
conda Documentation
Release 4.6.1

Continuum Analytics

Jan 28, 2019

Contents

1 User guide 3

2 Conda Commands 65

3 Conda Configuration 81

4 Conda Python API 91

5 Release notes 99

6 Command reference 177

7 Glossary 179

Python Module Index 183

i

ii

conda Documentation, Release 4.6.1

Package, dependency and environment management for any language—Python, R, Ruby, Lua, Scala, Java, JavaScript,
C/ C++, FORTRAN

Conda is an open source package management system and environment management system that runs on Windows,
macOS and Linux. Conda quickly installs, runs and updates packages and their dependencies. Conda easily creates,
saves, loads and switches between environments on your local computer. It was created for Python programs, but it
can package and distribute software for any language.

Conda as a package manager helps you find and install packages. If you need a package that requires a different
version of Python, you do not need to switch to a different environment manager, because conda is also an environment
manager. With just a few commands, you can set up a totally separate environment to run that different version of
Python, while continuing to run your usual version of Python in your normal environment.

In its default configuration, conda can install and manage the thousand packages at repo.continuum.io that are built,
reviewed and maintained by Anaconda®.

Conda can be combined with continuous integration systems such as Travis CI and AppVeyor to provide frequent,
automated testing of your code.

The conda package and environment manager is included in all versions of Anaconda®, Miniconda and Anaconda
Repository. Conda is also included in Anaconda Enterprise , which provides on-site enterprise package and environ-
ment management for Python, R, Node.js, Java and other application stacks. Conda is also available on PyPI, although
that approach may not be as up to date.

Contents 1

https://docs.continuum.io/anaconda-repository/
https://docs.continuum.io/anaconda-repository/
https://www.anaconda.com/enterprise/

conda Documentation, Release 4.6.1

2 Contents

CHAPTER 1

User guide

1.1 Overview

This page provides an overview of how to use conda. For an overview of what conda is and what it does, please see
the front page.

The quickest way to start using conda is to go through the 20-minute Getting started with conda guide.

The conda command is the primary interface for managing installations of various packages. It can:

• Query and search the Anaconda package index and current Anaconda installation.

• Create new conda environments.

• Install and update packages into existing conda environments.

TIP: You can abbreviate many frequently used command options that are preceded by 2 dashes (--) to just 1 dash and
the first letter of the option. So --name and -n are the same, and --envs and -e are the same.

For full usage of each command, including abbreviations, see Command reference. You can see the same information
at the command line by viewing the command-line help.

1.2 Concepts

• Conda directory structure

• Conda environments

• Conda packages

3

conda Documentation, Release 4.6.1

1.2.1 Conda directory structure

This section describes the conda system directory structure.

ROOT_DIR

The directory that Anaconda or Miniconda was installed into.

EXAMPLES:

/opt/Anaconda #Linux
C:\Anaconda #Windows

/pkgs

Also referred to as PKGS_DIR. This directory contains decompressed packages, ready to be linked in conda environ-
ments. Each package resides in a subdirectory corresponding to its canonical name.

/envs

The system location for additional conda environments to be created.

The following subdirectories comprise the default Anaconda environment:

/bin

/include

/lib

/share

Other conda environments usually contain the same subdirectories as the default environment.

1.2.2 Conda environments

A conda environment is a directory that contains a specific collection of conda packages that you have installed.
For example, you may have one environment with NumPy 1.7 and its dependencies, and another environment with
NumPy 1.6 for legacy testing. If you change one environment, your other environments are not affected. You can easily
activate or deactivate environments, which is how you switch between them. You can also share your environment
with someone by giving them a copy of your environment.yaml file. For more information, see Managing
environments.

1.2.3 Conda packages

A conda package is a compressed tarball file that contains system-level libraries, Python or other modules, executable
programs and other components. Conda keeps track of the dependencies between packages and platforms.

Conda packages are downloaded from remote channels, which are URLs to directories containing conda packages.
The conda command searches a default set of channels, and packages are automatically downloaded and updated
from http://repo.continuum.io/pkgs/. You can modify what remote channels are automatically searched. You might
want to do this to maintain a private or internal channel. For details, see Channel locations (channels). See also
Managing packages.

The conda package format is identical across platforms and operating systems.

To install conda packages, in the Terminal or an Anaconda Prompt, run:

4 Chapter 1. User guide

http://repo.continuum.io/pkgs/

conda Documentation, Release 4.6.1

conda install [packagename]

NOTE: Replace [packagename] with the desired package name.

A conda package includes a link to a tarball or bzipped tar archive, with the extension “.tar.bz2”, which contains
metadata under the info/ directory and a collection of files that are installed directly into an install prefix.

During the install process, files are extracted into the install prefix, except for files in the info/ directory. In-
stalling the files of a conda package into an environment can be thought of as changing the directory to an environ-
ment, and then downloading and extracting the .zip file and its dependencies—all with the single conda install
[packagename] command.

1.3 Getting started with conda

Conda is a powerful package manager and environment manager that you use with command line commands at the
Anaconda Prompt for Windows, or in a Terminal window for macOS or Linux.

This 20-minute guide to getting started with conda lets you try out the major features of conda. You should understand
how conda works when you finish this guide.

SEE ALSO: Getting started with Anaconda Navigator, a graphical user interface that lets you use conda in a web-
like interface without having to enter manual commands. Compare the Getting started guides for each to see which
program you prefer.

1.3.1 Before you start

You should have already installed Anaconda.

1.3.2 Contents

• Starting conda on Windows, macOS or Linux. 2 MINUTES

• Managing conda. Verify that Anaconda is installed and check that conda is updated to the current version. 3
MINUTES

• Managing environments. Create environments and move easily between them. 5 MINUTES

• Managing Python. Create an environment that has a different version of Python. 5 MINUTES

• Managing packages. Find packages available for you to install. Install packages. 5 MINUTES

TOTAL TIME: 20 MINUTES

1.3.3 Starting conda

Windows

• From the Start menu, search for and open “Anaconda Prompt”.

1.3. Getting started with conda 5

https://docs.anaconda.com/anaconda/navigator/getting-started
https://docs.anaconda.com/anaconda/install/

conda Documentation, Release 4.6.1

On Windows, all commands below are typed into the Anaconda Prompt window.

MacOS

• Open Launchpad, then click the Terminal icon.

On macOS, all commands below are typed into the Terminal window.

Linux

• Open a Terminal window.

On Linux, all commands below are typed into the Terminal window.

1.3.4 Managing conda

Verify that conda is installed and running on your system by typing:

conda --version

Conda displays the number of the version that you have installed. You do not need to navigate to the Anaconda
directory.

EXAMPLE: conda 4.4.9

NOTE: If you get an error message, make sure you closed and re-opened the Terminal window after installing, or do
it now. Then verify that you are logged into the same user account that you used to install Anaconda or Miniconda.

Update conda to the current version. Type the following:

conda update conda

6 Chapter 1. User guide

conda Documentation, Release 4.6.1

Conda compares versions and then displays what is available to install.

If a newer version of conda is available, type y to update:

Proceed ([y]/n)? y

TIP: We recommend that you always keep conda updated to the latest version.

1.3.5 Managing Environments

Conda allows you to to create separate environments containing files, packages and their dependencies that will not
interact with other environments.

When you begin using conda, you already have a default environment named base. You don’t want to put programs
into your base environment, though. Create separate environments to keep your programs isolated from each other.

1. Create a new environment and install a package in it.

We will name the environment snowflakes and install the package BioPython. At the Anaconda Prompt or
in your Terminal window, type the following:

conda create --name snowflakes biopython

Conda checks to see what additional packages (“dependencies”) Biopython will need, and asks if you want to
proceed:

Proceed ([y]/n)? y

Type “y” and press Enter to proceed.

2. To use, or “activate” the new environment, type the following:

• Windows: activate snowflakes

• Linux and macOS: source activate snowflakes

Now that you are in your snowflakes environment, any conda commands you type will go to that environ-
ment until you deactivate it.

3. To see a list of all your environments, type:

conda info --envs

A list of environments appears, similar to the following:

conda environments:

base /home/username/Anaconda3
snowflakes * /home/username/Anaconda3/envs/snowflakes

TIP: The active environment is the one with an asterisk (*).

4. Change your current environment back to the default (base):

• Windows: deactivate

• Linux, macOS: source deactivate

TIP: When the environment is deactivated, its name is no longer shown in your prompt, and the asterisk (*)
returns to base. To verify, you can repeat the conda info --envs command.

1.3. Getting started with conda 7

conda Documentation, Release 4.6.1

1.3.6 Managing Python

When you create a new environment, conda installs the same Python version you used when you downloaded and
installed Anaconda. If you want to use a different version of Python, for example Python 3.5, simply create a new
environment and specify the version of Python that you want.

1. Create a new environment named “snakes” that contains Python 3.5:

conda create --name snakes python=3.5

When conda asks if you want to proceed, type “y” and press Enter.

2. Activate the new environment:

• Windows: activate snakes

• Linux, macOS: source activate snakes

3. Verify that the snakes environment has been added and is active:

conda info --envs

Conda displays the list of all environments with an asterisk (*) after the name of the active environment:

conda environments:
#
base /home/username/anaconda3
snakes * /home/username/anaconda3/envs/snakes
snowflakes /home/username/anaconda3/envs/snowflakes

The active environment is also displayed in front of your prompt in (parentheses) or [brackets] like this:

(snakes) $

4. Verify which version of Python is in your current environment:

python --version

5. Deactivate the snakes environment and return to base environment:

• Windows: deactivate

• Linux, macOS: source deactivate

1.3.7 Managing packages

In this section, you check which packages you have installed, check which are available and look for a specific package
and install it.

1. To find a package you have already installed, first activate the environment you want to search. Look above for
the commands to activate your snakes environment.

2. Check to see if a package you have not installed named “beautifulsoup4” is available from the Anaconda repos-
itory (must be connected to the Internet):

conda search beautifulsoup4

Conda displays a list of all packages with that name on the Anaconda repository, so we know it is available.

3. Install this package into the current environment:

8 Chapter 1. User guide

conda Documentation, Release 4.6.1

conda install beautifulsoup4

4. Check to see if the newly installed program is in this environment:

conda list

1.3.8 More information

• Conda cheat sheet.

• Full documentation— https://conda.io/docs/ .

• Free community support— https://groups.google.com/a/anaconda.com/forum/#!forum/anaconda .

• Paid support options— https://www.anaconda.com/support/ .

1.4 Installation

• System requirements

• Regular installation

• Installing in silent mode

• Installing conda on a system that has other Python installations or packages

The fastest way to obtain conda is to install Miniconda, a mini version of Anaconda that includes only conda and its
dependencies. If you prefer to have conda plus over 720 open source packages, install Anaconda.

We recommend you install Anaconda for the local user, which does not require administrator permissions and is
the most robust type of installation. You can also install Anaconda system wide, which does require administrator
permissions.

For information on using our graphical installers for Windows or macOS, see the instructions for installing Anaconda.

1.4.1 System requirements

• 32- or 64-bit computer.

• For Miniconda—400 MB disk space.

• For Anaconda—Minimum 3 GB disk space to download and install.

• Windows, macOS or Linux.

• Python 2.7, 3.4, 3.5 or 3.6.

• pycosat.

• PyYaml.

• Requests.

NOTE: You do not need administrative or root permissions to install Anaconda if you select a user-writable install
location.

1.4. Installation 9

https://conda.io/docs/
https://groups.google.com/a/anaconda.com/forum/#!forum/anaconda
https://www.anaconda.com/support/
http://docs.continuum.io/anaconda/install.html

conda Documentation, Release 4.6.1

1.4.2 Regular installation

Follow the instructions for your operating system:

• Windows.

• macOS.

• Linux.

1.4.3 Installing in silent mode

You can use silent installation of Miniconda or Anaconda for deployment or testing or building services such as Travis
CI and AppVeyor.

Follow the silent-mode instructions for your operating system:

• Windows.

• macOS.

• Linux.

1.4.4 Installing conda on a system that has other Python installations or packages

You do not need to uninstall other Python installations or packages in order to use conda. Even if you already have
a system Python, another Python installation from a source such as the macOS Homebrew package manager and
globally installed packages from pip such as pandas and NumPy, you do not need to uninstall, remove, or change any
of them before using conda.

Install Anaconda or Miniconda normally, and let the installer add the conda installation of Python to your PATH
environment variable. There is no need to set the PYTHONPATH environment variable.

To see if the conda installation of Python is in your PATH variable:

• On macOS and Linux, open the Terminal and run—echo $PATH.

• On Windows, open an Anaconda Prompt and run—echo %PATH%.

To see which Python installation is currently set as the default:

• On macOS and Linux, open the Terminal and run—which python.

• On Windows, open an Anaconda Prompt and run—where python.

To see which packages are installed in your current conda environment and their version numbers, in your Terminal
window or an Anaconda Prompt, run conda list.

Downloading conda

• Anaconda or Miniconda?

• Choosing a version of Anaconda or Miniconda

• GUI versus command line installer

• Choosing a version of Python

• Cryptographic hash verification

10 Chapter 1. User guide

conda Documentation, Release 4.6.1

You have 3 conda download options:

• Download Anaconda—free.

• Download Miniconda—free.

• Purchase Anaconda Enterprise.

You can download any of these 3 options with legacy Python 2.7 or current Python 3.

You can also choose a version with a GUI or a command line installer.

TIP: If you are unsure of which option to download, choose the most recent version of Anaconda3, which includes
Python 3.6, the most recent version of Python. If you are on Windows or macOS, choose the version with the GUI
installer.

Anaconda or Miniconda?

Choose Anaconda if you:

• Are new to conda or Python.

• Like the convenience of having Python and over 150 scientific packages automatically installed at once.

• Have the time and disk space—a few minutes and 300 MB.

• Do not want to individually install each of the packages you want to use.

Choose Miniconda if you:

• Do not mind installing each of the packages you want to use individually.

• Do not have time or disk space to install over 150 packages at once.

• Want fast access to Python and the conda commands and you wish to sort out the other programs later.

Choosing a version of Anaconda or Miniconda

• Whether you use Anaconda or Miniconda, select the most recent version.

• Select an older version from the archive only if you are testing or need an older version for a specific purpose.

• To use conda on Windows XP, select Anaconda 2.3.0 and see Using conda on Windows XP with or without a
proxy.

GUI versus command line installer

Both GUI and command line installers are available for Windows, macOS and Linux:

• If you do not wish to enter commands in a Terminal window, choose the GUI installer.

• If GUIs slow you down, choose the command line version.

Choosing a version of Python

• The last version of Python 2 is 2.7, which is included with Anaconda and Miniconda.

• The newest stable version of Python is 3.6, which is included with Anaconda3 and Miniconda3.

1.4. Installation 11

https://www.anaconda.com/download/
https://conda.io/miniconda.html
https://www.anaconda.com/enterprise/
https://repo.continuum.io/archive/

conda Documentation, Release 4.6.1

• You can easily set up additional versions of Python such as 3.5 by downloading any version and creating a new
environment with just a few clicks. See Getting started with conda.

Cryptographic hash verification

MD5 checksums are available for Miniconda and both MD5 and SHA-256 checksums are available for Anaconda.

Download the installer file and before installing verify it as follows:

• macOS: In iTerm or a Terminal window enter md5 filename or shasum -a 256 filename.

NOTE: Replace filename with the actual path and name of the downloaded installer file.

• Linux: In a Terminal window enter md5sum filename or sha256sum filename.

NOTE: Replace filename with the actual path and name of the downloaded installer file.

• Windows:

– If you have PowerShell V4 or later:

Open a PowerShell console and verify the file as follows:

Get-FileHash filename -Algorithm MD5

or:

Get-FileHash filename -Algorithm SHA256

NOTE: Replace “filename” with the actual path and name of the downloaded file.

– If you don’t have PowerShell V4 or later:

Use the free online verifier tool on the Microsoft website.

1. Download the file and extract it.

2. Open a Command Prompt window.

3. Navigate to the file.

4. Run one of the following commands:

* For MD5:

Start-PsFCIV -Path C:\path\to\file.ext -HashAlgorithm MD5 -Online

* For SHA256:

Start-PsFCIV -Path C:\path\to\file.ext -HashAlgorithm SHA256 -Online

NOTE: In both commands, replace C:\path\to\file.ext with the actual path, filename and
extension.

Installing on Windows

1. Download the installer:

• Miniconda installer for Windows.

• Anaconda installer for Windows.

12 Chapter 1. User guide

http://repo.continuum.io/miniconda/
https://docs.continuum.io/anaconda/install/hashes/
https://gallery.technet.microsoft.com/PowerShell-File-Checksum-e57dcd67
https://conda.io/miniconda.html
https://www.anaconda.com/download/

conda Documentation, Release 4.6.1

2. Double-click the .exe file.

3. Follow the instructions on the screen.

If you are unsure about any setting, accept the defaults. You can change them later.

When installation is finished, from the Start menu, open the Anaconda Prompt.

4. Test your installation.

Installing in silent mode

NOTE: The following instructions are for Miniconda. For Anaconda, substitute Anaconda for Miniconda in all
of the commands.

To run the the Windows installer for Miniconda in silent mode, use the /S argument. The following optional arguments
are supported:

• /InstallationType=[JustMe|AllUsers]—Default is‘‘JustMe‘‘.

• /AddToPath=[0|1]—Default is 1’

• /RegisterPython=[0|1]—Make this the system’s default Python. 0 indicates JustMe, which is the
default. 1 indicates AllUsers.

• /S—Install in silent mode.

• /D=<installation path>—Destination installation path. Must be the last argument. Do not wrap in
quotation marks. Required if you use /S.

All arguments are case-sensitive.

EXAMPLE: The following command installs Miniconda for the current user without registering Python as the system’s
default:

start /wait "" Miniconda4-latest-Windows-x86_64.exe /InstallationType=JustMe /
→˓RegisterPython=0 /S /D=%UserProfile%\Miniconda3

Updating conda

1. Open your Anaconda Prompt from the start menu.

2. Navigate to the anaconda directory.

3. Run conda update conda.

Uninstalling conda

1. In the Windows Control Panel, click Add or Remove Program.

2. Select Python X.X (Miniconda), where X.X is your version of Python.

3. Click Remove Program.

NOTE: Removing a program is different in Windows 10.

1.4. Installation 13

conda Documentation, Release 4.6.1

Installing on macOS

1. Download the installer:

• Miniconda installer for macOS.

• Anaconda installer for macOS.

2. Install:

• Miniconda—In your Terminal window, run:

bash Miniconda3-latest-MacOSX-x86_64.sh

• Anaconda—Double-click the .pkg file.

3. Follow the prompts on the installer screens.

If you are unsure about any setting, accept the defaults. You can change them later.

4. To make the changes take effect, close and then re-open your Terminal window.

5. Test your installation.

Installing in silent mode

NOTE: The following instructions are for Miniconda. For Anaconda, substitute Anaconda for Miniconda in all
of the commands.

To run the silent installation of Miniconda for macOS or Linux, specify the -b and -p arguments of the bash installer.
The following arguments are supported:

• -b—Batch mode with no PATH modifications to ~/.bashrc. Assumes that you agree to the license agreement.
Does not edit the .bashrc or .bash_profile files.

• -p—Installation prefix/path.

• -f—Force installation even if prefix -p already exists.

EXAMPLE:

wget https://repo.continuum.io/miniconda/Miniconda3-3.7.0-Linux-x86_64.sh -O ~/
→˓miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda
export PATH="$HOME/miniconda/bin:$PATH"

NOTE: This sets the PATH only for the current session, not permanently. Trying to use conda when conda is not in
your PATH causes errors such as “command not found.”

In each new bash session, before using conda, set the PATH and run the activation scripts of your conda packages by
running:

source $HOME/miniconda/bin/activate

NOTE: Replace $HOME/miniconda/bin/activate with the path to the activate script in your conda installa-
tion.

To set the PATH permanently, you can add a line to your .bashrc file. However, this makes it possible to use conda
without running the activation scripts of your conda packages, which may produce errors.

EXAMPLE:

14 Chapter 1. User guide

https://conda.io/miniconda.html
https://www.anaconda.com/download/

conda Documentation, Release 4.6.1

export PATH="$HOME/miniconda/bin:$PATH"

Updating Anaconda or Miniconda

1. Open a Terminal window.

2. Navigate to the anaconda directory.

3. Run conda update conda.

Uninstalling Anaconda or Miniconda

1. Open a Terminal window.

2. Remove the entire Miniconda install directory with:

rm -rf ~/miniconda

3. You may also:

4. OPTIONAL: Edit ~/.bash_profile to remove the Miniconda directory from your PATH environment vari-
able.

5. Remove the following hidden file and folders that may have been created in the home directory:

• .condarc file

• .conda directory

• .continuum directory

By running:

rm -rf ~/.condarc ~/.conda ~/.continuum

Installing on Linux

1. Download the installer:

• Miniconda installer for Linux.

• Anaconda installer for Linux.

2. In your Terminal window, run:

• Miniconda:

bash Miniconda3-latest-Linux-x86_64.sh

• Anaconda:

bash Anaconda-latest-Linux-x86_64.sh

3. Follow the prompts on the installer screens.

If you are unsure about any setting, accept the defaults. You can change them later.

4. To make the changes take effect, close and then re-open your Terminal window.

1.4. Installation 15

https://conda.io/miniconda.html
https://www.anaconda.com/download/

conda Documentation, Release 4.6.1

5. Test your installation.

Using with fish shell

To use conda with fish shell, add the following line in your fish.config file:

source (conda info --root)/etc/fish/conf.d/conda.fish

Installing in silent mode

See the instructions for installing in silent mode on macOS.

Updating Anaconda or Miniconda

1. Open a Terminal window.

2. Run conda update conda.

Uninstalling Anaconda or Miniconda

1. Open a Terminal window.

2. Remove the entire miniconda install directory with:

rm -rf ~/miniconda

3. OPTIONAL: Edit ~/.bash_profile to remove the Miniconda directory from your PATH environment vari-
able.

4. OPTIONAL: Remove the following hidden file and folders that may have been created in the home directory:

• .condarc file

• .conda directory

• .continuum directory

By running:

rm -rf ~/.condarc ~/.conda ~/.continuum

Testing your installation

To test your installation, in your Terminal window or Anaconda Prompt, run the command conda list.

For a successful installation, a list of installed packages appears.

16 Chapter 1. User guide

conda Documentation, Release 4.6.1

1.5 Configuration

1.5.1 Using the .condarc conda configuration file

• Overview

• General configuration

– Channel locations (channels)

– Allow other channels (allow_other_channels)

– Default channels (default_channels)

– Update conda automatically (auto_update_conda)

– Always yes (always_yes)

– Show channel URLs (show_channel_urls)

– Change command prompt (changeps1)

– Add pip as Python dependency (add_pip_as_python_dependency)

– Use pip (use_pip)

– Configure conda for use behind a proxy server (proxy_servers)

– SSL verification (ssl_verify)

– Offline mode only (offline)

• Advanced configuration

– Disallow soft-linking (allow_softlinks)

– Set a channel alias (channel_alias)

– Always add packages by default (create_default_packages)

– Track features (track_features)

– Disable updating of dependencies (update_dependencies)

– Disallow installation of specific packages (disallow)

– Add Anaconda.org token to automatically see private packages (add_anaconda_token)

– Specify environment directories (envs_dirs)

– Specify package directories (pkgs_dirs)

• Conda build configuration

– Specify conda build output root directory (root-dir)

– Specify conda build build folder (conda-build 3.16.3+) (output_folder)

– Automatically upload conda build packages to Anaconda.org (anaconda_upload)

– Token to be used for Anaconda.org uploads (conda-build 3.0+) (anaconda_token)

– Limit build output verbosity (conda-build 3.0+) (quiet)

– Disable filename hashing (conda-build 3.0+) (filename_hashing)

1.5. Configuration 17

conda Documentation, Release 4.6.1

– Disable recipe and package verification (conda-build 3.0+) (no_verify)

– Disable per-build folder creation (conda-build 3.0+) (set_build_id)

– Skip building packages that already exist (conda-build 3.0+) (skip_existing)

– Omit recipe from package (conda-build 3.0+) (include_recipe)

– Disable activation of environments during build/test (conda-build 3.0+) (activate)

– Disable long prefix during test (conda-build 3.16.3+) (long_test_prefix)

– PyPI upload settings (conda-build 3.0+) (pypirc)

– PyPI repository to upload to (conda-build 3.0+) (pypi_repository)

• Expansion of environment variables

• Obtaining information from the .condarc file

Overview

The conda configuration file, .condarc, is an optional runtime configuration file that allows advanced users to
configure various aspects of conda, such as which channels it searches for packages, proxy settings and environment
directories.

The .condarc file is not included by default, but it is automatically created in your home directory the first time you
run the conda config command.

A .condarc file may also be located in the root environment, in which case it overrides any in the home directory.

