to remove an existing environment with ‘conda create’ (#7133)

	add ability for conda prompt customization via ‘env_prompt’ config param (#7047)

	resolve #7063 add license and license_family to MatchSpec for ‘conda search’ (#7064)

	resolve #7189 progress bar formatting improvement (#7191)

	raise log level for errors to error (#7229)

	add to conda.exports (#7217)

	resolve #6845 add option -S / –satisfied-skip-solve to exit early for satisfied specs (#7291)

	add NoBaseEnvironmentError and DirectoryNotACondaEnvironmentError (#7378)

	replace menuinst subprocessing by ctypes win elevation (4.6.0a3) (#7426)

	bump minimum requests version to stable, unbundled release (#7528)

	resolve #7591 updates and improvements from namespace PR for 4.6 (#7599)

	resolve #7592 compatibility shims (#7606)

	user-agent context refactor (#7630)

	solver performance improvements with benchmarks in common.logic (#7676)

	enable fuzzy-not-equal version constraint for pip interop (#7711)

	add -d short option for –dry-run (#7719)

	add –force-pkgs-dirs option to conda clean (#7719)

	address #7709 ensure –update-deps unlocks specs from previous user requests (#7719)

	add package timestamp information to output of ‘conda search –info’ (#7722)

	resolve #7336 ‘conda search’ tries “fuzzy match” before showing PackagesNotFound (#7722)

	resolve #7656 strict channel priority via ‘channel_priority’ config option or –strict-channel-priority CLI flag (#7729)

	performance improvement to cache __hash__ value on PackageRecord (#7715)

	resolve #7764 change name of ‘condacmd’ dir to ‘condabin’; use on all platforms (#7773)

	resolve #7782 implement PEP-440 ‘~=’ compatible release operator (#7783)

Bug Fixes

	fix #7107 verify hangs when a package is corrupted (#7131)

	fix #7145 progress bar uses stderr instead of stdout (#7146)

	fix typo in conda.fish (#7152)

	fix #2154 conda remove should complain if requested removals don’t exist (#7135)

	fix #7094 exit early for –dry-run with explicit and clone (#7096)

	fix activation script sort order (#7176)

	fix #7109 incorrect chown with sudo (#7180)

	fix #7210 add suppressed –mkdir back to ‘conda create’ (fix for 4.6.0a1) (#7211)

	fix #5681 conda env create / update when –file does not exist (#7385)

	resolve #7375 enable conda config –set update_modifier (#7377)

	fix #5885 improve conda env error messages and add extra tests (#7395)

	msys2 path conversion (#7389)

	fix autocompletion in fish (#7575)

	fix #3982 following 4.4 activation refactor (#7607)

	fix #7242 configuration load error message (#7243)

	fix conda env compatibility with pip 18 (#7612)

	fix #7184 remove conflicting specs to find solution to user’s active request (#7719)

	fix #7706 add condacmd dir to cmd.exe path on first activation (#7735)

	fix #7761 spec handling errors in 4.6.0b0 (#7780)

	fix #7770 ‘conda list regex’ only applies regex to package name (#7784)

Non-User-Facing Changes

	resolve #6595 use OO inheritance in activate.py (#7049)

	resolve #7220 pep8 project renamed to pycodestyle (#7221)

	proxy test routine (#7308)

	add .mailmap and .cla-signers (#7361)

	add copyright headers (#7367)

	rename common.platform to common.os and split among windows, linux, and unix utils (#7396)

	fix windows test failures when symlink not available (#7369)

	test building conda using conda-build (#7251)

	solver test metadata updates (#7664)

	explicitly add Mapping, Sequence to common.compat (#7677)

	add debug messages to communicate solver stages (#7803)

	add undocumented sat_solver config parameter (#7811)

Preview Releases

	4.6.0a1 at d5bec21d1f64c3bc66c2999cfc690681e9c46177 on 2018-04-20

	4.6.0a2 at c467517ca652371ebc4224f0d49315b7ec225108 on 2018-05-01

	4.6.0b0 at 21a24f02b2687d0895de04664a4ec23ccc75c33a on 2018-09-07

Contributors

	@cgranade

	@fabioz

	@goanpeca

	@jesse-

	@kalefranz

	@mandeep

	@mbargull

	@msarahan

	@ohadravid

4.5.11 (2018-08-21)

Improvements

	resolve #7672 compatibility with ruamel.yaml 0.15.54 (#7675)

Contributors

	@CJ-Wright

	@mbargull

4.5.10 (2018-08-13)

Bug Fixes

	fix conda env compatibility with pip 18 (#7627)

	fix py37 compat 4.5.x (#7641)

	fix #7451 don’t print name, version, and size if unknown (#7648)

	replace glob with fnmatch in PrefixData (#7645)

Contributors

	@jesse-

	@nehaljwani

4.5.9 (2018-07-30)

Improvements

	resolve #7522 prevent conda from scheduling downgrades (#7598)

	allow skipping feature maximization in resolver (#7601)

Bug Fixes

	fix #7559 symlink stat in localfs adapter (#7561)

	fix #7486 activate with no PATH set (#7562)

	resolve #7522 prevent conda from scheduling downgrades (#7598)

Contributors

	@kalefranz

	@loriab

4.5.8 (2018-07-10)

Bug Fixes

	fix #7524 should_bypass_proxies for requests 2.13.0 and earlier (#7525)

Contributors

	@kalefranz

4.5.7 (2018-07-09)

Improvements

	resolve #7423 add upgrade error for unsupported repodata_version (#7415)

	raise CondaUpgradeError for conda version downgrades on environments (#7517)

Bug Fixes

	fix #7505 temp directory for UnlinkLinkTransaction should be in target prefix (#7516)

	fix #7506 requests monkeypatch fallback for old requests versions (#7515)

Contributors

	@kalefranz

	@nehaljwani

4.5.6 (2018-07-06)

Bug Fixes

	resolve #7473 py37 support (#7499)

	fix #7494 History spec parsing edge cases (#7500)

	fix requests 2.19 incompatibility with NO_PROXY env var (#7498)

	resolve #7372 disable http error uploads and CI cleanup (#7498, #7501)

Contributors

	@kalefranz

4.5.5 (2018-06-29)

Bug Fixes

	fix #7165 conda version check should be restricted to channel conda is from (#7289, #7303)

	fix #7341 ValueError n cannot be negative (#7360)

	fix #6691 fix history file parsing containing comma-joined version specs (#7418)

	fix msys2 path conversion (#7471)

Contributors

	@goanpeca

	@kalefranz

	@mingwandroid

	@mbargull

4.5.4 (2018-05-14)

Improvements

	resolve #7189 progress bar improvement (#7191 via #7274)

Bug Fixes

	fix twofold tarball extraction, improve progress update (#7275)

	fix #7253 always respect copy LinkType (#7269)

Contributors

	@jakirkham

	@kalefranz

	@mbargull

4.5.3 (2018-05-07)

Bug Fixes

	fix #7240 conda’s configuration context is not initialized in conda.exports (#7244)

4.5.2 (2018-04-27)

Bug Fixes

	fix #7107 verify hangs when a package is corrupted (#7223)

	fix #7094 exit early for –dry-run with explicit and clone (#7224)

	fix activation/deactivation script sort order (#7225)

4.5.1 (2018-04-13)

Improvements

	resolve #7075 add anaconda.org search message to PackagesNotFoundError (#7076)

	add CondaError details to auto-upload reports (#7060)

Bug Fixes

	fix #6703,#6981 index out of bound when running deactivate on fish shell (#6993)

	properly close over $_CONDA_EXE variable (#7004)

	fix condarc map parsing with comments (#7021)

	fix #6919 csh prompt (#7041)

	add _file_created attribute (#7054)

	fix handling of non-ascii characters in custom_multichannels (#7050)

	fix #6877 handle non-zero return in CSH (#7042)

	fix #7040 update tqdm to version 4.22.0 (#7157)

4.5.0 (2018-03-20)

New Feature Highlights

	A new flag, ‘–envs’, has been added to ‘conda search’. In this mode,
‘conda search’ will look for the package query in existing conda environments
on your system. If ran as UID 0 (i.e. root) on unix systems or as an
Administrator user on Windows, all known conda environments for all users
on the system will be searched. For example, ‘conda search –envs openssl’
will show the openssl version and environment location for all
conda-installed openssl packages.

Deprecations/Breaking Changes

	resolve #6886 transition defaults from repo.continuum.io to repo.anaconda.com (#6887)

	resolve #6192 deprecate ‘conda help’ in favor of –help CLI flag (#6918)

	resolve #6894 add http errors to auto-uploaded error reports (#6895)

Improvements

	resolve #6791 conda search –envs (#6794)

	preserve exit status in fish shell (#6760)

	resolve #6810 add CONDA_EXE environment variable to activate (#6923)

	resolve #6695 outdated conda warning respects –quiet flag (#6935)

	add instructions to activate default environment (#6944)

API

	resolve #5610 add PrefixData, SubdirData, and PackageCacheData to conda/api.py (#6922)

Bug Fixes

	channel matchspec fixes (#6893)

	fix #6930 add missing return statement to S3Adapter (#6931)

	fix #5802, #6736 enforce disallowed_packages configuration parameter (#6932)

	fix #6860 infinite recursion in resolve.py for empty track_features (#6928)

	set encoding for PY2 stdout/stderr (#6951)

	fix #6821 non-deterministic behavior from MatchSpec merge clobbering (#6956)

	fix #6904 logic errors in prefix graph data structure (#6929)

Non-User-Facing Changes

	fix several lgtm.com flags (#6757, #6883)

	cleanups and refactors for conda 4.5 (#6889)

	unify location of record types in conda/models/records.py (#6924)

	resolve #6952 memoize url search in package cache loading (#6957)

4.4.11 (2018-02-23)

Improvements

	resolve #6582 swallow_broken_pipe context manager and Spinner refactor (#6616)

	resolve #6882 document max_shlvl (#6892)

	resolve #6733 make empty env vars sequence-safe for sequence parameters (#6741)

	resolve #6900 don’t record conda skeleton environments in environments.txt (#6908)

Bug Fixes

	fix potential error in ensure_pad(); add more tests (#6817)

	fix #6840 handle error return values in conda.sh (#6850)

	use conda.gateways.disk for misc.py imports (#6870)

	fix #6672 don’t update conda during conda-env operations (#6773)

	fix #6811 don’t attempt copy/remove fallback for rename failures (#6867)

	fix #6667 aliased posix commands (#6669)

	fix #6816 fish environment autocomplete (#6885)

	fix #6880 build_number comparison not functional in match_spec (#6881)

	fix #6910 sort key prioritizes build string over build number (#6911)

	fix #6914, #6691 conda can fail to update packages even though newer versions exist (#6921)

	fix #6899 handle Unicode output in activate commands (#6909)

4.4.10 (2018-02-09)

Bug Fixes

	fix #6837 require at least futures 3.0.0 (#6855)

	fix #6852 ensure temporary path is writable (#6856)

	fix #6833 improve feature mismatch metric (via 4.3.34 #6853)

4.4.9 (2018-02-06)

Improvements

	resolve #6632 display package removal plan when deleting an env (#6801)

Bug Fixes

	fix #6531 don’t drop credentials for conda-build workaround (#6798)

	fix external command execution issue (#6789)

	fix #5792 conda env export error common in path (#6795)

	fix #6390 add CorruptedEnvironmentError (#6778)

	fix #5884 allow –insecure CLI flag without contradicting meaning of ssl_verify (#6782)

	fix MatchSpec.match() accepting dict (#6808)

	fix broken Anaconda Prompt for users with spaces in paths (#6825)

	JSONDecodeError was added in Python 3.5 (#6848)

	fix #6796 update PATH/prompt on reactivate (#6828)

	fix #6401 non-ascii characters on windows using expanduser (#6847)

	fix #6824 import installers before invoking any (#6849)

4.4.8 (2018-01-25)

Improvements

	allow falsey values for default_python to avoid pinning python (#6682)

	resolve #6700 add message for no space left on device (#6709)

	make variable ‘sourced’ local for posix shells (#6726)

	add column headers to conda list results (#5726)

Bug Fixes

	fix #6713 allow parenthesis in prefix path for conda.bat (#6722)

	fix #6684 –force message (#6723)

	fix #6693 KeyError with ‘–update-deps’ (#6694)

	fix aggressive_update_packages availability (#6727)

	fix #6745 don’t truncate channel priority map in conda installer (#6746)

	add workaround for system Python usage by lsb_release (#6769)

	fix #6624 can’t start new thread (#6653)

	fix #6628 ‘conda install –rev’ in conda 4.4 (#6724)

	fix #6707 FileNotFoundError when extracting tarball (#6708)

	fix #6704 unexpected token in conda.bat (#6710)

	fix #6208 return for no pip in environment (#6784)

	fix #6457 env var cleanup (#6790)

	fix #6645 escape paths for argparse help (#6779)

	fix #6739 handle unicode in environment variables for py2 activate (#6777)

	fix #6618 RepresenterError with ‘conda config –set’ (#6619)

	fix #6699 suppress memory error upload reports (#6776)

	fix #6770 CRLF for cmd.exe (#6775)

	fix #6514 add message for case-insensitive filesystem errors (#6764)

	fix #6537 AttributeError value for url not set (#6754)

	fix #6748 only warn if unable to register environment due to EACCES (#6752)

4.4.7 (2018-01-08)

Improvements

	resolve #6650 add upgrade message for unicode errors in python 2 (#6651)

Bug Fixes

	fix #6643 difference between == and exact_match_ (#6647)

	fix #6620 KeyError(u’CONDA_PREFIX’,) (#6652)

	fix #6661 remove env from environments.txt (#6662)

	fix #6629 ‘conda update –name’ AssertionError (#6656)

	fix #6630 repodata AssertionError (#6657)

	fix #6626 add setuptools as constrained dependency (#6654)

	fix #6659 conda list explicit should be dependency sorted (#6671)

	fix #6665 KeyError for channel ‘<unknown>’ (#6668, #6673)

	fix #6627 AttributeError on ‘conda activate’ (#6655)

4.4.6 (2017-12-31)

Bug Fixes

	fix #6612 do not assume Anaconda Python on Windows nor Librarybin hack (#6615)

	recipe test improvements and associated bug fixes (#6614)

4.4.5 (2017-12-29)

Bug Fixes

	fix #6577, #6580 single quote in PS1 (#6585)

	fix #6584 os.getcwd() FileNotFound (#6589)

	fix #6592 deactivate command order (#6602)

	fix #6579 python not recognized as command (#6588)

	fix #6572 cached repodata PermissionsError (#6573)

	change instances of ‘root’ to ‘base’ (#6598)

	fix #6607 use subprocess rather than execv for conda command extensions (#6609)

	fix #6581 git-bash activation (#6587)

	fix #6599 space in path to base prefix (#6608)

4.4.4 (2017-12-24)

Improvements

	add SUDO_ env vars to info reports (#6563)

	add additional information to the #6546 exception (#6551)

Bug Fixes

	fix #6548 ‘conda update’ installs packages not in prefix #6550

	fix #6546 update after creating an empty env (#6568)

	fix #6557 conda list FileNotFoundError (#6558)

	fix #6554 package cache FileNotFoundError (#6555)

	fix #6529 yaml parse error (#6560)

	fix #6562 repodata_record.json permissions error stack trace (#6564)

	fix #6520 –use-local flag (#6526)

4.4.3 (2017-12-22)

Improvements

	adjust error report message (#6534)

Bug Fixes

	fix #6530 package cache JsonDecodeError / ValueError (#6533)

	fix #6538 BrokenPipeError (#6540)

	fix #6532 remove anaconda metapackage hack (#6539)

	fix #6536 ‘conda env export’ for old versions of pip (#6535)

	fix #6541 py2 and unicode in environments.txt (#6542)

Non-User-Facing Changes

	regression tests for #6512 (#6515)

4.4.2 (2017-12-22)

Deprecations/Breaking Changes

	resolve #6523 don’t prune with –update-all (#6524)

Bug Fixes

	fix #6508 environments.txt permissions error stack trace (#6511)

	fix #6522 error message formatted incorrectly (#6525)

	fix #6516 hold channels over from get_index to install_actions (#6517)

4.4.1 (2017-12-21)

Bug Fixes

	fix #6512 reactivate does not accept arguments (#6513)

4.4.0 (2017-12-20)

Recommended change to enable conda in your shell

With the release of conda 4.4, we recommend a change to how the conda command is made available to your shell environment. All the old methods still work as before, but you’ll need the new method to enable the new conda activate and conda deactivate commands.

For the “Anaconda Prompt” on Windows, there is no change.

For Bourne shell derivatives (bash, zsh, dash, etc.), you likely currently have a line similar to:

export PATH="/opt/conda/bin:$PATH"

in your ~/.bashrc file (or ~/.bash_profile file on macOS). The effect of this line is that your base environment is put on PATH, but without actually activating that environment. (In 4.4 we’ve renamed the ‘root’ environment to the ‘base’ environment.) With conda 4.4, we recommend removing the line where the PATH environment variable is modified, and replacing it with:

. /opt/conda/etc/profile.d/conda.sh
conda activate base

In the above, it’s assumed that /opt/conda is the location where you installed miniconda or Anaconda. It may also be something like ~/Anaconda3 or ~/miniconda2.

For system-wide conda installs, to make the conda command available to all users, rather than manipulating individual ~/.bashrc (or ~/.bash_profile) files for each user, just execute once:

$ sudo ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh

This will make the conda command itself available to all users, but conda’s base (root) environment will not be activated by default. Users will still need to run conda activate base to put the base environment on PATH and gain access to the executables in the base environment.

After updating to conda 4.4, we also recommend pinning conda to a specific channel. For example, executing the command:

$ conda config --system --add pinned_packages conda-canary::conda

will make sure that whenever conda is installed or changed in an environment, the source of the package is always being pulled from the conda-canary channel. This will be useful for people who use conda-forge, to prevent conda from flipping back and forth between 4.3 and 4.4.

New Feature Highlights

	conda activate: The logic and mechanisms underlying environment activation have been reworked. With conda 4.4, conda activate and conda deactivate are now the preferred commands for activating and deactivating environments. You’ll find they are much more snappy than the source activate and source deactivate commands from previous conda versions. The conda activate command also has advantages of (1) being universal across all OSes, shells, and platforms, and (2) not having path collisions with scripts from other packages like python virtualenv’s activate script.

	constrained, optional dependencies: Conda now allows a package to constrain versions of other packages installed alongside it, even if those constrained packages are not themselves hard dependencies for that package. In other words, it lets a package specify that, if another package ends up being installed into an environment, it must at least conform to a certain version specification. In effect, constrained dependencies are a type of “reverse” dependency. It gives a tool to a parent package to exclude other packages from an environment that might otherwise want to depend on it.

Constrained optional dependencies are supported starting with conda-build 3.0 (via conda/conda-build#2001 [https://github.com/conda/conda-build/pull/2001]). A new run_constrained keyword, which takes a list of package specs similar to the run keyword, is recognized under the requirements section of meta.yaml. For backward compatibility with versions of conda older than 4.4, a requirement may be listed in both the run and the run_constrained section. In that case older versions of conda will see the package as a hard dependency, while conda 4.4 will understand that the package is meant to be optional.

Optional, constrained dependencies end up in repodata.json under a constrains keyword, parallel to the depends keyword for a package’s hard dependencies.

	enhanced package query language: Conda has a built-in query language for searching for and matching packages, what we often refer to as MatchSpec. The MatchSpec is what users input on the command line when they specify packages for create, install, update, and remove operations. With this release, MatchSpec (rather than a regex) becomes the default input for conda search. We have also substantially enhanced our MatchSpec query language.

For example:

conda install conda-forge::python

is now a valid command, which specifies that regardless of the active list of channel priorities, the python package itself should come from the conda-forge channel. As before, the difference between python=3.5 and python==3.5 is that the first contains a “fuzzy” version while the second contains an exact version. The fuzzy spec will match all python packages with versions >=3.5 and <3.6. The exact spec will match only python packages with version 3.5, 3.5.0, 3.5.0.0, etc. The canonical string form for a MatchSpec is thus:

(channel::)name(version(build_string))

which should feel natural to experienced conda users. Specifications however are often necessarily more complicated than this simple form can support, and for these situations we’ve extended the specification to include an optional square bracket [] component containing comma-separated key-value pairs to allow matching on most any field contained in a package’s metadata. Take, for example:

conda search 'conda-forge/linux-64::*[md5=e42a03f799131d5af4196ce31a1084a7]' --info

which results in information for the single package:

cytoolz 0.8.2 py35_0

file name : cytoolz-0.8.2-py35_0.tar.bz2
name : cytoolz
version : 0.8.2
build string: py35_0
build number: 0
size : 1.1 MB
arch : x86_64
platform : Platform.linux
license : BSD 3-Clause
subdir : linux-64
url : https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.8.2-py35_0.tar.bz2
md5 : e42a03f799131d5af4196ce31a1084a7
dependencies:
 - python 3.5*
 - toolz >=0.8.0

The square bracket notation can also be used for any field that we match on outside the package name, and will override information given in the “simple form” position. To give a contrived example, python==3.5[version=’>=2.7,<2.8’] will match 2.7.* versions and not 3.5.

	environments track user-requested state: Building on our enhanced MatchSpec query language, conda environments now also track and differentiate (a) packages added to an environment because of an explicit user request from (b) packages brought into an environment to satisfy dependencies. For example, executing:

conda install conda-forge::scikit-learn

will confine all future changes to the scikit-learn package in the environment to the conda-forge channel, until the spec is changed again. A subsequent command conda install scikit-learn=0.18 would drop the conda-forge channel restriction from the package. And in this case, scikit-learn is the only user-defined spec, so the solver chooses dependencies from all configured channels and all available versions.

	errors posted to core maintainers: In previous versions of conda, unexpected errors resulted in a request for users to consider posting the error as a new issue on conda’s github issue tracker. In conda 4.4, we’ve implemented a system for users to opt-in to sending that same error report via an HTTP POST request directly to the core maintainers.

When an unexpected error is encountered, users are prompted with the error report followed by a [y/N] input. Users can elect to send the report, with ‘no’ being the default response. Users can also permanently opt-in or opt-out, thereby skipping the prompt altogether, using the boolean report_errors configuration parameter.

	various UI improvements: To push through some of the big leaps with transactions in conda 4.3, we accepted some regressions on progress bars and other user interface features. All of those indicators of progress, and more, have been brought back and further improved.

	aggressive updates: Conda now supports an aggressive_update_packages configuration parameter that holds a sequence of MatchSpec strings, in addition to the pinned_packages configuration parameter. Currently, the default value contains the packages ca-certificates, certifi, and openssl. When manipulating configuration with the conda config command, use of the –system and –env flags will be especially helpful here. For example:

conda config --add aggressive_update_packages defaults::pyopenssl --system

would ensure that, system-wide, solves on all environments enforce using the latest version of pyopenssl from the defaults channel.

`conda config --add pinned_packages python=2.7 --env`

would lock all solves for the current active environment to python versions matching 2.7.*.

	other configuration improvements: In addition to conda config –describe, which shows detailed descriptions and default values for all available configuration parameters, we have a new conda config –write-default command. This new command simply writes the contents of conda config –describe to a condarc file, which is a great starter template. Without additional arguments, the command will write to the .condarc file in the user’s home directory. The command also works with the –system, –env, and –file flags to write the contents to alternate locations.

Conda exposes a tremendous amount of flexibility via configuration. For more information, The Conda Configuration Engine for Power Users [https://www.continuum.io/blog/developer-blog/conda-configuration-engine-power-users] blog post is a good resource.

Deprecations/Breaking Changes

	the conda ‘root’ environment is now generally referred to as the ‘base’ environment

	Conda 4.4 now warns when available information about per-path sha256 sums and file sizes
do not match the recorded information. The warning is scheduled to be an error in conda 4.5.
Behavior is configurable via the safety_checks configuration parameter.

	remove support for with_features_depends (#5191)

	resolve #5468 remove –alt-hint from CLI API (#5469)

	resolve #5834 change default value of ‘allow_softlinks’ from True to False (#5835)

	resolve #5842 add deprecation warnings for ‘conda env upload’ and ‘conda env attach’ (#5843)

API

	Add Solver from conda.core.solver with three methods to conda.api (4.4.0rc1) (#5838)

Improvements

	constrained, optional dependencies (#4982)

	conda shell function (#5044, #5141, #5162, #5169, #5182, #5210, #5482)

	resolve #5160 conda xontrib plugin (#5157)

	resolve #1543 add support and tests for –no-deps and –only-deps (#5265)

	resolve #988 allow channel name to be part of the package name spec (#5365, #5791)

	resolve #5530 add ability for users to choose to post unexpected errors to core maintainers (#5531, #5571, #5585)

	Solver, UI, History, and Other (#5546, #5583, #5740)

	improve ‘conda search’ to leverage new MatchSpec query language (#5597)

	filter out unwritable package caches from conda clean command (#4620)

	envs_manager, requested spec history, declarative solve, and private env tests (#4676, #5114, #5094, #5145, #5492)

	make python entry point format match pip entry points (#5010)

	resolve #5113 clean up CLI imports to improve process startup time (#4799)

	resolve #5121 add features/track_features support for MatchSpec (#5054)

	resolve #4671 hold verify backoff count in transaction context (#5122)

	resolve #5078 record package metadata after tarball extraction (#5148)

	resolve #3580 support stacking environments (#5159)

	resolve #3763, #4378 allow pip requirements.txt syntax in environment files (#3969)

	resolve #5147 add ‘config files’ to conda info (#5269)

	use –format=json to parse list of pip packages (#5205)

	resolve #1427 remove startswith ‘.’ environment name constraint (#5284)

	link packages from extracted tarballs when tarball is gone (#5289)

	resolve #2511 accept config information from stdin (#5309)

	resolve #4302 add ability to set map parameters with conda config (#5310)

	resolve #5256 enable conda config –get for all primitive parameters (#5312)

	resolve #1992 add short flag -C for –use-index-cache (#5314)

	resolve #2173 add –quiet option to conda clean (#5313)

	resolve #5358 conda should exec to subcommands, not subprocess (#5359)

	resolve #5411 add ‘conda config –write-default’ (#5412)

	resolve #5081 make pinned packages optional dependencies (#5414)

	resolve #5430 eliminate current deprecation warnings (#5422)

	resolve #5470 make stdout/stderr capture in python_api customizable (#5471)

	logging simplifications/improvements (#5547, #5578)

	update license information (#5568)

	enable threadpool use for repodata collection by default (#5546, #5587)

	conda info now raises PackagesNotFoundError (#5655)

	index building optimizations (#5776)

	fix #5811 change safety_checks default to ‘warn’ for conda 4.4 (4.4.0rc1) (#5824)

	add constrained dependencies to conda’s own recipe (4.4.0rc1) (#5823)

	clean up parser imports (4.4.0rc2) (#5844)

	resolve #5983 add –download-only flag to create, install, and update (4.4.0rc2) (#5988)

	add ca-certificates and certifi to aggressive_update_packages default (4.4.0rc2) (#5994)

	use environments.txt to list all known environments (4.4.0rc2) (#6313)

	resolve #5417 ensure unlink order is correctly sorted (4.4.0) (#6364)

	resolve #5370 index is only prefix and cache in –offline mode (4.4.0) (#6371)

	reduce redundant sys call during file copying (4.4.0rc3) (#6421)

	enable aggressive_update_packages (4.4.0rc3) (#6392)

	default conda.sh to dash if otherwise can’t detect (4.4.0rc3) (#6414)

	canonicalize package names when comparing with pip (4.4.0rc3) (#6438)

	add target prefix override configuration parameter (4.4.0rc3) (#6413)

	resolve #6194 warn when conda is outdated (4.4.0rc3) (#6370)

	add information to displayed error report (4.4.0rc3) (#6437)

	csh wrapper (4.4.0) (#6463)

	resolve #5158 –override-channels (4.4.0) (#6467)

	fish update for conda 4.4 (4.4.0) (#6475, #6502)

	skip an unnecessary environments.txt rewrite (4.4.0) (#6495)

Bug Fixes

	fix some conda-build compatibility issues (#5089)

	resolve #5123 export toposort (#5124)

	fix #5132 signal handler can only be used in main thread (#5133)

	fix orphaned –clobber parser arg (#5188)

	fix #3814 don’t remove directory that’s not a conda environment (#5204)

	fix #4468 _license stack trace (#5206)

	fix #4987 conda update –all no longer displays full list of packages (#5228)

	fix #3489 don’t error on remove –all if environment doesn’t exist (#5231)

	fix #1509 bash doesn’t need full path for pre/post link/unlink scripts on unix (#5252)

	fix #462 add regression test (#5286)

	fix #5288 confirmation prompt doesn’t accept no (#5291)

	fix #1713 ‘conda package -w’ is case dependent on Windows (#5308)

	fix #5371 try falling back to pip’s vendored requests if no requests available (#5372)

	fix #5356 skip root logger configuration (#5380)

	fix #5466 scrambled URL of non-alias channel with token (#5467)

	fix #5444 environment.yml file not found (#5475)

	fix #3200 use proper unbound checks in bash code and test (#5476)

	invalidate PrefixData cache on rm_rf for conda-build (#5491, #5499)

	fix exception when generating JSON output (#5628)

	fix target prefix determination (#5642)

	use proxy to avoid segfaults (#5716)

	fix #5790 incorrect activation message (4.4.0rc1) (#5820)

	fix #5808 assertion error when loading package cache (4.4.0rc1) (#5815)

	fix #5809 _pip_install_via_requirements got an unexpected keyword argument ‘prune’ (4.4.0rc1) (#5814)

	fix #5811 change safety_checks default to ‘warn’ for conda 4.4 (4.4.0rc1) (#5824)

	fix #5825 –json output format (4.4.0rc1) (#5831)

	fix force_reinstall for case when packages aren’t actually installed (4.4.0rc1) (#5836)

	fix #5680 empty pip subsection error in environment.yml (4.4.0rc2) (#6275)

	fix #5852 bad tokens from history crash conda installs (4.4.0rc2) (#6076)

	fix #5827 no error message on invalid command (4.4.0rc2) (#6352)

	fix exception handler for ‘conda activate’ (4.4.0rc2) (#6365)

	fix #6173 double prompt immediately after conda 4.4 upgrade (4.4.0rc2) (#6351)

	fix #6181 keep existing pythons pinned to minor version (4.4.0rc2) (#6363)

	fix #6201 incorrect subdir shown for conda search when package not found (4.4.0rc2) (#6367)

	fix #6045 help message and zsh shift (4.4.0rc3) (#6368)

	fix noarch python package resintall (4.4.0rc3) (#6394)

	fix #6366 shell activation message (4.4.0rc3) (#6369)

	fix #6429 AttributeError on ‘conda remove’ (4.4.0rc3) (#6434)

	fix #6449 problems with ‘conda info –envs’ (#6451)

	add debug exception for #6430 (4.4.0rc3) (#6435)

	fix #6441 NotImplementedError on ‘conda list’ (4.4.0rc3) (#6442)

	fix #6445 scale back directory activation in PWD (4.4.0rc3) (#6447)

	fix #6283 no-deps for conda update case (4.4.0rc3) (#6448)

	fix #6419 set PS1 in python code (4.4.0rc3) (#6446)

	fix #6466 sp_dir doesn’t exist (#6470)

	fix #6350 –update-all removes too many packages (4.4.0) (#6491)

	fix #6057 unlink-link order for python noarch packages on windows 4.4.x (4.4.0) (#6494)

Non-User-Facing Changes

	eliminate index modification in Resolve init (#4333)

	new MatchSpec implementation (#4158, #5517)

	update conda.recipe for 4.4 (#5086)

	resolve #5118 organization and cleanup for 4.4 release (#5115)

	remove unused disk space check instructions (#5167)

	localfs adapter tests (#5181)

	extra config command tests (#5185)

	add coverage for confirm (#5203)

	clean up FileNotFoundError and DirectoryNotFoundError (#5237)

	add assertion that a path only has a single hard link before rewriting prefixes (#5305)

	remove pycrypto as requirement on windows (#5326)

	import cleanup, dead code removal, coverage improvements, and other
housekeeping (#5472, #5474, #5480)

	rename CondaFileNotFoundError to PathNotFoundError (#5521)

	work toward repodata API (#5267)

	rename PackageNotFoundError to PackagesNotFoundError and fix message formatting (#5602)

	update conda 4.4 bld.bat windows recipe (#5573)

	remove last remnant of CondaEnvRuntimeError (#5643)

	fix typo (4.4.0rc2) (#6043)

	replace Travis-CI with CircleCI (4.4.0rc2) (#6345)

	key-value features (#5645); reverted in 4.4.0rc2 (#6347, #6492)

	resolve #6431 always add env_vars to info_dict (4.4.0rc3) (#6436)

	move shell inside conda directory (4.4.0) (#6479)

	remove dead code (4.4.0) (#6489)

4.3.34 (2018-02-09)

Bug Fixes

	fix #6833 improve feature mismatch metric (#6853)

4.3.33 (2018-01-24)

Bug Fixes

	fix #6718 broken ‘conda install –rev’ (#6719)

	fix #6765 adjust the feature score assigned to packages not installed (#6766)

4.3.32 (2018-01-10)

Improvements

	resolve #6711 fall back to copy/unlink for EINVAL, EXDEV rename failures (#6712)

Bug Fixes

	fix #6057 unlink-link order for python noarch packages on windows (#6277)

	fix #6509 custom_channels incorrect in ‘conda config –show’ (#6510)

4.3.31 (2017-12-15)

Improvements

	add delete_trash to conda_env create (#6299)

Bug Fixes

	fix #6023 assertion error for temp file (#6154)

	fix #6220 –no-builds flag for ‘conda env export’ (#6221)

	fix #6271 timestamp prioritization results in undesirable race-condition (#6279)

Non-User-Facing Changes

	fix two failing integration tests after anaconda.org API change (#6182)

	resolve #6243 mark root as not writable when sys.prefix is not a conda environment (#6274)

	add timing instrumentation (#6458)

4.3.30 (2017-10-17)

Improvements

	address #6056 add additional proxy variables to ‘conda info –all’ (#6083)

Bug Fixes

	address #6164 move add_defaults_to_specs after augment_specs (#6172)

	fix #6057 add additional detail for message ‘cannot link source that does not exist’ (#6082)

	fix #6084 setting default_channels from CLI raises NotImplementedError (#6085)

4.3.29 (2017-10-09)

Bug Fixes

	fix #6096 coerce to millisecond timestamps (#6131)

4.3.28 (2017-10-06)

Bug Fixes

	fix #5854 remove imports of pkg_resources (#5991)

	fix millisecond timestamps (#6001)

4.3.27 (2017-09-18)

Bug Fixes

	fix #5980 always delete_prefix_from_linked_data in rm_rf (#5982)

4.3.26 (2017-09-15)

Deprecations/Breaking Changes

	resolve #5922 prioritize channels within multi-channels (#5923)

	add https://repo.continuum.io/pkgs/main to defaults multi-channel (#5931)

Improvements

	add a channel priority minimization pass to solver logic (#5859)

	invoke cmd.exe with /D for pre/post link/unlink scripts (#5926)

	add boto3 use to s3 adapter (#5949)

Bug Fixes

	always remove linked prefix entry with rm_rf (#5846)

	resolve #5920 bump repodata pickle version (#5921)

	fix msys2 activate and deactivate (#5950)

4.3.25 (2017-08-16)

Deprecations/Breaking Changes

	resolve #5834 change default value of ‘allow_softlinks’ from True to False (#5839)

Improvements

	add non-admin check to optionally disable non-privileged operation (#5724)

	add extra warning message to always_softlink configuration option (#5826)

Bug Fixes

	fix #5763 channel url string splitting error (#5764)

	fix regex for repodata _mod and _etag (#5795)

	fix uncaught OSError for missing device (#5830)

4.3.24 (2017-07-31)

Bug Fixes

	fix #5708 package priority sort order (#5733)

2017-07-21 4.3.23

Improvements

	resolve #5391 PackageNotFound and NoPackagesFoundError clean up (#5506)

Bug Fixes

	fix #5525 too many Nones in CondaHttpError (#5526)

	fix #5508 assertion failure after test file not cleaned up (#5533)

	fix #5523 catch OSError when home directory doesn’t exist (#5549)

	fix #5574 traceback formatting (#5580)

	fix #5554 logger configuration levels (#5555)

	fix #5649 create_default_packages configuration (#5703)

2017-06-12 4.3.22

Improvements

	resolve #5428 clean up cli import in conda 4.3.x (#5429)

	resolve #5302 add warning when creating environment with space in path (#5477)

	for ftp connections, ignore host IP from PASV as it is often wrong (#5489)

	expose common race condition exceptions in exports for conda-build (#5498)

Bug Fixes

	fix #5451 conda clean –json bug (#5452)

	fix #5400 confusing deactivate message (#5473)

	fix #5459 custom subdir channel parsing (#5478)

	fix #5483 problem with setuptools / pkg_resources import (#5496)

2017-05-25 4.3.21

Bug Fixes

	fix #5420 conda-env update error (#5421)

	fix #5425 is admin on win int not callable (#5426)

2017-05-23 4.3.20

Improvements

	resolve #5217 skip user confirm in python_api, force always_yes (#5404)

Bug Fixes

	fix #5367 conda info always shows ‘unknown’ for admin indicator on Windows (#5368)

	fix #5248 drop plan description information that might not alwasy be accurate (#5373)

	fix #5378 duplicate log messages (#5379)

	fix #5298 record has ‘build’, not ‘build_string’ (#5382)

	fix #5384 silence logging info to avoid interfering with JSON output (#5393)

	fix #5356 skip root/conda logger init for cli.python_api (#5405)

Non-User-Facing Changes

	avoid persistent state after channel priority test (#5392)

	resolve #5402 add regression test for #5384 (#5403)

	clean up inner function definition inside for loop (#5406)

2017-05-18 4.3.19

Improvements

	resolve #3689 better error messaging for missing anaconda-client (#5276)

	resolve #4795 conda env export lacks -p flag (#5275)

	resolve #5315 add alias verify_ssl for ssl_verify (#5316)

	resolve #3399 add netrc existence/location to ‘conda info’ (#5333)

	resolve #3810 add –prefix to conda env update (#5335)

Bug Fixes

	fix #5272 conda env export ugliness under python2 (#5273)

	fix #4596 warning message from pip on conda env export (#5274)

	fix #4986 –yes not functioning for conda clean (#5311)

	fix #5329 unicode errors on Windows (#5328, #5357)

	fix sys_prefix_unfollowed for Python 3 (#5334)

	fix #5341 –json flag with conda-env (#5342)

	fix 5321 ensure variable PROMPT is set in activate.bat (#5351)