NOTE: A .condarc file can also be used in an administrator-controlled installation to override the users’ configura-
tion. See Administering a multi-user conda installation.

The .condarc configuration file follows simple YAML syntax.

The .condarc file can change many parameters, including:

• Where conda looks for packages.

• If and how conda uses a proxy server.

• Where conda lists known environments.

• Whether to update the bash prompt with the current activated environment name.

• Whether user-built packages should be uploaded to Anaconda.org.

• Default packages or features to include in new environments.

To create or modify a .condarc file, use the conda config command or use a text editor to create a new file
named .condarc and save it to your user home directory or root directory.

EXAMPLE:

conda config --add channels conda-forge

You can also download a sample .condarc file to edit in your editor and save to your user home directory or root
directory.

To set configuration options, edit the .condarc file directly or use the conda config --set command.

EXAMPLE: To set the auto_update_conda option to False, run:

18 Chapter 1. User guide

http://docs.ansible.com/YAMLSyntax.html
http://anaconda.org

conda Documentation, Release 4.6.1

conda config --set auto_update_conda False

For a complete list of conda config commands, see the command reference. The same list is available at the Terminal
or Anaconda Prompt by running conda config --help.

TIP: Conda supports tab completion with external packages instead of internal configuration.

General configuration

Channel locations (channels)

Listing channel locations in the .condarc file overrides conda defaults, causing conda to search only the channels
listed here, in the order given.

Use defaults to automatically include all default channels. Non-URL channels are interpreted as Anaconda.org
user names. You can change this by modifying the channel_alias as described in Set a channel alias (channel_alias).
The default is just defaults.

EXAMPLE:

channels:
- <anaconda_dot_org_username>
- http://some.custom/channel
- file:///some/local/directory
- defaults

To select channels for a single environment, put a .condarc file in the root directory of that environment (or use the
--env option when using conda config).

EXAMPLE: If you have installed Miniconda with Python 3 in your home directory and the environment is named
“flowers”, the path may be:

~/miniconda3/envs/flowers/.condarc

Allow other channels (allow_other_channels)

The system-level .condarc file may specify a set of allowed channels, and it may allow users to install packages
from other channels with the boolean flag allow_other_channels. The default is True.

If allow_other_channels is set to False, only those channels explicitly specified in the system .condarc file are
allowed:

allow_other_channels: False

When allow_other_channels is set to True or not specified, each user has access to the default channels and to any
channels that the user specifies in their local .condarc file. When allow_other_channels is set to false, if the user
specifies other channels, the other channels are blocked, and the user receives a message reporting that channels are
blocked. For more information, see Example administrator-controlled installation.

If the system .condarc file specifies a channel_alias, it overrides any channel aliases set in a user’s .condarc file.
See Set a channel alias (channel_alias).

1.5. Configuration 19

conda Documentation, Release 4.6.1

Default channels (default_channels)

Normally the defaults channel points to several channels at the repo.continuum.io repository, but if default_channels
is defined, it sets the new list of default channels. This is especially useful for air gap and enterprise installations:

default_channels:
- <anaconda_dot_org_username>
- http://some.custom/channel
- file:///some/local/directory

Update conda automatically (auto_update_conda)

When True, conda updates itself any time a user updates or installs a package in the root environment. When False,
conda updates itself only if the user manually issues a conda update command. The default is True.

EXAMPLE:

auto_update_conda: False

Always yes (always_yes)

Choose the yes option whenever asked to proceed, such as when installing. Same as using the --yes flag at the
command line. The default is False.

EXAMPLE:

always_yes: True

Show channel URLs (show_channel_urls)

Show channel URLs when displaying what is going to be downloaded and in conda list. The default is False.

EXAMPLE:

show_channel_urls: True

Change command prompt (changeps1)

When using activate, change the command prompt from $PS1 to include the activated environment. The default
is True.

EXAMPLE:

changeps1: False

Add pip as Python dependency (add_pip_as_python_dependency)

Add pip, wheel and setuptools as dependencies of Python. This ensures that pip, wheel and setuptools are always
installed any time Python is installed. The default is True.

EXAMPLE:

20 Chapter 1. User guide

http:repo.continuum.io

conda Documentation, Release 4.6.1

add_pip_as_python_dependency: False

Use pip (use_pip)

Use pip when listing packages with conda list. This does not affect any conda command or functionality other
than the output of the command conda list. The default is True.

EXAMPLE:

use_pip: False

Configure conda for use behind a proxy server (proxy_servers)

By default, proxy settings are pulled from the HTTP_PROXY and HTTPS_PROXY environment variables or the
system. Setting them here overrides that default:

proxy_servers:
http: http://user:pass@corp.com:8080
https: https://user:pass@corp.com:8080

To give a proxy for a specific scheme and host, use the scheme://hostname form for the key. This matches for any
request to the given scheme and exact host name:

proxy_servers:
'http://10.20.1.128': 'http://10.10.1.10:5323'

If you do not include the user name and password or if authentication fails, conda prompts for a user name and
password.

If your password contains special characters, you need escape them as described in Percent-encoding reserved char-
acters , on Wikipedia.

Be careful not to use http when you mean https or https when you mean http.

SSL verification (ssl_verify)

If you are behind a proxy that does SSL inspection such as a Cisco IronPort Web Security Appliance (WSA), you may
need to use ssl_verify to override the SSL verification settings.

By default this variable is True, which means that SSL verification is used and conda verifies certificates for SSL
connections. Setting this variable to False disables the connection’s normal security and is not recommended:

ssl_verify: False

You can also set ssl_verify to a string path to a certificate, which can be used to verify SSL connections:

ssl_verify: corp.crt

Offline mode only (offline)

Filters out all channel URLs that do not use the file:// protocol. The default is False.

EXAMPLE:

1.5. Configuration 21

https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters
https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters

conda Documentation, Release 4.6.1

offline: True

Advanced configuration

Disallow soft-linking (allow_softlinks)

When allow_softlinks is True, conda uses hard-links when possible and soft-links—symlinks—when hard-links are
not possible, such as when installing on a different file system than the one that the package cache is on.

When allow_softlinks is False, conda still uses hard-links when possible, but when it is not possible, conda copies
files. Individual packages can override this option, specifying that certain files should never be soft-linked.

The default is True.

EXAMPLE:

allow_softlinks: False

Set a channel alias (channel_alias)

Whenever you use the -c or --channel flag to give conda a channel name that is not a URL, conda prepends the
channel_alias to the name that it was given. The default channel_alias is https://conda.anaconda.org/.

EXAMPLE: The command:

conda install --channel asmeurer <package>

is the same as:

conda install --channel https://conda.anaconda.org/asmeurer <package>

You can set channel_alias to your own repository.

EXAMPLE: To set channel_alias to your repository at https://yourrepo.com:

channel_alias: https://your.repo/

On Windows, you must include a slash (“/”) at the end of the URL:

EXAMPLE: https://your.repo/conda/

When channel_alias set to your repository at https://yourrepo.com:

conda install --channel jsmith <package>

is the same as:

conda install --channel https://yourrepo.com/jsmith <package>

Always add packages by default (create_default_packages)

When creating new environments, add the specified packages by default. The default packages are installed in every
environment you create. You can override this option at the command prompt with the --no-default-packages
flag. The default is to not include any packages.

22 Chapter 1. User guide

https://conda.anaconda.org/
https://yourrepo.com
https://your.repo/conda/
https://yourrepo.com

conda Documentation, Release 4.6.1

EXAMPLE:

create_default_packages:
- pip
- ipython
- scipy=0.15.0

Track features (track_features)

Enable certain features to be tracked by default. The default is to not track any features. This is similar to adding mkl
to the create_default_packages list.

EXAMPLE:

track_features:
- mkl

Disable updating of dependencies (update_dependencies)

By default, conda install updates the given package to the latest version, and installs any dependencies necessary
for that package. However if dependencies that satisfy the package’s requirements are already installed, conda will not
update those packages to the latest version.

In this case, if you would prefer that conda update all dependencies to the latest version that is compatible with the
environment, set update_dependencies to True:

update_dependencies: False

NOTE: Conda still ensures that dependency specifications are satisfied. Thus, some dependencies may still be updated
or, conversely, this may prevent packages given at the command line from being updated to their latest versions. You
can always specify versions at the command line to force conda to install a given version, such as conda install
numpy=1.9.3.

To avoid updating only specific packages in an environment, a better option may be to pin them. For more information,
see Preventing packages from updating (pinning).

Disallow installation of specific packages (disallow)

Disallow the installation of certain packages. The default is to allow installation of all packages.

EXAMPLE:

disallow:
- anaconda

Add Anaconda.org token to automatically see private packages (add_anaconda_token)

When the channel alias is Anaconda.org or an Anaconda Server GUI, you can set the system configuration so that
users automatically see private packages. Anaconda.org was formerly known as binstar.org. This uses the Anaconda
command-line client, which you can install with conda install anaconda-client, to automatically add the
token to the channel URLs.

The default is True.

1.5. Configuration 23

conda Documentation, Release 4.6.1

EXAMPLE:

add_anaconda_token: False

NOTE: Even when set to True, this setting is enabled only if the Anaconda command-line client is installed and you
are logged in with the anaconda login command.

Specify environment directories (envs_dirs)

Specify directories in which environments are located. If this key is set, the root prefix envs_dir is not used unless
explicitly included. This key also determines where the package caches are located.

For each envs here, envs/pkgs is used as the pkgs cache, except for the standard envs directory in the root directory,
for which the normal root_dir/pkgs is used.

EXAMPLE:

envs_dirs:
- ~/my-envs
- /opt/anaconda/envs

The CONDA_ENVS_PATH environment variable overwrites this setting:

• For macOS and Linux: CONDA_ENVS_PATH=~/my-envs:/opt/anaconda/envs

• For Windows: set CONDA_ENVS_PATH=C:\Users\joe\envs;C:\Anaconda\envs

Specify package directories (pkgs_dirs)

Specify directories in which packages are located. If this key is set, the root prefix pkgs_dirs is not used unless
explicitly included.

EXAMPLE:

pkgs_dirs:
- /opt/anaconda/pkgs

The CONDA_PKGS_DIRS environment variable overwrites this setting:

• For macOS and Linux: CONDA_PKGS_DIRS=/opt/anaconda/pkgs

• For Windows: set CONDA_PKGS_DIRS=C:\Anaconda\pkgs

Conda build configuration

Specify conda build output root directory (root-dir)

Build output root directory. You can also set this with the CONDA_BLD_PATH environment variable. The default is
<CONDA_PREFIX>/conda-bld/. If you do not have write permissions to <CONDA_PREFIX>/conda-bld/ ,
the default is ~/conda-bld/ .

EXAMPLE:

conda-build:
root-dir: ~/conda-builds

24 Chapter 1. User guide

conda Documentation, Release 4.6.1

Specify conda build build folder (conda-build 3.16.3+) (output_folder)

Folder to dump output package to. Packages are moved here if build or test succeeds. If unset, the output folder
corresponds to the same directory as the root build directory (root-dir).

conda-build:
output_folder: conda-bld

Automatically upload conda build packages to Anaconda.org (anaconda_upload)

Automatically upload packages built with conda build to Anaconda.org. The default is False.

EXAMPLE:

anaconda_upload: True

Token to be used for Anaconda.org uploads (conda-build 3.0+) (anaconda_token)

Tokens are a means of authenticating with anaconda.org without logging in. You can pass your token to conda-
build with this condarc setting, or with a CLI argument. This is unset by default. Setting it implicitly enables ana-
conda_upload.

conda-build:
anaconda_token: gobbledygook

Limit build output verbosity (conda-build 3.0+) (quiet)

Conda-build’s output verbosity can be reduced with the quiet setting. For more verbosity use the CLI flag --debug.

conda-build:
quiet: true

Disable filename hashing (conda-build 3.0+) (filename_hashing)

Conda-build 3 adds hashes to filenames to allow greater customization of dependency versions. If you find this
disruptive, you can disable the hashing with the following config entry:

conda-build:
filename_hashing: false

NOTE: conda-build does no checking when clobbering packages. If you utilize conda-build 3’s build matrices with a
build configuration that is not reflected in the build string, packages will be missing due to clobbering.

Disable recipe and package verification (conda-build 3.0+) (no_verify)

By default, conda-build uses conda-verify to ensure that your recipe and package meet some minimum sanity checks.
You can disable these:

1.5. Configuration 25

http://anaconda.org

conda Documentation, Release 4.6.1

conda-build:
no_verify: true

Disable per-build folder creation (conda-build 3.0+) (set_build_id)

By default, conda-build creates a new folder for each build, named for the package name plus a timestamp. This
allows you to do multiple builds at once. If you have issues with long paths, you may need to disable this behavior.
You should first try to change the build output root directory with the root-dir setting described above, but fall
back to this as necessary:

conda-build:
set_build_id: false

Skip building packages that already exist (conda-build 3.0+) (skip_existing)

By default, conda-build builds all recipes that you specify. You can instead skip recipes that are already built. A recipe
is skipped if and only if all of its outputs are available on your currently configured channels.

conda-build:
skip_existing: true

Omit recipe from package (conda-build 3.0+) (include_recipe)

By default, conda-build includes the recipe that was used to build the package. If this contains sensitive or proprietary
information, you can omit the recipe.

conda-build:
include_recipe: false

NOTE: If you do not include the recipe, you cannot use conda-build to test the package after the build completes. This
means that you cannot split your build and test steps across two distinct CLI commands (conda build --notest
recipe and conda build -t recipe). If you need to omit the recipe and split your steps, your only option is
to remove the recipe files from the tarball artifacts after your test step. Conda-build does not provide tools for doing
that.

Disable activation of environments during build/test (conda-build 3.0+) (activate)

By default, conda-build activates the build and test environments prior to executing the build or test scripts. This adds
necessary PATH entries, and also runs any activate.d scripts you may have. If you disable activation, the PATH will
still be modified, but the activate.d scripts will not run. This is not recommended, but some people prefer this.

conda-build:
activate: false

Disable long prefix during test (conda-build 3.16.3+) (long_test_prefix)

By default, conda-build uses a long prefix for the test prefix. If you have recipes that fail in long prefixes but would
still like to test them in short prefixes, you can disable the long test prefix. This is not recommended.

26 Chapter 1. User guide

conda Documentation, Release 4.6.1

conda-build:
long_test_prefix: false

The default is true.

PyPI upload settings (conda-build 3.0+) (pypirc)

Unset by default. If you have wheel outputs in your recipe, conda-build will try to upload them to the PyPI repository
specified by the pypi_repository setting using credentials from this file path.

conda-build:
pypirc: ~/.pypirc

PyPI repository to upload to (conda-build 3.0+) (pypi_repository)

Unset by default. If you have wheel outputs in your recipe, conda-build will try to upload them to this PyPI repository
using credentials from the file specified by the pypirc setting.

conda-build:
pypi_repository: pypi

Expansion of environment variables

Conda expands environment variables in a subset of configuration settings. These are:

• envs_dirs

• pkgs_dirs

• ssl_verify

• client_cert

• client_cert_key

• proxy_servers

• channels

• custom_channels

• custom_multichannels

• default_channels

• migrated_custom_channels

• whitelist_channels

This allows you to e.g. store the credentials of a private repository in an environment variable, like so:

channels:
- https://${USERNAME}:${PASSWORD}@my.private.conda.channel

1.5. Configuration 27

conda Documentation, Release 4.6.1

Obtaining information from the .condarc file

NOTE: It may be necessary to add the “force” option -f to the following commands.

To get all keys and their values:

conda config --get

To get the value of a specific key, such as channels:

conda config --get channels

To add a new value, such as http://conda.anaconda.org/mutirri, to a specific key, such as channels:

conda config --add channels http://conda.anaconda.org/mutirri

To remove an existing value, such as http://conda.anaconda.org/mutirri from a specific key, such as channels:

conda config --remove channels http://conda.anaconda.org/mutirri

To remove a key, such as channels, and all of its values:

conda config --remove-key channels

To configure channels and their priority for a single environment, make a .condarc file in the root directory of that
environment.

1.5.2 Sample .condarc file

This is a sample .condarc file.
It adds the r Anaconda.org channel and enables
the show_channel_urls option.

channel locations. These override conda defaults, i.e., conda will
search *only* the channels listed here, in the order given.
Use "defaults" to automatically include all default channels.
Non-url channels will be interpreted as Anaconda.org usernames
(this can be changed by modifying the channel_alias key; see below).
The default is just 'defaults'.
channels:

- r
- defaults

Show channel URLs when displaying what is going to be downloaded
and in 'conda list'. The default is False.
show_channel_urls: True

For more information about this file see:
https://conda.io/docs/user-guide/configuration/use-condarc.html

1.5.3 Administering a multi-user conda installation

By default, conda and all packages it installs, including Anaconda, are installed locally with a user-specific configura-
tion. Administrative privileges are not required, and no upstream files or other users are affected by the installation.

28 Chapter 1. User guide

http://conda.anaconda.org/mutirri
http://conda.anaconda.org/mutirri

conda Documentation, Release 4.6.1

You can make conda and any number of packages available to a group of 1 or more users, while preventing these users
from installing unwanted packages with conda:

1. Install conda and the allowed packages, if any, in a location that is under administrator control and accessible to
users.

2. Create a .condarc system configuration file in the root directory of the installation. This system-level configura-
tion file will override any user-level configuration files installed by the user.

Each user accesses the central conda installation, which reads settings from the user .condarc configuration file
located in their home directory. The path to the user file is the same as the root environment prefix displayed by conda
info, as shown in User configuration file below. The user .condarc file is limited by the system .condarc file.

System configuration settings are commonly used in a system .condarc file but may also be used in a user .
condarc file. All user configuration settings may also be used in a system .condarc file.

For information about settings in the .condarc file, see Using the .condarc conda configuration file.

Example administrator-controlled installation

The following example describes how to view the system configuration file, review the settings, compare it to a user’s
configuration file and determine what happens when the user attempts to access a file from a blocked channel. It then
describes how the user must modify their configuration file to access the channels allowed by the administrator.

System configuration file

1. The system configuration file must be in the top-level conda installation directory. Check the path where conda
is located:

$ which conda
/tmp/miniconda/bin/conda

2. View the contents of the .condarc file in the administrator’s directory:

cat /tmp/miniconda/.condarc

The following administrative .condarc file sets allow_other_channels to False, and it specifies that
users may download packages only from the admin channel:

$ cat /tmp/miniconda/.condarc
allow_other_channels : false
channel_alias: https://conda.anaconda.org/
channels:
- admin

NOTE: The admin channel can also be expressed as https://conda.anaconda.org/admin/

Because allow_other_channels is False and the channel defaults are not explicitly specified, users are
disallowed from downloading packages from the default channels. You can check this in the next procedure.

User configuration file

1. Check the location of the user’s conda installation:

1.5. Configuration 29

https://conda.anaconda.org/admin/

conda Documentation, Release 4.6.1

$ conda info
Current conda install:
. . .

channel URLs : http://repo.continuum.io/pkgs/free/osx-64/
http://repo.continuum.io/pkgs/pro/osx-64/

config file : /Users/gergely/.condarc

The conda info command shows that conda is using the user’s .condarc file, located at /Users/
gergely/.condarc and that the default channels such as repo.continuum.io are listed as channel
URLs.

2. View the contents of the administrative .condarc file in the directory that was located in step 1:

$ cat ~/.condarc
channels:
- defaults

This user’s .condarc file specifies only the default channels, but the administrator config file has blocked
default channels by specifying that only admin is allowed. If this user attempts to search for a package in the
default channels, they get a message telling them what channels are allowed:

$ conda search flask
Fetching package metadata:
Error: URL 'http://repo.continuum.io/pkgs/pro/osx-64/' not
in allowed channels.
Allowed channels are:
- https://conda.anaconda.org/admin/osx-64/

This error message tells the user to add the admin channel to their configuration file.

3. The user must edit their local .condarc configuration file to access the package through the admin channel:

channels:
- admin

The user can now search for packages in the allowed admin channel.

1.5.4 Enabling tab completion

Conda versions up to 4.3 supports tab completion in bash shells via the argcomplete package. Tab completion is
deprecated starting with version 4.4. See issue #415.

To enable tab completion:

1. Make sure that argcomplete is installed:

conda install argcomplete

2. Add the following code to your bash profile:

eval "$(register-python-argcomplete conda)"

3. Test it:

1. Open a new Terminal window or an Anaconda Prompt.

2. Type: conda ins, and then press the Tab key.

The command completes to:

30 Chapter 1. User guide

https://github.com/conda/conda-docs/issues/415

conda Documentation, Release 4.6.1

conda install

To get tab completion in zsh, see conda-zsh-completion.

1.5.5 Using conda on Windows XP with or without a proxy

Although Windows XP mainstream support and Extended Support from Microsoft have ended, and Windows XP is no
longer one of the target systems supported by Anaconda, some users have had success using Anaconda on Windows
XP with the methods described on this page.

Anaconda 2.3.0 is the last version of Python 3-based Anaconda to support Windows XP. Anaconda 2.4 and later have
a version of Python 3 built with Visual Studio 2015, which by default does not support Windows XP.

You can install Anaconda 2.3.0 and then update it with conda update conda and conda update --all.
Download Anaconda3-2.3.0-Windows-x86.exe at https://repo.continuum.io/archive/. Install it in any loca-
tion, such as C:\Anaconda.

Using a proxy with Windows XP

To configure conda for use behind a corporate proxy that uses proxy auto-config (PAC) files and SSL certificates for
secure connections:

1. Find a proxy server address from the PAC file:

1. Open Internet Explorer.

2. From the Tools menu, select Internet Options, and then click the Connections tab.

3. On the Connections tab, click the LAN Settings button.

4. In the LAN Settings dialog box, copy the address under the Use automatic configuration script checkbox.

5. Click the Cancel button to close the LAN settings.

6. Click the Cancel button to close the Internet Options.

7. Paste the address into the Internet Explorer address bar, then press the Enter key.

8. In the PAC file that opens, search for return until you find what looks like a proxy IP or DNS address
with the port number, which may take some time in a long file.

9. Copy the address and port number.

2. Follow the .condarc instructions to create a file named .condarc in your home directory or the installation
directory, such as C:\Anaconda\.condarc.

3. Follow the .condarc proxy server instructions to add proxy information to the .condarc file.

If you decide to include any passwords, be aware of transformations that can affect special characters.

EXAMPLE: This example shows proxy information with passwords:

proxy_servers:
http: http://user:pass@corp.com:8080
https: https://user:pass@corp.com:8080

ssl_verify: False

1.5. Configuration 31

https://github.com/esc/conda-zsh-completion
https://repo.continuum.io/archive/

conda Documentation, Release 4.6.1

If you include proxy information without passwords, you will be asked to answer authentication prompts at the com-
mand line.

EXAMPLE: This example shows proxy information without passwords:

proxy_servers:
http: http://corp.com:8080
https: https://corp.com:8080

ssl_verify: False

Once the proxy is configured, you can run conda update conda and then create and manage environments with
the Anaconda Launcher GUI.

Some packages such as flask-login may not be available through conda, so you may need to use pip to install
them:

1. To use pip securely over https:

pip install --trusted-host pypi.python.org package-name

2. If the secure https proxy fails, you can force pip to use an insecure http proxy instead:

pip install --index-url=http://pypi.python.org/simple/ --trusted-host pypi.python.
→˓org package-name

1.5.6 Disabling SSL verification

Using conda with SSL is strongly recommended, but it is possible to disable SSL and it may be necessary to disable
SSL in certain cases.

Some corporate environments use proxy services that use Man-In-The-Middle (MITM) attacks to sniff encrypted
traffic. These services can interfere with SSL connections such as those used by conda and pip to download packages
from repositories such as PyPI.

If you encounter this interference, you should set up the proxy service’s certificates so that the requests package
used by conda can recognize and use the certificates.

For cases where this is not possible, conda-build versions 3.0.31 and higher have an option that disables SSL certificate
verification and allows this traffic to continue.

conda skeleton pypi can disable SSL verification when pulling packages from a PyPI server over HTTPS.

WARNING: This option causes your computer to download and execute arbitrary code over a connection that it cannot
verify as secure. This option is not recommended. Use this option only if necessary. Use this option at your own risk.

To disable SSL verification when using conda skeleton pypi, set the SSL_NO_VERIFY environment variable
to either 1 or True (case insensitive).

On *nix systems:

SSL_NO_VERIFY=1 conda skeleton pypi a_package

And on Windows systems:

set SSL_NO_VERIFY=1
conda skeleton pypi a_package
set SSL_NO_VERIFY=

32 Chapter 1. User guide

conda Documentation, Release 4.6.1

We recommend that you unset this environment variable immediately after use. If it is not unset, some other tools may
recognize it and incorrectly use unverified SSL connections.

Using this option will cause requests to emit warnings to STDERR about insecure settings. If you know that what
you’re doing is safe, or have been advised by your IT department that what you’re doing is safe, you may ignore these
warnings.