Non-User-Facing Changes

	test conda 4.3 with requests 2.14.2 (#5281)

	remove pycrypto as requirement on windows (#5325)

	fix typo avaialble -> available (#5345)

	fix test failures related to menuinst update (#5344, #5362)

2017-05-09 4.3.18

Improvements

	resolve #4224 warn when pysocks isn’t installed (#5226)

	resolve #5229 add –insecure flag to skip ssl verification (#5230)

	resolve #4151 add admin indicator to conda info on windows (#5241)

Bug Fixes

	fix #5152 conda info spacing (#5166)

	fix –use-index-cache actually hitting the index cache (#5134)

	backport LinkPathAction verify from 4.4 (#5171)

	fix #5184 stack trace on invalid map configuration parameter (#5186)

	fix #5189 stack trace on invalid sequence config param (#5192)

	add support for the linux-aarch64 platform (#5190)

	fix repodata fetch with the –offline flag (#5146)

	fix #1773 conda remove spell checking (#5176)

	fix #3470 reduce excessive error messages (#5195)

	fix #1597 make extra sure –dry-run doesn’t take any actions (#5201)

	fix #3470 extra newlines around exceptions (#5200)

	fix #5214 install messages for ‘nothing_to_do’ case (#5216)

	fix #598 stack trace for condarc write permission denied (#5232)

	fix #4960 extra information when exception can’t be displayed (#5236)

	fix #4974 no matching dist in linked data for prefix (#5239)

	fix #5258 give correct element types for conda config –describe (#5259)

	fix #4911 separate shutil.copy2 into copy and copystat (#5261)

Non-User-Facing Changes

	resolve #5138 add test of rm_rf of symlinked files (#4373)

	resolve #4516 add extra trace-level logging (#5249, #5250)

	add tests for –update-deps flag (#5264)

2017-04-24 4.3.17

Improvements

	fall back to copy if hardlink fails (#5002)

	add timestamp metadata for tiebreaking conda-build 3 hashed packages (#5018)

	resolve #5034 add subdirs configuration parameter (#5030)

	resolve #5081 make pinned packages optional/constrained dependencies (#5088)

	resolve #5108 improve behavior and add tests for spaces in paths (#4786)

Bug Fixes

	quote prefix paths for locations with spaces (#5009)

	remove binstar logger configuration overrides (#4989)

	fix #4969 error in DirectoryNotFoundError (#4990)

	fix #4998 pinned string format (#5011)

	fix #5039 collecting main_info shouldn’t fail on requests import (#5090)

	fix #5055 improve bad token message for anaconda.org (#5091)

	fix #5033 only re-register valid signal handlers (#5092)

	fix #5028 imports in main_list (#5093)

	fix #5073 allow client_ssl_cert{_key} to be of type None (#5096)

	fix #4671 backoff for package validate race condition (#5098)

	fix #5022 gnu_get_libc_version => linux_get_libc_version (#5099)

	fix #4849 package name match bug (#5103)

	fixes #5102 allow proxy_servers to be of type None (#5107)

	fix #5111 incorrect typify for str + NoneType (#5112)

Non-User-Facing Changes

	resolve #5012 remove CondaRuntimeError and RuntimeError (#4818)

	full audit ensuring relative import paths within project (#5090)

	resolve #5116 refactor conda/cli/activate.py to help menuinst (#4406)

2017-03-30 4.3.16

Improvements

	additions to configuration SEARCH_PATH to improve consistency (#4966)

	add ‘conda config –describe’ and extra config documentation (#4913)

	enable packaging pinning in condarc using pinned_packages config parameter
as beta feature (#4921, #4964)

Bug Fixes

	fix #4914 handle directory creation on top of file paths (#4922)

	fix #3982 issue with CONDA_ENV and using powerline (#4925)

	fix #2611 update instructions on how to source conda.fish (#4924)

	fix #4860 missing information on package not found error (#4935)

	fix #4944 command not found error error (#4963)

2017-03-20 4.3.15

Improvements

	allow pkgs_dirs to be configured using conda config (#4895)

Bug Fixes

	remove incorrect elision of delete_prefix_from_linked_data() (#4814)

	fix envs_dirs order for read-only root prefix (#4821)

	fix break-point in conda clean (#4801)

	fix long shebangs when creating entry points (#4828)

	fix spelling and typos (#4868, #4869)

	fix #4840 TypeError reduce() of empty sequence with no initial value (#4843)

	fix zos subdir (#4875)

	fix exceptions triggered during activate (#4873)

2017-03-03 4.3.14

Improvements

	use cPickle in place of pickle for repodata (#4717)

	ignore pyc compile failure (#4719)

	use conda.exe for windows entry point executable (#4716, #4720)

	localize use of conda_signal_handler (#4730)

	add skip_safety_checks configuration parameter (#4767)

	never symlink executables using ORIGIN (#4625)

	set activate.bat codepage to CP_ACP (#4558)

Bug Fixes

	fix #4777 package cache initialization speed (#4778)

	fix #4703 menuinst PathNotFoundException (#4709)

	ignore permissions error if user_site can’t be read (#4710)

	fix #4694 don’t import requests directly in models (#4711)

	fix #4715 include resources directory in recipe (#4716)

	fix CondaHttpError for URLs that contain ‘%’ (#4769)

	bug fixes for preferred envs (#4678)

	fix #4745 check for info/index.json with package is_extracted (#4776)

	make sure url gets included in CondaHTTPError (#4779)

	fix #4757 map-type configs set to None (#4774)

	fix #4788 partial package extraction (#4789)

Non-User-Facing Changes

	test coverage improvement (#4607)

	CI configuration improvements (#4713, #4773, #4775)

	allow sha256 to be None (#4759)

	add cache_fn_url to exports (#4729)

	add unicode paths for PY3 integration tests (#4760)

	additional unit tests (#4728, #4783)

	fix conda-build compatibility and tests (#4785)

2017-02-17 4.3.13

Improvements

	resolve #4636 environment variable expansion for pkgs_dirs (#4637)

	link, symlink, islink, and readlink for Windows (#4652, #4661)

	add extra information to CondaHTTPError (#4638, #4672)

Bug Fixes

	maximize requested builds after feature determination (#4647)

	fix #4649 incorrect assert statement concerning package cache directory (#4651)

	multi-user mode bug fixes (#4663)

Non-User-Facing Changes

	path_actions unit tests (#4654)

	remove dead code (#4369, #4655, #4660)

	separate repodata logic from index into a new core/repodata.py module (#4669)

2017-02-14 4.3.12

Improvements

	prepare conda for uploading to pypi (#4619)

	better general http error message (#4627)

	disable old python noarch warning (#4576)

Bug Fixes

	fix UnicodeDecodeError for ensure_text_type (#4585)

	fix determination of if file path is writable (#4604)

	fix #4592 BufferError cannot close exported pointers exist (#4628)

	fix run_script current working directory (#4629)

	fix pkgs_dirs permissions regression (#4626)

Non-User-Facing Changes

	fixes for tests when conda-bld directory doesn’t exist (#4606)

	use requirements.txt and Makefile for travis-ci setup (#4600, #4633)

	remove hasattr use from compat functions (#4634)

2017-02-09 4.3.11

Bug Fixes

	fix attribute error in add_defaults_to_specs (#4577)

2017-02-07 4.3.10

Improvements

	remove .json from pickle path (#4498)

	improve empty repodata noarch warning and error messages (#4499)

	don’t add python and lua as default specs for private envs (#4529, #4533)

	let default_python be None (#4547, #4550)

Bug Fixes

	fix #4513 null pointer exception for channel without noarch (#4518)

	fix ssl_verify set type (#4517)

	fix bug for windows multiuser (#4524)

	fix clone with noarch python packages (#4535)

	fix ipv6 for python 2.7 on Windows (#4554)

Non-User-Facing Changes

	separate integration tests with a marker (#4532)

2017-01-31 4.3.9

Improvements

	improve repodata caching for performance (#4478, #4488)

	expand scope of packages included by bad_installed (#4402)

	silence pre-link warning for old noarch (#4451)

	add configuration to optionally require noarch repodata (#4450)

	improve conda subprocessing (#4447)

	respect info/link.json (#4482)

Bug Fixes

	fix #4398 ‘hard’ was used for link type at one point (#4409)

	fixed “No matches for wildcard ‘$activate_d/*.fish’” warning (#4415)

	print correct activate/deactivate message for fish shell (#4423)

	fix ‘Dist’ object has no attribute ‘fn’ (#4424)

	fix noarch generic and add additional integration test (#4431)

	fix #4425 unknown encoding (#4433)

Non-User-Facing Changes

	fail CI on conda-build fail (#4405)

	run doctests (#4414)

	make index record mutable again (#4461)

	additional test for conda list –json (#4480)

2017-01-23 4.3.8

Bug Fixes

	fix #4309 ignore EXDEV error for directory renames (#4392)

	fix #4393 by force-renaming certain backup files if the path already exists (#4397)

2017-01-20 4.3.7

Bug Fixes

	actually revert json output for leaky plan (#4383)

	fix not raising on pre/post-link error (#4382)

	fix find_commands and find_executable for symlinks (#4387)

2017-01-18 4.3.6

Bug Fixes

	fix ‘Uncaught backoff with errno 41’ warning on windows (#4366)

	revert json output for leaky plan (#4349)

	audit os.environ setting (#4360)

	fix #4324 using old dist string instead of dist object (#4361)

	fix #4351 infinite recursion via code in #4120 (#4370)

	fix #4368 conda -h (#4367)

	workaround for symlink race conditions on activate (#4346)

2017-01-17 4.3.5

Improvements

	add exception message for corrupt repodata (#4315)

Bug Fixes

	fix package not being found in cache after download (#4297)

	fix logic for Content-Length mismatch (#4311, #4326)

	use unicode_escape after etag regex instead of utf-8 (#4325)

	fix #4323 central condarc file being ignored (#4327)

	fix #4316 a bug in deactivate (#4316)

	pass target_prefix as env_prefix regardless of is_unlink (#4332)

	pass positional argument ‘context’ to BasicClobberError (#4335)

Non-User-Facing Changes

	additional package pinning tests (#4317)

2017-01-13 4.3.4

Improvements

	vendor url parsing from urllib3 (#4289)

Bug Fixes

	fix some bugs in windows multi-user support (#4277)

	fix problems with channels of type <unknown> (#4290)

	include aliases for first command-line argument (#4279)

	fix for multi-line FTP status codes (#4276)

Non-User-Facing Changes

	make arch in IndexRecord a StringField instead of EnumField

	improve conda-build compatibility (#4266)

2017-01-10 4.3.3

Improvements

	respect Cache-Control max-age header for repodata (#4220)

	add ‘local_repodata_ttl’ configurability (#4240)

	remove questionable “nothing to install” logic (#4237)

	relax channel noarch requirement for 4.3; warn now, raise in future feature release (#4238)

	add additional info to setup.py warning message (#4258)

Bug Fixes

	remove features properly (#4236)

	do not use IFS to find activate/deactivate scripts to source (#4239)

	fix #4235 print message to stderr (#4241)

	fix relative path to python in activate.bat (#4242)

	fix args.channel references (#4245, #4246)

	ensure cache_fn_url right pad (#4255)

	fix #4256 subprocess calls must have env wrapped in str (#4259)

2017-01-06 4.3.2

Deprecations/Breaking Changes

	Further refine conda channels specification. To verify if the url of a channel
represents a valid conda channel, we check that noarch/repodata.json and/or
noarch/repodata.json.bz2 exist, even if empty. (#3739)

Improvements

	add new ‘path_conflict’ and ‘clobber’ configuration options (#4119)

	separate fetch/extract pass for explicit URLs (#4125)

	update conda homepage to conda.io (#4180)

Bug Fixes

	fix pre/post unlink/link scripts (#4113)

	fix package version regex and bug in create_link (#4132)

	fix history tracking (#4143)

	fix index creation order (#4131)

	fix #4152 conda env export failure (#4175)

	fix #3779 channel UNC path encoding errors on windows (#4190)

	fix progress bar (#4191)

	use context.channels instead of args.channel (#4199)

	don’t use local cached repodata for file:// urls (#4209)

Non-User-Facing Changes

	xfail anaconda token test if local token is found (#4124)

	fix open-ended test failures relating to python 3.6 release (#4145)

	extend timebomb for test_multi_channel_export (#4169)

	don’t unlink dists that aren’t in the index (#4130)

	add python 3.6 and new conda-build test targets (#4194)

2016-12-19 4.3.1

Improvements

	additional pre-transaction validation (#4090)

	export FileMode enum for conda-build (#4080)

	memoize disk permissions tests (#4091)

	local caching of repodata without remote server calls; new ‘repodata_timeout_secs’
configuration parameter (#4094)

	performance tuning (#4104)

	add additional fields to dist object serialization (#4102)

Bug Fixes

	fix a noarch install bug on windows (#4071)

	fix a spec mismatch that resulted in python versions getting mixed during packaging (#4079)

	fix rollback linked record (#4092)

	fix #4097 keep split in PREFIX_PLACEHOLDER (#4100)

2016-12-14 4.3.0 Safety

New Features

	Unlink and Link Packages in a Single Transaction: In the past, conda hasn’t always been safe
and defensive with its disk-mutating actions. It has gleefully clobbered existing files, and
mid-operation failures leave environments completely broken. In some of the most severe examples,
conda can appear to “uninstall itself.” With this release, the unlinking and linking of packages
for an executed command is done in a single transaction. If a failure occurs for any reason
while conda is mutating files on disk, the environment will be returned its previous state.
While we’ve implemented some pre-transaction checks (verifying package integrity for example),
it’s impossible to anticipate every failure mechanism. In some circumstances, OS file
permissions cannot be fully known until an operation is attempted and fails. And conda itself
is not without bugs. Moving forward, unforeseeable failures won’t be catastrophic. (#3833, #4030)

	Progressive Fetch and Extract Transactions: Like package unlinking and linking, the
download and extract phases of package handling have also been given transaction-like behavior.
The distinction is the rollback on error is limited to a single package. Rather than rolling back
the download and extract operation for all packages, the single-package rollback prevents the
need for having to re-download every package if an error is encountered. (#4021, #4030)

	Generic- and Python-Type Noarch/Universal Packages: Along with conda-build 2.1.0, a
noarch/universal type for python packages is officially supported. These are much like universal
python wheels. Files in a python noarch package are linked into a prefix just like any other
conda package, with the following additional features:

	conda maps the site-packages directory to the correct location for the python version
in the environment,

	conda maps the python-scripts directory to either $PREFIX/bin or $PREFIX/Scripts depending
on platform,

	conda creates the python entry points specified in the conda-build recipe, and

	conda compiles pyc files at install time when prefix write permissions are guaranteed.

Python noarch packages must be “fully universal.” They cannot have OS- or
python version-specific dependencies. They cannot have OS- or python version-specific “scripts”
files. If these features are needed, traditional conda packages must be used. (#3712)

	Multi-User Package Caches: While the on-disk package cache structure has been preserved,
the core logic implementing package cache handling has had a complete overhaul. Writable and
read-only package caches are fully supported. (#4021)

	Python API Module: An oft requested feature is the ability to use conda as a python library,
obviating the need to “shell out” to another python process. Conda 4.3 includes a
conda.cli.python_api module that facilitates this use case. While we maintain the user-facing
command-line interface, conda commands can be executed in-process. There is also a
conda.exports module to facilitate longer-term usage of conda as a library across conda
conda releases. However, conda’s python code is considered internal and private, subject
to change at any time across releases. At the moment, conda will not install itself into
environments other than its original install environment. (#4028)

	Remove All Locks: Locking has never been fully effective in conda, and it often created a
false sense of security. In this release, multi-user package cache support has been
implemented for improved safety by hard-linking packages in read-only caches to the user’s
primary user package cache. Still, users are cautioned that undefined behavior can result when
conda is running in multiple process and operating on the same package caches and/or
environments. (#3862)

Deprecations/Breaking Changes

	Conda now has the ability to refuse to clobber existing files that are not within the unlink
instructions of the transaction. This behavior is configurable via the path_conflict
configuration option, which has three possible values: clobber, warn, and prevent. In 4.3,
the default value will be clobber. That will give package maintainers time to correct current
incompatibilities within their package ecosystem. In 4.4, the default will switch to warn,
which means these operations continue to clobber, but the warning messages are displayed. In
4.5, the default value will switch to prevent. As we tighten up the path_conflict
constraint, a new command line flag –clobber will loosen it back up on an ad hoc basis.
Using –clobber overrides the setting for path_conflict to effectively be clobber for
that operation.

	Conda signed packages have been removed in 4.3. Vulnerabilities existed. An illusion of security
is worse than not having the feature at all. We will be incorporating The Update Framework
into conda in a future feature release. (#4064)

	Conda 4.4 will drop support for older versions of conda-build.

Improvements

	create a new “trace” log level enabled by -v -v -v or -vvv (#3833)

	allow conda to be installed with pip, but only when used as a library/dependency (#4028)

	the ‘r’ channel is now part of defaults (#3677)

	private environment support for conda (#3988)

	support v1 info/paths.json file (#3927, #3943)

	support v1 info/package_metadata.json (#4030)

	improved solver hint detection, simplified filtering (#3597)

	cache VersionOrder objects to improve performance (#3596)

	fix documentation and typos (#3526, #3572, #3627)

	add multikey configuration validation (#3432)

	some Fish autocompletions (#2519)

	reduce priority for packages removed from the index (#3703)

	add user-agent, uid, gid to conda info (#3671)

	add conda.exports module (#3429)

	make http timeouts configurable (#3832)

	add a pkgs_dirs config parameter (#3691)

	add an ‘always_softlink’ option (#3870, #3876)

	pre-checks for diskspace, etc for fetch and extract #(4007)

	address #3879 don’t print activate message when quiet config is enabled (#3886)

	add zos-z subdir (#4060)

	add elapsed time to HTTP errors (#3942)

Bug Fixes

	account for the Windows Python 2.7 os.environ unicode aversion (#3363)

	fix link field in record object (#3424)

	anaconda api token bug fix; additional tests (#3673)

	fix #3667 unicode literals and unicode decode (#3682)

	add conda-env entrypoint (#3743)

	fix #3807 json dump on conda config --show --json (#3811)

	fix #3801 location of temporary hard links of index.json (#3813)

	fix invalid yml example (#3849)

	add arm platforms back to subdirs (#3852)

	fix #3771 better error message for assertion errors (#3802)

	fix #3999 spaces in shebang replacement (#4008)

	config –show-sources shouldn’t show force by default (#3891)

	fix #3881 don’t install conda-env in clones of root (#3899)

	conda-build dist compatibility (#3909)

Non-User-Facing Changes

	remove unnecessary eval (#3428)

	remove dead install_tar function (#3641)

	apply PEP-8 to conda-env (#3653)

	refactor dist into an object (#3616)

	vendor appdirs; remove conda’s dependency on anaconda-client import (#3675)

	revert boto patch from #2380 (#3676)

	move and update ROOT_NO_RM (#3697)

	integration tests for conda clean (#3695, #3699)

	disable coverage on s3 and ftp requests adapters (#3696, #3701)

	github repo hygiene (#3705, #3706)

	major install refactor (#3712)

	remove test timebombs (#4012)

	LinkType refactor (#3882)

	move CrossPlatformStLink and make available as export (#3887)

	make Record immutable (#3965)

	project housekeeping (#3994, #4065)

	context-dependent setup.py files (#4057)

2017-01-10 4.2.15

Improvements

	use ‘post’ instead of ‘dev’ for commits according to PEP-440 (#4234)

	do not use IFS to find activate/deactivate scripts to source (#4243)

	fix relative path to python in activate.bat (#4244)

Bug Fixes

	replace sed with python for activate and deactivate #4257

2017-01-07 4.2.14

Improvements

	use install.rm_rf for TemporaryDirectory cleanup (#3425)

	improve handling of local dependency information (#2107)

	add default channels to exports for Windows Linux and macOS (#4103)

	make subdir configurable (#4178)

Bug Fixes

	fix conda/install.py single-file behavior (#3854)

	fix the api->conda substitution (#3456)

	fix silent directory removal (#3730)

	fix location of temporary hard links of index.json (#3975)

	fix potential errors in multi-channel export and offline clone (#3995)

	fix auxlib/packaging, git hashes are not limited to 7 characters (#4189)

	fix compatibility with requests >=2.12, add pyopenssl as dependency (#4059)

	fix #3287 activate in 4.1-4.2.3 clobbers non-conda PATH changes (#4211)

Non-User-Facing Changes

	fix open-ended test failures relating to python 3.6 release (#4166)

	allow args passed to cli.main() (#4193, #4200, #4201)

	test against python 3.6 (#4197)

2016-11-22 4.2.13

Deprecations/Breaking Changes

	show warning message for pre-link scripts (#3727)

	error and exit for install of packages that require conda minimum version 4.3 (#3726)

Improvements

	double/extend http timeouts (#3831)

	let descriptive http errors cover more http exceptions (#3834)

	backport some conda-build configuration (#3875)

Bug Fixes

	fix conda/install.py single-file behavior (#3854)

	fix the api->conda substitution (#3456)

	fix silent directory removal (#3730)

	fix #3910 null check for is_url (#3931)

Non-User-Facing Changes

	flake8 E116, E121, & E123 enabled (#3883)

2016-11-02 4.2.12

Bug Fixes

	fix #3732, #3471, #3744 CONDA_BLD_PATH (#3747)

	fix #3717 allow no-name channels (#3748)

	fix #3738 move conda-env to ruamel_yaml (#3740)

	fix conda-env entry point (#3745 via #3743)

	fix again #3664 trash emptying (#3746)

2016-10-23 4.2.11

Improvements

	only try once for windows trash removal (#3698)

Bug Fixes

	fix anaconda api token bug (#3674)

	fix #3646 FileMode enum comparison (#3683)

	fix #3517 conda install --mkdir (#3684)

	fix #3560 hack anaconda token coverup on conda info (#3686)

	fix #3469 alias envs_path to envs_dirs (#3685)

2016-10-18 4.2.10

Improvements

	add json output for conda info -s (#3588)

	ignore certain binary prefixes on windows (#3539)

	allow conda config files to have .yaml extensions or ‘condarc’ anywhere in filename (#3633)

Bug Fixes

	fix conda-build’s handle_proxy_407 import (#3666)

	fix #3442, #3459, #3481, #3531, #3548 multiple networking and auth issues (#3550)

	add back linux-ppc64le subdir support (#3584)

	fix #3600 ensure links are removed when unlinking (#3625)

	fix #3602 search channels by platform (#3629)

	fix duplicated packages when updating environment (#3563)

	fix #3590 exception when parsing invalid yaml (#3593 via #3634)

	fix #3655 a string decoding error (#3656)

Non-User-Facing Changes

	backport conda.exports module to 4.2.x (#3654)

	travis-ci OSX fix (#3615 via #3657)

2016-09-27 4.2.9

Bug Fixes

	fix #3536 conda-env messaging to stdout with --json flag (#3537)

	fix #3525 writing to sys.stdout with --json flag for post-link scripts (#3538)

	fix #3492 make NULL falsey with python 3 (#3524)

2016-09-26 4.2.8

Improvements

	add “error” key back to json error output (#3523)

Bug Fixes

	fix #3453 conda fails with create_default_packages (#3454)

	fix #3455 --dry-run fails (#3457)

	dial down error messages for rm_rf (#3522)

	fix #3467 AttributeError encountered for map config parameter validation (#3521)

2016-09-16 4.2.7

Deprecations/Breaking Changes

	revert to 4.1.x behavior of conda list --export (#3450, #3451)

Bug Fixes

	don’t add binstar token if it’s given in the channel spec (#3427, #3440, #3444)

	fix #3433 failure to remove broken symlinks (#3436)

Non-User-Facing Changes

	use install.rm_rf for TemporaryDirectory cleanup (#3425)

2016-09-14 4.2.6

Improvements

	add support for client TLS certificates (#3419)

	address #3267 allow migration of channel_alias (#3410)

	conda-env version matches conda version (#3422)

Bug Fixes

	fix #3409 unsatisfiable dependency error message (#3412)

	fix #3408 quiet rm_rf (#3413)

	fix #3407 padding error messaging (#3416)

	account for the Windows Python 2.7 os.environ unicode aversion (#3363 via #3420)

2016-09-08 4.2.5

Deprecations/Breaking Changes

	partially revert #3041 giving conda config –add previous –prepend behavior (#3364 via #3370)

	partially revert #2760 adding back conda package command (#3398)

Improvements

	order output of conda config --show; make --json friendly (#3384 via #3386)

	clean the pid based lock on exception (#3325)

	improve file removal on all platforms (#3280 via #3396)

Bug Fixes

	fix #3332 allow download urls with :: in them (#3335)

	fix always_yes and not-set argparse args overriding other sources (#3374)

	fix ftp fetch timeout (#3392)

	fix #3307 add try/except block for touch lock (#3326)

	fix CONDA_CHANNELS environment variable splitting (#3390)

	fix #3378 CONDA_FORCE_32BIT environment variable (#3391)

	make conda info channel urls actually give urls (#3397)

	fix cio_test compatibility (#3395 via #3400)

2016-08-18 4.2.4

Bug Fixes

	fix #3277 conda list package order (#3278)

	fix channel priority issue with duplicated channels (#3283)

	fix local channel channels; add full conda-build unit tests (#3281)

	fix conda install with no package specified (#3284)

	fix #3253 exporting and importing conda environments (#3286)

	fix priority messaging on conda config --get (#3304)

	fix conda list --export; additional integration tests (#3291)

	fix conda update --all idempotence; add integration tests for channel priority (#3306)

Non-User-Facing Changes

	additional conda-env integration tests (#3288)

2016-08-11 4.2.3

Improvements

	added zsh and zsh.exe to Windows shells (#3257)

Bug Fixes

	allow conda to downgrade itself (#3273)

	fix breaking changes to conda-build from 4.2.2 (#3265)

	fix empty environment issues with conda and conda-env (#3269)

Non-User-Facing Changes

	add integration tests for conda-env (#3270)

	add more conda-build smoke tests (#3274)

2016-08-09 4.2.2

Improvements

	enable binary prefix replacement on windows (#3262)

	add --verbose command line flag (#3237)

	improve logging and exception detail (#3237, #3252)

	do not remove empty environment without asking; raise an error when a named environment can’t be found (#3222)

Bug Fixes

	fix #3226 user condarc not available on Windows (#3228)

	fix some bugs in conda config –show* (#3212)

	fix conda-build local channel bug (#3202)

	remove subprocess exiting message (#3245)

	fix comment parsing and channels in conda-env environment.yml (#3258, #3259)

	fix context error with conda-env (#3232)

	fix #3182 conda install silently skipping failed linking (#3184)

2016-08-01 4.2.1

Improvements

	improve an error message that can happen during conda install –revision (#3181)

	use clean sys.exit with user choice ‘No’ (#3196)

Bug Fixes

	critical fix for 4.2.0 error when no git is on PATH (#3193)

	revert #3171 lock cleaning on exit pending further refinement

	patches for conda-build compatibility with 4.2 (#3187)

	fix a bug in –show-sources output that ignored aliased parameter names (#3189)

Non-User-Facing Changes

	move scripts in bin to shell directory (#3186)

2016-07-28 4.2.0

New Features

	New Configuration Engine: Configuration and “operating context” are the foundation of conda’s functionality. Conda now has the ability to pull configuration information from a multitude of on-disk locations, including .d directories and a .condarc file within a conda environment), along with full CONDA_ environment variable support. Helpful validation errors are given for improperly-specified configuration. Full documentation updates pending. (#2537, #3160, #3178)

	New Exception Handling Engine: Previous releases followed a pattern of premature exiting (with hard calls to sys.exit()) when exceptional circumstances were encountered. This release replaces over 100 sys.exit calls with python exceptions. For conda developers, this will result in tests that are easier to write. For developers using conda, this is a first step on a long path toward conda being directly importable. For conda users, this will eventually result in more helpful and descriptive errors messages. (#2899, #2993, #3016, #3152, #3045)

	Empty Environments: Conda can now create “empty” environments when no initial packages are specified, alleviating a common source of confusion. (#3072, #3174)

	Conda in Private Env: Conda can now be configured to live within its own private environment. While it’s not yet default behavior, this represents a first step toward separating the root environment into a “conda private” environment and a “user default” environment. (#3068)

	Regex Version Specification: Regular expressions are now valid version specifiers. For example, ^1\.[5-8]\.1$|2.2. (#2933)

Deprecations/Breaking Changes

	remove conda init (#2759)

	remove conda package and conda bundle (#2760)

	deprecate conda-env repo; pull into conda proper (#2950, #2952, #2954, #3157, #3163, #3170)

	force use of ruamel_yaml (#2762)

	implement conda config –prepend; change behavior of –add to –append (#3041)

	exit on link error instead of logging it (#2639)

Improvements

	improve locking (#2962, #2989, #3048, #3075)

	clean up requests usage for fetching packages (#2755)

	remove excess output from conda –help (#2872)

	remove os.remove in update_prefix (#3006)

	better error behavior if conda is spec’d for a non-root environment (#2956)

	scale back try_write function on Linux and macOS (#3076)

Bug Fixes

	remove psutil requirement, fixes annoying error message (#3135, #3183)

	fix #3124 add threading lock to memoize (#3134)

	fix a failure with multi-threaded repodata downloads (#3078)

	fix windows file url (#3139)

	address #2800, error with environment.yml and non-default channels (#3164)

Non-User-Facing Changes

	project structure enhancement (#2929, #3132, #3133, #3136)

	clean up channel handling with new channel model (#3130, #3151)

	add Anaconda Cloud / Binstar auth handler (#3142)

	remove dead code (#2761, #2969)

	code refactoring and additional tests (#3052, #3020)

	remove auxlib from project root (#2931)

	vendor auxlib 0.0.40 (#2932, #2943, #3131)

	vendor toolz 0.8.0 (#2994)

	move progressbar to vendor directory (#2951)

	fix conda.recipe for new quirks with conda-build (#2959)

	move captured function to common module (#3083)

	rename CHANGELOG to md (#3087)

2016-09-08 4.1.12

	fix #2837 “File exists” in symlinked path with parallel activations, #3210

	fix prune option when installing packages, #3354

	change check for placeholder to be more friendly to long PATH, #3349

2016-07-26 4.1.11

	fix PS1 backup in activate script, #3135 via #3155

	correct resolution for ‘handle failures in binstar_client more generally’, #3156

2016-07-25 4.1.10

	ignore symlink failure because of read-only file system, #3055

	backport shortcut tests, #3064

	fix #2979 redefinition of $SHELL variable, #3081

	fix #3060 –clone root –copy exception, #3080

2016-07-20 4.1.9

	fix #3104, add global BINSTAR_TOKEN_PAT

	handle failures in binstar_client more generally

2016-07-12 4.1.8:

	fix #3004 UNAUTHORIZED for url (null binstar token), #3008

	fix overwrite existing redirect shortcuts when symlinking envs, #3025

	partially revert no default shortcuts, #3032, #3047

2016-07-07 4.1.7:

	add msys2 channel to defaults on Windows, #2999

	fix #2939 channel_alias issues; improve offline enforcement, #2964

	fix #2970, #2974 improve handling of file:// URLs inside channel, #2976

2016-07-01 4.1.6:

	slow down exp backoff from 1 ms to 100 ms factor, #2944

	set max time on exp_backoff to ~6.5 sec,#2955

	fix #2914 add/subtract from PATH; kill folder output text, #2917

	normalize use of get_index behavior across clone/explicit, #2937

	wrap root prefix check with normcase, #2938

2016-06-29 4.1.5:

	more conservative auto updates of conda #2900

	fix some permissions errors with more aggressive use of move_path_to_trash, #2882

	fix #2891 error if allow_other_channels setting is used, #2896

	fix #2886, #2907 installing a tarball directly from the package cache, #2908

	fix #2681, #2778 reverting #2320 lock behavior changes, #2915

2016-06-27 4.1.4:

	fix #2846 revert the use of UNC paths; shorten trash filenames, #2859

	fix exp backoff on Windows, #2860

	fix #2845 URL for local file repos, #2862

	fix #2764 restore full path var on win; create to CONDA_PREFIX env var, #2848

	fix #2754 improve listing pip installed packages, #2873

	change root prefix detection to avoid clobbering root activate scripts, #2880

	address #2841 add lowest and highest priority indication to channel config output, #2875

	add SYMLINK_CONDA to planned instructions, #2861

	use CONDA_PREFIX, not CONDA_DEFAULT_ENV for activate.d, #2856

	call scripts with redirect on win; more error checking to activate, #2852

2016-06-23 4.1.3:

	ensure conda-env auto update, along with conda, #2772

	make yaml booleans behave how everyone expects them to, #2784

	use accept-encoding for repodata; prefer repodata.json to repodata.json.bz2, #2821

	additional integration and regression tests, #2757, #2774, #2787

	add offline mode to printed info; use offline flag when grabbing channels, #2813

	show conda-env version in conda info, #2819

	adjust channel priority superseded list, #2820

	support epoch ! characters in command line specs, #2832

	accept old default names and new ones when canonicalizing channel URLs #2839

	push PATH, PS1 manipulation into shell scripts, #2796

	fix #2765 broken source activate without arguments, #2806

	fix standalone execution of install.py, #2756

	fix #2810 activating conda environment broken with git bash on Windows, #2795

	fix #2805, #2781 handle both file-based channels and explicit file-based URLs, #2812

	fix #2746 conda create –clone of root, #2838

	fix #2668, #2699 shell recursion with activate #2831

2016-06-17 4.1.2:

	improve messaging for “downgrades” due to channel priority, #2718

	support conda config channel append/prepend, handle duplicates, #2730

	remove –shortcuts option to internal CLI code, #2723

	fix an issue concerning space characters in paths in activate.bat, #2740

	fix #2732 restore yes/no/on/off for booleans on the command line, #2734

	fix #2642 tarball install on Windows, #2729

	fix #2687, #2697 WindowsError when creating environments on Windows, #2717

	fix #2710 link instruction in conda create causes TypeError, #2715

	revert #2514, #2695, disabling of .netrc files, #2736

	revert #2281 printing progress bar to terminal, #2707

2016-06-16 4.1.1:

	add auto_update_conda config parameter, #2686

	fix #2669 conda config –add channels can leave out defaults, #2670

	fix #2703 ignore activate symlink error if links already exist, #2705

	fix #2693 install duplicate packages with older version of Anaconda, #2701

	fix #2677 respect HTTP_PROXY, #2695

	fix #2680 broken fish integration, #2685, #2694

	fix an issue with conda never exiting, #2689

	fix #2688 explicit file installs, #2708

	fix #2700 conda list UnicodeDecodeError, #2706

2016-06-14 4.1.0:

This release contains many small bug fixes for all operating systems, and a few
special fixes for Windows behavior.

Notable changes for all systems (Windows, macOS and Linux)

	Channel order now matters. The most significant conda change is that
when you add channels, channel order matters. If you have a list of channels
in a .condarc file, conda installs the package from the first channel where
it’s available, even if it’s available in a later channel with a higher
version number.

	No version downgrades. Conda remove no longer performs version
downgrades on any remaining packages that might be suggested to resolve
dependency losses; the package will just be removed instead.

	New YAML parser/emitter. PyYAML is replaced with ruamel.yaml,
which gives more robust control over yaml document use.
More on ruamel.yaml [http://yaml.readthedocs.io/en/latest/]

	Shebang lines over 127 characters are now truncated (Linux, macOS
only). Shebangs [https://en.wikipedia.org/wiki/Shebang_(Unix)] are
the first line of the many executable scripts that tell the operating
system how to execute the program. They start with #!. Most OSes
don’t support these lines over 127 characters, so conda now checks
the length and replaces the full interpreter path in long lines with
/usr/bin/env. When you’re working in a conda environment that
is deeply under many directories, or you otherwise have long paths
to your conda environment, make sure you activate that environment
now.

	Changes to conda list command. When looking for packages that
aren’t installed with conda, conda list now examines the Python
site-packages directory rather than relying on pip.

	Changes to conda remove command. The command conda remove --all
now removes a conda environment without fetching information from a remote
server on the packages in the environment.

	Conda update can be turned off and on. When turned off, conda will
not update itself unless the user manually issues a conda update command.
Previously conda updated any time a user updated or installed a package
in the root environment. Use the option conda config set auto_update_conda false.

	Improved support for BeeGFS. BeeGFS is a parallel cluster file
system for performance and designed for easy installation and
management. More on BeeGFS [http://www.beegfs.com/content/documentation/]

Windows-only changes

	Shortcuts are no longer installed by default on Windows. Shortcuts can
now be installed with the --shortcuts option. Example 1: Install a shortcut
to Spyder with conda install spyder --shortcut. Note if you have Anaconda
(not Miniconda), you already have this shortcut and Spyder. Example 2:
Install the open source package named console_shortcut. When you click
the shortcut icon, a terminal window will open with the environment
containing the console_shortcut package already activated. conda install
console_shortcut --shortcuts

	Skip binary replacement on Windows. Linux & macOS have binaries that
are coded with library locations, and this information must sometimes be
replaced for relocatability, but Windows does not generally embed prefixes
in binaries, and was already relocatable. We skip binary replacement on
Windows.