1.6 Tasks

1.6.1 Managing conda

• Verifying that conda is installed

• Determining your conda version

• Updating conda to the current version

Verifying that conda is installed

To verify that conda is installed, in your Terminal window or an Anaconda Prompt, run:

conda --version

Conda responds with the version number that you have installed, such as conda 3.11.0.

If you get an error message, make sure of the following:

• You are logged into the same user account that you used to install Anaconda or Miniconda.

• You are in a directory that Anaconda or Miniconda can find.

• You have closed and re-opened the Terminal window after installing conda.

Determining your conda version

In addition to the conda --version command explained above, you can determine what conda version is installed
by running one of the following commands in your Terminal window or an Anaconda Prompt:

conda info

OR

conda -V

Updating conda to the current version

To update conda, in your Terminal window or an Anaconda Prompt, run:

conda update conda

Conda compares versions and reports what is available to install. It also tells you about other packages that will be
automatically updated or changed with the update. If conda reports that a newer version is available, type y to update:

1.6. Tasks 33

conda Documentation, Release 4.6.1

Proceed ([y]/n)? y

1.6.2 Managing environments

• Creating an environment with commands

• Creating an environment from an environment.yml file

• Cloning an environment

• Building identical conda environments

• Activating an environment

• Deactivating an environment

• Determining your current environment

• Viewing a list of your environments

• Viewing a list of the packages in an environment

• Using pip in an environment

• Saving environment variables

• Sharing an environment

• Removing an environment

With conda, you can create, export, list, remove and update environments that have different versions of Python and/or
packages installed in them. Switching or moving between environments is called activating the environment. You can
also share an environment file.

NOTE: There are many options available for the commands described on this page. For details, see Command refer-
ence.

Creating an environment with commands

TIP: By default, environments are installed into the envs directory in your conda directory. Run conda create
--help for information on specifying a different path.

Use the Terminal or an Anaconda Prompt for the following steps.

1. To create an environment:

conda create --name myenv

NOTE: Replace myenv with the environment name.

2. When conda asks you to proceed, type y:

proceed ([y]/n)?

This creates the myenv environment in /envs/. This environment uses the same version of Python that you are
currently using, because you did not specify a version.

To create an environment with a specific version of Python:

34 Chapter 1. User guide

conda Documentation, Release 4.6.1

conda create -n myenv python=3.4

To create an environment with a specific package:

conda create -n myenv scipy

OR:

conda create -n myenv python
conda install -n myenv scipy

To create an environment with a specific version of a package:

conda create -n myenv scipy=0.15.0

OR:

conda create -n myenv python
conda install -n myenv scipy=0.15.0

To create an environment with a specific version of Python and multiple packages:

conda create -n myenv python=3.4 scipy=0.15.0 astroid babel

TIP: Install all the programs that you want in this environment at the same time. Installing 1 program at a time can
lead to dependency conflicts.

To automatically install pip or another program every time a new environment is created, add the default programs to
the create_default_packages section of your .condarc configuration file. The default packages are installed every
time you create a new environment. If you do not want the default packages installed in a particular environment, use
the --no-default-packages flag:

conda create --no-default-packages -n myenv python

TIP: You can add much more to the conda create command. For details, run conda create --help.

Creating an environment from an environment.yml file

Use the Terminal or an Anaconda Prompt for the following steps.

1. Create the environment from the environment.yml file:

conda env create -f environment.yml

The first line of the yml file sets the new environment’s name. For details see Creating an environment file manually.

1. Activate the new environment:

• Windows: activate myenv

• macOS and Linux: source activate myenv

NOTE: Replace myenv with the name of the environment.

2. Verify that the new environment was installed correctly:

conda list

1.6. Tasks 35

conda Documentation, Release 4.6.1

Cloning an environment

Use the Terminal or an Anaconda Prompt for the following steps.

You can make an exact copy of an environment by creating a clone of it:

conda create --name myclone --clone myenv

NOTE: Replace myclone with the name of the new environment. Replace myenv with the name of the existing
environment that you want to copy.

To verify that the copy was made:

conda info --envs

In the environments list that displays, you should see both the source environment and the new copy.

Building identical conda environments

You can use explicit specification files to build an identical conda environment on the same operating system platform,
either on the same machine or on a different machine.

Use the Terminal or an Anaconda Prompt for the following steps.

1. Run conda list --explicit to produce a spec list such as:

This file may be used to create an environment using:
$ conda create --name <env> --file <this file>
platform: osx-64
@EXPLICIT
https://repo.continuum.io/pkgs/free/osx-64/mkl-11.3.3-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/numpy-1.11.1-py35_0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/openssl-1.0.2h-1.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/pip-8.1.2-py35_0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/python-3.5.2-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/readline-6.2-2.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/setuptools-25.1.6-py35_0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/sqlite-3.13.0-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/tk-8.5.18-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/wheel-0.29.0-py35_0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/xz-5.2.2-0.tar.bz2
https://repo.continuum.io/pkgs/free/osx-64/zlib-1.2.8-3.tar.bz2

2. To create this spec list as a file in the current working directory, run:

conda list --explicit > spec-file.txt

NOTE: You can use spec-file.txt as the filename or replace it with a filename of your choice.

An explicit spec file is not usually cross platform, and therefore has a comment at the top such as # platform:
osx-64 showing the platform where it was created. This platform is the one where this spec file is known to work.
On other platforms, the packages specified might not be available or dependencies might be missing for some of the
key packages already in the spec.

To use the spec file to create an identical environment on the same machine or another machine:

conda create --name myenv --file spec-file.txt

To use the spec file to install its listed packages into an existing environment:

36 Chapter 1. User guide

conda Documentation, Release 4.6.1

conda install --name myenv --file spec-file.txt

Conda does not check architecture or dependencies when installing from a spec file. To ensure that the packages
work correctly, make sure that the file was created from a working environment, and use it on the same architecture,
operating system and platform, such as linux-64 or osx-64.

Activating an environment

To activate an environment:

• On Windows, in your Anaconda Prompt, run activate myenv

• On macOS and Linux, in your Terminal Window, run source activate myenv

Conda prepends the path name myenv onto your system command.

Deactivating an environment

To deactivate an environment:

• On Windows, in your Anaconda Prompt, run deactivate

• On macOS and Linux, in your Terminal Window, run source deactivate

Conda removes the path name myenv from your system command.

TIP: In Windows, it is good practice to deactivate one environment before activating another.

Determining your current environment

Use the Terminal or an Anaconda Prompt for the following steps.

By default, the active environment—the one you are currently using—is shown in parentheses () or brackets [] at the
beginning of your command prompt:

(myenv) $

If you do not see this, run:

conda info --envs

In the environments list that displays, your current environment is highlighted with an asterisk (*).

By default, the command prompt is set to show the name of the active environment. To disable this option:

conda config --set changeps1 false

To re-enable this option:

conda config --set changeps1 true

Viewing a list of your environments

To see a list of all of your environments, in your Terminal window or an Anaconda Prompt, run:

1.6. Tasks 37

conda Documentation, Release 4.6.1

conda info --envs

OR

conda env list

A list similar to the following is displayed:

conda environments:
myenv /home/username/miniconda/envs/myenv
snowflakes /home/username/miniconda/envs/snowflakes
bunnies /home/username/miniconda/envs/bunnies

Viewing a list of the packages in an environment

To see a list of all packages installed in a specific environment:

• If the environment is not activated, in your Terminal window or an Anaconda Prompt, run:

conda list -n myenv

• If the environment is activated, in your Terminal window or an Anaconda Prompt, run:

conda list

To see if a specific package is installed in an environment, in your Terminal window or an Anaconda Prompt, run:

conda list -n myenv scipy

Using pip in an environment

To use pip in your environment, in your Terminal window or an Anaconda Prompt, run:

conda install -n myenv pip
source activate myenv
pip <pip_subcommand>

Saving environment variables

Conda environments can include saved environment variables.

Suppose you want an environment “analytics” to store both a secret key needed to log in to a server and a path to a
configuration file. The sections below explain how to write a script named env_vars to do this on Windows and
macOS or Linux.

This type of script file can be part of a conda package, in which case these environment variables become active when
an environment containing that package is activated.

You can name these scripts anything you like. However, multiple packages may create script files, so be sure to use
descriptive names that are not used by other packages. One popular option is to give the script a name in the form
packagename-scriptname.sh, or on Windows, packagename-scriptname.bat.

38 Chapter 1. User guide

conda Documentation, Release 4.6.1

Windows

1. Locate the directory for the conda environment in your Anaconda Prompt by running in the command shell
%CONDA_PREFIX%.

2. Enter that directory and create these subdirectories and files:

cd %CONDA_PREFIX%
mkdir .\etc\conda\activate.d
mkdir .\etc\conda\deactivate.d
type NUL > .\etc\conda\activate.d\env_vars.bat
type NUL > .\etc\conda\deactivate.d\env_vars.bat

3. Edit .\etc\conda\activate.d\env_vars.bat as follows:

set MY_KEY='secret-key-value'
set MY_FILE=C:\path\to\my\file

4. Edit .\etc\conda\deactivate.d\env_vars.bat as follows:

set MY_KEY=
set MY_FILE=

When you run activate analytics, the environment variables MY_KEY and MY_FILE are set to the values
you wrote into the file. When you run deactivate, those variables are erased.

macOS and Linux

1. Locate the directory for the conda environment in your Terminal window by running in the terminal echo
$CONDA_PREFIX.

2. Enter that directory and create these subdirectories and files:

cd $CONDA_PREFIX
mkdir -p ./etc/conda/activate.d
mkdir -p ./etc/conda/deactivate.d
touch ./etc/conda/activate.d/env_vars.sh
touch ./etc/conda/deactivate.d/env_vars.sh

3. Edit ./etc/conda/activate.d/env_vars.sh as follows:

#!/bin/sh

export MY_KEY='secret-key-value'
export MY_FILE=/path/to/my/file/

4. Edit ./etc/conda/deactivate.d/env_vars.sh as follows:

#!/bin/sh

unset MY_KEY
unset MY_FILE

When you run source activate analytics, the environment variables MY_KEY and MY_FILE are set to
the values you wrote into the file. When you run source deactivate, those variables are erased.

1.6. Tasks 39

conda Documentation, Release 4.6.1

Sharing an environment

You may want to share your environment with someone else—for example, so they can re-create a test that you have
done. To allow them to quickly reproduce your environment, with all of its packages and versions, give them a copy
of your environment.yml file.

Exporting the environment file

NOTE: If you already have an environment.yml file in your current directory, it will be overwritten during this
task.

1. Activate the environment to export:

• On Windows, in your Anaconda Prompt, run activate myenv

• On macOS and Linux, in your Terminal window, run source activate myenv

NOTE: Replace myenv with the name of the environment.

2. Export your active environment to a new file:

conda env export > environment.yml

NOTE: This file handles both the environment’s pip packages and conda packages.

3. Email or copy the exported environment.yml file to the other person.

Creating an environment file manually

You can create an environment file manually to share with others.

EXAMPLE: A simple environment file:

name: stats
dependencies:

- numpy
- pandas

EXAMPLE: A more complex environment file:

name: stats2
channels:

- javascript
dependencies:

- python=3.4 # or 2.7
- bokeh=0.9.2
- numpy=1.9.*
- nodejs=0.10.*
- flask
- pip:
- Flask-Testing

You can exclude the default channels by adding nodefaults to the channels list.

channels:
- javascript
- nodefaults

40 Chapter 1. User guide

conda Documentation, Release 4.6.1

This is equivalent to passing the --override-channels option to most conda commands.

Adding nodefaults to the channels list in environment.yml is similar to removing defaults from the chan-
nels list in the .condarc file. However, changing environment.yml affects only one of your conda environments
while changing .condarc affects them all.

For details on creating an environment from this environment.yml file, see Creating an environment from an
environment.yml file.

Removing an environment

To remove an environment, in your Terminal window or an Anaconda Prompt, run:

conda remove --name myenv --all

(You may instead use conda env remove --name myenv.)

To verify that the environment was removed, in your Terminal window or an Anaconda Prompt, run:

conda info --envs

The environments list that displays should not show the removed environment.

1.6.3 Managing channels

Different channels can have the same package, so conda must handle these channel collisions.

There will be no channel collisions if you use only the defaults channel. There will also be no channel collisions if
all of the channels you use only contain packages that do not exist in any of the other channels in your list. The way
conda resolves these collisions matters only when you have multiple channels in your channel list that host the same
package.

Before conda 4.1.0

Before conda 4.1.0 was released on June 14, 2016, when two channels hosted packages with the same name, conda
installed the package with the highest version number. If there were two packages with the same version number,
conda installed the one with the highest build number. Only if both the version numbers and build numbers were
identical did the channel ordering make a difference. This approach had 3 problems:

• Build numbers from different channels are not comparable. Channel A could do nightly builds while Channel
B does weekly builds, so build 2 from Channel B could be newer than build 4 from Channel A.

• Users could not specify a preferred channel. You might consider Channel B more reliable than Channel A and
prefer to get packages from that channel even if the B version is older than the package in Channel A. Conda
provided no way to choose that behavior. Only version and build numbers mattered.

• Build numbers conflicted. This is an effect of the other 2 problems. Assume you were happily using package
Alpha from Channel A and package Bravo from Channel B. The provider from Channel B then added a version
of Alpha with a very high build number. Your conda updates would start installing new versions of Alpha from
Channel B whether you wanted that or not. This could cause unintentional problems and a risk of deliberate
attacks.

1.6. Tasks 41

conda Documentation, Release 4.6.1

After conda 4.1.0

By default, conda now prefers packages from a higher priority channel over any version from a lower priority channel.
Therefore, you can now safely put channels at the bottom of your channel list to provide additional packages that are
not in the default channels, and still be confident that these channels will not override the core package set.

Conda collects all of the packages with the same name across all listed channels and processes them as follows:

1. Sorts packages from highest to lowest channel priority.

2. Sorts tied packages—same channel priority—from highest to lowest version number.

3. Sorts still-tied packages—same channel priority and same version—from highest to lowest build number.

4. Installs the first package on the sorted list that satisfies the installation specifications.

To make conda use the old method and install the newest version of a package in any listed channel:

• Add channel_priority: false to your .condarc file.

OR

• Run the equivalent command:

conda config --set channel_priority false

Conda then sorts as follows:

1. Sorts the package list from highest to lowest version number.

2. Sorts tied packages from highest to lowest channel priority.

3. Sorts tied packages from highest to lowest build number.

Because build numbers from different channels are not comparable, build number still comes after channel priority.

The following command adds the channel “new_channel” to the top of the channel list, making it the highest priority:

conda config --add channels new_channel

Conda now has an equivalent command:

conda config --prepend channels new_channel

Conda also now has a command that adds the new channel to the bottom of the channel list, making it the lowest
priority:

conda config --append channels new_channel

1.6.4 Creating custom channels

Channels are the path that conda takes to look for packages. The easiest way to use and manage custom channels
is to use a private or public repository on Anaconda.org, formerly known as Binstar.org. If you designate your Ana-
conda.org repository as private, then only you and those you grant access can access your private repository.

If you do not wish to upload your packages to the Internet, you can build a custom repository served either through a
web server or locally using a file:// URL.

To create a custom channel:

1. If you have not yet used conda build, install conda build:

42 Chapter 1. User guide

https://anaconda.org/

conda Documentation, Release 4.6.1

conda install conda-build

2. Organize all the packages in subdirectories for the platforms you wish to serve:

channel/
linux-64/
package-1.0-0.tar.bz2
linux-32/
package-1.0-0.tar.bz2
osx-64/
package-1.0-0.tar.bz2
win-64/
package-1.0-0.tar.bz2
win-32/
package-1.0-0.tar.bz2

3. Run conda index on each of the platform subdirectories:

conda index channel/linux-64 channel/osx-64

The conda index command generates a file repodata.json, saved to each repository directory, which conda
uses to get the metadata for the packages in the channel.

NOTE: Each time you add or modify a package in the channel, you must rerun conda index for conda to
see the update.

4. To test custom channels, serve the custom channel using a web server or using a file:// url to the channel
directory. Test by sending a search command to the custom channel.

EXAMPLE: If you want a file in the custom channel location /opt/channel/linux-64/, search for files
in that location:

conda search -c file://opt/channel/ --override-channels

NOTE: The channel URL does not include the platform, as conda automatically detects and adds the platform.

NOTE: The option --override-channels ensures that conda searches only your specified channel and no
other channels, such as default channels or any other channels you may have listed in your .condarc file.

If you have set up your private repository correctly, you get the following output:

Fetching package metadata:

This is followed by a list of the conda packages found. This verifies that you have set up and indexed your
private repository successfully.

1.6.5 Managing packages

• Searching for packages

• Installing packages

• Installing packages from Anaconda.org

• Installing non-conda packages

• Installing commercial packages

1.6. Tasks 43

conda Documentation, Release 4.6.1

• Viewing a list of installed packages

• Updating packages

• Preventing packages from updating (pinning)

• Removing packages

NOTE: There are many options available for the commands described on this page. For details, see Command refer-
ence.

Searching for packages

Use the Terminal or an Anaconda Prompt for the following steps.

To see if a specific package such as SciPy is available for installation:

conda search scipy

To see if a specific package such as SciPy is available for installation from Anaconda.org:

conda search --override-channels --channel defaults scipy

To see if a specific package, such as iminuit, exists in a specific channel, such as http://conda.anaconda.org/mutirri,
and is available for installation:

conda search --override-channels --channel http://conda.anaconda.org/mutirri iminuit

Installing packages

Use the Terminal or an Anaconda Prompt for the following steps.

To install a specific package such as SciPy into an existing environment “myenv”:

conda install --name myenv scipy

If you do not specify the environment name, which in this example is done by --name myenv, the package installs
into the current environment:

conda install scipy

To install a specific version of a package such as SciPy:

conda install scipy=0.15.0

To install multiple packages at once, such as SciPy and cURL:

conda install scipy curl

NOTE: It is best to install all packages at once, so that all of the dependencies are installed at the same time.

To install multiple packages at once and specify the version of the package:

conda install scipy=0.15.0 curl=7.26.0

To install a package for a specific Python version:

44 Chapter 1. User guide

http://conda.anaconda.org/mutirri

conda Documentation, Release 4.6.1

conda install scipy=0.15.0 curl=7.26.0 -n py34_env

If you want to use a specific Python version, it is best to use an environment with that version. For more information,
see Troubleshooting.

Installing packages from Anaconda.org

Packages that are not available using conda install can be obtained from Anaconda.org. Formerly Binstar.org, Ana-
conda.org, is a package management service for both public and private package repositories. Anaconda.org is an
Anaconda product, just like Anaconda and Miniconda.

To install a package from Anaconda.org:

1. In a browser, go to http://anaconda.org.

2. To find the package named bottleneck, type bottleneck in the top-left box named Search Packages.

3. Find the package that you want and click it to go to the detail page.

The detail page displays the name of the channel. In this example it is the “pandas” channel.

4. Now that you know the channel name, use the conda install command to install the package. In your
Terminal window or an Anaconda Prompt, run:

conda install -c pandas bottleneck

This command tells conda to install the bottleneck package from the pandas channel on Anaconda.org.

5. To check that the package is installed, in your Terminal window or an Anaconda Prompt, run:

conda list

A list of packages appears, including bottleneck.

NOTE: For information on installing packages from multiple channels, see Managing channels.

Installing non-conda packages

If a package is not available from conda or Anaconda.org, you may be able to find and install the package with another
package manager like pip.

Pip packages do not have all the features of conda packages, and we recommend first trying to install any package
with conda. If the package is unavailable through conda, try installing it with pip. The differences between pip and
conda packages cause certain unavoidable limits in compatibility, but conda works hard to be as compatible with pip
as possible.

NOTE: Both pip and conda are included in Anaconda and Miniconda, so you do not need to install them separately.

NOTE: Conda environments replace virtualenv, so there is no need to activate a virtualenv before using pip.

It is possible to have pip installed outside a conda environment or inside a conda environment.

To gain the benefits of conda integration, be sure to install pip inside the currently active conda environment, and then
install packages with that instance of pip. The command conda list shows packages installed this way, with a
label showing that they were installed with pip.

You can install pip in the current conda environment with the command conda install pip, as discussed in
Using pip in an environment.

1.6. Tasks 45

http://anaconda.org

conda Documentation, Release 4.6.1

If there are instances of pip installed both inside and outside the current conda environment, the instance of pip installed
inside the current conda environment is used.

To install a non-conda package:

1. Activate the environment where you want to put the program:

• On Windows, in your Anaconda Prompt, run activate myenv.

• On macOS and Linux,in your Terminal window, run source activate myenv.

2. To use pip to install a program such as See, in your Terminal window or an Anaconda Prompt, run:

pip install see

3. To verify the package was installed, in your Terminal window or an Anaconda Prompt, run:

conda list

If the package is not shown, install pip as described in Using pip in an environment and try these commands
again.

Installing commercial packages

Installing a commercial package such as IOPro is the same as installing any other package. In your Terminal window
or an Anaconda Prompt, run:

conda install --name myenv iopro

This command installs a free trial of one of Anaconda’s commercial packages called IOPro, which can speed up your
Python processing. Except for academic use, this free trial expires after 30 days.

Viewing a list of installed packages

Use the Terminal or an Anaconda Prompt for the following steps.

To list all of the packages in the active environment:

conda list

To list all of the packages in a deactivated environment:

conda list -n myenv

Updating packages

Use conda update command to check to see if a new update is available. If conda tells you an update is available,
you can then choose whether or not to install it.

Use the Terminal or an Anaconda Prompt for the following steps.

To update a specific package:

conda update biopython

To update Python:

46 Chapter 1. User guide

https://docs.continuum.io/iopro/

conda Documentation, Release 4.6.1

conda update python

To update conda itself:

conda update conda

NOTE: Conda updates to the highest version in its series, so Python 2.7 updates to the highest available in the 2.x
series and 3.6 updates to the highest available in the 3.x series.

To update the Anaconda metapackage:

conda update conda
conda update anaconda

Regardless of what package you are updating, conda compares versions and then reports what is available to install. If
no updates are available, conda reports “All requested packages are already installed.”

If a newer version of your package is available and you wish to update it, type y to update:

Proceed ([y]/n)? y

Preventing packages from updating (pinning)

Pinning a package specification in an environment prevents packages listed in the pinned file from being updated.

In the environment’s conda-meta directory, add a file named pinned that includes a list of the packages that you
do not want updated.

EXAMPLE: The file below forces NumPy to stay on the 1.7 series, which is any version that starts with 1.7, and forces
SciPy to stay at exactly version 0.14.2:

numpy 1.7.*
scipy ==0.14.2

With this pinned file, conda update numpy keeps NumPy at 1.7.1, and conda install scipy=0.15.0
causes an error.

Use the --no-pin flag to override the update restriction on a package. In the Terminal or an Anaconda Prompt, run:

conda update numpy --no-pin

Because the pinned specs are included with each conda install, subsequent conda update commands without
--no-pin will revert NumPy back to the 1.7 series.

Removing packages

Use the Terminal or an Anaconda Prompt for the following steps.

To remove a package such as SciPy in an environment such as myenv:

conda remove -n myenv scipy

To remove a package such as SciPy in the current environment:

conda remove scipy

To remove multiple packages at once, such as SciPy and cURL:

1.6. Tasks 47

conda Documentation, Release 4.6.1

conda remove scipy curl

To confirm that a package has been removed:

conda list

1.6.6 Managing Python

• Viewing a list of available Python versions

• Installing a different version of Python

• Using a different version of Python

• Updating or upgrading Python

Conda treats Python the same as any other package, so it is easy to manage and update multiple installations.

Anaconda supports Python 2.7, 3.4, 3.5 and 3.6. The default is Python 2.7 or 3.6, depending on which installer you
used:

• For the installers “Anaconda” and “Miniconda,” the default is 2.7.

• For the installers “Anaconda3” or “Miniconda3,” the default is 3.6.

Viewing a list of available Python versions

To list the versions of Python that are available to install, in your Terminal window or an Anaconda Prompt, run:

conda search python

This lists all packages whose names contain the text python.

To list only the packages whose full name is exactly python, add the --full-name option. In your Terminal
window or an Anaconda Prompt, run:

conda search --full-name python

Installing a different version of Python

To install a different version of Python without overwriting the current version, create a new environment and install
the second Python version into it:

1. Create the new environment:

• To create the new environment for Python 3.6, in your Terminal window or an Anaconda Prompt, run:

conda create -n py36 python=3.6 anaconda

NOTE: Replace py36 with the name of the environment you want to create. anaconda is the meta-
package that includes all of the Python packages comprising the Anaconda distribution. python=3.6 is
the package and version you want to install in this new environment. This could be any package, such as
numpy=1.7, or multiple packages.