Complete list:

	clean up activate and deactivate scripts, moving back to conda repo, #1727, #2265, #2291, #2473, #2501, #2484

	replace pyyaml with ruamel_yaml, #2283, #2321

	better handling of channel collisions, #2323, #2369 #2402, #2428

	improve listing of pip packages with conda list, #2275

	re-license progressbar under BSD 3-clause, #2334

	reduce the amount of extraneous info in hints, #2261

	add –shortcuts option to install shortcuts on windows, #2623

	skip binary replacement on windows, #2630

	don’t show channel urls by default in conda list, #2282

	package resolution and solver tweaks, #2443, #2475, #2480

	improved version & build matching, #2442, #2488

	print progress to the terminal rather than stdout, #2281

	verify version specs given on command line are valid, #2246

	fix for try_write function in case of odd permissions, #2301

	fix a conda search –spec error, #2343

	update User-Agent for conda connections, #2347

	remove some dead code paths, #2338, #2374

	fixes a thread safety issue with http requests, #2377, #2383

	manage BeeGFS hard-links non-POSIX configuration, #2355

	prevent version downgrades during removes, #2394

	fix conda info –json, #2445

	truncate shebangs over 127 characters using /usr/bin/env, #2479

	extract packages to a temporary directory then rename, #2425, #2483

	fix help in install, #2460

	fix re-install bug when sha1 differs, #2507

	fix a bug with file deletion, #2499

	disable .netrc files, #2514

	dont fetch index on remove –all, #2553

	allow track_features to be a string or a list in .condarc, #2541

	fix #2415 infinite recursion in invalid_chains, #2566

	allow channel_alias to be different than binstar, #2564

2016-07-09 4.0.11:

	allow auto_update_conda from sysrc, #3015 via #3021

2016-06-29 4.0.10:

	fix #2846 revert the use of UNC paths; shorten trash filenames, #2859 via #2878

	fix some permissions errors with more aggressive use of move_path_to_trash, #2882 via #2894

2016-06-15 4.0.9:

	add auto_update_conda config parameter, #2686

2016-06-03 4.0.8:

	fix a potential problem with moving files to trash, #2587

2016-05-26 4.0.7:

	workaround for boto bug, #2380

2016-05-11 4.0.6:

	log “custom” versions as updates rather than downgrades, #2290

	fixes a TypeError exception that can occur on install/update, #2331

	fixes an error on Windows removing files with long path names, #2452

2016-03-16 4.0.5:

	improved help documentation for install, update, and remove, #2262

	fixes #2229 and #2250 related to conda update errors on Windows, #2251

	fixes #2258 conda list for pip packages on Windows, #2264

2016-03-10 4.0.4:

	revert #2217 closing request sessions, #2233

2016-03-10 4.0.3:

	adds a conda clean –all feature, #2211

	solver performance improvements, #2209

	fixes conda list for pip packages on windows, #2216

	quiets some logging for package downloads under python 3, #2217

	more urls for conda list –explicit, #1855

	prefer more “latest builds” for more packages, #2227

	fixes a bug with dependency resolution and features, #2226

2016-03-08 4.0.2:

	fixes track_features in ~/.condarc being a list, see also #2203

	fixes incorrect path in lock file error #2195

	fixes issues with cloning environments, #2193, #2194

	fixes a strange interaction between features and versions, #2206

	fixes a bug in low-level SAT clause generation creating a preference for older versions, #2199

2016-03-07 4.0.1:

	fixes an install issue caused by md5 checksum mismatches, #2183

	remove auxlib build dependency, #2188

2016-03-04 4.0.0:

	The solver has been retooled significantly. Performance should be improved in most circumstances, and a number of issues involving feature conflicts should be resolved.

	conda update <package> now handles depedencies properly according to the setting of the “update_deps” configuration:

–update-deps: conda will also update any dependencies as needed to install the latest verison of the requrested packages. The minimal set of changes required to achieve this is sought.

—no-update-deps: conda will update the packages only to the extent that no updates to the dependencies are required

The previous behavior, which would update the packages without regard to their dependencies, could result in a broken configuration, and has been removed.

	Conda finally has an official logo.

	Fix conda clean –packages on Windows, #1944

	Conda sub-commands now support dashes in names, #1840

2016-02-19 3.19.3:

	fix critical issue, see #2106

2016-02-19 3.19.2:

	add basic activate/deactivate, conda activate/deactivate/ls for fish, see #545

	remove error when CONDA_FORCE_32BIT is set on 32-bit systems, #1985

	suppress help text for –unknown option, #2051

	fix issue with conda create –clone post-link scripts, #2007

	fix a permissions issue on windows, #2083

2016-02-01 3.19.1:

	resolve.py: properly escape periods in version numbers, #1926

	support for pinning Lua by default, #1934

	remove hard-coded test URLs, a module cio_test is now expected when CIO_TEST is set

2015-12-17 3.19.0:

	OpenBSD 5.x support, #1891

	improve install CLI to make Miniconda -f work, #1905

2015-12-10 3.18.9:

	allow chaning default_channels (only applies to “system” condarc), from from CLI, #1886

	improve default for –show-channel-urls in conda list, #1900

2015-12-03 3.18.8:

	always attempt to delete files in rm_rf, #1864

2015-12-02 3.18.7:

	simplify call to menuinst.install()

	add menuinst as dependency on Windows

	add ROOT_PREFIX to post-link (and pre_unlink) environment

2015-11-19 3.18.6:

	improve conda clean when user lacks permissions, #1807

	make show_channel_urls default to True, #1771

	cleaner write tests, #1735

	fix documentation, #1709

	improve conda clean when directories don’t exist, #1808

2015-11-11 3.18.5:

	fix bad menuinst exception handling, #1798

	add workaround for unresolved dependencies on Windows

2015-11-09 3.18.4:

	allow explicit file to contain MD5 hashsums

	add –md5 option to “conda list –explicit”

	stop infinite recursion during certain resolve operations, #1749

	add dependencies even if strictness == 3, #1766

2015-10-15 3.18.3:

	added a pruning step for more efficient solves, #1702

	disallow conda-env to be installed into non-root environment

	improve error output for bad command input, #1706

	pass env name and setup cmd to menuinst, #1699

2015-10-12 3.18.2:

	add “conda list –explicit” which contains the URLs of all conda packages to be installed, and can used with the install/create –file option, #1688

	fix a potential issue in conda clean

	avoid issues with LookupErrors when updating Python in the root environment on Windows

	don’t fetch the index from the network with conda remove

	when installing conda packages directly, “conda install <pkg>.tar.bz2”, unlink any installed package with that name, not just the installed one

	allow menu items to be installed in non-root env, #1692

2015-09-28 3.18.1:

	fix: removed reference to win_ignore_root in plan module

2015-09-28 3.18.0:

	allow Python to be updated in root environment on Windows, #1657

	add defaults to specs after getting pinned specs (allows to pin a different version of Python than what is installed)

	show what older versions are in the solutions in the resolve debug log

	fix some issues with Python 3.5

	respect –no-deps when installing from .tar or .tar.bz2

	avoid infinite recursion with NoPackagesFound and conda update –all –file

	fix conda update –file

	toposort: Added special case to remove ‘pip’ dependency from ‘python’

	show dotlog messages during hint generation with –debug

	disable the max_only heuristic during hint generation

	new version comparison algorithm, which consistently compares any version string, and better handles version strings using things like alpha, beta, rc, post, and dev. This should remove any inconsistent version comparison that would lead to conda installing an incorrect version.

	use the trash in rm_rf, meaning more things will get the benefit of the trash system on Windows

	add the ability to pass the –file argument multiple times

	add conda upgrade alias for conda update

	add update_dependencies condarc option and –update-deps/–no-update-deps command line flags

	allow specs with conda update –all

	add –show-channel-urls and –no-show-channel-urls command line options

	add always_copy condarc option

	conda clean properly handles multiple envs directories. This breaks backwards compatibility with some of the –json output. Some of the old –json keys are kept for backwards compatibility.

2015-09-11 3.17.0:

	add windows_forward_slashes option to walk_prefix(), see #1513

	add ability to set CONDA_FORCE_32BIT environment variable, it should should only be used when running conda-build, #1555

	add config option to makes the python dependency on pip optional, #1577

	fix an UnboundLocalError

	print note about pinned specs in no packages found error

	allow wildcards in AND-connected version specs

	print pinned specs to the debug log

	fix conda create –clone with create_default_packages

	give a better error when a proxy isn’t found for a given scheme

	enable running ‘conda run’ in offline mode

	fix issue where hardlinked cache contents were being overwritten

	correctly skip packages whose dependencies can’t be found with conda update –all

	use clearer terminology in -m help text.

	use splitlines to break up multiple lines throughout the codebase

	fix AttributeError with SSLError

2015-08-10 3.16.0:

	rename binstar -> anaconda, see #1458

	fix –use-local when the conda-bld directory doesn’t exist

	fixed –offline option when using “conda create –clone”, see #1487

	don’t mask recursion depth errors

	add conda search –reverse-dependency

	check whether hardlinking is available before linking when using “python install.py –link” directly, see #1490

	don’t exit nonzero when installing a package with no dependencies

	check which features are installed in an environment via track_features, not features

	set the verify flag directly on CondaSession (fixes conda skeleton not respecting the ssl_verify option)

2015-07-23 3.15.1:

	fix conda with older versions of argcomplete

	restore the –force-pscheck option as a no-op for backwards compatibility

2015-07-22 3.15.0:

	sort the output of conda info package correctly

	enable tab completion of conda command extensions using argcomplete. Command extensions that import conda should use conda.cli.conda_argparse.ArgumentParser instead of argparse.ArgumentParser. Otherwise, they should enable argcomplete completion manually.

	allow psutil and pycosat to be updated in the root environment on Windows

	remove all mentions of pscheck. The –force-pscheck flag has been removed.

	added support for S3 channels

	fix color issues from pip in conda list on Windows

	add support for other machine types on Linux, in particular ppc64le

	add non_x86_linux_machines set to config module

	allow ssl_verify to accept strings in addition to boolean values in condarc

	enable –set to work with both boolean and string values

2015-06-29 3.14.1:

	make use of Crypto.Signature.PKCS1_PSS module, see #1388

	note when features are being used in the unsatisfiable hint

2015-06-16 3.14.0:

	add ability to verify signed packages, see #1343 (and conda-build #430)

	fix issue when trying to add ‘pip’ dependency to old python packages

	provide option “conda info –unsafe-channels” for getting unobscured channel list, #1374

2015-06-04 3.13.0:

	avoid the Windows file lock by moving files to a trash directory, #1133

	handle env dirs not existing in the Environments completer

	rename binstar.org -> anaconda.org, see #1348

	speed up ‘source activate’ by ~40%

2015-05-05 3.12.0:

	correctly allow conda to update itself

	print which file leads to the “unable to remove file” error on Windows

	add support for the no_proxy environment variable, #1171

	add a much faster hint generation for unsatisfiable packages, which is now always enabled (previously it would not run if there were more than ten specs). The new hint only gives one set of conflicting packages, rather than all sets, so multiple passes may be necessary to fix such issues

	conda extensions that import conda should use conda.cli.conda_argparser.ArgumentParser instead of argparse.ArgumentParser to conform to the conda help guidelines (e.g., all help messages should be capitalized with periods, and the options should be preceded by “Options:” for the sake of help2man).

	add confirmation dialog to conda remove. Fixes conda remove –dry-run.

2015-04-22 3.11.0:

	fix issue where forced update on Windows could cause a package to break

	remove detection of running processes that might conflict

	deprecate –force-pscheck (now a no-op argument)

	make conda search –outdated –names-only work, fixes #1252

	handle the history file not having read or write permissions better

	make multiple package resolutions warning easier to read

	add –full-name to conda list

	improvements to command help

2015-04-06 3.10.1:

	fix logic in @memoized for unhashable args

	restored json cache of repodata, see #1249

	hide binstar tokens in conda info –json

	handle CIO_TEST=‘2 ‘

	always find the solution with minimal number of packages, even if there are many solutions

	allow comments at the end of the line in requirement files

	don’t update the progressbar until after the item is finished running

	add conda/<version> to HTTP header User-Agent string

2015-03-12 3.10.0:

	change default repo urls to be https

	add –offline to conda search

	add –names-only and –full-name to conda search

	add tab completion for packages to conda search

2015-02-24 3.9.1:

	pscheck: check for processes in the current environment, see #1157

	don’t write to the history file if nothing has changed, see #1148

	conda update –all installs packages without version restrictions (except for Python), see #1138

	conda update –all ignores the anaconda metapackage, see #1138

	use forward slashes for file urls on Windows

	don’t symlink conda in the root environment from activate

	use the correct package name in the progress bar info

	use json progress bars for unsatisfiable dependencies hints

	don’t let requests decode gz files when downloaded

2015-02-16 3.9.0:

	remove (de)activation scripts from conda, those are now in conda-env

	pip is now always added as a Python dependency

	allow conda to be installed into environments which start with _

	add argcomplete tab completion for environments with the -n flag, and for package names with install, update, create, and remove

2015-02-03 3.8.4:

	copy (de)activate scripts from conda-env

	Add noarch (sub) directory support

2015-01-28 3.8.3:

	simplified how ROOT_PREFIX is obtained in (de)activate

2015-01-27 3.8.2:

	add conda clean –source-cache to clean the conda build source caches

	add missing quotes in (de)activate.bat, fixes problem in Windows when conda is installed into a directory with spaces

	fix conda install –copy

2015-01-23 3.8.1:

	add missing utf-8 decoding, fixes Python 3 bug when icondata to json file

2015-01-22 3.8.0:

	move active script into conda-env, which is now a new dependency

	load the channel urls in the correct order when using concurrent.futures

	add optional ‘icondata’ key to json files in conda-meta directory, which contain the base64 encoded png file or the icon

	remove a debug print statement

2014-12-18 3.7.4:

	add –offline option to install, create, update and remove commands, and also add ability to set “offline: True” in condarc file

	add conda uninstall as alias for conda remove

	add conda info –root

	add conda.pip module

	fix CONDARC pointing to non-existing file, closes issue #961

	make update -f work if the package is already up-to-date

	fix possible TypeError when printing an error message

	link packages in topologically sorted order (so that pre-link scripts can assume that the dependencies are installed)

	add –copy flag to install

	prevent the progressbar from crashing conda when fetching in some situations

2014-11-05 3.7.3:

	conda install from a local conda package (or a tar fill which contains conda packages), will now also install the dependencies listed by the installed packages.

	add SOURCE_DIR environment variable in pre-link subprocess

	record all created environments in ~/.conda/environments.txt

2014-10-31 3.7.2:

	only show the binstar install message once

	print the fetching repodata dot after the repodata is fetched

	write the install and remove specs to the history file

	add ‘-y’ as an alias to ‘–yes’

	the –file option to conda config now defaults to os.environ.get(‘CONDARC’)

	some improvements to documentation (–help output)

	add user_rc_path and sys_rc_path to conda info –json

	cache the proxy username and password

	avoid warning about conda in pscheck

	make ~/.conda/envs the first user envs dir

2014-10-07 3.7.1:

	improve error message for forgetting to use source with activate and deactivate, see issue #601

	don’t allow to remove the current environment, see issue #639

	don’t fail if binstar_client can’t be imported for other reasons, see issue #925

	allow spaces to be contained in conda run

	only show the conda install binstar hint if binstar is not installed

	conda info package_spec now gives detailed info on packages. conda info path has been removed, as it is duplicated by conda package -w path.

2014-09-19 3.7.0:

	faster algorithm for –alt-hint

	don’t allow channel_alias with allow_other_channels: false if it is set in the system .condarc

	don’t show long “no packages found” error with update –all

	automatically add the Binstar token to urls when the binstar client is installed and logged in

	carefully avoid showing the binstar token or writing it to a file

	be more careful in conda config about keys that are the wrong type

	don’t expect directories starting with conda- to be commands

	no longer recommend to run conda init after pip installing conda. A pip installed conda will now work without being initialized to create and manage other environments

	the rm function on Windows now works around access denied errors

	fix channel urls now showing with conda list with show_channel_urls set to true

2014-09-08 3.6.4:

	fix removing packages that aren’t in the channels any more

	Pretties output for –alt-hint

2014-09-04 3.6.3:

	skip packages that can’t be found with update –all

	add –use-local to search and remove

	allow –use-local to be used along with -c (–channels) and –override-channels. –override-channels now requires either -c or –use-local

	allow paths in has_prefix to be quoted, to allow for spaces in paths on Windows

	retain Linux/macOS style path separators for prefixes in has_prefix on Windows (if the placeholder path uses /, replace it with a path that uses /, not \)

	fix bug in –use-local due to API changes in conda-build

	include user site directories in conda info -s

	make binary has_prefix replacement work with spaces after the prefix

	make binary has_prefix replacement replace multiple occurrences of the placeholder in the same null-terminated string

	don’t show packages from other platforms as installed or cached in conda search

	be more careful about not warning about conda itself in pscheck

	Use a progress bar for the unsatisfiable packages hint generation

	Don’t use TemporaryFile in try_write, as it is too slow when it fails

	Ignore InsecureRequestWarning when ssl_verify is False

	conda remove removes features tracked by removed packages in track_features

2014-08-20 3.6.2:

	add –use-index-cache to conda remove

	fix a bug where features (like mkl) would be selected incorrectly

	use concurrent.future.ThreadPool to fetch package metadata asynchronously in Python 3.

	do the retries in rm_rf on every platform

	use a higher cutoff for package name misspellings

	allow changing default channels in “system” .condarc

2014-08-13 3.6.1:

	add retries to download in fetch module

	improved error messages for missing packages

	more robust rm_rf on Windows

	print multiline help for subcommands correctly

2014-08-11 3.6.0:

	correctly check if a package can be hard-linked if it isn’t extracted yet

	change how the package plan is printed to better show what is new, updated, and downgraded

	use suggest_normalized_version in the resolve module. Now versions like 1.0alpha that are not directly recognized by verlib’s NormalizedVersion are supported better

	conda run command, to run apps and commands from packages

	more complete –json API. Every conda command should fully support –json output now.

	show the conda_build and requests versions in conda info

	include packages from setup.py develop in conda list (with use_pip)

	raise a warning instead of dying when the history file is invalid

	use urllib.quote on the proxy password

	make conda search –outdated –canonical work

	pin the Python version during conda init

	fix some metadata that is written for Python during conda init

	allow comments in a pinned file

	allow installing and updating menuinst on Windows

	allow conda create with both –file and listed packages

	better handling of some nonexistent packages

	fix command line flags in conda package

	fix a bug in the ftp adapter

2014-06-10 3.5.5:

	remove another instance pycosat version detection, which fails on Windows, see issue #761

2014-06-10 3.5.4:

	remove pycosat version detection, which fails on Windows, see issue #761

2014-06-09 3.5.3:

	fix conda update to correctly not install packages that are already up-to-date

	always fail with connection error in download

	the package resolution is now much faster and uses less memory

	add ssl_verify option in condarc to allow ignoring SSL certificate verification, see issue #737

2014-05-27 3.5.2:

	fix bug in activate.bat and deactivate.bat on Windows

2014-05-26 3.5.1:

	fix proxy support - conda now prompts for proxy username and password again

	fix activate.bat on Windows with spaces in the path

	update optional psutil dependency was updated to psutil 2.0 or higher

2014-05-15 3.5.0:

	replace use of urllib2 with requests. requests is now a hard dependency of conda.

	add ability to only allow system-wise specified channels

	hide binstar from output of conda info

2014-05-05 3.4.3:

	allow prefix replacement in binary files, see issue #710

	check if creating hard link is possible and otherwise copy, during install

	allow circular dependencies

2014-04-21 3.4.2:

	conda clean –lock: skip directories that don’t exist, fixes #648

	fixed empty history file causing crash, issue #644

	remove timezone information from history file, fixes issue #651

	fix PackagesNotFound error for missing recursive dependencies

	change the default for adding cache from the local package cache - known is now the default and the option to use index metadata from the local package cache is –unknown

	add –alt-hint as a method to get an alternate form of a hint for unsatisfiable packages

	add conda package –ls-files to list files in a package

	add ability to pin specs in an environment. To pin a spec, add a file called pinned to the environment’s conda-meta directory with the specs to pin. Pinned specs are always kept installed, unless the –no-pin flag is used.

	fix keyboard interrupting of external commands. Now keyboard interrupting conda build correctly removes the lock file

	add no_link ability to conda, see issue #678

2014-04-07 3.4.1:

	always use a pkgs cache directory associated with an envs directory, even when using -p option with an arbitrary a prefix which is not inside an envs dir

	add setting of PYTHONHOME to conda info –system

	skip packages with bad metadata

2014-04-02 3.4.0:

	added revision history to each environment:

	conda list –revisions

	conda install –revision

	log is stored in conda-meta/history

	allow parsing pip-style requirement files with –file option and in command line arguments, e.g. conda install ‘numpy>=1.7’, issue #624

	fix error message for –file option when file does not exist

	allow DEFAULTS in CONDA_ENVS_PATH, which expands to the defaults settings, including the condarc file

	don’t install a package with a feature (like mkl) unless it is specifically requested (i.e., that feature is already enabled in that environment)

	add ability to show channel URLs when displaying what is going to be downloaded by setting “show_channel_urls: True” in condarc

	fix the –quiet option

	skip packages that have dependencies that can’t be found

2014-03-24 3.3.2:

	fix the –file option

	check install arguments before fetching metadata

	fix a printing glitch with the progress bars

	give a better error message for conda clean with no arguments

	don’t include unknown packages when searching another platform

2014-03-19 3.3.1:

	Fix setting of PS1 in activate.