48 Chapter 1. User guide

conda Documentation, Release 4.6.1

• To create the new environment for Python 2.7, in your Terminal window or an Anaconda Prompt, run:

conda create -n py27 python=2.7 anaconda

2. Activate the new environment.

3. Verify that the new environment is your current environment.

4. To verify that the current environment uses the new Python version, in your Terminal window or an Anaconda
Prompt, run:

python --version

Using a different version of Python

To switch to an environment that has different version of Python, activate the environment.

Updating or upgrading Python

Use the Terminal or an Anaconda Prompt for the following steps.

If you are in an environment with Python version 3.4.2, the following command updates Python to the latest version
in the 3.4 branch:

conda update python

The following command upgrades Python to another branch—3.6—by installing that version of Python:

conda install python=3.6

1.6.7 Using conda with Travis CI

• The .travis.yml file

• Supporting packages that do not have official builds

• Building a conda recipe

• AppVeyor

If you are already using Travis CI, using conda is a preferable alternative to using apt-get and pip to install packages.
The Debian repos provided by Travis may not include packages for all versions of Python or may not be updated as
quickly. Installing such packages with pip may also be undesirable, as this can take a long time, which can consume a
large portion of the 50 minutes that Travis allows for each build. Using conda also lets you test the building of conda
recipes on Travis.

This page describes how to use conda to test a Python package on Travis CI. However, you can use conda with any
language, not just Python.

The .travis.yml file

The following code sample shows how to modify the .travis.yml file to use Miniconda for a project that supports
Python 2.7, 3.5 and 3.6:

1.6. Tasks 49

https://conda.io/miniconda.html

conda Documentation, Release 4.6.1

language: python
python:

We don't actually use the Travis Python, but this keeps it organized.
- "2.7"
- "3.5"
- "3.6"

install:
- sudo apt-get update
We do this conditionally because it saves us some downloading if the
version is the same.
- if [["$TRAVIS_PYTHON_VERSION" == "2.7"]]; then

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh -O
→˓miniconda.sh;

else
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O

→˓miniconda.sh;
fi

- bash miniconda.sh -b -p $HOME/miniconda
- export PATH="$HOME/miniconda/bin:$PATH"
- hash -r
- conda config --set always_yes yes --set changeps1 no
- conda update -q conda
Useful for debugging any issues with conda
- conda info -a

Replace dep1 dep2 ... with your dependencies
- conda create -q -n test-environment python=$TRAVIS_PYTHON_VERSION dep1 dep2 ...
- source activate test-environment
- python setup.py install

script:
Your test script goes here

NOTE: For information about the basic configuration for Travis CI, see Building a Python Project.

Supporting packages that do not have official builds

To support a package that does not have official Anaconda builds:

1. Build the package yourself.

2. Add it to an Anaconda.org channel.

3. Add the following line to the install steps in .travis.yml so that it finds the packages on that channel:

- conda config --add channels your_Anaconda_dot_org_username

NOTE: Replace your_Anaconda_dot_org_username with your user name.

Building a conda recipe

If you support official conda packages for your project, you may want to use conda build in Travis, so the building of
your recipe is tested as well.

1. Include the conda recipe in the same directory as your source code.

2. In your .travis.yml file, replace the following line:

50 Chapter 1. User guide

http://docs.travis-ci.com/user/languages/python/#Examples
http://Anaconda.org

conda Documentation, Release 4.6.1

- python setup.py install

with these lines:

- conda build your-conda-recipe
- conda install your-package --use-local

AppVeyor

AppVeyor is a continuous build service for Windows built on Azure and is an alternative to using Travis CI with conda.

For an example project building conda packages on AppVeyor, see https://github.com/rmcgibbo/
python-appveyor-conda-example.

1.6.8 Viewing command-line help

To see a list of supported conda commands, in your Terminal window or an Anaconda Prompt, run:

conda --help

OR

conda -h

To get help for a specific command, type the command name followed by --help.

EXAMPLE: To see help for the create command, in your Terminal window or an Anaconda Prompt, run:

conda create -h

NOTE: You can see the same command help in Command reference.

1.7 Cheat sheet

See the conda cheat sheet PDF (1 MB) for a single-page summary of the most important information about
using conda.

1.8 Troubleshooting

• SSL connection errors

• Permission denied errors during installation

• Permission denied errors after using sudo conda command

• Already installed error message

• Conda reports that a package is installed, but it appears not to be

• pkg_resources.DistributionNotFound: conda==3.6.1-6-gb31b0d4-dirty

1.7. Cheat sheet 51

http://www.appveyor.com/
https://github.com/rmcgibbo/python-appveyor-conda-example
https://github.com/rmcgibbo/python-appveyor-conda-example

conda Documentation, Release 4.6.1

• macOS error “ValueError unknown locale: UTF-8”

• AttributeError or missing getproxies

• Shell commands open from the wrong location

• Programs fail due to invoking conda Python instead of system Python

• UnsatisfiableSpecifications error

• Package installation fails from a specific channel

• Conda automatically upgrades to unwanted version

• ValidationError: Invalid value for timestamp

• Unicode error after installing Python 2

1.8.1 SSL connection errors

Cause

Installing packages may produce a “connection failed” error if you do not have the certificates for a secure connection
to the package repository.

Solution

Pip can use the --trusted-host option to indicate that the URL of the repository is trusted:

pip install --trusted-host pypi.org

Conda has three similar options.

1. The option --insecure or -k ignores certificate validation errors for all hosts.

Running conda create --help shows:

Networking Options:
-k, --insecure Allow conda to perform "insecure" SSL connections and

transfers. Equivalent to setting 'ssl_verify' to
'false'.

2. The configuration option ssl_verify can be set to False.

Running conda config --describe ssl_verify shows:

ssl_verify (bool, str)
aliases: verify_ssl
Conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required url's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, or (2) a path
to a directory containing certificates of trusted CA.
#
ssl_verify: true

52 Chapter 1. User guide

conda Documentation, Release 4.6.1

Running conda config --set ssl_verify false modifies ~/.condarc and sets the -k flag for
all future conda operations performed by that user. Running conda config --help shows other configu-
ration scope options.

When using conda config, the user’s conda configuration file at ~/.condarc is used by default. The
flag --system will instead write to the system configuration file for all users at <CONDA_BASE_ENV>/
.condarc. The flag --env will instead write to the active conda environment’s configuration file at
<PATH_TO_ACTIVE_CONDA_ENV>/.condarc. If --env is used and no environment is active, the user
configuration file is used.

3. The configuration option ssl_verify can be used to install new certificates.

Running conda config --describe ssl_verify shows:

ssl_verify (bool, str)
aliases: verify_ssl
Conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required url's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, or (2) a path
to a directory containing certificates of trusted CA.
#
ssl_verify: true

Your network administrator can give you a certificate bundle for your network’s firewall. Then ssl_verify
can be set to the path of that certificate authority (CA) bundle, and package installation operations will complete
without connection errors.

When using conda config, the user’s conda configuration file at ~/.condarc is used by default. The
flag --system will instead write to the system configuration file for all users at <CONDA_BASE_ENV>/
.condarc. The flag --env will instead write to the active conda environment’s configuration file at
<PATH_TO_ACTIVE_CONDA_ENV>/.condarc. If --env is used and no environment is active, the user
configuration file is used.

1.8.2 Permission denied errors during installation

Cause

The umask command determines the mask settings that control how file permissions are set for newly created files.
If you have a very restrictive umask, such as 077, you get “permission denied” errors.

Solution

Set a less restrictive umask before calling conda commands. Conda was intended as a user space tool, but often users
need to use it in a global environment. One place this can go awry is with restrictive file permissions. Conda creates
links when you install files that have to be read by others on the system.

To give yourself full permissions for files and directories, but prevent the group and other users from having access:

1. Before installing, set the umask to 007.

2. Install conda.

3. Return the umask to the original setting:

1.8. Troubleshooting 53

conda Documentation, Release 4.6.1

umask 007
conda install
umask 077

For more information on umask, see http://en.wikipedia.org/wiki/Umask.

1.8.3 Permission denied errors after using sudo conda command

Solution

Once you run conda with sudo, you must use sudo forever. We recommend that you NEVER run conda with sudo.

1.8.4 Already installed error message

Cause

If you are trying to fix conda problems without removing the current installation and you try to reinstall Miniconda or
Anaconda to fix it, you get an error message that Miniconda or Anaconda is already installed, and you cannot continue.

Solution

Install using the –force option.

Download and install the appropriate Miniconda for your operating system from the Miniconda download page using
the force option --force or -f:

bash Miniconda3-latest-MacOSX-x86_64.sh -f

NOTE: Substitute the appropriate filename and version for your operating system.

NOTE: Be sure that you install to the same install location as your existing install so it overwrites the core conda files
and does not install a duplicate in a new folder.

1.8.5 Conda reports that a package is installed, but it appears not to be

Sometimes conda claims that a package is already installed, but it does not appear to be, for example, a Python package
that gives ImportError.

There are several possible causes for this problem, each with its own solution.

Cause

You are not in the same conda environment as your package.

Solution

1. Make sure that you are in the same conda environment as your package. The conda info command tells you
what environment is currently active—under default environment.

2. Verify that you are using the Python from the correct environment by running:

54 Chapter 1. User guide

http://en.wikipedia.org/wiki/Umask
https://conda.io/miniconda.html

conda Documentation, Release 4.6.1

import sys
print(sys.prefix)

Cause

For Python packages, you have set the PYTHONPATH or PYTHONHOME variable. These environment variables
cause Python to load files from locations other than the standard ones. Conda works best when these environment
variables are not set, as their typical use cases are obviated by conda environments and a common issue is that they
cause Python to pick up the wrong versions or broken versions of a library.

Solution

For Python packages, make sure you have not set the PYTHONPATH or PYTHONHOME variables. The command
conda info -a displays the values of these environment variables.

• To unset these environment variables temporarily for the current Terminal session, run unset PYTHONPATH.

• To unset them permanently, check for lines in the files:

– If you use bash—~/.bashrc, ~/.bash_profile, ~/.profile.

– If you use zsh—~/.zshrc‘.

– If you use PowerShell on Windows, the file output by $PROFILE .

Cause

You have site-specific directories or, for Python, you have so-called site-specific files. These are typically located in
~/.local on Linux and macOS. For a full description of the locations of site-specific packages, see PEP 370. As
with PYTHONPATH, Python may try importing packages from this directory, which can cause issues.

Solution

For Python packages, remove site-specific directories and site-specific files.

Cause

For C libraries, the following environment variables have been set:

• macOS—DYLD_LIBRARY_PATH.

• Linux—LD_LIBRARY_PATH.

These act similarly to PYTHONPATH for Python. If they are set, they can cause libraries to be loaded from locations
other than the conda environment. Conda environments obviate most use cases for these variables. The command
conda info -a shows what these are set to.

Solution

Unset DYLD_LIBRARY_PATH or LD_LIBRARY_PATH.

1.8. Troubleshooting 55

http://legacy.python.org/dev/peps/pep-0370/

conda Documentation, Release 4.6.1

Cause

Occasionally, an installed package becomes corrupted. Conda works by unpacking the packages in the pkgs directory
and then hard-linking them to the environment. Sometimes these get corrupted, breaking all environments that use
them, and also any additional environments, since the same files are hard-linked each time.

Solution

Run the command conda install -f to unarchive the package again and relink it. It also does an md5 verifi-
cation on the package. Usually if this is different, it is because your channels have changed and there is a different
package with the same name, version, and build number.

NOTE: This breaks the links to any other environments that already had this package installed, so you have to reinstall
it there, too. It also means that running conda install -f a lot can use up a lot of disk space if you have a lot of
environments.

NOTE: The -f flag to conda install (--force) implies --no-deps, so conda install -f package
does not reinstall any of the dependencies of package.

1.8.6 pkg_resources.DistributionNotFound: conda==3.6.1-6-gb31b0d4-dirty

Cause

The local version of conda needs updating.

Solution

Force reinstall conda. A useful way to work off the development version of conda is to run python setup.py
develop on a checkout of the conda git repository. However, if you are not regularly running git pull, it is a
good idea to un-develop, as you will otherwise not get any regular updates to conda. The normal way to do this is to
run python setup.py develop -u.

However, this command does not replace the conda script itself. With other packages, this is not an issue, as you can
just reinstall them with conda, but conda cannot be used if conda is installed.

The fix is to use the ./bin/conda executable in the conda git repository to force reinstall conda, that is, run ./
bin/conda install -f conda. You can then verify with conda info that you have the latest version of
conda, and not a git checkout—the version should not include any hashes.

1.8.7 macOS error “ValueError unknown locale: UTF-8”

Cause

This is a bug in the macOS Terminal app that shows up only in certain locales. Locales are country-language combi-
nations.

Solution

1. Open Terminal in /Applications/Utilities

2. Clear the Set locale environment variables on startup checkbox.

56 Chapter 1. User guide

https://github.com/conda/conda

conda Documentation, Release 4.6.1

1.8. Troubleshooting 57

conda Documentation, Release 4.6.1

This sets your LANG environment variable to be empty. This may cause Terminal use to incorrect settings for your
locale. The locale command in Terminal tells you what settings are used.

To use the correct language, add a line to your bash profile, which is typically ~/.profile:

export LANG=your-lang

NOTE: Replace your-lang with the correct locale specifier for your language.

The command locale -a displays all the specifiers. For example, the language code for US English is en_US.
UTF-8. The locale affects what translations are used when they are available and also how dates, currencies and
decimals are formatted.

1.8.8 AttributeError or missing getproxies

When running a command such as conda update ipython, you may get an AttributeError:
'module' object has no attribute 'getproxies'.

Cause

This can be caused by an old version of requests or by having the PYTHONPATH environment variable set.

Solution

Update requests and be sure PYTHONPATH is not set:

1. Run conda info -a to show the requests version and various environment variables such as
PYTHONPATH.

2. Update the requests version with pip install -U requests.

3. Clear PYTHONPATH:

• On Windows, clear it the environment variable settings.

• On macOS and Linux, clear it by removing it from the bash profile and restarting the shell.

1.8.9 Shell commands open from the wrong location

When you run a command within a conda environment, conda does not access the correct package executable.

Cause

In both bash and zsh, when you enter a command, the shell searches the paths in PATH one by one until it finds the
command. The shell then caches the location, which is called hashing in shell terminology. When you run command
again, the shell does not have to search the PATH again.

The problem is that before you installed the program, you ran a command which loaded and hashed another version of
that program in some other location on the PATH, such as /usr/bin. Then you installed the program using conda
install, but the shell still had the old instance hashed.

58 Chapter 1. User guide

conda Documentation, Release 4.6.1

Solution

Reactivate the environment or run hash -r (in bash) or rehash (in zsh).

When you run source activate, conda automatically runs hash -r in bash and rehash in zsh to clear the
hashed commands, so conda finds things in the new path on the PATH. But there is no way to do this when conda
install is run because the command must be run inside the shell itself, meaning either you have to run the command
yourself or use source a file that contains the command.

This is a relatively rare problem, since this happens only in the following circumstances:

1. You activate an environment or use the root environment, and then run a command from somewhere else.

2. Then you conda install a program, and then try to run the program again without running activate or
deactivate.

The command type command_name always tells you exactly what is being run. This is better than which
command_name, which ignores hashed commands and searches the PATH directly. The hash is reset by source
activate, or by hash -r in bash or rehash in zsh.

1.8.10 Programs fail due to invoking conda Python instead of system Python

Cause

After installing Anaconda or Miniconda, programs that run python switch from invoking the system Python to
invoking the Python in the root conda environment. If these programs rely on the system Python to have certain
configurations or dependencies that are not in the root conda environment Python, the programs may crash. For
example, some users of the Cinnamon desktop environment on Linux Mint have reported these crashes.

Solution

Edit your .bash_profile and .bashrc files so that the conda binary directory, such as ~/miniconda3/bin,
is no longer added to the PATH environment variable. You can still run conda activate and deactivate by
using their full path names, such as ~/miniconda3/bin/conda.

You may also create a folder with symbolic links to conda, activate and deactivate, and then edit your .
bash_profile or .bashrc file to add this folder to your PATH. If you do this, running python will invoke
the system Python, but running conda commands, source activate MyEnv, source activate root, or
source deactivate will work normally.

After running source activate to activate any environment, including after running source activate
root, running python will invoke the Python in the active conda environment.

1.8.11 UnsatisfiableSpecifications error

Cause

Some conda package installation specifications are impossible to satisfy. For example, conda create -n tmp
python=3 wxpython=3 produces an “Unsatisfiable Specifications” error because wxPython 3 depends on Python
2.7, so the specification to install Python 3 conflicts with the specification to install wxPython 3.

When an unsatisfiable request is made to conda, conda shows a message such as this one:

1.8. Troubleshooting 59

conda Documentation, Release 4.6.1

The following specifications were found to be in conflict:
- python 3*
- wxpython 3* -> python 2.7*
Use "conda info <package>" to see the dependencies for each package.

This indicates that the specification to install wxpython 3 depends on installing Python 2.7, which conflicts with the
specification to install python 3.

Solution

Use “conda info wxpython” or “conda info wxpython=3” to show information about this package and its dependencies:

wxpython 3.0 py27_0

file name : wxpython-3.0-py27_0.tar.bz2
name : wxpython
version : 3.0
build number: 0
build string: py27_0
channel : defaults
size : 34.1 MB
date : 2014-01-10
fn : wxpython-3.0-py27_0.tar.bz2
license_family: Other
md5 : adc6285edfd29a28224c410a39d4bdad
priority : 2
schannel : defaults
url : https://repo.continuum.io/pkgs/free/osx-64/wxpython-3.0-py27_0.tar.bz2
dependencies:

python 2.7*
python.app

By examining the dependencies of each package, you should be able to determine why the installation request produced
a conflict and modify the request so it can be satisfied without conflicts. In this example, you could install wxPython
with Python 2.7:

conda create -n tmp python=2.7 wxpython=3

1.8.12 Package installation fails from a specific channel

Cause

Sometimes it is necessary to install a specific version from a specific channel because that version is not available from
the default channel.

Solution

The following example describes the problem in detail and its solution.

Suppose you have a specific need to install the Python cx_freeze module with Python 3.4. A first step is to create
a Python 3.4 environment:

60 Chapter 1. User guide

conda Documentation, Release 4.6.1

conda create -n py34 python=3.4

Using this environment you should first attempt:

conda install -n py34 cx_freeze

However, when you do this you get the following error:

Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata
Solving package specifications: .
Error: Package missing in current osx-64 channels:
- cx_freeze

You can search for packages on anaconda.org with

anaconda search -t conda cx_freeze

The message indicates that cx_freeze cannot be found in the default package channels. However, there may be a
community-created version available and you can search for it by running the following command:

$ anaconda search -t conda cx_freeze
Using Anaconda Cloud api site https://api.anaconda.org
Run 'anaconda show <USER/PACKAGE>' to get more details:
Packages:

Name	Version	Package Types	Platforms
inso/cx_freeze | 4.3.3 | conda | linux-64
pyzo/cx_freeze | 4.3.3 | conda | linux-64, win-32, win-

→˓64, linux-32, osx-64
: http://cx-freeze.sourceforge.net/

silg2/cx_freeze | 4.3.4 | conda | linux-64
: create standalone executables from Python

→˓scripts
takluyver/cx_freeze | 4.3.3 | conda | linux-64

Found 4 packages

In this example, there are 4 different places that you could try to get the package. None of them are officially supported
or endorsed by Anaconda, but members of the conda community have provided many valuable packages. If you want
to go with public opinion, then the web interface provides more information:

Notice that the pyzo organization has by far the most downloads, so you might choose to use their package. If so,
you can add their organization’s channel by specifying it on the command line:

$ conda create -c pyzo -n cxfreeze_py34 cx_freeze python=3.4
Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata:
Solving package specifications:

Package plan for installation in environment /Users/ijstokes/anaconda/envs/cxfreeze_
→˓py34:

(continues on next page)

1.8. Troubleshooting 61

https://anaconda.org/search?q=cx_freeze

conda Documentation, Release 4.6.1

62 Chapter 1. User guide

conda Documentation, Release 4.6.1

(continued from previous page)

The following packages will be downloaded:

package	build
cx_freeze-4.3.3 | py34_4 1.8 MB
setuptools-20.7.0 | py34_0 459 KB
--

Total: 2.3 MB

The following NEW packages will be INSTALLED:

cx_freeze: 4.3.3-py34_4
openssl: 1.0.2h-0
pip: 8.1.1-py34_1
python: 3.4.4-0
readline: 6.2-2
setuptools: 20.7.0-py34_0
sqlite: 3.9.2-0
tk: 8.5.18-0
wheel: 0.29.0-py34_0
xz: 5.0.5-1
zlib: 1.2.8-0

Now you have a software environment sandbox created with Python 3.4 and cx_freeze.

1.8.13 Conda automatically upgrades to unwanted version

When making a python package for an app, you create an environment for the app from a file req.txt that sets
a certain version, such as python=2.7.9. However, when you conda install your package, it automatically
upgrades to a later version, such as 2.7.10.

Cause

If you make a conda package for the app using conda build, you can set dependencies with specific version numbers.
The requirements lines that say - python could be - python ==2.7.9 instead. It is important to have 1 space
before the == operator and no space after.

Solution

Exercise caution when coding version requirements.

1.8.14 ValidationError: Invalid value for timestamp

Cause

This happens when certain packages are installed with conda 4.3.28, and then conda is downgraded to 4.3.27 or earlier.

Solution

See https://github.com/conda/conda/issues/6096.

1.8. Troubleshooting 63

https://github.com/conda/conda/issues/6096

conda Documentation, Release 4.6.1

1.8.15 Unicode error after installing Python 2

Example: UnicodeDecodeError: ‘ascii’ codec can’t decode byte 0xd3 in position 1: ordinal not in range(128)

Cause

Python 2 is incapable of handling unicode properly, especially on Windows. In this case, if any character in your
PATH env. var contains anything that is not ASCII then you see this exception.

Solution

Remove all non-ASCII from PATH or switch to Python 3.

64 Chapter 1. User guide

CHAPTER 2

Conda Commands

2.1 conda create

Create a new conda environment from a list of specified packages. To use the created environment, use ‘source activate
envname’ look in that directory first. This command requires either the -n NAME or -p PREFIX option.

Options:

usage: conda create [-h] [--clone ENV] [-n ENVIRONMENT | -p PATH] [-c CHANNEL]
[--use-local] [--override-channels]
[--strict-channel-priority] [--no-channel-priority]
[--no-deps | --only-deps] [--no-pin] [--copy] [-C] [-k]
[--offline] [-d] [--json] [-q] [-v] [-y] [--download-only]
[--show-channel-urls] [--file FILE]
[--no-default-packages]
[package_spec [package_spec ...]]

2.1.1 Positional Arguments

package_spec Packages to install or update in the conda environment.

2.1.2 Named Arguments

--clone Path to (or name of) existing local environment.

--file Read package versions from the given file. Repeated file specifications can be
passed (e.g. –file=file1 –file=file2).

2.1.3 Target Environment Specification

-n, --name Name of environment.

65

conda Documentation, Release 4.6.1

-p, --prefix Full path to environment location (i.e. prefix).

2.1.4 Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including file:// for local directories). Then, the defaults or
channels from .condarc are searched (unless –override-channels is given).
You can use ‘defaults’ to get the default packages for conda. You can also
use any name and the .condarc channel_alias value will be prepended. The
default channel_alias is http://conda.anaconda.org/.

--use-local Use locally built packages. Identical to ‘-c local’.

--override-channels Do not search default or .condarc channels. Requires –channel.

2.1.5 Solver Mode Modifiers

--strict-channel-priority Packages in lower priority channels are not considered if a package with the
same name appears in a higher priority channel.

--no-channel-priority Package version takes precedence over channel priority. Overrides the value
given by conda config –show channel_priority.

--no-deps Do not install, update, remove, or change dependencies. This WILL lead to bro-
ken environments and inconsistent behavior. Use at your own risk.

--only-deps Only install dependencies.

--no-pin Ignore pinned file.

--no-default-packages Ignore create_default_packages in the .condarc file.

2.1.6 Package Linking and Install-time Options

--copy Install all packages using copies instead of hard- or soft-linking.

2.1.7 Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired.

-k, --insecure Allow conda to perform “insecure” SSL connections and transfers. Equivalent to
setting ‘ssl_verify’ to ‘false’.

--offline Offline mode. Don’t connect to the Internet.

2.1.8 Output, Prompt, and Flow Control Options

-d, --dry-run Only display what would have been done.

--json Report all output as json. Suitable for using conda programmatically.

-q, --quiet Do not display progress bar.

-v, --verbose Can be used multiple times. Once for INFO, twice for DEBUG, three times for
TRACE.

66 Chapter 2. Conda Commands

file://
http://conda.anaconda.org/

conda Documentation, Release 4.6.1

-y, --yes Do not ask for confirmation.

--download-only Solve an environment and ensure package caches are populated, but exit prior to
unlinking and linking packages into the prefix.

--show-channel-urls Show channel urls. Overrides the value given by conda config –show
show_channel_urls.

Examples:

conda create -n myenv sqlite

2.2 conda install

Installs a list of packages into a specified conda environment.

This command accepts a list of package specifications (e.g, bitarray=0.8) and installs a set of packages
consistent with those specifications and compatible with the underlying environment. If full compatibility
cannot be assured, an error is reported and the environment is not changed.

Conda attempts to install the newest versions of the requested packages. To accomplish this, it may update
some packages that are already installed, or install additional packages. To prevent existing packages from
updating, use the –freeze-installed option. This may force conda to install older versions of the requested
packages, and it does not prevent additional dependency packages from being installed.

If you wish to skip dependency checking altogether, use the ‘–no-deps’ option. This may result in an
environment with incompatible packages, so this option must be used with great caution.

conda can also be called with a list of explicit conda package filenames (e.g. ./lxml-3.2.0-py27_0.tar.bz2).
Using conda in this mode implies the –no-deps option, and should likewise be used with great caution.
Explicit filenames and package specifications cannot be mixed in a single command.

Options:

usage: conda install [-h] [--revision REVISION] [-n ENVIRONMENT | -p PATH]
[-c CHANNEL] [--use-local] [--override-channels]
[--strict-channel-priority] [--no-channel-priority]
[--no-deps | --only-deps] [--no-pin] [--copy] [-C] [-k]
[--offline] [-d] [--json] [-q] [-v] [-y]
[--download-only] [--show-channel-urls] [--file FILE]
[--prune] [--force-reinstall]
[--freeze-installed | --update-deps | -S | --update-all]
[-m] [--clobber]
[package_spec [package_spec ...]]

2.2.1 Positional Arguments

package_spec Packages to install or update in the conda environment.

2.2.2 Named Arguments

--revision Revert to the specified REVISION.

--file Read package versions from the given file. Repeated file specifications can be
passed (e.g. –file=file1 –file=file2).

2.2. conda install 67

conda Documentation, Release 4.6.1

2.2.3 Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

2.2.4 Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including file:// for local directories). Then, the defaults or
channels from .condarc are searched (unless –override-channels is given).
You can use ‘defaults’ to get the default packages for conda. You can also
use any name and the .condarc channel_alias value will be prepended. The
default channel_alias is http://conda.anaconda.org/.

--use-local Use locally built packages. Identical to ‘-c local’.

--override-channels Do not search default or .condarc channels. Requires –channel.

2.2.5 Solver Mode Modifiers

--strict-channel-priority Packages in lower priority channels are not considered if a package with the
same name appears in a higher priority channel.

--no-channel-priority Package version takes precedence over channel priority. Overrides the value
given by conda config –show channel_priority.

--no-deps Do not install, update, remove, or change dependencies. This WILL lead to bro-
ken environments and inconsistent behavior. Use at your own risk.

--only-deps Only install dependencies.

--no-pin Ignore pinned file.

--prune Remove packages that have previously been brought into the environment to sat-
isfy dependencies of user-requested packages, but are no longer needed.

--force-reinstall Ensure that any user-requested package for the current operation is uninstalled
and reinstalled, even if that package already exists in the environment.

--freeze-installed, --no-update-deps Do not update or change already-installed dependencies.

--update-deps Update dependencies.

-S, --satisfied-skip-solve Exit early and do not run the solver if the requested specs are satisfied. Also
skips aggressive updates as configured by ‘aggressive_update_packages’. Similar
to the default behavior of ‘pip install’.

--update-all, --all Update all installed packages in the environment.

2.2.6 Package Linking and Install-time Options

--copy Install all packages using copies instead of hard- or soft-linking.

-m, --mkdir Create the environment directory if necessary.

--clobber Allow clobbering of overlapping file paths within packages, and suppress related
warnings.

68 Chapter 2. Conda Commands

file://
http://conda.anaconda.org/

conda Documentation, Release 4.6.1

2.2.7 Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired.

-k, --insecure Allow conda to perform “insecure” SSL connections and transfers. Equivalent to
setting ‘ssl_verify’ to ‘false’.

--offline Offline mode. Don’t connect to the Internet.

2.2.8 Output, Prompt, and Flow Control Options

-d, --dry-run Only display what would have been done.

--json Report all output as json. Suitable for using conda programmatically.

-q, --quiet Do not display progress bar.

-v, --verbose Can be used multiple times. Once for INFO, twice for DEBUG, three times for
TRACE.

-y, --yes Do not ask for confirmation.

--download-only Solve an environment and ensure package caches are populated, but exit prior to
unlinking and linking packages into the prefix.

--show-channel-urls Show channel urls. Overrides the value given by conda config –show
show_channel_urls.

Examples:

conda install -n myenv scipy

2.3 conda update

Updates conda packages to the latest compatible version.

This command accepts a list of package names and updates them to the latest versions that are compatible
with all other packages in the environment.

Conda attempts to install the newest versions of the requested packages. To accomplish this, it may update
some packages that are already installed, or install additional packages. To prevent existing packages from
updating, use the –no-update-deps option. This may force conda to install older versions of the requested
packages, and it does not prevent additional dependency packages from being installed.

Options:

usage: conda update [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
[--override-channels] [--strict-channel-priority]
[--no-channel-priority] [--no-deps | --only-deps]
[--no-pin] [--copy] [-C] [-k] [--offline] [-d] [--json]
[-q] [-v] [-y] [--download-only] [--show-channel-urls]
[--file FILE] [--prune] [--force-reinstall]
[--freeze-installed | --update-deps | -S | --update-all]
[--clobber]
[package_spec [package_spec ...]]

2.3. conda update 69

conda Documentation, Release 4.6.1

2.3.1 Positional Arguments

package_spec Packages to install or update in the conda environment.

2.3.2 Named Arguments

--file Read package versions from the given file. Repeated file specifications can be
passed (e.g. –file=file1 –file=file2).

2.3.3 Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

2.3.4 Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including file:// for local directories). Then, the defaults or
channels from .condarc are searched (unless –override-channels is given).
You can use ‘defaults’ to get the default packages for conda. You can also
use any name and the .condarc channel_alias value will be prepended. The
default channel_alias is http://conda.anaconda.org/.

--use-local Use locally built packages. Identical to ‘-c local’.

--override-channels Do not search default or .condarc channels. Requires –channel.

2.3.5 Solver Mode Modifiers

--strict-channel-priority Packages in lower priority channels are not considered if a package with the
same name appears in a higher priority channel.

--no-channel-priority Package version takes precedence over channel priority. Overrides the value
given by conda config –show channel_priority.

--no-deps Do not install, update, remove, or change dependencies. This WILL lead to bro-
ken environments and inconsistent behavior. Use at your own risk.

--only-deps Only install dependencies.

--no-pin Ignore pinned file.

--prune Remove packages that have previously been brought into the environment to sat-
isfy dependencies of user-requested packages, but are no longer needed.

--force-reinstall Ensure that any user-requested package for the current operation is uninstalled
and reinstalled, even if that package already exists in the environment.

--freeze-installed, --no-update-deps Do not update or change already-installed dependencies.

--update-deps Update dependencies.

-S, --satisfied-skip-solve Exit early and do not run the solver if the requested specs are satisfied. Also
skips aggressive updates as configured by ‘aggressive_update_packages’. Similar
to the default behavior of ‘pip install’.

70 Chapter 2. Conda Commands

file://
http://conda.anaconda.org/

conda Documentation, Release 4.6.1

--update-all, --all Update all installed packages in the environment.

2.3.6 Package Linking and Install-time Options

--copy Install all packages using copies instead of hard- or soft-linking.

--clobber Allow clobbering of overlapping file paths within packages, and suppress related
warnings.

2.3.7 Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired.

-k, --insecure Allow conda to perform “insecure” SSL connections and transfers. Equivalent to
setting ‘ssl_verify’ to ‘false’.

--offline Offline mode. Don’t connect to the Internet.

2.3.8 Output, Prompt, and Flow Control Options

-d, --dry-run Only display what would have been done.

--json Report all output as json. Suitable for using conda programmatically.

-q, --quiet Do not display progress bar.

-v, --verbose Can be used multiple times. Once for INFO, twice for DEBUG, three times for
TRACE.

-y, --yes Do not ask for confirmation.

--download-only Solve an environment and ensure package caches are populated, but exit prior to
unlinking and linking packages into the prefix.

--show-channel-urls Show channel urls. Overrides the value given by conda config –show
show_channel_urls.

Examples:

conda update -n myenv scipy

2.4 conda remove

Remove a list of packages from a specified conda environment.

This command will also remove any package that depends on any of the specified packages as
well—unless a replacement can be found without that dependency. If you wish to skip this dependency
checking and remove just the requested packages, add the ‘–force’ option. Note however that this may
result in a broken environment, so use this with caution.

Options:

usage: conda remove [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
[--override-channels] [--all] [--features]
[--force-remove] [--no-pin] [--prune] [-C] [-k]

(continues on next page)

2.4. conda remove 71

conda Documentation, Release 4.6.1

(continued from previous page)

[--offline] [-d] [--json] [-q] [-v] [-y]
[package_name [package_name ...]]

2.4.1 Positional Arguments

package_name Package names to remove from the environment.

2.4.2 Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

2.4.3 Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including file:// for local directories). Then, the defaults or
channels from .condarc are searched (unless –override-channels is given).
You can use ‘defaults’ to get the default packages for conda. You can also
use any name and the .condarc channel_alias value will be prepended. The
default channel_alias is http://conda.anaconda.org/.

--use-local Use locally built packages. Identical to ‘-c local’.

--override-channels Do not search default or .condarc channels. Requires –channel.

2.4.4 Solver Mode Modifiers

--all Remove all packages, i.e., the entire environment.

--features Remove features (instead of packages).

--force-remove, --force Forces removal of a package without removing packages that depend on it.
Using this option will usually leave your environment in a broken and inconsistent
state.

--no-pin Ignore pinned file.

--prune Remove packages that have previously been brought into the environment to sat-
isfy dependencies of user-requested packages, but are no longer needed.

2.4.5 Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired.

-k, --insecure Allow conda to perform “insecure” SSL connections and transfers. Equivalent to
setting ‘ssl_verify’ to ‘false’.

--offline Offline mode. Don’t connect to the Internet.

72 Chapter 2. Conda Commands

file://
http://conda.anaconda.org/

conda Documentation, Release 4.6.1

2.4.6 Output, Prompt, and Flow Control Options

-d, --dry-run Only display what would have been done.

--json Report all output as json. Suitable for using conda programmatically.

-q, --quiet Do not display progress bar.

-v, --verbose Can be used multiple times. Once for INFO, twice for DEBUG, three times for
TRACE.

-y, --yes Do not ask for confirmation.

Examples:

conda remove -n myenv scipy

2.5 conda info

Display information about current conda install.

Options:

usage: conda info [-h] [--json] [-v] [-q] [-a] [--base] [-e] [-s]
[--unsafe-channels]

2.5.1 Named Arguments

-a, --all Show all information.

--base Display base environment path.

-e, --envs List all known conda environments.

-s, --system List environment variables.

--unsafe-channels Display list of channels with tokens exposed.

2.5.2 Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Use once for info, twice for debug, three times for trace.

-q, --quiet Do not display progress bar.

2.6 conda search

Search for packages and display associated information. The input is a MatchSpec, a query language for conda
packages. See examples below.

Options:

usage: conda search [-h] [--envs] [-i] [--subdir SUBDIR] [-c CHANNEL]
[--use-local] [--override-channels] [-C] [-k] [--offline]
[--json] [-v] [-q]

2.5. conda info 73

conda Documentation, Release 4.6.1

2.6.1 Named Arguments

--envs Search all of the current user’s environments. If run as Administrator (on Win-
dows) or UID 0 (on unix), search all known environments on the system.

-i, --info Provide detailed information about each package.

--subdir, --platform Search the given subdir. Should be formatted like ‘osx-64’, ‘linux-32’, ‘win-64’,
and so on. The default is to search the current platform.

2.6.2 Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including file:// for local directories). Then, the defaults or
channels from .condarc are searched (unless –override-channels is given).
You can use ‘defaults’ to get the default packages for conda. You can also
use any name and the .condarc channel_alias value will be prepended. The
default channel_alias is http://conda.anaconda.org/.

--use-local Use locally built packages. Identical to ‘-c local’.

--override-channels Do not search default or .condarc channels. Requires –channel.

2.6.3 Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired.

-k, --insecure Allow conda to perform “insecure” SSL connections and transfers. Equivalent to
setting ‘ssl_verify’ to ‘false’.

--offline Offline mode. Don’t connect to the Internet.

2.6.4 Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Use once for info, twice for debug, three times for trace.

-q, --quiet Do not display progress bar.

Examples:

Search for a specific package named ‘scikit-learn’:

conda search scikit-learn

Search for packages containing ‘scikit’ in the package name:

conda search scikit

Note that your shell may expand ‘*’ before handing the command over to conda. Therefore it is sometimes necessary
to use single or double quotes around the query.

conda search ‘scikit’ conda search “*scikit”

Search for packages for 64-bit Linux (by default, packages for your current platform are shown):

conda search numpy[subdir=linux-64]

Search for a specific version of a package:

74 Chapter 2. Conda Commands

file://
http://conda.anaconda.org/

conda Documentation, Release 4.6.1

conda search ‘numpy>=1.12’

Search for a package on a specific channel

conda search conda-forge::numpy conda search ‘numpy[channel=conda-forge, subdir=osx-64]’

2.7 conda config

Modify configuration values in .condarc. This is modeled after the git config command. Writes to the user .condarc
file (/home/docs/.condarc) by default.

Options:

usage: conda config [-h] [--json] [-v] [-q] [--system | --env | --file FILE]
[--show [SHOW [SHOW ...]] | --show-sources | --validate |
--describe [DESCRIBE [DESCRIBE ...]] | --write-default]
[--get [KEY [KEY ...]] | --append KEY VALUE | --prepend
KEY VALUE | --set KEY VALUE | --remove KEY VALUE |
--remove-key KEY | --stdin]

2.7.1 Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Use once for info, twice for debug, three times for trace.

-q, --quiet Do not display progress bar.

2.7.2 Config File Location Selection

Without one of these flags, the user config file at ‘/home/docs/.condarc’ is used.

--system Write to the system .condarc file at ‘/home/docs/checkouts/readthedocs.org/user_builds/continuumio-
conda/envs/4.6.1/.condarc’.

--env Write to the active conda environment .condarc file (<no active environment>).
If no environment is active, write to the user config file (/home/docs/.condarc).

--file Write to the given file.

2.7.3 Config Subcommands

--show Display configuration values as calculated and compiled. If no arguments given,
show information for all configuration values.

--show-sources Display all identified configuration sources.

--validate Validate all configuration sources.

--describe Describe given configuration parameters. If no arguments given, show informa-
tion for all configuration parameters.

--write-default Write the default configuration to a file. Equivalent to conda config –describe >
~/.condarc.

2.7. conda config 75

conda Documentation, Release 4.6.1

2.7.4 Config Modifiers

--get Get a configuration value.

--append Add one configuration value to the end of a list key.

--prepend, --add Add one configuration value to the beginning of a list key.

--set Set a boolean or string key

--remove Remove a configuration value from a list key. This removes all instances of
the value.

--remove-key Remove a configuration key (and all its values).

--stdin Apply configuration information given in yaml format piped through stdin.

See conda config –describe or https://conda.io/docs/config.html for details on all the options that can go in .condarc.

Examples:

Display all configuration values as calculated and compiled:

conda config –show

Display all identified configuration sources:

conda config –show-sources

Describe all available configuration options:

conda config –describe

Add the conda-canary channel:

conda config –add channels conda-canary

Set the output verbosity to level 3 (highest) for the current activate environment:

conda config –set verbosity 3 –env

Add the ‘conda-forge’ channel as a backup to ‘defaults’:

conda config –append channels conda-forge

2.8 conda list

List linked packages in a conda environment.

Options:

usage: conda list [-h] [-n ENVIRONMENT | -p PATH] [--json] [-v] [-q]
[--show-channel-urls] [-c] [-f] [--explicit] [--md5] [-e]
[-r] [--no-pip]
[regex]

2.8.1 Positional Arguments

regex List only packages matching this regular expression.

76 Chapter 2. Conda Commands

https://conda.io/docs/config.html

conda Documentation, Release 4.6.1

2.8.2 Named Arguments

--show-channel-urls Show channel urls. Overrides the value given by conda config –show
show_channel_urls.

-c, --canonical Output canonical names of packages only. Implies –no-pip.

-f, --full-name Only search for full names, i.e., ^<regex>$.

--explicit List explicitly all installed conda packaged with URL (output may be used by
conda create –file).

--md5 Add MD5 hashsum when using –explicit

-e, --export Output requirement string only (output may be used by conda create –file).

-r, --revisions List the revision history and exit.

--no-pip Do not include pip-only installed packages.

2.8.3 Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

2.8.4 Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Use once for info, twice for debug, three times for trace.

-q, --quiet Do not display progress bar.

Examples:

List all packages in the current environment:

conda list

List all packages installed into the environment ‘myenv’:

conda list -n myenv

Save packages for future use:

conda list –export > package-list.txt

Reinstall packages from an export file:

conda create -n myenv –file package-list.txt

2.9 conda clean

Remove unused packages and caches.

Options:

usage: conda clean [-h] [-a] [-i] [-l] [-p] [-t] [-f] [-d] [--json] [-q] [-v]
[-y]

2.9. conda clean 77

conda Documentation, Release 4.6.1

2.9.1 Removal Targets

-a, --all Remove index cache, lock files, unused cache packages, and tarballs.

-i, --index-cache Remove index cache.

-l, --lock Remove all conda lock files.

-p, --packages Remove unused packages from writable package caches. WARNING: This does
not check for packages installed using symlinks back to the package cache.

-t, --tarballs Remove cached package tarballs.

-f, --force-pkgs-dirs Remove all writable package caches. This option is not included with the –all
flag. WARNING: This will break environments with packages installed using
symlinks back to the package cache.

2.9.2 Output, Prompt, and Flow Control Options

-d, --dry-run Only display what would have been done.

--json Report all output as json. Suitable for using conda programmatically.

-q, --quiet Do not display progress bar.

-v, --verbose Can be used multiple times. Once for INFO, twice for DEBUG, three times for
TRACE.

-y, --yes Do not ask for confirmation.

Examples:

conda clean –tarballs

2.10 conda package

Low-level conda package utility. (EXPERIMENTAL)

Options:

usage: conda package [-h] [-n ENVIRONMENT | -p PATH] [-w PATH [PATH ...]] [-r]
[-u] [--pkg-name PKG_NAME] [--pkg-version PKG_VERSION]
[--pkg-build PKG_BUILD]

2.10.1 Named Arguments

-w, --which Given some PATH print which conda package the file came from.

-r, --reset Remove all untracked files and exit.

-u, --untracked Display all untracked files and exit.

--pkg-name Package name of the created package.

--pkg-version Package version of the created package.

--pkg-build Package build number of the created package.

78 Chapter 2. Conda Commands

conda Documentation, Release 4.6.1

2.10.2 Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

2.10. conda package 79

conda Documentation, Release 4.6.1

80 Chapter 2. Conda Commands

CHAPTER 3

Conda Configuration

##
Channel Configuration
##

channels (sequence: str)
aliases: channel
env var string delimiter: ','
The list of conda channels to include for relevant operations.
#
channels:
- defaults

channel_alias (str)
The prepended url location to associate with channel names.
#
channel_alias: https://conda.anaconda.org

default_channels (sequence: str)
env var string delimiter: ','
The list of channel names and/or urls used for the 'defaults'
multichannel.
#
default_channels:
- https://repo.anaconda.com/pkgs/main
- https://repo.anaconda.com/pkgs/free
- https://repo.anaconda.com/pkgs/r

override_channels_enabled (bool)
Permit use of the --overide-channels command-line flag.
#
override_channels_enabled: true

whitelist_channels (sequence: str)
env var string delimiter: ','

(continues on next page)

81

conda Documentation, Release 4.6.1

(continued from previous page)

The exclusive list of channels allowed to be used on the system. Use
of any other channels will result in an error. If conda-build channels
are to be allowed, along with the --use-local command line flag, be
sure to include the 'local' channel in the list. If the list is empty
or left undefined, no channel exclusions will be enforced.
#
whitelist_channels: []

custom_channels (map: str)
A map of key-value pairs where the key is a channel name and the value
is a channel location. Channels defined here override the default
'channel_alias' value. The channel name (key) is not included in the
channel location (value). For example, to override the location of
the 'conda-forge' channel where the url to repodata is
https://anaconda-repo.dev/packages/conda-forge/linux-64/repodata.json,
add an entry 'conda-forge: https://anaconda-repo.dev/packages'.
#
custom_channels:
pkgs/pro: https://repo.anaconda.com

custom_multichannels (map: list)
A multichannel is a metachannel composed of multiple channels. The two
reserved multichannels are 'defaults' and 'local'. The 'defaults'
multichannel is customized using the 'default_channels' parameter. The
'local' multichannel is a list of file:// channel locations where
conda-build stashes successfully-built packages. Other multichannels
can be defined with custom_multichannels, where the key is the
multichannel name and the value is a list of channel names and/or
channel urls.
#
custom_multichannels: {}

migrated_channel_aliases (sequence: str)
env var string delimiter: ','
A list of previously-used channel_alias values. Useful when switching
between different Anaconda Repository instances.
#
migrated_channel_aliases: []

migrated_custom_channels (map: str)
A map of key-value pairs where the key is a channel name and the value
is the previous location of the channel.
#
migrated_custom_channels: {}

add_anaconda_token (bool)
aliases: add_binstar_token
In conjunction with the anaconda command-line client (installed with
`conda install anaconda-client`), and following logging into an
Anaconda Server API site using `anaconda login`, automatically apply a
matching private token to enable access to private packages and
channels.
#
add_anaconda_token: true

allow_non_channel_urls (bool)
Warn, but do not fail, when conda detects a channel url is not a valid

(continues on next page)

82 Chapter 3. Conda Configuration

conda Documentation, Release 4.6.1

(continued from previous page)

channel.
#
allow_non_channel_urls: false

##
Basic Conda Configuration
##

env_prompt (str)
Template for prompt modification based on the active environment.
Currently supported template variables are '{prefix}', '{name}', and
'{default_env}'. '{prefix}' is the absolute path to the active
environment. '{name}' is the basename of the active environment
prefix. '{default_env}' holds the value of '{name}' if the active
environment is a conda named environment ('-n' flag), or otherwise
holds the value of '{prefix}'. Templating uses python's str.format()
method.
#
env_prompt: '({default_env}) '

envs_dirs (sequence: str)
aliases: envs_path
env var string delimiter: ':'
The list of directories to search for named environments. When
creating a new named environment, the environment will be placed in
the first writable location.
#
envs_dirs: []

pkgs_dirs (sequence: str)
env var string delimiter: ','
The list of directories where locally-available packages are linked
from at install time. Packages not locally available are downloaded
and extracted into the first writable directory.
#
pkgs_dirs: []

##
Network Configuration
##

client_ssl_cert (NoneType, str)
aliases: client_cert
A path to a single file containing a private key and certificate (e.g.
.pem file). Alternately, use client_ssl_cert_key in conjuction with
client_ssl_cert for individual files.
#
client_ssl_cert:

client_ssl_cert_key (NoneType, str)
aliases: client_cert_key
Used in conjunction with client_ssl_cert for a matching key file.
#
client_ssl_cert_key:

(continues on next page)

83

conda Documentation, Release 4.6.1

(continued from previous page)

local_repodata_ttl (bool, int)
For a value of False or 0, always fetch remote repodata (HTTP 304
responses respected). For a value of True or 1, respect the HTTP
Cache-Control max-age header. Any other positive integer values is the
number of seconds to locally cache repodata before checking the remote
server for an update.
#
local_repodata_ttl: 1

offline (bool)
Restrict conda to cached download content and file:// based urls.
#
offline: false

proxy_servers (map: NoneType, str)
A mapping to enable proxy settings. Keys can be either (1) a
scheme://hostname form, which will match any request to the given
scheme and exact hostname, or (2) just a scheme, which will match
requests to that scheme. Values are are the actual proxy server, and
are of the form 'scheme://[user:password@]host[:port]'. The optional
'user:password' inclusion enables HTTP Basic Auth with your proxy.
#
proxy_servers: {}

remote_connect_timeout_secs (float)
The number seconds conda will wait for your client to establish a
connection to a remote url resource.
#
remote_connect_timeout_secs: 9.15

remote_max_retries (int)
The maximum number of retries each HTTP connection should attempt.
#
remote_max_retries: 3

remote_read_timeout_secs (float)
Once conda has connected to a remote resource and sent an HTTP
request, the read timeout is the number of seconds conda will wait for
the server to send a response.
#
remote_read_timeout_secs: 60.0

ssl_verify (bool, str)
aliases: verify_ssl
Conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required url's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, or (2) a path
to a directory containing certificates of trusted CA.
#
ssl_verify: true

##
Solver Configuration
##

(continues on next page)

84 Chapter 3. Conda Configuration

conda Documentation, Release 4.6.1

(continued from previous page)

aggressive_update_packages (sequence: str)
env var string delimiter: ','
A list of packages that, if installed, are always updated to the
latest possible version.
#
aggressive_update_packages:
- ca-certificates
- certifi
- openssl

auto_update_conda (bool)
aliases: self_update
Automatically update conda when a newer or higher priority version is
detected.
#
auto_update_conda: true

channel_priority (ChannelPriority)
Accepts values of 'strict', 'flexible', and 'disabled'. The default
value is 'flexible'. With strict channel priority, packages in lower
priority channels are not considered if a package with the same name
appears in a higher priority channel. With flexible channel priority,
the solver may reach into lower priority channels to fulfill
dependencies, rather than raising an unsatisfiable error. With channel
priority disabled, package version takes precedence, and the
configured priority of channels is used only to break ties. In
previous versions of conda, this parameter was configured as either
True or False. True is now an alias to 'flexible'.
#
channel_priority: flexible

create_default_packages (sequence: str)
env var string delimiter: ','
Packages that are by default added to a newly created environments.
#
create_default_packages: []

disallowed_packages (sequence: str)
aliases: disallow
env var string delimiter: '&'
Package specifications to disallow installing. The default is to allow
all packages.
#
disallowed_packages: []

pinned_packages (sequence: str)
env var string delimiter: '&'
A list of package specs to pin for every environment resolution. This
parameter is in BETA, and its behavior may change in a future release.
#
pinned_packages: []

track_features (sequence: str)
env var string delimiter: ','
A list of features that are tracked by default. An entry here is
similar to adding an entry to the create_default_packages list.