	Add conda update –all.

	Allow setting CONDARC=’ ‘ to use no condarc.

	Add conda clean –packages.

	Don’t include bin/conda, bin/activate, or bin/deactivate in conda package.

2014-03-18 3.3.0:

	allow new package specification, i.e. ==, >=, >, <=, <, != separated by ‘,’ for example: >=2.3,<3.0

	add ability to disable self update of conda, by setting “self_update: False” in .condarc

	Try installing packages using the old way of just installing the maximum versions of things first. This provides a major speedup of solving the package specifications in the cases where this scheme works.

	Don’t include python=3.3 in the specs automatically for the Python 3 version of conda. This allows you to do “conda create -n env package” for a package that only has a Python 2 version without specifying “python=2”. This change has no effect in Python 2.

	Automatically put symlinks to conda, activate, and deactivate in each environment on Linux and macOS.

	On Linux and macOS, activate and deactivate now remove the root environment from the PATH. This should prevent “bleed through” issues with commands not installed in the activated environment but that are installed in the root environment. If you have “setup.py develop” installed conda on Linux or macOS, you should run this command again, as the activate and deactivate scripts have changed.

	Begin work to support Python 3.4.

	Fix a bug in version comparison

	Fix usage of sys.stdout and sys.stderr in environments like pythonw on Windows where they are nonstandard file descriptors.

2014-03-12 3.2.1:

	fix installing packages with irrational versions

	fix installation in the api

	use a logging handler to print the dots

2014-03-11 3.2.0:

	print dots to the screen for progress

	move logic functions from resolve to logic module

2014-03-07 3.2.0a1:

	conda now uses pseudo-boolean constraints in the SAT solver. This allows it to search for all versions at once, rather than only the latest (issue #491).

	Conda contains a brand new logic submodule for converting pseudo-boolean constraints into SAT clauses.

2014-03-07 3.1.1:

	check if directory exists, fixed issue #591

2014-03-07 3.1.0:

	local packages in cache are now added to the index, this may be disabled by using the –known option, which only makes conda use index metadata from the known remote channels

	add –use-index-cache option to enable using cache of channel index files

	fix ownership of files when installing as root on Linux

	conda search: add ‘.’ symbol for extracted (cached) packages

2014-02-20 3.0.6:

	fix ‘conda update’ taking build number into account

2014-02-17 3.0.5:

	allow packages from create_default_packages to be overridden from the command line

	fixed typo install.py, issue #566

	try to prevent accidentally installing into a non-root conda environment

2014-02-14 3.0.4:

	conda update: don’t try to update packages that are already up-to-date

2014-02-06 3.0.3:

	improve the speed of clean –lock

	some fixes to conda config

	more tests added

	choose the first solution rather than the last when there are more than one, since this is more likely to be the one you want.

2014-02-03 3.0.2:

	fix detection of prefix being writable

2014-01-31 3.0.1:

	bug: not having track_features in condarc now uses default again

	improved test suite

	remove numpy version being treated special in plan module

	if the post-link.(bat|sh) fails, don’t treat it as though it installed, i.e. it is not added to conda-meta

	fix activate if CONDA_DEFAULT_ENV is invalid

	fix conda config –get to work with list keys again

	print the total download size

	fix a bug that was preventing conda from working in Python 3

	add ability to run pre-link script, issue #548

2014-01-24 3.0.0:

	removed build, convert, index, and skeleton commands, which are now part of the conda-build project: https://github.com/conda/conda-build

	limited pip integration to conda list, that means conda install no longer calls pip install # !!!

	add ability to call sub-commands named ‘conda-x’

	The -c flag to conda search is now shorthand for –channel, not –canonical (this is to be consistent with other conda commands)

	allow changing location of .condarc file using the CONDARC environment variable

	conda search now shows the channel that the package comes from

	conda search has a new –platform flag for searching for packages in other platforms.

	remove condarc warnings: issue #526#issuecomment-33195012

2014-01-17 2.3.1:

	add ability create info/no_softlink

	add conda convert command to convert non-platform-dependent packages from one platform to another (experimental)

	unify create, install, and update code. This adds many features to create and update that were previously only available to install. A backwards incompatible change is that conda create -f now means –force, not –file.

2014-01-16 2.3.0:

	automatically prepend http://conda.binstar.org/ (or the value of channel_alias in the .condarc file) to channels whenever the channel is not a URL or the word ‘defaults or ‘system’

	recipes made with the skeleton pypi command will use setuptools instead of distribute

	re-work the setuptools dependency and entry_point logic so that non console_script entry_points for packages with a dependency on setuptools will get correct build script with conda skeleton pypi

	add -m, –mkdir option to conda install

	add ability to disable soft-linking

2014-01-06 2.2.8:

	add check for chrpath (on Linux) before build is started, see issue #469

	conda build: fixed ELF headers not being recognized on Python 3

	fixed issues: #467, #476

2014-01-02 2.2.7:

	fixed bug in conda build related to lchmod not being available on all platforms

2013-12-31 2.2.6:

	fix test section for automatic recipe creation from pypi using –build-recipe

	minor Py3k fixes for conda build on Linux

	copy symlinks as symlinks, issue #437

	fix explicit install (e.g. from output of conda list -e) in root env

	add pyyaml to the list of packages which can not be removed from root environment

	fixed minor issues: #365, #453

2013-12-17 2.2.5:

	conda build: move broken packages to conda-bld/broken

	conda config: automatically add the ‘defaults’ channel

	conda build: improve error handling for invalid recipe directory

	add ability to set build string, issue #425

	fix LD_RUN_PATH not being set on Linux under Python 3, see issue #427, thanks peter1000

2013-12-10 2.2.4:

	add support for execution with the -m switch (issue #398), i.e. you can execute conda also as: python -m conda

	add a deactivate script for windows

	conda build adds .pth-file when it encounters an egg (TODO)

	add ability to preserve egg directory when building using build/preserve_egg_dir: True

	allow track_features in ~/.condarc

	Allow arbitrary source, issue #405

	fixed minor issues: #393, #402, #409, #413

2013-12-03 2.2.3:

	add “foreign mode”, i.e. disallow install of certain packages when using a “foreign” Python, such as the system Python

	remove activate/deactivate from source tarball created by sdist.sh, in order to not overwrite activate script from virtualenvwrapper

2013-11-27 2.2.2:

	remove ARCH environment variable for being able to change architecture

	add PKG_NAME, PKG_VERSION to environment when running build.sh, .<name>-post-link.sh and .<name>-pre-unlink.sh

2013-11-15 2.2.1:

	minor fixes related to make conda pip installable

	generated conda meta-data missing ‘files’ key, fixed issue #357

2013-11-14 2.2.0:

	add conda init command, to allow installing conda via pip

	fix prefix being replaced by placeholder after conda build on Linux and macOS

	add ‘use_pip’ to condarc configuration file

	fixed activate on Windows to set CONDA_DEFAULT_ENV

	allow setting “always_yes: True” in condarc file, which implies always using the –yes option whenever asked to proceed

2013-11-07 2.1.0:

	fix rm_egg_dirs so that the .egg_info file can be a zip file

	improve integration with pip
* conda list now shows pip installed packages
* conda install will try to install via “pip install” if no conda package is available (unless –no-pip is provided)
* conda build has a new –build-recipe option which will create a recipe (stored in <root>/conda-recipes) from pypi then build a conda package (and install it)
* pip list and pip install only happen if pip is installed

	enhance the locking mechanism so that conda can call itself in the same process.

2013-11-04 2.0.4:

	ensure lowercase name when generating package info, fixed issue #329

	on Windows, handle the .nonadmin files

2013-10-28 2.0.3:

	update bundle format

	fix bug when displaying packages to be downloaded (thanks Crystal)

2013-10-27 2.0.2:

	add –index-cache option to clean command, see issue #321

	use RPATH (instead of RUNPATH) when building packages on Linux

2013-10-23 2.0.1:

	add –no-prompt option to conda skeleton pypi

	add create_default_packages to condarc (and –no-default-packages option to create command)

2013-10-01 2.0.0:

	added user/root mode and ability to soft-link across filesystems

	added create –clone option for copying local environments

	fixed behavior when installing into an environment which does not exist yet, i.e. an error occurs

	fixed install –no-deps option

	added –export option to list command

	allow building of packages in “user mode”

	regular environment locations now used for build and test

	add ability to disallow specification names

	add ability to read help messages from a file when install location is RO

	restore backwards compatibility of share/clone for conda-api

	add new conda bundle command and format

	pass ARCH environment variable to build scripts

	added progress bar to source download for conda build, issue #230

	added ability to use url instead of local file to conda install –file and conda create –file options

2013-09-06 1.9.1:

	fix bug in new caching of repodata index

2013-09-05 1.9.0:

	add caching of repodata index

	add activate command on Windows

	add conda package –which option, closes issue 163

	add ability to install file which contains multiple packages, issue 256

	move conda share functionality to conda package –share

	update documentation

	improve error messages when external dependencies are unavailable

	add implementation for issue 194: post-link or pre-unlink may append to a special file ${PREFIX}/.messages.txt for messages, which is display to the user’s console after conda completes all actions

	add conda search –outdated option, which lists only installed packages for which newer versions are available

	fixed numerous Py3k issues, in particular with the build command

2013-08-16 1.8.2:

	add conda build –check option

	add conda clean –lock option

	fixed error in recipe causing conda traceback, issue 158

	fixes conda build error in Python 3, issue 238

	improve error message when test command fails, as well as issue 229

	disable Python (and other packages which are used by conda itself) to be updated in root environment on Windows

	simplified locking, in particular locking should never crash conda when files cannot be created due to permission problems

2013-08-07 1.8.1:

	fixed conda update for no arguments, issue 237

	fix setting prefix before calling should_do_win_subprocess() part of issue 235

	add basic subversion support when building

	add –output option to conda build

2013-07-31 1.8.0:

	add Python 3 support (thanks almarklein)

	add Mercurial support when building from source (thanks delicb)

	allow Python (and other packages which are used by conda itself) to be updated in root environment on Windows

	add conda config command

	add conda clean command

	removed the conda pip command

	improve locking to be finer grained

	made activate/deactivate work with zsh (thanks to mika-fischer)

	allow conda build to take tarballs containing a recipe as arguments

	add PKG_CONFIG_PATH to build environment variables

	fix entry point scripts pointing to wrong python when building Python 3 packages

	allow source/sha1 in meta.yaml, issue 196

	more informative message when there are unsatisfiable package specifications

	ability to set the proxy urls in condarc

	conda build asks to upload to binstar. This can also be configured by changing binstar_upload in condarc.

	basic tab completion if the argcomplete package is installed and eval “$(register-python-argcomplete conda)” is added to the bash profile.

2013-07-02 1.7.2:

	fixed conda update when packages include a post-link step which was caused by subprocess being lazily imported, fixed by 0d0b860

	improve error message when ‘chrpath’ or ‘patch’ is not installed and needed by build framework

	fixed sharing/cloning being broken (issue 179)

	add the string LOCKERROR to the conda lock error message

2013-06-21 1.7.1:

	fix “executable” not being found on Windows when ending with .bat when launching application

	give a better error message from when a repository does not exist

2013-06-20 1.7.0:

	allow ${PREFIX} in app_entry

	add binstar upload information after conda build finishes

2013-06-20 1.7.0a2:

	add global conda lock file for only allowing one instance of conda to run at the same time

	add conda skeleton command to create recipes from PyPI

	add ability to run post-link and pre-unlink script

2013-06-13 1.7.0a1:

	add ability to build conda packages from “recipes”, using the conda build command, for some examples, see: https://github.com/ContinuumIO/conda-recipes

	fixed bug in conda install –force

	conda update command no longer uses anaconda as default package name

	add proxy support

	added application API to conda.api module

	add -c/–channel and –override-channels flags (issue 121).

	add default and system meta-channels, for use in .condarc and with -c (issue 122).

	fixed ability to install ipython=0.13.0 (issue 130)

2013-06-05 1.6.0:

	update package command to reflect changes in repodata

	fixed refactoring bugs in share/clone

	warn when anaconda processes are running on install in Windows (should fix most permissions errors on Windows)

2013-05-31 1.6.0rc2:

	conda with no arguments now prints help text (issue 111)

	don’t allow removing conda from root environment

	conda update python does no longer update to Python 3, also ensure that conda itself is always installed into the root environment (issue 110)

2013-05-30 1.6.0rc1:

	major internal refactoring

	use new “depends” key in repodata

	uses pycosat to solve constraints more efficiently

	add hard-linking on Windows

	fixed linking across filesystems (issue 103)

	add conda remove –features option

	added more tests, in particular for new dependency resolver

	add internal DSL to perform install actions

	add package size to download preview

	add conda install –force and –no-deps options

	fixed conda help command

	add conda remove –all option for removing entire environment

	fixed source activate on systems where sourcing a gives “bash” as $0

	add information about installed versions to conda search command

	removed known “locations”

	add output about installed packages when update and install do nothing

	changed default when prompted for y/n in CLI to yes

2013-04-29 1.5.2:

	fixed issue 59: bad error message when pkgs dir is not writable

2013-04-19 1.5.1:

	fixed issue 71 and (73 duplicate): not being able to install packages starting with conda (such as ‘conda-api’)

	fixed issue 69 (not being able to update Python / NumPy)

	fixed issue 76 (cannot install mkl on OSX)

2013-03-22 1.5.0:

	add conda share and clone commands

	add (hidden) –output-json option to clone, share and info commands to support the conda-api package

	add repo sub-directory type ‘linux-armv6l’

2013-03-12 1.4.6:

	fixed channel selection (issue #56)

2013-03-11 1.4.5:

	fix issue #53 with install for meta packages

	add -q/–quiet option to update command

2013-03-09 1.4.4:

	use numpy 1.7 as default on all platfroms

2013-03-09 1.4.3:

	fixed bug in conda.builder.share.clone_bundle()

2013-03-08 1.4.2:

	feature selection fix for update

	Windows: don’t allow linking or unlinking python from the root environment because the file lock, see issue #42

2013-03-07 1.4.1:

	fix some feature selection bugs

	never exit in activate and deactivate

	improve help and error messages

2013-03-05 1.4.0:

	fixed conda pip NAME==VERSION

	added conda info –license option

	add source activate and deactivate commands

	rename the old activate and deactivate to link and unlink

	add ability for environments to track “features”

	add ability to distinguish conda build packages from Anaconda packages by adding a “file_hash” meta-data field in info/index.json

	add conda.builder.share module

2013-02-05 1.3.5:

	fixed detecting untracked files on Windows

	removed backwards compatibility to conda 1.0 version

2013-01-28 1.3.4:

	fixed conda installing itself into environments (issue #10)

	fixed non-existing channels being silently ignored (issue #12)

	fixed trailing slash in ~/.condarc file cause crash (issue #13)

	fixed conda list not working when ~/.condarc is missing (issue #14)

	fixed conda install not working for Python 2.6 environment (issue #17)

	added simple first cut implementation of remove command (issue #11)

	pip, build commands: only package up new untracked files

	allow a system-wide <sys.prefix>/.condarc (~/.condarc takes precedence)

	only add pro channel is no condarc file exists (and license is valid)

2013-01-23 1.3.3:

	fix conda create not filtering channels correctly

	remove (hidden) –test and –testgui options

2013-01-23 1.3.2:

	fix deactivation of packages with same build number note that conda upgrade did not suffer from this problem, as was using separate logic

2013-01-22 1.3.1:

	fix bug in conda update not installing new dependencies

2013-01-22 1.3.0:

	added conda package command

	added conda index command

	added -c, –canonical option to list and search commands

	fixed conda –version on Windows

	add this changelog

2012-11-21 1.2.1:

	remove ambiguity from conda update command

2012-11-20 1.2.0:

	“conda upgrade” now updates from AnacondaCE to Anaconda (removed upgrade2pro

	add versioneer

2012-11-13 1.1.0:

	Many new features implemented by Bryan

2012-09-06 1.0.0:

	initial release

Command reference

	Conda general commands

	Conda vs. pip vs. virtualenv commands

Conda provides many commands for managing packages and environments.
The links on this page provide help for each command.
You can also access help from the command line with the
--help flag:

conda install --help

Conda general commands

The following commands are part of conda:

	conda clean
	Removal Targets

	Output, Prompt, and Flow Control Options

	conda config
	Output, Prompt, and Flow Control Options

	Config File Location Selection

	Config Subcommands

	Config Modifiers

	conda create
	Positional Arguments

	Named Arguments

	Target Environment Specification

	Channel Customization

	Solver Mode Modifiers

	Package Linking and Install-time Options

	Networking Options

	Output, Prompt, and Flow Control Options

	Conda Commands
	conda create

	conda install

	conda update

	conda remove

	conda info

	conda search

	conda config

	conda list

	conda clean

	conda package

	conda info
	Named Arguments

	Output, Prompt, and Flow Control Options

	conda install
	Positional Arguments

	Named Arguments

	Target Environment Specification

	Channel Customization

	Solver Mode Modifiers

	Package Linking and Install-time Options

	Networking Options

	Output, Prompt, and Flow Control Options

	conda list
	Positional Arguments

	Named Arguments

	Target Environment Specification

	Output, Prompt, and Flow Control Options

	conda package
	Named Arguments

	Target Environment Specification

	conda remove
	Positional Arguments

	Target Environment Specification

	Channel Customization

	Solver Mode Modifiers

	Networking Options

	Output, Prompt, and Flow Control Options

	conda search
	Named Arguments

	Channel Customization

	Networking Options

	Output, Prompt, and Flow Control Options

	conda update
	Positional Arguments

	Named Arguments

	Target Environment Specification

	Channel Customization

	Solver Mode Modifiers

	Package Linking and Install-time Options

	Networking Options

	Output, Prompt, and Flow Control Options

Conda vs. pip vs. virtualenv commands

If you have used pip and virtualenv in the past, you can use
conda to perform all of the same operations. Pip is a package
manager, and virtualenv is an environment manager. Conda is both.