(continues on next page)

85

conda Documentation, Release 4.6.1

(continued from previous page)

#
track_features: []

prune (bool)
Remove packages that have previously been brought into an environment
to satisfy dependencies of user-requested packages, but are no longer
needed.
#
prune: false

force_reinstall (bool)
Ensure that any user-requested package for the current operation is
uninstalled and reinstalled, even if that package already exists in
the environment.
#
force_reinstall: false

##
Package Linking and Install-time Configuration
##

allow_softlinks (bool)
When allow_softlinks is True, conda uses hard-links when possible, and
soft-links (symlinks) when hard-links are not possible, such as when
installing on a different filesystem than the one that the package
cache is on. When allow_softlinks is False, conda still uses hard-
links when possible, but when it is not possible, conda copies files.
Individual packages can override this setting, specifying that certain
files should never be soft-linked (see the no_link option in the build
recipe documentation).
#
allow_softlinks: false

always_copy (bool)
aliases: copy
Register a preference that files be copied into a prefix during
install rather than hard-linked.
#
always_copy: false

always_softlink (bool)
aliases: softlink
Register a preference that files be soft-linked (symlinked) into a
prefix during install rather than hard-linked. The link source is the
'pkgs_dir' package cache from where the package is being linked.
WARNING: Using this option can result in corruption of long-lived
conda environments. Package caches are *caches*, which means there is
some churn and invalidation. With this option, the contents of
environments can be switched out (or erased) via operations on other
environments.
#
always_softlink: false

path_conflict (PathConflict)
The method by which conda handle's conflicting/overlapping paths
during a create, install, or update operation. The value must be one

(continues on next page)

86 Chapter 3. Conda Configuration

conda Documentation, Release 4.6.1

(continued from previous page)

of 'clobber', 'warn', or 'prevent'. The '--clobber' command-line flag
or clobber configuration parameter overrides path_conflict set to
'prevent'.
#
path_conflict: clobber

rollback_enabled (bool)
Should any error occur during an unlink/link transaction, revert any
disk mutations made to that point in the transaction.
#
rollback_enabled: true

safety_checks (SafetyChecks)
Enforce available safety guarantees during package installation. The
value must be one of 'enabled', 'warn', or 'disabled'.
#
safety_checks: warn

extra_safety_checks (bool)
Spend extra time validating package contents. Currently, runs sha256
verification on every file within each package during installation.
#
extra_safety_checks: false

shortcuts (bool)
Allow packages to create OS-specific shortcuts (e.g. in the Windows
Start Menu) at install time.
#
shortcuts: true

non_admin_enabled (bool)
Allows completion of conda's create, install, update, and remove
operations, for non-privileged (non-root or non-administrator) users.
#
non_admin_enabled: true

##
Conda-build Configuration
##

bld_path (str)
The location where conda-build will put built packages. Same as
'croot', but 'croot' takes precedence when both are defined. Also used
in construction of the 'local' multichannel.
#
bld_path: ''

croot (str)
The location where conda-build will put built packages. Same as
'bld_path', but 'croot' takes precedence when both are defined. Also
used in construction of the 'local' multichannel.
#
croot: ''

anaconda_upload (NoneType, bool)
aliases: binstar_upload

(continues on next page)

87

conda Documentation, Release 4.6.1

(continued from previous page)

Automatically upload packages built with conda build to anaconda.org.
#
anaconda_upload:

conda_build (map: str)
aliases: conda-build
General configuration parameters for conda-build.
#
conda_build: {}

##
Output, Prompt, and Flow Control Configuration
##

always_yes (NoneType, bool)
aliases: yes
Automatically choose the 'yes' option whenever asked to proceed with a
conda operation, such as when running `conda install`.
#
always_yes:

auto_activate_base (bool)
Automatically activate the base environment during shell
initialization.
#
auto_activate_base: true

changeps1 (bool)
When using activate, change the command prompt ($PS1) to include the
activated environment.
#
changeps1: true

json (bool)
Ensure all output written to stdout is structured json.
#
json: false

notify_outdated_conda (bool)
Notify if a newer version of conda is detected during a create,
install, update, or remove operation.
#
notify_outdated_conda: true

quiet (bool)
Disable progress bar display and other output.
#
quiet: false

report_errors (NoneType, bool)
Opt in, or opt out, of automatic error reporting to core maintainers.
Error reports are anonymous, with only the error stack trace and
information given by `conda info` being sent.
#
report_errors:

(continues on next page)

88 Chapter 3. Conda Configuration

conda Documentation, Release 4.6.1

(continued from previous page)

show_channel_urls (NoneType, bool)
Show channel URLs when displaying what is going to be downloaded.
#
show_channel_urls:

verbosity (int)
aliases: verbose
Sets output log level. 0 is warn. 1 is info. 2 is debug. 3 is trace.
#
verbosity: 0

89

conda Documentation, Release 4.6.1

90 Chapter 3. Conda Configuration

CHAPTER 4

Conda Python API

As of conda 4.4, conda can be installed in any environment, not just environments with names starting with _ (under-
score). That change was made, in part, so that conda can be used as a python library.

There are three supported public modules. We support

import conda.cli.python_api. import conda.api import conda.exports The first two should have very long-term stability.
The third is guaranteed to be stable throughout the lifetime of a feature release series–i.e. minor version number.

As of conda 4.5, we do not support pip install conda. However, we are considering that as a supported bootstrap
method in the future.

4.1 conda.api.Solver

class conda.core.solve.DepsModifier
Flags to enable alternate handling of dependencies.

NOT_SET = 'not_set'

NO_DEPS = 'no_deps'

ONLY_DEPS = 'only_deps'

class conda.core.solve.Solver(prefix, channels, subdirs=(), specs_to_add=(),
specs_to_remove=())

A high-level API to conda’s solving logic. Three public methods are provided to access a solution in various
forms.

• solve_final_state()

• solve_for_diff()

• solve_for_transaction()

91

conda Documentation, Release 4.6.1

solve_final_state(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null ob-
ject>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>,
force_remove=<auxlib._Null object>)

Gives the final, solved state of the environment.

Parameters

• update_modifier (UpdateModifier) – An optional flag directing how updates
are handled regarding packages already existing in the environment.

• deps_modifier (DepsModifier) – An optional flag indicating special solver han-
dling for dependencies. The default solver behavior is to be as conservative as possible
with dependency updates (in the case the dependency already exists in the environment),
while still ensuring all dependencies are satisfied. Options include

– NO_DEPS

– ONLY_DEPS

– UPDATE_DEPS

– UPDATE_DEPS_ONLY_DEPS

– FREEZE_INSTALLED

• prune (bool) – If True, the solution will not contain packages that were previously
brought into the environment as dependencies but are no longer required as dependencies
and are not user-requested.

• ignore_pinned (bool) – If True, the solution will ignore pinned package configu-
ration for the prefix.

• force_remove (bool) – Forces removal of a package without removing packages that
depend on it.

Returns In sorted dependency order from roots to leaves, the package references for the solved
state of the environment.

Return type Tuple[PackageRef]

solve_for_diff(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null ob-
ject>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>,
force_remove=<auxlib._Null object>, force_reinstall=<auxlib._Null object>)

Gives the package references to remove from an environment, followed by the package references to add
to an environment.

Parameters

• deps_modifier (DepsModifier) – See solve_final_state().

• prune (bool) – See solve_final_state().

• ignore_pinned (bool) – See solve_final_state().

• force_remove (bool) – See solve_final_state().

• force_reinstall (bool) –

For requested specs_to_add that are already satisfied in the environment, instructs
the solver to remove the package and spec from the environment, and then add it
back–possibly with the exact package instance modified, depending on the spec
exactness.

92 Chapter 4. Conda Python API

conda Documentation, Release 4.6.1

Returns A two-tuple of PackageRef sequences. The first is the group of packages to remove
from the environment, in sorted dependency order from leaves to roots. The second is the
group of packages to add to the environment, in sorted dependency order from roots to leaves.

Return type Tuple[PackageRef], Tuple[PackageRef]

solve_for_transaction(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null
object>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null
object>, force_remove=<auxlib._Null object>,
force_reinstall=<auxlib._Null object>)

Gives an UnlinkLinkTransaction instance that can be used to execute the solution on an environment.

Parameters

• deps_modifier (DepsModifier) – See solve_final_state().

• prune (bool) – See solve_final_state().

• ignore_pinned (bool) – See solve_final_state().

• force_remove (bool) – See solve_final_state().

• force_reinstall (bool) – See solve_for_diff().

Returns

Return type UnlinkLinkTransaction

4.2 conda.api.python_api

class conda.cli.python_api.Commands

CLEAN = 'clean'

CONFIG = 'config'

CREATE = 'create'

HELP = 'help'

INFO = 'info'

INSTALL = 'install'

LIST = 'list'

REMOVE = 'remove'

SEARCH = 'search'

UPDATE = 'update'

conda.cli.python_api.run_command(command, *arguments, **kwargs)
Runs a conda command in-process with a given set of command-line interface arguments.

Differences from the command-line interface: Always uses –yes flag, thus does not ask for confirmation.

Parameters

• command – one of the Commands.X

• *arguments – instructions you would normally pass to the conda comamnd on the com-
mand line see below for examples

4.2. conda.api.python_api 93

conda Documentation, Release 4.6.1

• **kwargs – special instructions for programmatic overrides use_exception_handler: de-
faults to False. False will let the code calling

run_command handle all exceptions. True won’t raise when an exception has occured,
and instead give a non-zero return code

search_path: an optional non-standard search path for configuration information
that overrides the default SEARCH_PATH

stdout: Define capture behavior for stream sys.stdout. Defaults to STRING. STRING
captures as a string. None leaves stream untouched. Otherwise redirect to file-like object
stdout.

stderr: Define capture behavior for stream sys.stderr. Defaults to STRING. STRING
captures as a string. None leaves stream untouched. STDOUT redirects to stdout target
and returns None as stderr value. Otherwise redirect to file-like object stderr.

Returns: a tuple of stdout, stderr, and return_code. stdout, stderr are either strings, None or the correspond-
ing file-like function argument.

Examples

>> run_command(Commands.CREATE, “-n newenv python=3 flask”, use_exception_handler=True)
>> run_command(Commands.CREATE, “-n newenv”, “python=3”, “flask”) >>
run_command(Commands.CREATE, [“-n newenv”, “python=3”, “flask”], search_path=())

4.3 conda.api

class conda.api.Solver(prefix, channels, subdirs=(), specs_to_add=(), specs_to_remove=())
Beta While in beta, expect both major and minor changes across minor releases.

A high-level API to conda’s solving logic. Three public methods are provided to access a solution in various
forms.

• solve_final_state()

• solve_for_diff()

• solve_for_transaction()

solve_final_state(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null ob-
ject>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>,
force_remove=<auxlib._Null object>)

Beta While in beta, expect both major and minor changes across minor releases.

Gives the final, solved state of the environment.

Parameters

• deps_modifier (DepsModifier) – An optional flag indicating special solver han-
dling for dependencies. The default solver behavior is to be as conservative as possible
with dependency updates (in the case the dependency already exists in the environment),
while still ensuring all dependencies are satisfied. Options include

– NO_DEPS

– ONLY_DEPS

– UPDATE_DEPS

94 Chapter 4. Conda Python API

conda Documentation, Release 4.6.1

– UPDATE_DEPS_ONLY_DEPS

– FREEZE_INSTALLED

• prune (bool) – If True, the solution will not contain packages that were previously
brought into the environment as dependencies but are no longer required as dependencies
and are not user-requested.

• ignore_pinned (bool) – If True, the solution will ignore pinned package configu-
ration for the prefix.

• force_remove (bool) – Forces removal of a package without removing packages that
depend on it.

Returns In sorted dependency order from roots to leaves, the package references for the solved
state of the environment.

Return type Tuple[PackageRef]

solve_for_diff(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null ob-
ject>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null object>,
force_remove=<auxlib._Null object>, force_reinstall=False)

Beta While in beta, expect both major and minor changes across minor releases.

Gives the package references to remove from an environment, followed by the package references to add
to an environment.

Parameters

• deps_modifier (DepsModifier) – See solve_final_state().

• prune (bool) – See solve_final_state().

• ignore_pinned (bool) – See solve_final_state().

• force_remove (bool) – See solve_final_state().

• force_reinstall (bool) – For requested specs_to_add that are already satisfied in
the environment, instructs the solver to remove the package and spec from the environ-
ment, and then add it back–possibly with the exact package instance modified, depending
on the spec exactness.

Returns A two-tuple of PackageRef sequences. The first is the group of packages to remove
from the environment, in sorted dependency order from leaves to roots. The second is the
group of packages to add to the environment, in sorted dependency order from roots to leaves.

Return type Tuple[PackageRef], Tuple[PackageRef]

solve_for_transaction(update_modifier=<auxlib._Null object>, deps_modifier=<auxlib._Null
object>, prune=<auxlib._Null object>, ignore_pinned=<auxlib._Null
object>, force_remove=<auxlib._Null object>, force_reinstall=False)

Beta While in beta, expect both major and minor changes across minor releases.

Gives an UnlinkLinkTransaction instance that can be used to execute the solution on an environment.

Parameters

• deps_modifier (DepsModifier) – See solve_final_state().

• prune (bool) – See solve_final_state().

• ignore_pinned (bool) – See solve_final_state().

• force_remove (bool) – See solve_final_state().

• force_reinstall (bool) – See solve_for_diff().

4.3. conda.api 95

conda Documentation, Release 4.6.1

Returns

Return type UnlinkLinkTransaction

class conda.api.SubdirData(channel)
Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of repodata.json for subdirs.

iter_records()
Beta While in beta, expect both major and minor changes across minor releases.

Returns

A generator over all records contained in the repodata.json instance. Warning: this is a
generator that is exhausted on first use.

Return type Iterable[PackageRecord]

query(package_ref_or_match_spec)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific instance of repodata.

Parameters package_ref_or_match_spec (PackageRef or MatchSpec or
str) – Either an exact PackageRef to match against, or a MatchSpec query object. A
str will be turned into a MatchSpec automatically.

Returns Tuple[PackageRecord]

static query_all(package_ref_or_match_spec, channels=None, subdirs=None)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against all repodata instances in channel/subdir matrix.

Parameters

• package_ref_or_match_spec (PackageRef or MatchSpec or str) –
Either an exact PackageRef to match against, or a MatchSpec query object. A str
will be turned into a MatchSpec automatically.

• channels (Iterable[Channel or str] or None) – An iterable of urls for
channels or Channel objects. If None, will fall back to context.channels.

• subdirs (Iterable[str] or None) – If None, will fall back to context.subdirs.

Returns Tuple[PackageRecord]

reload()
Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. repodata.json) is lazily down-
loaded/loaded on first use by the other methods of this class. You should only use this method if you
are sure you have outdated data.

Returns SubdirData

class conda.api.PackageCacheData(pkgs_dir)
Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of package caches.

static first_writable(pkgs_dirs=None)
Beta While in beta, expect both major and minor changes across minor releases.

Get an instance object for the first writable package cache.

96 Chapter 4. Conda Python API

conda Documentation, Release 4.6.1

Parameters pkgs_dirs (Iterable[str]) – If None, will fall back to context.pkgs_dirs.

Returns An instance for the first writable package cache.

Return type PackageCacheData

get(package_ref, default=<auxlib._Null object>)
Beta While in beta, expect both major and minor changes across minor releases.

Parameters

• package_ref (PackageRef) – A PackageRef instance representing the key for
the PackageCacheRecord being sought.

• default – The default value to return if the record does not exist. If not specified and
no record exists, KeyError is raised.

Returns PackageCacheRecord

is_writable
Beta While in beta, expect both major and minor changes across minor releases.

Indicates if the package cache location is writable or read-only.

Returns bool

iter_records()
Beta While in beta, expect both major and minor changes across minor releases.

Returns

A generator over all records contained in the package cache instance. Warning: this is a
generator that is exhausted on first use.

Return type Iterable[PackageCacheRecord]

query(package_ref_or_match_spec)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific package cache instance.

Parameters package_ref_or_match_spec (PackageRef or MatchSpec or
str) – Either an exact PackageRef to match against, or a MatchSpec query object. A
str will be turned into a MatchSpec automatically.

Returns Tuple[PackageCacheRecord]

static query_all(package_ref_or_match_spec, pkgs_dirs=None)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against all package caches.

Parameters

• package_ref_or_match_spec (PackageRef or MatchSpec or str) –
Either an exact PackageRef to match against, or a MatchSpec query object. A str
will be turned into a MatchSpec automatically.

• pkgs_dirs (Iterable[str] or None) – If None, will fall back to con-
text.pkgs_dirs.

Returns Tuple[PackageCacheRecord]

reload()
Beta While in beta, expect both major and minor changes across minor releases.

4.3. conda.api 97

conda Documentation, Release 4.6.1

Update the instance with new information. Backing information (i.e. contents of the pkgs_dir) is lazily
loaded on first use by the other methods of this class. You should only use this method if you are sure you
have outdated data.

Returns PackageCacheData

class conda.api.PrefixData(prefix_path)
Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of conda environment prefixes.

get(package_ref, default=<auxlib._Null object>)
Beta While in beta, expect both major and minor changes across minor releases.

Parameters

• package_ref (PackageRef) – A PackageRef instance representing the key for
the PrefixRecord being sought.

• default – The default value to return if the record does not exist. If not specified and
no record exists, KeyError is raised.

Returns PrefixRecord

is_writable
Beta While in beta, expect both major and minor changes across minor releases.

Indicates if the prefix is writable or read-only.

Returns True if the prefix is writable. False if read-only. None if the prefix does not exist as a
conda environment.

Return type bool or None

iter_records()
Beta While in beta, expect both major and minor changes across minor releases.

Returns

A generator over all records contained in the prefix. Warning: this is a generator that is
exhausted on first use.

Return type Iterable[PrefixRecord]

query(package_ref_or_match_spec)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific prefix instance.

Parameters package_ref_or_match_spec (PackageRef or MatchSpec or
str) – Either an exact PackageRef to match against, or a MatchSpec query object. A
str will be turned into a MatchSpec automatically.

Returns Tuple[PrefixRecord]

reload()
Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. contents of the conda-meta directory)
is lazily loaded on first use by the other methods of this class. You should only use this method if you are
sure you have outdated data.

Returns PrefixData

98 Chapter 4. Conda Python API

CHAPTER 5

Release notes

This information is drawn from the GitHub conda project changelog: https://github.com/conda/conda/blob/master/
CHANGELOG.md

5.1 4.6.0 (unreleased)

5.1.1 New Feature Highlights

• resolve #7053 preview support for conda operability with pip (#7067, #7370, #7710)

• conda initialize (#6518, #7388, #7629)

• resolve #7194 add ‘–stack’ flag to ‘conda activate’; remove max_shlvl config (#7195, #7226, #7233)

• resolve #7087 add non-conda-installed python packages into PrefixData (#7067, #7370)

• resolve #2682 add ‘conda run’ preview support (#7320, #7625)

• resolve #626 conda wrapper for PowerShell (#7794)

5.1.2 Deprecations/Breaking Changes

• resolve #6915 remove ‘conda env attach’ and ‘conda env upload’ (#6916)

• resolve #7061 remove pkgs/pro from defaults (#7162)

• resolve #7078 add deprecation warnings for ‘conda.cli.activate’, ‘conda.compat’, and ‘conda.install’ (#7079)

• resolve #7194 add ‘–stack’ flag to ‘conda activate’; remove max_shlvl config (#7195)

• resolve #6979, #7086 remove Dist from majority of project (#7216, #7252)

• fix #7362 remove –license from conda info and related code paths (#7386)

• resolve #7309 deprecate ‘conda info package_name’ (#7310)

99

https://github.com/conda/conda/blob/master/CHANGELOG.md
https://github.com/conda/conda/blob/master/CHANGELOG.md

conda Documentation, Release 4.6.1

• remove ‘conda clean –source-cache’ and defer to conda-build (#7731)

• resolve #7724 move windows package cache and envs dirs back to .conda directory (#7725)

5.1.3 Improvements

• import speedups (#7122)

• –help cleanup (#7120)

• fish autocompletion for conda env (#7101)

• remove reference to ‘system’ channel (#7163)

• add http error body to debug information (#7160)

• warn creating env name with space is not supported (#7168)

• support complete MatchSpec syntax in environment.yml files (#7178)

• resolve #4274 add option to remove an existing environment with ‘conda create’ (#7133)

• add ability for conda prompt customization via ‘env_prompt’ config param (#7047)

• resolve #7063 add license and license_family to MatchSpec for ‘conda search’ (#7064)

• resolve #7189 progress bar formatting improvement (#7191)

• raise log level for errors to error (#7229)

• add to conda.exports (#7217)

• resolve #6845 add option -S / –satisfied-skip-solve to exit early for satisfied specs (#7291)

• add NoBaseEnvironmentError and DirectoryNotACondaEnvironmentError (#7378)

• replace menuinst subprocessing by ctypes win elevation (4.6.0a3) (#7426)

• bump minimum requests version to stable, unbundled release (#7528)

• resolve #7591 updates and improvements from namespace PR for 4.6 (#7599)

• resolve #7592 compatibility shims (#7606)

• user-agent context refactor (#7630)

• solver performance improvements with benchmarks in common.logic (#7676)

• enable fuzzy-not-equal version constraint for pip interop (#7711)

• add -d short option for –dry-run (#7719)

• add –force-pkgs-dirs option to conda clean (#7719)

• address #7709 ensure –update-deps unlocks specs from previous user requests (#7719)

• add package timestamp information to output of ‘conda search –info’ (#7722)

• resolve #7336 ‘conda search’ tries “fuzzy match” before showing PackagesNotFound (#7722)

• resolve #7656 strict channel priority via ‘channel_priority’ config option or –strict-channel-priority CLI flag
(#7729)

• performance improvement to cache __hash__ value on PackageRecord (#7715)

• resolve #7764 change name of ‘condacmd’ dir to ‘condabin’; use on all platforms (#7773)

• resolve #7782 implement PEP-440 ‘~=’ compatible release operator (#7783)

100 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.1.4 Bug Fixes

• fix #7107 verify hangs when a package is corrupted (#7131)

• fix #7145 progress bar uses stderr instead of stdout (#7146)

• fix typo in conda.fish (#7152)

• fix #2154 conda remove should complain if requested removals don’t exist (#7135)

• fix #7094 exit early for –dry-run with explicit and clone (#7096)

• fix activation script sort order (#7176)

• fix #7109 incorrect chown with sudo (#7180)

• fix #7210 add suppressed –mkdir back to ‘conda create’ (fix for 4.6.0a1) (#7211)

• fix #5681 conda env create / update when –file does not exist (#7385)

• resolve #7375 enable conda config –set update_modifier (#7377)

• fix #5885 improve conda env error messages and add extra tests (#7395)

• msys2 path conversion (#7389)

• fix autocompletion in fish (#7575)

• fix #3982 following 4.4 activation refactor (#7607)

• fix #7242 configuration load error message (#7243)

• fix conda env compatibility with pip 18 (#7612)

• fix #7184 remove conflicting specs to find solution to user’s active request (#7719)

• fix #7706 add condacmd dir to cmd.exe path on first activation (#7735)

• fix #7761 spec handling errors in 4.6.0b0 (#7780)

• fix #7770 ‘conda list regex’ only applies regex to package name (#7784)

5.1.5 Non-User-Facing Changes

• resolve #6595 use OO inheritance in activate.py (#7049)

• resolve #7220 pep8 project renamed to pycodestyle (#7221)

• proxy test routine (#7308)

• add .mailmap and .cla-signers (#7361)

• add copyright headers (#7367)

• rename common.platform to common.os and split among windows, linux, and unix utils (#7396)

• fix windows test failures when symlink not available (#7369)

• test building conda using conda-build (#7251)

• solver test metadata updates (#7664)

• explicitly add Mapping, Sequence to common.compat (#7677)

• add debug messages to communicate solver stages (#7803)

• add undocumented sat_solver config parameter (#7811)

5.1. 4.6.0 (unreleased) 101

conda Documentation, Release 4.6.1

5.1.6 Preview Releases

• 4.6.0a1 at d5bec21d1f64c3bc66c2999cfc690681e9c46177 on 2018-04-20

• 4.6.0a2 at c467517ca652371ebc4224f0d49315b7ec225108 on 2018-05-01

• 4.6.0b0 at 21a24f02b2687d0895de04664a4ec23ccc75c33a on 2018-09-07

5.1.7 Contributors

• @cgranade

• @fabioz

• @goanpeca

• @jesse-

• @kalefranz

• @mandeep

• @mbargull

• @msarahan

• @ohadravid

5.2 4.5.11 (2018-08-21)

5.2.1 Improvements

• resolve #7672 compatibility with ruamel.yaml 0.15.54 (#7675)

5.2.2 Contributors

• @CJ-Wright

• @mbargull

5.3 4.5.10 (2018-08-13)

5.3.1 Bug Fixes

• fix conda env compatibility with pip 18 (#7627)

• fix py37 compat 4.5.x (#7641)

• fix #7451 don’t print name, version, and size if unknown (#7648)

• replace glob with fnmatch in PrefixData (#7645)

102 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.3.2 Contributors

• @jesse-

• @nehaljwani

5.4 4.5.9 (2018-07-30)

5.4.1 Improvements

• resolve #7522 prevent conda from scheduling downgrades (#7598)

• allow skipping feature maximization in resolver (#7601)

5.4.2 Bug Fixes

• fix #7559 symlink stat in localfs adapter (#7561)

• fix #7486 activate with no PATH set (#7562)

• resolve #7522 prevent conda from scheduling downgrades (#7598)

5.4.3 Contributors

• @kalefranz

• @loriab

5.5 4.5.8 (2018-07-10)

5.5.1 Bug Fixes

• fix #7524 should_bypass_proxies for requests 2.13.0 and earlier (#7525)

5.5.2 Contributors

• @kalefranz

5.6 4.5.7 (2018-07-09)

5.6.1 Improvements

• resolve #7423 add upgrade error for unsupported repodata_version (#7415)

• raise CondaUpgradeError for conda version downgrades on environments (#7517)

5.4. 4.5.9 (2018-07-30) 103

conda Documentation, Release 4.6.1

5.6.2 Bug Fixes

• fix #7505 temp directory for UnlinkLinkTransaction should be in target prefix (#7516)

• fix #7506 requests monkeypatch fallback for old requests versions (#7515)

5.6.3 Contributors

• @kalefranz

• @nehaljwani

5.7 4.5.6 (2018-07-06)

5.7.1 Bug Fixes

• resolve #7473 py37 support (#7499)

• fix #7494 History spec parsing edge cases (#7500)

• fix requests 2.19 incompatibility with NO_PROXY env var (#7498)

• resolve #7372 disable http error uploads and CI cleanup (#7498, #7501)

5.7.2 Contributors

• @kalefranz

5.8 4.5.5 (2018-06-29)

5.8.1 Bug Fixes

• fix #7165 conda version check should be restricted to channel conda is from (#7289, #7303)

• fix #7341 ValueError n cannot be negative (#7360)

• fix #6691 fix history file parsing containing comma-joined version specs (#7418)

• fix msys2 path conversion (#7471)

5.8.2 Contributors

• @goanpeca

• @kalefranz

• @mingwandroid

• @mbargull

104 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.9 4.5.4 (2018-05-14)

5.9.1 Improvements

• resolve #7189 progress bar improvement (#7191 via #7274)

5.9.2 Bug Fixes

• fix twofold tarball extraction, improve progress update (#7275)

• fix #7253 always respect copy LinkType (#7269)

5.9.3 Contributors

• @jakirkham

• @kalefranz

• @mbargull

5.10 4.5.3 (2018-05-07)

5.10.1 Bug Fixes

• fix #7240 conda’s configuration context is not initialized in conda.exports (#7244)

5.11 4.5.2 (2018-04-27)

5.11.1 Bug Fixes

• fix #7107 verify hangs when a package is corrupted (#7223)

• fix #7094 exit early for –dry-run with explicit and clone (#7224)

• fix activation/deactivation script sort order (#7225)

5.12 4.5.1 (2018-04-13)

5.12.1 Improvements

• resolve #7075 add anaconda.org search message to PackagesNotFoundError (#7076)

• add CondaError details to auto-upload reports (#7060)

5.9. 4.5.4 (2018-05-14) 105

conda Documentation, Release 4.6.1

5.12.2 Bug Fixes

• fix #6703,#6981 index out of bound when running deactivate on fish shell (#6993)

• properly close over $_CONDA_EXE variable (#7004)

• fix condarc map parsing with comments (#7021)

• fix #6919 csh prompt (#7041)

• add _file_created attribute (#7054)

• fix handling of non-ascii characters in custom_multichannels (#7050)

• fix #6877 handle non-zero return in CSH (#7042)

• fix #7040 update tqdm to version 4.22.0 (#7157)

5.13 4.5.0 (2018-03-20)

5.13.1 New Feature Highlights

• A new flag, ‘–envs’, has been added to ‘conda search’. In this mode, ‘conda search’ will look for the package
query in existing conda environments on your system. If ran as UID 0 (i.e. root) on unix systems or as an
Administrator user on Windows, all known conda environments for all users on the system will be searched. For
example, ‘conda search –envs openssl’ will show the openssl version and environment location for all conda-
installed openssl packages.

5.13.2 Deprecations/Breaking Changes

• resolve #6886 transition defaults from repo.continuum.io to repo.anaconda.com (#6887)

• resolve #6192 deprecate ‘conda help’ in favor of –help CLI flag (#6918)

• resolve #6894 add http errors to auto-uploaded error reports (#6895)

5.13.3 Improvements

• resolve #6791 conda search –envs (#6794)

• preserve exit status in fish shell (#6760)

• resolve #6810 add CONDA_EXE environment variable to activate (#6923)

• resolve #6695 outdated conda warning respects –quiet flag (#6935)

• add instructions to activate default environment (#6944)

5.13.4 API

• resolve #5610 add PrefixData, SubdirData, and PackageCacheData to conda/api.py (#6922)

106 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.13.5 Bug Fixes

• channel matchspec fixes (#6893)

• fix #6930 add missing return statement to S3Adapter (#6931)

• fix #5802, #6736 enforce disallowed_packages configuration parameter (#6932)

• fix #6860 infinite recursion in resolve.py for empty track_features (#6928)

• set encoding for PY2 stdout/stderr (#6951)

• fix #6821 non-deterministic behavior from MatchSpec merge clobbering (#6956)

• fix #6904 logic errors in prefix graph data structure (#6929)

5.13.6 Non-User-Facing Changes

• fix several lgtm.com flags (#6757, #6883)

• cleanups and refactors for conda 4.5 (#6889)

• unify location of record types in conda/models/records.py (#6924)

• resolve #6952 memoize url search in package cache loading (#6957)

5.14 4.4.11 (2018-02-23)

5.14.1 Improvements

• resolve #6582 swallow_broken_pipe context manager and Spinner refactor (#6616)

• resolve #6882 document max_shlvl (#6892)

• resolve #6733 make empty env vars sequence-safe for sequence parameters (#6741)

• resolve #6900 don’t record conda skeleton environments in environments.txt (#6908)

5.14.2 Bug Fixes

• fix potential error in ensure_pad(); add more tests (#6817)

• fix #6840 handle error return values in conda.sh (#6850)

• use conda.gateways.disk for misc.py imports (#6870)

• fix #6672 don’t update conda during conda-env operations (#6773)

• fix #6811 don’t attempt copy/remove fallback for rename failures (#6867)

• fix #6667 aliased posix commands (#6669)

• fix #6816 fish environment autocomplete (#6885)

• fix #6880 build_number comparison not functional in match_spec (#6881)

• fix #6910 sort key prioritizes build string over build number (#6911)

• fix #6914, #6691 conda can fail to update packages even though newer versions exist (#6921)

• fix #6899 handle Unicode output in activate commands (#6909)

5.14. 4.4.11 (2018-02-23) 107

conda Documentation, Release 4.6.1

5.15 4.4.10 (2018-02-09)

5.15.1 Bug Fixes

• fix #6837 require at least futures 3.0.0 (#6855)

• fix #6852 ensure temporary path is writable (#6856)

• fix #6833 improve feature mismatch metric (via 4.3.34 #6853)

5.16 4.4.9 (2018-02-06)

5.16.1 Improvements

• resolve #6632 display package removal plan when deleting an env (#6801)

5.16.2 Bug Fixes

• fix #6531 don’t drop credentials for conda-build workaround (#6798)

• fix external command execution issue (#6789)

• fix #5792 conda env export error common in path (#6795)

• fix #6390 add CorruptedEnvironmentError (#6778)

• fix #5884 allow –insecure CLI flag without contradicting meaning of ssl_verify (#6782)

• fix MatchSpec.match() accepting dict (#6808)

• fix broken Anaconda Prompt for users with spaces in paths (#6825)

• JSONDecodeError was added in Python 3.5 (#6848)

• fix #6796 update PATH/prompt on reactivate (#6828)

• fix #6401 non-ascii characters on windows using expanduser (#6847)

• fix #6824 import installers before invoking any (#6849)

5.17 4.4.8 (2018-01-25)

5.17.1 Improvements

• allow falsey values for default_python to avoid pinning python (#6682)

• resolve #6700 add message for no space left on device (#6709)

• make variable ‘sourced’ local for posix shells (#6726)

• add column headers to conda list results (#5726)

108 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.17.2 Bug Fixes

• fix #6713 allow parenthesis in prefix path for conda.bat (#6722)

• fix #6684 –force message (#6723)

• fix #6693 KeyError with ‘–update-deps’ (#6694)

• fix aggressive_update_packages availability (#6727)

• fix #6745 don’t truncate channel priority map in conda installer (#6746)

• add workaround for system Python usage by lsb_release (#6769)

• fix #6624 can’t start new thread (#6653)

• fix #6628 ‘conda install –rev’ in conda 4.4 (#6724)

• fix #6707 FileNotFoundError when extracting tarball (#6708)

• fix #6704 unexpected token in conda.bat (#6710)

• fix #6208 return for no pip in environment (#6784)

• fix #6457 env var cleanup (#6790)

• fix #6645 escape paths for argparse help (#6779)

• fix #6739 handle unicode in environment variables for py2 activate (#6777)

• fix #6618 RepresenterError with ‘conda config –set’ (#6619)

• fix #6699 suppress memory error upload reports (#6776)

• fix #6770 CRLF for cmd.exe (#6775)

• fix #6514 add message for case-insensitive filesystem errors (#6764)

• fix #6537 AttributeError value for url not set (#6754)

• fix #6748 only warn if unable to register environment due to EACCES (#6752)

5.18 4.4.7 (2018-01-08)

5.18.1 Improvements

• resolve #6650 add upgrade message for unicode errors in python 2 (#6651)

5.18.2 Bug Fixes

• fix #6643 difference between == and exact_match_ (#6647)

• fix #6620 KeyError(u’CONDA_PREFIX’,) (#6652)

• fix #6661 remove env from environments.txt (#6662)

• fix #6629 ‘conda update –name’ AssertionError (#6656)

• fix #6630 repodata AssertionError (#6657)

• fix #6626 add setuptools as constrained dependency (#6654)

• fix #6659 conda list explicit should be dependency sorted (#6671)

5.18. 4.4.7 (2018-01-08) 109

conda Documentation, Release 4.6.1

• fix #6665 KeyError for channel ‘<unknown>’ (#6668, #6673)

• fix #6627 AttributeError on ‘conda activate’ (#6655)

5.19 4.4.6 (2017-12-31)

5.19.1 Bug Fixes

• fix #6612 do not assume Anaconda Python on Windows nor Librarybin hack (#6615)

• recipe test improvements and associated bug fixes (#6614)

5.20 4.4.5 (2017-12-29)

5.20.1 Bug Fixes

• fix #6577, #6580 single quote in PS1 (#6585)

• fix #6584 os.getcwd() FileNotFound (#6589)

• fix #6592 deactivate command order (#6602)

• fix #6579 python not recognized as command (#6588)

• fix #6572 cached repodata PermissionsError (#6573)

• change instances of ‘root’ to ‘base’ (#6598)

• fix #6607 use subprocess rather than execv for conda command extensions (#6609)

• fix #6581 git-bash activation (#6587)

• fix #6599 space in path to base prefix (#6608)

5.21 4.4.4 (2017-12-24)

5.21.1 Improvements

• add SUDO_ env vars to info reports (#6563)

• add additional information to the #6546 exception (#6551)

5.21.2 Bug Fixes

• fix #6548 ‘conda update’ installs packages not in prefix #6550

• fix #6546 update after creating an empty env (#6568)

• fix #6557 conda list FileNotFoundError (#6558)

• fix #6554 package cache FileNotFoundError (#6555)

• fix #6529 yaml parse error (#6560)

• fix #6562 repodata_record.json permissions error stack trace (#6564)

110 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• fix #6520 –use-local flag (#6526)

5.22 4.4.3 (2017-12-22)

5.22.1 Improvements

• adjust error report message (#6534)

5.22.2 Bug Fixes

• fix #6530 package cache JsonDecodeError / ValueError (#6533)

• fix #6538 BrokenPipeError (#6540)

• fix #6532 remove anaconda metapackage hack (#6539)

• fix #6536 ‘conda env export’ for old versions of pip (#6535)

• fix #6541 py2 and unicode in environments.txt (#6542)

5.22.3 Non-User-Facing Changes

• regression tests for #6512 (#6515)

5.23 4.4.2 (2017-12-22)

5.23.1 Deprecations/Breaking Changes

• resolve #6523 don’t prune with –update-all (#6524)

5.23.2 Bug Fixes

• fix #6508 environments.txt permissions error stack trace (#6511)

• fix #6522 error message formatted incorrectly (#6525)

• fix #6516 hold channels over from get_index to install_actions (#6517)

5.24 4.4.1 (2017-12-21)

5.24.1 Bug Fixes

• fix #6512 reactivate does not accept arguments (#6513)

5.22. 4.4.3 (2017-12-22) 111

conda Documentation, Release 4.6.1

5.25 4.4.0 (2017-12-20)

5.25.1 Recommended change to enable conda in your shell

With the release of conda 4.4, we recommend a change to how the conda command is made available to your shell
environment. All the old methods still work as before, but you’ll need the new method to enable the new conda
activate and conda deactivate commands.

For the “Anaconda Prompt” on Windows, there is no change.

For Bourne shell derivatives (bash, zsh, dash, etc.), you likely currently have a line similar to:

export PATH="/opt/conda/bin:$PATH"

in your ~/.bashrc file (or ~/.bash_profile file on macOS). The effect of this line is that your base environment is put on
PATH, but without actually activating that environment. (In 4.4 we’ve renamed the ‘root’ environment to the ‘base’
environment.) With conda 4.4, we recommend removing the line where the PATH environment variable is modified,
and replacing it with:

. /opt/conda/etc/profile.d/conda.sh
conda activate base

In the above, it’s assumed that /opt/conda is the location where you installed miniconda or Anaconda. It may also be
something like ~/Anaconda3 or ~/miniconda2.

For system-wide conda installs, to make the conda command available to all users, rather than manipulating individual
~/.bashrc (or ~/.bash_profile) files for each user, just execute once:

$ sudo ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh

This will make the conda command itself available to all users, but conda’s base (root) environment will not be
activated by default. Users will still need to run conda activate base to put the base environment on PATH and gain
access to the executables in the base environment.

After updating to conda 4.4, we also recommend pinning conda to a specific channel. For example, executing the
command:

$ conda config --system --add pinned_packages conda-canary::conda

will make sure that whenever conda is installed or changed in an environment, the source of the package is always
being pulled from the conda-canary channel. This will be useful for people who use conda-forge, to prevent conda
from flipping back and forth between 4.3 and 4.4.

5.25.2 New Feature Highlights

• conda activate: The logic and mechanisms underlying environment activation have been reworked. With conda
4.4, conda activate and conda deactivate are now the preferred commands for activating and deactivating en-
vironments. You’ll find they are much more snappy than the source activate and source deactivate commands
from previous conda versions. The conda activate command also has advantages of (1) being universal across
all OSes, shells, and platforms, and (2) not having path collisions with scripts from other packages like python
virtualenv’s activate script.

• constrained, optional dependencies: Conda now allows a package to constrain versions of other packages
installed alongside it, even if those constrained packages are not themselves hard dependencies for that package.
In other words, it lets a package specify that, if another package ends up being installed into an environment,
it must at least conform to a certain version specification. In effect, constrained dependencies are a type of

112 Chapter 5. Release notes

conda Documentation, Release 4.6.1

“reverse” dependency. It gives a tool to a parent package to exclude other packages from an environment that
might otherwise want to depend on it.

Constrained optional dependencies are supported starting with conda-build 3.0 (via conda/conda-build#2001).
A new run_constrained keyword, which takes a list of package specs similar to the run keyword, is recognized
under the requirements section of meta.yaml. For backward compatibility with versions of conda older than
4.4, a requirement may be listed in both the run and the run_constrained section. In that case older versions of
conda will see the package as a hard dependency, while conda 4.4 will understand that the package is meant to
be optional.

Optional, constrained dependencies end up in repodata.json under a constrains keyword, parallel to the depends
keyword for a package’s hard dependencies.

• enhanced package query language: Conda has a built-in query language for searching for and matching
packages, what we often refer to as MatchSpec. The MatchSpec is what users input on the command line when
they specify packages for create, install, update, and remove operations. With this release, MatchSpec (rather
than a regex) becomes the default input for conda search. We have also substantially enhanced our MatchSpec
query language.

For example:

conda install conda-forge::python

is now a valid command, which specifies that regardless of the active list of channel priorities, the python
package itself should come from the conda-forge channel. As before, the difference between python=3.5 and
python==3.5 is that the first contains a “fuzzy” version while the second contains an exact version. The fuzzy
spec will match all python packages with versions >=3.5 and <3.6. The exact spec will match only python
packages with version 3.5, 3.5.0, 3.5.0.0, etc. The canonical string form for a MatchSpec is thus:

(channel::)name(version(build_string))

which should feel natural to experienced conda users. Specifications however are often necessarily more com-
plicated than this simple form can support, and for these situations we’ve extended the specification to include
an optional square bracket [] component containing comma-separated key-value pairs to allow matching on
most any field contained in a package’s metadata. Take, for example:

conda search 'conda-forge/linux-64::*[md5=e42a03f799131d5af4196ce31a1084a7]' --
→˓info

which results in information for the single package:

cytoolz 0.8.2 py35_0

file name : cytoolz-0.8.2-py35_0.tar.bz2
name : cytoolz
version : 0.8.2
build string: py35_0
build number: 0
size : 1.1 MB
arch : x86_64
platform : Platform.linux
license : BSD 3-Clause
subdir : linux-64
url : https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.8.2-py35_
→˓0.tar.bz2
md5 : e42a03f799131d5af4196ce31a1084a7
dependencies:

(continues on next page)

5.25. 4.4.0 (2017-12-20) 113

https://github.com/conda/conda-build/pull/2001

conda Documentation, Release 4.6.1

(continued from previous page)

- python 3.5*
- toolz >=0.8.0

The square bracket notation can also be used for any field that we match on outside the package
name, and will override information given in the “simple form” position. To give a contrived example,
python==3.5[version=’>=2.7,<2.8’] will match 2.7.* versions and not 3.5.

• environments track user-requested state: Building on our enhanced MatchSpec query language, conda en-
vironments now also track and differentiate (a) packages added to an environment because of an explicit user
request from (b) packages brought into an environment to satisfy dependencies. For example, executing:

conda install conda-forge::scikit-learn

will confine all future changes to the scikit-learn package in the environment to the conda-forge channel, until
the spec is changed again. A subsequent command conda install scikit-learn=0.18 would drop the conda-forge
channel restriction from the package. And in this case, scikit-learn is the only user-defined spec, so the solver
chooses dependencies from all configured channels and all available versions.

• errors posted to core maintainers: In previous versions of conda, unexpected errors resulted in a request
for users to consider posting the error as a new issue on conda’s github issue tracker. In conda 4.4, we’ve
implemented a system for users to opt-in to sending that same error report via an HTTP POST request directly
to the core maintainers.

When an unexpected error is encountered, users are prompted with the error report followed by a [y/N] input.
Users can elect to send the report, with ‘no’ being the default response. Users can also permanently opt-in or
opt-out, thereby skipping the prompt altogether, using the boolean report_errors configuration parameter.

• various UI improvements: To push through some of the big leaps with transactions in conda 4.3, we accepted
some regressions on progress bars and other user interface features. All of those indicators of progress, and
more, have been brought back and further improved.

• aggressive updates: Conda now supports an aggressive_update_packages configuration parameter that holds
a sequence of MatchSpec strings, in addition to the pinned_packages configuration parameter. Currently, the
default value contains the packages ca-certificates, certifi, and openssl. When manipulating configuration with
the conda config command, use of the –system and –env flags will be especially helpful here. For example:

conda config --add aggressive_update_packages defaults::pyopenssl --system

would ensure that, system-wide, solves on all environments enforce using the latest version of pyopenssl from
the defaults channel.

`conda config --add pinned_packages python=2.7 --env`

would lock all solves for the current active environment to python versions matching 2.7.*.

• other configuration improvements: In addition to conda config –describe, which shows detailed descriptions
and default values for all available configuration parameters, we have a new conda config –write-default com-
mand. This new command simply writes the contents of conda config –describe to a condarc file, which is a
great starter template. Without additional arguments, the command will write to the .condarc file in the user’s
home directory. The command also works with the –system, –env, and –file flags to write the contents to alternate
locations.

Conda exposes a tremendous amount of flexibility via configuration. For more information, The Conda Config-
uration Engine for Power Users blog post is a good resource.

114 Chapter 5. Release notes

https://www.continuum.io/blog/developer-blog/conda-configuration-engine-power-users
https://www.continuum.io/blog/developer-blog/conda-configuration-engine-power-users

conda Documentation, Release 4.6.1

5.25.3 Deprecations/Breaking Changes

• the conda ‘root’ environment is now generally referred to as the ‘base’ environment

• Conda 4.4 now warns when available information about per-path sha256 sums and file sizes do not match the
recorded information. The warning is scheduled to be an error in conda 4.5. Behavior is configurable via the
safety_checks configuration parameter.