	Task

	Conda package and environment manager command

	Pip package manager command

	Virtualenv environment manager command

	Install a package

	conda install $PACKAGE_NAME

	pip install $PACKAGE_NAME

	X

	Update a package

	conda update --name $ENVIRONMENT_NAME $PACKAGE_NAME

	pip install --upgrade $PACKAGE_NAME

	X

	Update package manager

	conda update conda

	Linux/macOS: pip install -U pip Win: python -m pip install -U pip

	X

	Uninstall a package

	conda remove --name $ENVIRONMENT_NAME $PACKAGE_NAME

	pip uninstall $PACKAGE_NAME

	X

	Create an environment

	conda create --name $ENVIRONMENT_NAME python

	X

	cd $ENV_BASE_DIR; virtualenv $ENVIRONMENT_NAME

	Activate an environment

	source activate $ENVIRONMENT_NAME

	X

	source $ENV_BASE_DIR/$ENVIRONMENT_NAME/bin/activate

	Deactivate an environment

	source deactivate

	X

	deactivate

	Search available packages

	conda search $SEARCH_TERM

	pip search $SEARCH_TERM

	X

	Install package from specific source

	conda install --channel $URL $PACKAGE_NAME

	pip install --index-url $URL $PACKAGE_NAME

	X

	List installed packages

	conda list --name $ENVIRONMENT_NAME

	pip list

	X

	Create requirements file

	conda list --export

	pip freeze

	X

	List all environments

	conda info --envs

	X

	Install virtualenv wrapper, then lsvirtualenv

	Install other package manager

	conda install pip

	pip install conda

	X

	Install Python

	conda install python=x.x

	X

	X

	Update Python

	conda update python*

	X

	X

* conda update python updates to the most recent in the series, so any Python 2.x would update to the latest 2.x and any Python 3.x to the latest 3.x.

conda clean

Remove unused packages and caches.

Options:

usage: conda clean [-h] [-a] [-i] [-l] [-p] [-t] [-f] [-d] [--json] [-q] [-v]
 [-y]

Removal Targets

	-a, --all

	Remove index cache, lock files, unused cache packages, and tarballs.

	-i, --index-cache

	Remove index cache.

	-l, --lock

	Remove all conda lock files.

	-p, --packages

	Remove unused packages from writable package caches. WARNING: This does not check for packages installed using symlinks back to the package cache.

	-t, --tarballs

	Remove cached package tarballs.

	-f, --force-pkgs-dirs

	Remove all writable package caches. This option is not included with the –all flag. WARNING: This will break environments with packages installed using symlinks back to the package cache.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

Examples:

conda clean –tarballs

conda config

Modify configuration values in .condarc. This is modeled after the git
config command. Writes to the user .condarc file (/home/docs/.condarc) by default.

Options:

usage: conda config [-h] [--json] [-v] [-q] [--system | --env | --file FILE]
 [--show [SHOW [SHOW ...]] | --show-sources | --validate |
 --describe [DESCRIBE [DESCRIBE ...]] | --write-default]
 [--get [KEY [KEY ...]] | --append KEY VALUE | --prepend
 KEY VALUE | --set KEY VALUE | --remove KEY VALUE |
 --remove-key KEY | --stdin]

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

Config File Location Selection

Without one of these flags, the user config file at ‘/home/docs/.condarc’ is used.

	--system

	Write to the system .condarc file at ‘/home/docs/checkouts/readthedocs.org/user_builds/continuumio-conda/envs/4.6.1/.condarc’.

	--env

	Write to the active conda environment .condarc file (<no active environment>). If no environment is active, write to the user config file (/home/docs/.condarc).

	--file

	Write to the given file.

Config Subcommands

	--show

	Display configuration values as calculated and compiled. If no arguments given, show information for all configuration values.

	--show-sources

	Display all identified configuration sources.

	--validate

	Validate all configuration sources.

	--describe

	Describe given configuration parameters. If no arguments given, show information for all configuration parameters.

	--write-default

	Write the default configuration to a file. Equivalent to conda config –describe > ~/.condarc.

Config Modifiers

	--get

	Get a configuration value.

	--append

	Add one configuration value to the end of a list key.

	--prepend, --add

	Add one configuration value to the beginning of a list key.

	--set

	Set a boolean or string key

	--remove

	
	Remove a configuration value from a list key. This removes

	all instances of the value.

	--remove-key

	Remove a configuration key (and all its values).

	--stdin

	Apply configuration information given in yaml format piped through stdin.

See conda config –describe or https://conda.io/docs/config.html
for details on all the options that can go in .condarc.

Examples:

Display all configuration values as calculated and compiled:

conda config –show

Display all identified configuration sources:

conda config –show-sources

Describe all available configuration options:

conda config –describe

Add the conda-canary channel:

conda config –add channels conda-canary

Set the output verbosity to level 3 (highest) for the current activate environment:

conda config –set verbosity 3 –env

Add the ‘conda-forge’ channel as a backup to ‘defaults’:

conda config –append channels conda-forge

conda create

Create a new conda environment from a list of specified packages. To use the created environment, use ‘source activate envname’ look in that directory first. This command requires either the -n NAME or -p PREFIX option.

Options:

usage: conda create [-h] [--clone ENV] [-n ENVIRONMENT | -p PATH] [-c CHANNEL]
 [--use-local] [--override-channels]
 [--strict-channel-priority] [--no-channel-priority]
 [--no-deps | --only-deps] [--no-pin] [--copy] [-C] [-k]
 [--offline] [-d] [--json] [-q] [-v] [-y] [--download-only]
 [--show-channel-urls] [--file FILE]
 [--no-default-packages]
 [package_spec [package_spec ...]]

Positional Arguments

	package_spec

	Packages to install or update in the conda environment.

Named Arguments

	--clone

	Path to (or name of) existing local environment.

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. –file=file1 –file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config –show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--no-default-packages

	Ignore create_default_packages in the .condarc file.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

Examples:

conda create -n myenv sqlite

Conda Commands

Contents:

	conda create

	conda install

	conda update

	conda remove

	conda info

	conda search

	conda config

	conda list

	conda clean

	conda package

conda create

Create a new conda environment from a list of specified packages. To use the created environment, use ‘source activate envname’ look in that directory first. This command requires either the -n NAME or -p PREFIX option.

Options:

usage: conda create [-h] [--clone ENV] [-n ENVIRONMENT | -p PATH] [-c CHANNEL]
 [--use-local] [--override-channels]
 [--strict-channel-priority] [--no-channel-priority]
 [--no-deps | --only-deps] [--no-pin] [--copy] [-C] [-k]
 [--offline] [-d] [--json] [-q] [-v] [-y] [--download-only]
 [--show-channel-urls] [--file FILE]
 [--no-default-packages]
 [package_spec [package_spec ...]]

Positional Arguments

	package_spec

	Packages to install or update in the conda environment.

Named Arguments

	--clone

	Path to (or name of) existing local environment.

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. –file=file1 –file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config –show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--no-default-packages

	Ignore create_default_packages in the .condarc file.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

Examples:

conda create -n myenv sqlite

conda install

Installs a list of packages into a specified conda environment.

This command accepts a list of package specifications (e.g, bitarray=0.8)
and installs a set of packages consistent with those specifications and
compatible with the underlying environment. If full compatibility cannot
be assured, an error is reported and the environment is not changed.

Conda attempts to install the newest versions of the requested packages. To
accomplish this, it may update some packages that are already installed, or
install additional packages. To prevent existing packages from updating,
use the –freeze-installed option. This may force conda to install older
versions of the requested packages, and it does not prevent additional
dependency packages from being installed.

If you wish to skip dependency checking altogether, use the ‘–no-deps’
option. This may result in an environment with incompatible packages, so
this option must be used with great caution.

conda can also be called with a list of explicit conda package filenames
(e.g. ./lxml-3.2.0-py27_0.tar.bz2). Using conda in this mode implies the
–no-deps option, and should likewise be used with great caution. Explicit
filenames and package specifications cannot be mixed in a single command.

Options:

usage: conda install [-h] [--revision REVISION] [-n ENVIRONMENT | -p PATH]
 [-c CHANNEL] [--use-local] [--override-channels]
 [--strict-channel-priority] [--no-channel-priority]
 [--no-deps | --only-deps] [--no-pin] [--copy] [-C] [-k]
 [--offline] [-d] [--json] [-q] [-v] [-y]
 [--download-only] [--show-channel-urls] [--file FILE]
 [--prune] [--force-reinstall]
 [--freeze-installed | --update-deps | -S | --update-all]
 [-m] [--clobber]
 [package_spec [package_spec ...]]

Positional Arguments

	package_spec

	Packages to install or update in the conda environment.

Named Arguments

	--revision

	Revert to the specified REVISION.

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. –file=file1 –file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config –show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--prune

	Remove packages that have previously been brought into the environment to satisfy dependencies of user-requested packages, but are no longer needed.

	--force-reinstall

	Ensure that any user-requested package for the current operation is uninstalled and reinstalled, even if that package already exists in the environment.

	--freeze-installed, --no-update-deps

	Do not update or change already-installed dependencies.

	--update-deps

	Update dependencies.

	-S, --satisfied-skip-solve

	Exit early and do not run the solver if the requested specs are satisfied. Also skips aggressive updates as configured by ‘aggressive_update_packages’. Similar to the default behavior of ‘pip install’.

	--update-all, --all

	Update all installed packages in the environment.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

	-m, --mkdir

	Create the environment directory if necessary.

	--clobber

	Allow clobbering of overlapping file paths within packages, and suppress related warnings.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

Examples:

conda install -n myenv scipy

conda update

Updates conda packages to the latest compatible version.

This command accepts a list of package names and updates them to the latest
versions that are compatible with all other packages in the environment.

Conda attempts to install the newest versions of the requested packages. To
accomplish this, it may update some packages that are already installed, or
install additional packages. To prevent existing packages from updating,
use the –no-update-deps option. This may force conda to install older
versions of the requested packages, and it does not prevent additional
dependency packages from being installed.

Options:

usage: conda update [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
 [--override-channels] [--strict-channel-priority]
 [--no-channel-priority] [--no-deps | --only-deps]
 [--no-pin] [--copy] [-C] [-k] [--offline] [-d] [--json]
 [-q] [-v] [-y] [--download-only] [--show-channel-urls]
 [--file FILE] [--prune] [--force-reinstall]
 [--freeze-installed | --update-deps | -S | --update-all]
 [--clobber]
 [package_spec [package_spec ...]]

Positional Arguments

	package_spec

	Packages to install or update in the conda environment.

Named Arguments

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. –file=file1 –file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config –show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--prune

	Remove packages that have previously been brought into the environment to satisfy dependencies of user-requested packages, but are no longer needed.

	--force-reinstall

	Ensure that any user-requested package for the current operation is uninstalled and reinstalled, even if that package already exists in the environment.

	--freeze-installed, --no-update-deps

	Do not update or change already-installed dependencies.

	--update-deps

	Update dependencies.

	-S, --satisfied-skip-solve

	Exit early and do not run the solver if the requested specs are satisfied. Also skips aggressive updates as configured by ‘aggressive_update_packages’. Similar to the default behavior of ‘pip install’.

	--update-all, --all

	Update all installed packages in the environment.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

	--clobber

	Allow clobbering of overlapping file paths within packages, and suppress related warnings.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

Examples:

conda update -n myenv scipy

conda remove

Remove a list of packages from a specified conda environment.

This command will also remove any package that depends on any of the
specified packages as well—unless a replacement can be found without
that dependency. If you wish to skip this dependency checking and remove
just the requested packages, add the ‘–force’ option. Note however that
this may result in a broken environment, so use this with caution.

Options:

usage: conda remove [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
 [--override-channels] [--all] [--features]
 [--force-remove] [--no-pin] [--prune] [-C] [-k]
 [--offline] [-d] [--json] [-q] [-v] [-y]
 [package_name [package_name ...]]

Positional Arguments

	package_name

	Package names to remove from the environment.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--all

	Remove all packages, i.e., the entire environment.

	--features

	Remove features (instead of packages).

	--force-remove, --force

	Forces removal of a package without removing packages that depend on it. Using this option will usually leave your environment in a broken and inconsistent state.

	--no-pin

	Ignore pinned file.

	--prune

	Remove packages that have previously been brought into the environment to satisfy dependencies of user-requested packages, but are no longer needed.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

Examples:

conda remove -n myenv scipy

conda info

Display information about current conda install.

Options:

usage: conda info [-h] [--json] [-v] [-q] [-a] [--base] [-e] [-s]
 [--unsafe-channels]

Named Arguments

	-a, --all

	Show all information.

	--base

	Display base environment path.

	-e, --envs

	List all known conda environments.

	-s, --system

	List environment variables.

	--unsafe-channels

	Display list of channels with tokens exposed.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

conda search

	Search for packages and display associated information.

	The input is a MatchSpec, a query language for conda packages.
See examples below.

Options:

usage: conda search [-h] [--envs] [-i] [--subdir SUBDIR] [-c CHANNEL]
 [--use-local] [--override-channels] [-C] [-k] [--offline]
 [--json] [-v] [-q]

Named Arguments

	--envs

	Search all of the current user’s environments. If run as Administrator (on Windows) or UID 0 (on unix), search all known environments on the system.

	-i, --info

	Provide detailed information about each package.

	--subdir, --platform

	Search the given subdir. Should be formatted like ‘osx-64’, ‘linux-32’, ‘win-64’, and so on. The default is to search the current platform.

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

Examples:

Search for a specific package named ‘scikit-learn’:

conda search scikit-learn

Search for packages containing ‘scikit’ in the package name:

conda search scikit

Note that your shell may expand ‘*’ before handing the command over to conda.
Therefore it is sometimes necessary to use single or double quotes around the query.

conda search ‘scikit’
conda search “*scikit”

Search for packages for 64-bit Linux (by default, packages for your current
platform are shown):

conda search numpy[subdir=linux-64]

Search for a specific version of a package:

conda search ‘numpy>=1.12’

Search for a package on a specific channel

conda search conda-forge::numpy
conda search ‘numpy[channel=conda-forge, subdir=osx-64]’

conda config

Modify configuration values in .condarc. This is modeled after the git
config command. Writes to the user .condarc file (/home/docs/.condarc) by default.

Options:

usage: conda config [-h] [--json] [-v] [-q] [--system | --env | --file FILE]
 [--show [SHOW [SHOW ...]] | --show-sources | --validate |
 --describe [DESCRIBE [DESCRIBE ...]] | --write-default]
 [--get [KEY [KEY ...]] | --append KEY VALUE | --prepend
 KEY VALUE | --set KEY VALUE | --remove KEY VALUE |
 --remove-key KEY | --stdin]

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

Config File Location Selection

Without one of these flags, the user config file at ‘/home/docs/.condarc’ is used.

	--system

	Write to the system .condarc file at ‘/home/docs/checkouts/readthedocs.org/user_builds/continuumio-conda/envs/4.6.1/.condarc’.

	--env

	Write to the active conda environment .condarc file (<no active environment>). If no environment is active, write to the user config file (/home/docs/.condarc).

	--file

	Write to the given file.

Config Subcommands

	--show

	Display configuration values as calculated and compiled. If no arguments given, show information for all configuration values.

	--show-sources

	Display all identified configuration sources.

	--validate

	Validate all configuration sources.

	--describe

	Describe given configuration parameters. If no arguments given, show information for all configuration parameters.

	--write-default

	Write the default configuration to a file. Equivalent to conda config –describe > ~/.condarc.

Config Modifiers

	--get

	Get a configuration value.

	--append

	Add one configuration value to the end of a list key.

	--prepend, --add

	Add one configuration value to the beginning of a list key.

	--set

	Set a boolean or string key

	--remove

	
	Remove a configuration value from a list key. This removes

	all instances of the value.

	--remove-key

	Remove a configuration key (and all its values).

	--stdin

	Apply configuration information given in yaml format piped through stdin.

See conda config –describe or https://conda.io/docs/config.html
for details on all the options that can go in .condarc.

Examples:

Display all configuration values as calculated and compiled:

conda config –show

Display all identified configuration sources:

conda config –show-sources

Describe all available configuration options:

conda config –describe

Add the conda-canary channel:

conda config –add channels conda-canary

Set the output verbosity to level 3 (highest) for the current activate environment:

conda config –set verbosity 3 –env

Add the ‘conda-forge’ channel as a backup to ‘defaults’:

conda config –append channels conda-forge

conda list

List linked packages in a conda environment.

Options:

usage: conda list [-h] [-n ENVIRONMENT | -p PATH] [--json] [-v] [-q]
 [--show-channel-urls] [-c] [-f] [--explicit] [--md5] [-e]
 [-r] [--no-pip]
 [regex]

Positional Arguments

	regex

	List only packages matching this regular expression.

Named Arguments

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

	-c, --canonical

	Output canonical names of packages only. Implies –no-pip.

	-f, --full-name

	Only search for full names, i.e., ^<regex>$.

	--explicit

	List explicitly all installed conda packaged with URL (output may be used by conda create –file).

	--md5

	Add MD5 hashsum when using –explicit

	-e, --export

	Output requirement string only (output may be used by conda create –file).

	-r, --revisions

	List the revision history and exit.

	--no-pip

	Do not include pip-only installed packages.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

Examples:

List all packages in the current environment:

conda list

List all packages installed into the environment ‘myenv’:

conda list -n myenv

Save packages for future use:

conda list –export > package-list.txt

Reinstall packages from an export file:

conda create -n myenv –file package-list.txt

conda clean

Remove unused packages and caches.

Options:

usage: conda clean [-h] [-a] [-i] [-l] [-p] [-t] [-f] [-d] [--json] [-q] [-v]
 [-y]

Removal Targets

	-a, --all

	Remove index cache, lock files, unused cache packages, and tarballs.

	-i, --index-cache

	Remove index cache.

	-l, --lock

	Remove all conda lock files.

	-p, --packages

	Remove unused packages from writable package caches. WARNING: This does not check for packages installed using symlinks back to the package cache.

	-t, --tarballs

	Remove cached package tarballs.

	-f, --force-pkgs-dirs

	Remove all writable package caches. This option is not included with the –all flag. WARNING: This will break environments with packages installed using symlinks back to the package cache.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

Examples:

conda clean –tarballs

conda package

Low-level conda package utility. (EXPERIMENTAL)

Options:

usage: conda package [-h] [-n ENVIRONMENT | -p PATH] [-w PATH [PATH ...]] [-r]
 [-u] [--pkg-name PKG_NAME] [--pkg-version PKG_VERSION]
 [--pkg-build PKG_BUILD]

Named Arguments

	-w, --which

	Given some PATH print which conda package the file came from.

	-r, --reset

	Remove all untracked files and exit.

	-u, --untracked

	Display all untracked files and exit.

	--pkg-name

	Package name of the created package.

	--pkg-version

	Package version of the created package.

	--pkg-build

	Package build number of the created package.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

conda info

Display information about current conda install.

Options:

usage: conda info [-h] [--json] [-v] [-q] [-a] [--base] [-e] [-s]
 [--unsafe-channels]

Named Arguments

	-a, --all

	Show all information.

	--base

	Display base environment path.

	-e, --envs

	List all known conda environments.

	-s, --system

	List environment variables.

	--unsafe-channels

	Display list of channels with tokens exposed.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

conda install

Installs a list of packages into a specified conda environment.

This command accepts a list of package specifications (e.g, bitarray=0.8)
and installs a set of packages consistent with those specifications and
compatible with the underlying environment. If full compatibility cannot
be assured, an error is reported and the environment is not changed.

Conda attempts to install the newest versions of the requested packages. To
accomplish this, it may update some packages that are already installed, or
install additional packages. To prevent existing packages from updating,
use the –freeze-installed option. This may force conda to install older
versions of the requested packages, and it does not prevent additional
dependency packages from being installed.

If you wish to skip dependency checking altogether, use the ‘–no-deps’
option. This may result in an environment with incompatible packages, so
this option must be used with great caution.

conda can also be called with a list of explicit conda package filenames
(e.g. ./lxml-3.2.0-py27_0.tar.bz2). Using conda in this mode implies the
–no-deps option, and should likewise be used with great caution. Explicit
filenames and package specifications cannot be mixed in a single command.

Options:

usage: conda install [-h] [--revision REVISION] [-n ENVIRONMENT | -p PATH]
 [-c CHANNEL] [--use-local] [--override-channels]
 [--strict-channel-priority] [--no-channel-priority]
 [--no-deps | --only-deps] [--no-pin] [--copy] [-C] [-k]
 [--offline] [-d] [--json] [-q] [-v] [-y]
 [--download-only] [--show-channel-urls] [--file FILE]
 [--prune] [--force-reinstall]
 [--freeze-installed | --update-deps | -S | --update-all]
 [-m] [--clobber]
 [package_spec [package_spec ...]]

Positional Arguments

	package_spec

	Packages to install or update in the conda environment.

Named Arguments

	--revision

	Revert to the specified REVISION.

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. –file=file1 –file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config –show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--prune

	Remove packages that have previously been brought into the environment to satisfy dependencies of user-requested packages, but are no longer needed.

	--force-reinstall

	Ensure that any user-requested package for the current operation is uninstalled and reinstalled, even if that package already exists in the environment.

	--freeze-installed, --no-update-deps

	Do not update or change already-installed dependencies.

	--update-deps

	Update dependencies.

	-S, --satisfied-skip-solve

	Exit early and do not run the solver if the requested specs are satisfied. Also skips aggressive updates as configured by ‘aggressive_update_packages’. Similar to the default behavior of ‘pip install’.

	--update-all, --all

	Update all installed packages in the environment.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

	-m, --mkdir

	Create the environment directory if necessary.

	--clobber

	Allow clobbering of overlapping file paths within packages, and suppress related warnings.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

Examples:

conda install -n myenv scipy

conda list

List linked packages in a conda environment.

Options:

usage: conda list [-h] [-n ENVIRONMENT | -p PATH] [--json] [-v] [-q]
 [--show-channel-urls] [-c] [-f] [--explicit] [--md5] [-e]
 [-r] [--no-pip]
 [regex]

Positional Arguments

	regex

	List only packages matching this regular expression.

Named Arguments

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

	-c, --canonical

	Output canonical names of packages only. Implies –no-pip.

	-f, --full-name

	Only search for full names, i.e., ^<regex>$.

	--explicit

	List explicitly all installed conda packaged with URL (output may be used by conda create –file).

	--md5

	Add MD5 hashsum when using –explicit

	-e, --export

	Output requirement string only (output may be used by conda create –file).

	-r, --revisions

	List the revision history and exit.

	--no-pip

	Do not include pip-only installed packages.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

Examples:

List all packages in the current environment:

conda list

List all packages installed into the environment ‘myenv’:

conda list -n myenv

Save packages for future use:

conda list –export > package-list.txt

Reinstall packages from an export file:

conda create -n myenv –file package-list.txt

conda package

Low-level conda package utility. (EXPERIMENTAL)

Options:

usage: conda package [-h] [-n ENVIRONMENT | -p PATH] [-w PATH [PATH ...]] [-r]
 [-u] [--pkg-name PKG_NAME] [--pkg-version PKG_VERSION]
 [--pkg-build PKG_BUILD]

Named Arguments

	-w, --which

	Given some PATH print which conda package the file came from.

	-r, --reset

	Remove all untracked files and exit.

	-u, --untracked

	Display all untracked files and exit.

	--pkg-name

	Package name of the created package.

	--pkg-version

	Package version of the created package.

	--pkg-build

	Package build number of the created package.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

conda remove

Remove a list of packages from a specified conda environment.

This command will also remove any package that depends on any of the
specified packages as well—unless a replacement can be found without
that dependency. If you wish to skip this dependency checking and remove
just the requested packages, add the ‘–force’ option. Note however that
this may result in a broken environment, so use this with caution.

Options:

usage: conda remove [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
 [--override-channels] [--all] [--features]
 [--force-remove] [--no-pin] [--prune] [-C] [-k]
 [--offline] [-d] [--json] [-q] [-v] [-y]
 [package_name [package_name ...]]

Positional Arguments

	package_name

	Package names to remove from the environment.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--all

	Remove all packages, i.e., the entire environment.

	--features

	Remove features (instead of packages).

	--force-remove, --force

	Forces removal of a package without removing packages that depend on it. Using this option will usually leave your environment in a broken and inconsistent state.

	--no-pin

	Ignore pinned file.

	--prune

	Remove packages that have previously been brought into the environment to satisfy dependencies of user-requested packages, but are no longer needed.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

Examples:

conda remove -n myenv scipy

conda search

	Search for packages and display associated information.

	The input is a MatchSpec, a query language for conda packages.
See examples below.

Options:

usage: conda search [-h] [--envs] [-i] [--subdir SUBDIR] [-c CHANNEL]
 [--use-local] [--override-channels] [-C] [-k] [--offline]
 [--json] [-v] [-q]

Named Arguments

	--envs

	Search all of the current user’s environments. If run as Administrator (on Windows) or UID 0 (on unix), search all known environments on the system.

	-i, --info

	Provide detailed information about each package.

	--subdir, --platform

	Search the given subdir. Should be formatted like ‘osx-64’, ‘linux-32’, ‘win-64’, and so on. The default is to search the current platform.

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Use once for info, twice for debug, three times for trace.

	-q, --quiet

	Do not display progress bar.

Examples:

Search for a specific package named ‘scikit-learn’:

conda search scikit-learn

Search for packages containing ‘scikit’ in the package name:

conda search scikit

Note that your shell may expand ‘*’ before handing the command over to conda.
Therefore it is sometimes necessary to use single or double quotes around the query.

conda search ‘scikit’
conda search “*scikit”

Search for packages for 64-bit Linux (by default, packages for your current
platform are shown):

conda search numpy[subdir=linux-64]

Search for a specific version of a package:

conda search ‘numpy>=1.12’

Search for a package on a specific channel

conda search conda-forge::numpy
conda search ‘numpy[channel=conda-forge, subdir=osx-64]’

conda update

Updates conda packages to the latest compatible version.

This command accepts a list of package names and updates them to the latest
versions that are compatible with all other packages in the environment.

Conda attempts to install the newest versions of the requested packages. To
accomplish this, it may update some packages that are already installed, or
install additional packages. To prevent existing packages from updating,
use the –no-update-deps option. This may force conda to install older
versions of the requested packages, and it does not prevent additional
dependency packages from being installed.

Options:

usage: conda update [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
 [--override-channels] [--strict-channel-priority]
 [--no-channel-priority] [--no-deps | --only-deps]
 [--no-pin] [--copy] [-C] [-k] [--offline] [-d] [--json]
 [-q] [-v] [-y] [--download-only] [--show-channel-urls]
 [--file FILE] [--prune] [--force-reinstall]
 [--freeze-installed | --update-deps | -S | --update-all]
 [--clobber]
 [package_spec [package_spec ...]]

Positional Arguments

	package_spec

	Packages to install or update in the conda environment.

Named Arguments

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. –file=file1 –file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	
	Additional channel to search for packages. These are URLs searched in the order

	they are given (including file:// for local directories). Then, the defaults
or channels from .condarc are searched (unless –override-channels is given). You can use
‘defaults’ to get the default packages for conda. You can also use any name and the
.condarc channel_alias value will be prepended. The default channel_alias
is http://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to ‘-c local’.

	--override-channels

	Do not search default or .condarc channels. Requires –channel.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config –show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--prune

	Remove packages that have previously been brought into the environment to satisfy dependencies of user-requested packages, but are no longer needed.

	--force-reinstall

	Ensure that any user-requested package for the current operation is uninstalled and reinstalled, even if that package already exists in the environment.

	--freeze-installed, --no-update-deps

	Do not update or change already-installed dependencies.

	--update-deps

	Update dependencies.

	-S, --satisfied-skip-solve

	Exit early and do not run the solver if the requested specs are satisfied. Also skips aggressive updates as configured by ‘aggressive_update_packages’. Similar to the default behavior of ‘pip install’.

	--update-all, --all

	Update all installed packages in the environment.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

	--clobber

	Allow clobbering of overlapping file paths within packages, and suppress related warnings.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired.

	-k, --insecure

	Allow conda to perform “insecure” SSL connections and transfers. Equivalent to setting ‘ssl_verify’ to ‘false’.

	--offline

	Offline mode. Don’t connect to the Internet.

Output, Prompt, and Flow Control Options

	-d, --dry-run

	Only display what would have been done.

	--json

	Report all output as json. Suitable for using conda programmatically.

	-q, --quiet

	Do not display progress bar.

	-v, --verbose

	Can be used multiple times. Once for INFO, twice for DEBUG, three times for TRACE.

	-y, --yes

	Do not ask for confirmation.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config –show show_channel_urls.

Examples:

conda update -n myenv scipy

Glossary

	.condarc

	activate/deactivate environment

	Anaconda

	Anaconda Cloud

	Anaconda Navigator

	Channels

	Conda

	Conda environment

	Conda package

	Conda repository

	Metapackage

	Miniconda

	Noarch package

	Package manager

	Packages

	Repository

	Silent mode installation

.condarc

The Conda Runtime Configuration file, an optional .yaml file
that allows you to configure many aspects of conda, such as which
channels it searches for packages, proxy settings and environment
directories. A .condarc file is not included by default, but
it is automatically created in your home directory
when you use the conda config command. The .condarc file
can also be located in a root environment, in which case it
overrides any .condarc in the home directory. For more
information, see Using the .condarc conda configuration file
and Administering a multi-user conda installation.
Pronounced “conda r-c”.

activate/deactivate environment

Conda commands used to switch or move between installed
environments. The activate command prepends the path of your
current environment to the PATH environment variable so that you
do not need to type it each time. deactivate removes it.
Even when an environment is deactivated, you can still execute
programs in that environment by specifying their paths directly,
as in ~/anaconda/envs/envname/bin/program_name. When an
environment is activated, you can execute the program in that
environment with just program_name.

NOTE: Replace envname with the name of the environment and
replace program_name with the name of the program.

Anaconda

A downloadable, free, open source, high-performance and optimized
Python and R distribution. Anaconda includes
conda, conda build, Python and 100+
automatically installed, open source scientific packages and
their dependencies that have been tested to work well together,
including SciPy, NumPy and many others. Use the conda install command
to easily install 1,000+ popular open source packages
for data science—including advanced and scientific
analytics—from the Anaconda repository. Use the conda
command to install thousands more open source packages.

Because Anaconda is a Python distribution, it can make
installing Python quick and easy even for new users.

Available for Windows, macOS and Linux, all versions of
Anaconda are supported by the community.

See also Miniconda and Conda.

Anaconda Cloud

A web-based repository hosting service in the cloud. Packages
created locally can be published to the cloud to be shared with
others. Free accounts on Cloud can publish packages to be shared
publicly. Paid subscriptions to Cloud can designate packages as
private to be shared with authorized users. Anaconda Cloud is a
public version of Anaconda Repository.

Anaconda Navigator

A desktop graphical user interface (GUI) included in all versions
of Anaconda that allows you to easily manage conda packages,
environments, channels and notebooks without a command line
interface (CLI).

Channels

The locations of the repositories where conda looks for packages.
Channels may point to a Cloud repository or a private
location on a remote or local repository that you or your organization
created. The conda channel command has a default set of channels to
search, beginning with https://repo.continuum.io/pkgs/, which you may
override, for example, to maintain a private or internal channel.
These default channels are referred to in conda commands and in
the .condarc file by the channel name “defaults.”

Conda

The package and environment manager program bundled with Anaconda
that installs and updates conda packages and their dependencies.
Conda also lets you easily switch between conda environments on
your local computer.

Conda environment

A folder or directory that contains a specific collection of
conda packages and their dependencies, so they can be maintained
and run separately without interference from each other. For
example, you may use a conda environment for only Python 2 and
Python 2 packages, maintain another conda environment with only
Python 3 and Python 3 packages, and maintain another for R
language packages. Environments can be created from:

	The Navigator GUI.

	The command line.

	An environment specification file with the name
your-environment-name.yml.

NOTE: Replace your-environment-name with the name of your
environment.

Conda package

A compressed file that contains everything that a software
program needs in order to be installed and run, so that you do
not have to manually find and install each dependency separately.
A conda package includes system-level libraries, Python or R
language modules, executable programs and other components. You
manage conda packages with conda.

Conda repository

A cloud-based repository that contains 720+ open source certified
packages that are easily installed locally with the
conda install command. Anyone can access the repository from:

	The Navigator GUI.

	A Terminal or Anaconda Prompt using conda commands.

	https://repo.continuum.io/pkgs/.

Metapackage

A conda package that only lists dependencies and does not include
any functional programs or libraries. The metapackage may contain
links to software files that are automatically downloaded when
executed. An example of a metapackage is “anaconda,” which
collects together all the packages in the Anaconda installer.
The command conda create -n envname anaconda creates an
environment that exactly matches what would be created from the
Anaconda installer. You can create metapackages with the
conda metapackage command.

Miniconda

A free minimal installer for conda. Miniconda is a small, bootstrap
version of Anaconda that includes only conda, Python, the
packages they depend on and a small number of other useful
packages, including pip, zlib and a few others. Use the
conda install command to install 720+ additional conda
packages from the Anaconda repository.

Because Miniconda is a Python distribution, and it can make
installing Python quick and easy even for new users.

See also Anaconda and Conda.

Noarch package

A conda package that contains nothing specific to any system
architecture, so it may be installed from any system. When conda
searches for packages on any system in a channel, conda checks
both the system-specific subdirectory, such as linux-64, and
the noarch directory. Noarch is a contraction of “no architecture”.

Package manager

A collection of software tools that automates the process of
installing, updating, configuring and removing computer programs
for a computer’s operating system. Also known as a package management
system. Conda is a package manager.

Packages

Software files and information about the software, such as its
name, the specific version and a description, bundled into a
file that can be installed and managed by a package manager.

Repository

Any storage location from which software assets may be retrieved
and installed on a local computer. See also
Anaconda Cloud and
Conda repository.

Silent mode installation

When installing Miniconda or Anaconda in silent mode, screen
prompts are not shown on screen and default settings are
automatically accepted.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 conda	

 	
 	
 conda.api	

 	
 	
 conda.cli.python_api	

 	
 	
 conda.core.solve	

Index

 C
 | D
 | F
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | Q
 | R
 | S
 | U

C

 	
 	CLEAN (conda.cli.python_api.Commands attribute)

 	Commands (class in conda.cli.python_api)

 	conda.api (module)

 	
 	conda.cli.python_api (module)

 	conda.core.solve (module)

 	CONFIG (conda.cli.python_api.Commands attribute)

 	CREATE (conda.cli.python_api.Commands attribute)

D

 	
 	DepsModifier (class in conda.core.solve)

F

 	
 	first_writable() (conda.api.PackageCacheData static method)

G

 	
 	get() (conda.api.PackageCacheData method)

 	(conda.api.PrefixData method)

H

 	
 	HELP (conda.cli.python_api.Commands attribute)

I

 	
 	INFO (conda.cli.python_api.Commands attribute)

 	INSTALL (conda.cli.python_api.Commands attribute)

 	is_writable (conda.api.PackageCacheData attribute)

 	(conda.api.PrefixData attribute)

 	
 	iter_records() (conda.api.PackageCacheData method)

 	(conda.api.PrefixData method)

 	(conda.api.SubdirData method)

L

 	
 	LIST (conda.cli.python_api.Commands attribute)

N

 	
 	NO_DEPS (conda.core.solve.DepsModifier attribute)

 	
 	NOT_SET (conda.core.solve.DepsModifier attribute)

O

 	
 	ONLY_DEPS (conda.core.solve.DepsModifier attribute)

P

 	
 	PackageCacheData (class in conda.api)

 	
 	PrefixData (class in conda.api)

Q

 	
 	query() (conda.api.PackageCacheData method)

 	(conda.api.PrefixData method)

 	(conda.api.SubdirData method)

 	
 	query_all() (conda.api.PackageCacheData static method)

 	(conda.api.SubdirData static method)

R

 	
 	reload() (conda.api.PackageCacheData method)

 	(conda.api.PrefixData method)

 	(conda.api.SubdirData method)

 	
 	REMOVE (conda.cli.python_api.Commands attribute)

 	run_command() (in module conda.cli.python_api)

S

 	
 	SEARCH (conda.cli.python_api.Commands attribute)

 	solve_final_state() (conda.api.Solver method)

 	(conda.core.solve.Solver method)

 	solve_for_diff() (conda.api.Solver method)

 	(conda.core.solve.Solver method)

 	
 	solve_for_transaction() (conda.api.Solver method)

 	(conda.core.solve.Solver method)

 	Solver (class in conda.api)

 	(class in conda.core.solve)

 	SubdirData (class in conda.api)

U

 	
 	UPDATE (conda.cli.python_api.Commands attribute)

admin

changelog

channels

config

custom-channels

download

env-commands

faq

general-commands

get-started

installation

intro

mro

py2or3

r-with-conda

Redirects

test-drive

travis

troubleshooting

winxp-proxy

help/conda-pip-virtualenv-translator

help/silent

install/central

install/full

install/quick

install/sample-condarc

install/tab-completion

use-mro-with-conda

use-r-with-conda

Tutorials

Before you start the tutorials, you should already have
installed Miniconda or Anaconda [https://docs.continuum.io/anaconda/install].

You also need to install conda build.

using/cheatsheet

using/envs

using/index

using/pkgs

using/test-drive

using/using

 nav.xhtml

 Table of Contents

 		
 Conda

_images/anaconda-prompt.png
’ Default Programs
ﬁ Desktop Gadget Gallery
é Internet Explorer
._'. Windows Anytime Upgrade
(=5 Windows Fax and Scan
@ Windows Update
il ¥PS Viewer
J Accessories
J Anaconda3 {64-bit)
D Anaconda Mavigator
B ~Anaconda Prompt
= Jupyter Notebook
|| Reset Spyder Settings

J Maintenance
J Startup

builder

Documents

Pictures

IMusic

Computer

Control Panel

Devices and Printers

Default Programs

Help and Support

1 Back

I |Search programs and Files

Q] Shut down | » |

o @ 3

_images/conda_locale.jpg
Encodings

{ Text Window Shell Keyboard

Emulation

Declare terminal as: [xterm-256color

] Delete sends Ctrl-H
] Escape non-ASCIl input

4 Paste newlines as carriage returns
(] Strict VT-100 keypad behavior
 Scroll o bottom on input

 Audible bell
] Visual bell

Character en

] Set locale environment variables on startup

_images/conda_package-popularity.png
- € ©a https://beta.anaconda.org/search?q;

Docs Contact ~

ers
Type: All v Access: All v Platform: All v
+Favorites ~Downloads ckage (owner / package) Platforms
inux-32
pyzo/cx freeze sss finux-64
o 1976 - osx-64
http://cx-freeze sourceforge.net/ conda win-32
win-64
® o @ pypi/ cx_Freeze +33 ource
create standalone executables from Python scripts ool
0 14 inso/ cx_freeze 433 M
conda
® q QO silg2/cx_freeze asa T
create standalone executables from Python sc conda
° ° takluyver / cx_freeze 433 64
conda

evious showing1-50f5 Next»

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