• remove support for with_features_depends (#5191)

• resolve #5468 remove –alt-hint from CLI API (#5469)

• resolve #5834 change default value of ‘allow_softlinks’ from True to False (#5835)

• resolve #5842 add deprecation warnings for ‘conda env upload’ and ‘conda env attach’ (#5843)

5.25.4 API

• Add Solver from conda.core.solver with three methods to conda.api (4.4.0rc1) (#5838)

5.25.5 Improvements

• constrained, optional dependencies (#4982)

• conda shell function (#5044, #5141, #5162, #5169, #5182, #5210, #5482)

• resolve #5160 conda xontrib plugin (#5157)

• resolve #1543 add support and tests for –no-deps and –only-deps (#5265)

• resolve #988 allow channel name to be part of the package name spec (#5365, #5791)

• resolve #5530 add ability for users to choose to post unexpected errors to core maintainers (#5531, #5571,
#5585)

• Solver, UI, History, and Other (#5546, #5583, #5740)

• improve ‘conda search’ to leverage new MatchSpec query language (#5597)

• filter out unwritable package caches from conda clean command (#4620)

• envs_manager, requested spec history, declarative solve, and private env tests (#4676, #5114, #5094, #5145,
#5492)

• make python entry point format match pip entry points (#5010)

• resolve #5113 clean up CLI imports to improve process startup time (#4799)

• resolve #5121 add features/track_features support for MatchSpec (#5054)

• resolve #4671 hold verify backoff count in transaction context (#5122)

• resolve #5078 record package metadata after tarball extraction (#5148)

• resolve #3580 support stacking environments (#5159)

• resolve #3763, #4378 allow pip requirements.txt syntax in environment files (#3969)

• resolve #5147 add ‘config files’ to conda info (#5269)

• use –format=json to parse list of pip packages (#5205)

• resolve #1427 remove startswith ‘.’ environment name constraint (#5284)

• link packages from extracted tarballs when tarball is gone (#5289)

5.25. 4.4.0 (2017-12-20) 115

conda Documentation, Release 4.6.1

• resolve #2511 accept config information from stdin (#5309)

• resolve #4302 add ability to set map parameters with conda config (#5310)

• resolve #5256 enable conda config –get for all primitive parameters (#5312)

• resolve #1992 add short flag -C for –use-index-cache (#5314)

• resolve #2173 add –quiet option to conda clean (#5313)

• resolve #5358 conda should exec to subcommands, not subprocess (#5359)

• resolve #5411 add ‘conda config –write-default’ (#5412)

• resolve #5081 make pinned packages optional dependencies (#5414)

• resolve #5430 eliminate current deprecation warnings (#5422)

• resolve #5470 make stdout/stderr capture in python_api customizable (#5471)

• logging simplifications/improvements (#5547, #5578)

• update license information (#5568)

• enable threadpool use for repodata collection by default (#5546, #5587)

• conda info now raises PackagesNotFoundError (#5655)

• index building optimizations (#5776)

• fix #5811 change safety_checks default to ‘warn’ for conda 4.4 (4.4.0rc1) (#5824)

• add constrained dependencies to conda’s own recipe (4.4.0rc1) (#5823)

• clean up parser imports (4.4.0rc2) (#5844)

• resolve #5983 add –download-only flag to create, install, and update (4.4.0rc2) (#5988)

• add ca-certificates and certifi to aggressive_update_packages default (4.4.0rc2) (#5994)

• use environments.txt to list all known environments (4.4.0rc2) (#6313)

• resolve #5417 ensure unlink order is correctly sorted (4.4.0) (#6364)

• resolve #5370 index is only prefix and cache in –offline mode (4.4.0) (#6371)

• reduce redundant sys call during file copying (4.4.0rc3) (#6421)

• enable aggressive_update_packages (4.4.0rc3) (#6392)

• default conda.sh to dash if otherwise can’t detect (4.4.0rc3) (#6414)

• canonicalize package names when comparing with pip (4.4.0rc3) (#6438)

• add target prefix override configuration parameter (4.4.0rc3) (#6413)

• resolve #6194 warn when conda is outdated (4.4.0rc3) (#6370)

• add information to displayed error report (4.4.0rc3) (#6437)

• csh wrapper (4.4.0) (#6463)

• resolve #5158 –override-channels (4.4.0) (#6467)

• fish update for conda 4.4 (4.4.0) (#6475, #6502)

• skip an unnecessary environments.txt rewrite (4.4.0) (#6495)

116 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.25.6 Bug Fixes

• fix some conda-build compatibility issues (#5089)

• resolve #5123 export toposort (#5124)

• fix #5132 signal handler can only be used in main thread (#5133)

• fix orphaned –clobber parser arg (#5188)

• fix #3814 don’t remove directory that’s not a conda environment (#5204)

• fix #4468 _license stack trace (#5206)

• fix #4987 conda update –all no longer displays full list of packages (#5228)

• fix #3489 don’t error on remove –all if environment doesn’t exist (#5231)

• fix #1509 bash doesn’t need full path for pre/post link/unlink scripts on unix (#5252)

• fix #462 add regression test (#5286)

• fix #5288 confirmation prompt doesn’t accept no (#5291)

• fix #1713 ‘conda package -w’ is case dependent on Windows (#5308)

• fix #5371 try falling back to pip’s vendored requests if no requests available (#5372)

• fix #5356 skip root logger configuration (#5380)

• fix #5466 scrambled URL of non-alias channel with token (#5467)

• fix #5444 environment.yml file not found (#5475)

• fix #3200 use proper unbound checks in bash code and test (#5476)

• invalidate PrefixData cache on rm_rf for conda-build (#5491, #5499)

• fix exception when generating JSON output (#5628)

• fix target prefix determination (#5642)

• use proxy to avoid segfaults (#5716)

• fix #5790 incorrect activation message (4.4.0rc1) (#5820)

• fix #5808 assertion error when loading package cache (4.4.0rc1) (#5815)

• fix #5809 _pip_install_via_requirements got an unexpected keyword argument ‘prune’ (4.4.0rc1)
(#5814)

• fix #5811 change safety_checks default to ‘warn’ for conda 4.4 (4.4.0rc1) (#5824)

• fix #5825 –json output format (4.4.0rc1) (#5831)

• fix force_reinstall for case when packages aren’t actually installed (4.4.0rc1) (#5836)

• fix #5680 empty pip subsection error in environment.yml (4.4.0rc2) (#6275)

• fix #5852 bad tokens from history crash conda installs (4.4.0rc2) (#6076)

• fix #5827 no error message on invalid command (4.4.0rc2) (#6352)

• fix exception handler for ‘conda activate’ (4.4.0rc2) (#6365)

• fix #6173 double prompt immediately after conda 4.4 upgrade (4.4.0rc2) (#6351)

• fix #6181 keep existing pythons pinned to minor version (4.4.0rc2) (#6363)

• fix #6201 incorrect subdir shown for conda search when package not found (4.4.0rc2) (#6367)

5.25. 4.4.0 (2017-12-20) 117

conda Documentation, Release 4.6.1

• fix #6045 help message and zsh shift (4.4.0rc3) (#6368)

• fix noarch python package resintall (4.4.0rc3) (#6394)

• fix #6366 shell activation message (4.4.0rc3) (#6369)

• fix #6429 AttributeError on ‘conda remove’ (4.4.0rc3) (#6434)

• fix #6449 problems with ‘conda info –envs’ (#6451)

• add debug exception for #6430 (4.4.0rc3) (#6435)

• fix #6441 NotImplementedError on ‘conda list’ (4.4.0rc3) (#6442)

• fix #6445 scale back directory activation in PWD (4.4.0rc3) (#6447)

• fix #6283 no-deps for conda update case (4.4.0rc3) (#6448)

• fix #6419 set PS1 in python code (4.4.0rc3) (#6446)

• fix #6466 sp_dir doesn’t exist (#6470)

• fix #6350 –update-all removes too many packages (4.4.0) (#6491)

• fix #6057 unlink-link order for python noarch packages on windows 4.4.x (4.4.0) (#6494)

5.25.7 Non-User-Facing Changes

• eliminate index modification in Resolve init (#4333)

• new MatchSpec implementation (#4158, #5517)

• update conda.recipe for 4.4 (#5086)

• resolve #5118 organization and cleanup for 4.4 release (#5115)

• remove unused disk space check instructions (#5167)

• localfs adapter tests (#5181)

• extra config command tests (#5185)

• add coverage for confirm (#5203)

• clean up FileNotFoundError and DirectoryNotFoundError (#5237)

• add assertion that a path only has a single hard link before rewriting prefixes (#5305)

• remove pycrypto as requirement on windows (#5326)

• import cleanup, dead code removal, coverage improvements, and other housekeeping (#5472, #5474, #5480)

• rename CondaFileNotFoundError to PathNotFoundError (#5521)

• work toward repodata API (#5267)

• rename PackageNotFoundError to PackagesNotFoundError and fix message formatting (#5602)

• update conda 4.4 bld.bat windows recipe (#5573)

• remove last remnant of CondaEnvRuntimeError (#5643)

• fix typo (4.4.0rc2) (#6043)

• replace Travis-CI with CircleCI (4.4.0rc2) (#6345)

• key-value features (#5645); reverted in 4.4.0rc2 (#6347, #6492)

• resolve #6431 always add env_vars to info_dict (4.4.0rc3) (#6436)

118 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• move shell inside conda directory (4.4.0) (#6479)

• remove dead code (4.4.0) (#6489)

5.26 4.3.34 (2018-02-09)

5.26.1 Bug Fixes

• fix #6833 improve feature mismatch metric (#6853)

5.27 4.3.33 (2018-01-24)

5.27.1 Bug Fixes

• fix #6718 broken ‘conda install –rev’ (#6719)

• fix #6765 adjust the feature score assigned to packages not installed (#6766)

5.28 4.3.32 (2018-01-10)

5.28.1 Improvements

• resolve #6711 fall back to copy/unlink for EINVAL, EXDEV rename failures (#6712)

5.28.2 Bug Fixes

• fix #6057 unlink-link order for python noarch packages on windows (#6277)

• fix #6509 custom_channels incorrect in ‘conda config –show’ (#6510)

5.29 4.3.31 (2017-12-15)

5.29.1 Improvements

• add delete_trash to conda_env create (#6299)

5.29.2 Bug Fixes

• fix #6023 assertion error for temp file (#6154)

• fix #6220 –no-builds flag for ‘conda env export’ (#6221)

• fix #6271 timestamp prioritization results in undesirable race-condition (#6279)

5.26. 4.3.34 (2018-02-09) 119

conda Documentation, Release 4.6.1

5.29.3 Non-User-Facing Changes

• fix two failing integration tests after anaconda.org API change (#6182)

• resolve #6243 mark root as not writable when sys.prefix is not a conda environment (#6274)

• add timing instrumentation (#6458)

5.30 4.3.30 (2017-10-17)

5.30.1 Improvements

• address #6056 add additional proxy variables to ‘conda info –all’ (#6083)

5.30.2 Bug Fixes

• address #6164 move add_defaults_to_specs after augment_specs (#6172)

• fix #6057 add additional detail for message ‘cannot link source that does not exist’ (#6082)

• fix #6084 setting default_channels from CLI raises NotImplementedError (#6085)

5.31 4.3.29 (2017-10-09)

5.31.1 Bug Fixes

• fix #6096 coerce to millisecond timestamps (#6131)

5.32 4.3.28 (2017-10-06)

5.32.1 Bug Fixes

• fix #5854 remove imports of pkg_resources (#5991)

• fix millisecond timestamps (#6001)

5.33 4.3.27 (2017-09-18)

5.33.1 Bug Fixes

• fix #5980 always delete_prefix_from_linked_data in rm_rf (#5982)

120 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.34 4.3.26 (2017-09-15)

5.34.1 Deprecations/Breaking Changes

• resolve #5922 prioritize channels within multi-channels (#5923)

• add https://repo.continuum.io/pkgs/main to defaults multi-channel (#5931)

5.34.2 Improvements

• add a channel priority minimization pass to solver logic (#5859)

• invoke cmd.exe with /D for pre/post link/unlink scripts (#5926)

• add boto3 use to s3 adapter (#5949)

5.34.3 Bug Fixes

• always remove linked prefix entry with rm_rf (#5846)

• resolve #5920 bump repodata pickle version (#5921)

• fix msys2 activate and deactivate (#5950)

5.35 4.3.25 (2017-08-16)

5.35.1 Deprecations/Breaking Changes

• resolve #5834 change default value of ‘allow_softlinks’ from True to False (#5839)

5.35.2 Improvements

• add non-admin check to optionally disable non-privileged operation (#5724)

• add extra warning message to always_softlink configuration option (#5826)

5.35.3 Bug Fixes

• fix #5763 channel url string splitting error (#5764)

• fix regex for repodata _mod and _etag (#5795)

• fix uncaught OSError for missing device (#5830)

5.36 4.3.24 (2017-07-31)

5.36.1 Bug Fixes

• fix #5708 package priority sort order (#5733)

5.34. 4.3.26 (2017-09-15) 121

https://repo.continuum.io/pkgs/main

conda Documentation, Release 4.6.1

5.37 2017-07-21 4.3.23

5.37.1 Improvements

• resolve #5391 PackageNotFound and NoPackagesFoundError clean up (#5506)

5.37.2 Bug Fixes

• fix #5525 too many Nones in CondaHttpError (#5526)

• fix #5508 assertion failure after test file not cleaned up (#5533)

• fix #5523 catch OSError when home directory doesn’t exist (#5549)

• fix #5574 traceback formatting (#5580)

• fix #5554 logger configuration levels (#5555)

• fix #5649 create_default_packages configuration (#5703)

5.38 2017-06-12 4.3.22

5.38.1 Improvements

• resolve #5428 clean up cli import in conda 4.3.x (#5429)

• resolve #5302 add warning when creating environment with space in path (#5477)

• for ftp connections, ignore host IP from PASV as it is often wrong (#5489)

• expose common race condition exceptions in exports for conda-build (#5498)

5.38.2 Bug Fixes

• fix #5451 conda clean –json bug (#5452)

• fix #5400 confusing deactivate message (#5473)

• fix #5459 custom subdir channel parsing (#5478)

• fix #5483 problem with setuptools / pkg_resources import (#5496)

5.39 2017-05-25 4.3.21

5.39.1 Bug Fixes

• fix #5420 conda-env update error (#5421)

• fix #5425 is admin on win int not callable (#5426)

122 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.40 2017-05-23 4.3.20

5.40.1 Improvements

• resolve #5217 skip user confirm in python_api, force always_yes (#5404)

5.40.2 Bug Fixes

• fix #5367 conda info always shows ‘unknown’ for admin indicator on Windows (#5368)

• fix #5248 drop plan description information that might not alwasy be accurate (#5373)

• fix #5378 duplicate log messages (#5379)

• fix #5298 record has ‘build’, not ‘build_string’ (#5382)

• fix #5384 silence logging info to avoid interfering with JSON output (#5393)

• fix #5356 skip root/conda logger init for cli.python_api (#5405)

5.40.3 Non-User-Facing Changes

• avoid persistent state after channel priority test (#5392)

• resolve #5402 add regression test for #5384 (#5403)

• clean up inner function definition inside for loop (#5406)

5.41 2017-05-18 4.3.19

5.41.1 Improvements

• resolve #3689 better error messaging for missing anaconda-client (#5276)

• resolve #4795 conda env export lacks -p flag (#5275)

• resolve #5315 add alias verify_ssl for ssl_verify (#5316)

• resolve #3399 add netrc existence/location to ‘conda info’ (#5333)

• resolve #3810 add –prefix to conda env update (#5335)

5.41.2 Bug Fixes

• fix #5272 conda env export ugliness under python2 (#5273)

• fix #4596 warning message from pip on conda env export (#5274)

• fix #4986 –yes not functioning for conda clean (#5311)

• fix #5329 unicode errors on Windows (#5328, #5357)

• fix sys_prefix_unfollowed for Python 3 (#5334)

• fix #5341 –json flag with conda-env (#5342)

• fix 5321 ensure variable PROMPT is set in activate.bat (#5351)

5.40. 2017-05-23 4.3.20 123

conda Documentation, Release 4.6.1

5.41.3 Non-User-Facing Changes

• test conda 4.3 with requests 2.14.2 (#5281)

• remove pycrypto as requirement on windows (#5325)

• fix typo avaialble -> available (#5345)

• fix test failures related to menuinst update (#5344, #5362)

5.42 2017-05-09 4.3.18

5.42.1 Improvements

• resolve #4224 warn when pysocks isn’t installed (#5226)

• resolve #5229 add –insecure flag to skip ssl verification (#5230)

• resolve #4151 add admin indicator to conda info on windows (#5241)

5.42.2 Bug Fixes

• fix #5152 conda info spacing (#5166)

• fix –use-index-cache actually hitting the index cache (#5134)

• backport LinkPathAction verify from 4.4 (#5171)

• fix #5184 stack trace on invalid map configuration parameter (#5186)

• fix #5189 stack trace on invalid sequence config param (#5192)

• add support for the linux-aarch64 platform (#5190)

• fix repodata fetch with the –offline flag (#5146)

• fix #1773 conda remove spell checking (#5176)

• fix #3470 reduce excessive error messages (#5195)

• fix #1597 make extra sure –dry-run doesn’t take any actions (#5201)

• fix #3470 extra newlines around exceptions (#5200)

• fix #5214 install messages for ‘nothing_to_do’ case (#5216)

• fix #598 stack trace for condarc write permission denied (#5232)

• fix #4960 extra information when exception can’t be displayed (#5236)

• fix #4974 no matching dist in linked data for prefix (#5239)

• fix #5258 give correct element types for conda config –describe (#5259)

• fix #4911 separate shutil.copy2 into copy and copystat (#5261)

124 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.42.3 Non-User-Facing Changes

• resolve #5138 add test of rm_rf of symlinked files (#4373)

• resolve #4516 add extra trace-level logging (#5249, #5250)

• add tests for –update-deps flag (#5264)

5.43 2017-04-24 4.3.17

5.43.1 Improvements

• fall back to copy if hardlink fails (#5002)

• add timestamp metadata for tiebreaking conda-build 3 hashed packages (#5018)

• resolve #5034 add subdirs configuration parameter (#5030)

• resolve #5081 make pinned packages optional/constrained dependencies (#5088)

• resolve #5108 improve behavior and add tests for spaces in paths (#4786)

5.43.2 Bug Fixes

• quote prefix paths for locations with spaces (#5009)

• remove binstar logger configuration overrides (#4989)

• fix #4969 error in DirectoryNotFoundError (#4990)

• fix #4998 pinned string format (#5011)

• fix #5039 collecting main_info shouldn’t fail on requests import (#5090)

• fix #5055 improve bad token message for anaconda.org (#5091)

• fix #5033 only re-register valid signal handlers (#5092)

• fix #5028 imports in main_list (#5093)

• fix #5073 allow client_ssl_cert{_key} to be of type None (#5096)

• fix #4671 backoff for package validate race condition (#5098)

• fix #5022 gnu_get_libc_version => linux_get_libc_version (#5099)

• fix #4849 package name match bug (#5103)

• fixes #5102 allow proxy_servers to be of type None (#5107)

• fix #5111 incorrect typify for str + NoneType (#5112)

5.43.3 Non-User-Facing Changes

• resolve #5012 remove CondaRuntimeError and RuntimeError (#4818)

• full audit ensuring relative import paths within project (#5090)

• resolve #5116 refactor conda/cli/activate.py to help menuinst (#4406)

5.43. 2017-04-24 4.3.17 125

conda Documentation, Release 4.6.1

5.44 2017-03-30 4.3.16

5.44.1 Improvements

• additions to configuration SEARCH_PATH to improve consistency (#4966)

• add ‘conda config –describe’ and extra config documentation (#4913)

• enable packaging pinning in condarc using pinned_packages config parameter as beta feature (#4921, #4964)

5.44.2 Bug Fixes

• fix #4914 handle directory creation on top of file paths (#4922)

• fix #3982 issue with CONDA_ENV and using powerline (#4925)

• fix #2611 update instructions on how to source conda.fish (#4924)

• fix #4860 missing information on package not found error (#4935)

• fix #4944 command not found error error (#4963)

5.45 2017-03-20 4.3.15

5.45.1 Improvements

• allow pkgs_dirs to be configured using conda config (#4895)

5.45.2 Bug Fixes

• remove incorrect elision of delete_prefix_from_linked_data() (#4814)

• fix envs_dirs order for read-only root prefix (#4821)

• fix break-point in conda clean (#4801)

• fix long shebangs when creating entry points (#4828)

• fix spelling and typos (#4868, #4869)

• fix #4840 TypeError reduce() of empty sequence with no initial value (#4843)

• fix zos subdir (#4875)

• fix exceptions triggered during activate (#4873)

5.46 2017-03-03 4.3.14

5.46.1 Improvements

• use cPickle in place of pickle for repodata (#4717)

• ignore pyc compile failure (#4719)

• use conda.exe for windows entry point executable (#4716, #4720)

126 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• localize use of conda_signal_handler (#4730)

• add skip_safety_checks configuration parameter (#4767)

• never symlink executables using ORIGIN (#4625)

• set activate.bat codepage to CP_ACP (#4558)

5.46.2 Bug Fixes

• fix #4777 package cache initialization speed (#4778)

• fix #4703 menuinst PathNotFoundException (#4709)

• ignore permissions error if user_site can’t be read (#4710)

• fix #4694 don’t import requests directly in models (#4711)

• fix #4715 include resources directory in recipe (#4716)

• fix CondaHttpError for URLs that contain ‘%’ (#4769)

• bug fixes for preferred envs (#4678)

• fix #4745 check for info/index.json with package is_extracted (#4776)

• make sure url gets included in CondaHTTPError (#4779)

• fix #4757 map-type configs set to None (#4774)

• fix #4788 partial package extraction (#4789)

5.46.3 Non-User-Facing Changes

• test coverage improvement (#4607)

• CI configuration improvements (#4713, #4773, #4775)

• allow sha256 to be None (#4759)

• add cache_fn_url to exports (#4729)

• add unicode paths for PY3 integration tests (#4760)

• additional unit tests (#4728, #4783)

• fix conda-build compatibility and tests (#4785)

5.47 2017-02-17 4.3.13

5.47.1 Improvements

• resolve #4636 environment variable expansion for pkgs_dirs (#4637)

• link, symlink, islink, and readlink for Windows (#4652, #4661)

• add extra information to CondaHTTPError (#4638, #4672)

5.47. 2017-02-17 4.3.13 127

conda Documentation, Release 4.6.1

5.47.2 Bug Fixes

• maximize requested builds after feature determination (#4647)

• fix #4649 incorrect assert statement concerning package cache directory (#4651)

• multi-user mode bug fixes (#4663)

5.47.3 Non-User-Facing Changes

• path_actions unit tests (#4654)

• remove dead code (#4369, #4655, #4660)

• separate repodata logic from index into a new core/repodata.py module (#4669)

5.48 2017-02-14 4.3.12

5.48.1 Improvements

• prepare conda for uploading to pypi (#4619)

• better general http error message (#4627)

• disable old python noarch warning (#4576)

5.48.2 Bug Fixes

• fix UnicodeDecodeError for ensure_text_type (#4585)

• fix determination of if file path is writable (#4604)

• fix #4592 BufferError cannot close exported pointers exist (#4628)

• fix run_script current working directory (#4629)

• fix pkgs_dirs permissions regression (#4626)

5.48.3 Non-User-Facing Changes

• fixes for tests when conda-bld directory doesn’t exist (#4606)

• use requirements.txt and Makefile for travis-ci setup (#4600, #4633)

• remove hasattr use from compat functions (#4634)

5.49 2017-02-09 4.3.11

5.49.1 Bug Fixes

• fix attribute error in add_defaults_to_specs (#4577)

128 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.50 2017-02-07 4.3.10

5.50.1 Improvements

• remove .json from pickle path (#4498)

• improve empty repodata noarch warning and error messages (#4499)

• don’t add python and lua as default specs for private envs (#4529, #4533)

• let default_python be None (#4547, #4550)

5.50.2 Bug Fixes

• fix #4513 null pointer exception for channel without noarch (#4518)

• fix ssl_verify set type (#4517)

• fix bug for windows multiuser (#4524)

• fix clone with noarch python packages (#4535)

• fix ipv6 for python 2.7 on Windows (#4554)

5.50.3 Non-User-Facing Changes

• separate integration tests with a marker (#4532)

5.51 2017-01-31 4.3.9

5.51.1 Improvements

• improve repodata caching for performance (#4478, #4488)

• expand scope of packages included by bad_installed (#4402)

• silence pre-link warning for old noarch (#4451)

• add configuration to optionally require noarch repodata (#4450)

• improve conda subprocessing (#4447)

• respect info/link.json (#4482)

5.51.2 Bug Fixes

• fix #4398 ‘hard’ was used for link type at one point (#4409)

• fixed “No matches for wildcard ‘$activate_d/*.fish’” warning (#4415)

• print correct activate/deactivate message for fish shell (#4423)

• fix ‘Dist’ object has no attribute ‘fn’ (#4424)

• fix noarch generic and add additional integration test (#4431)

• fix #4425 unknown encoding (#4433)

5.50. 2017-02-07 4.3.10 129

conda Documentation, Release 4.6.1

5.51.3 Non-User-Facing Changes

• fail CI on conda-build fail (#4405)

• run doctests (#4414)

• make index record mutable again (#4461)

• additional test for conda list –json (#4480)

5.52 2017-01-23 4.3.8

5.52.1 Bug Fixes

• fix #4309 ignore EXDEV error for directory renames (#4392)

• fix #4393 by force-renaming certain backup files if the path already exists (#4397)

5.53 2017-01-20 4.3.7

5.53.1 Bug Fixes

• actually revert json output for leaky plan (#4383)

• fix not raising on pre/post-link error (#4382)

• fix find_commands and find_executable for symlinks (#4387)

5.54 2017-01-18 4.3.6

5.54.1 Bug Fixes

• fix ‘Uncaught backoff with errno 41’ warning on windows (#4366)

• revert json output for leaky plan (#4349)

• audit os.environ setting (#4360)

• fix #4324 using old dist string instead of dist object (#4361)

• fix #4351 infinite recursion via code in #4120 (#4370)

• fix #4368 conda -h (#4367)

• workaround for symlink race conditions on activate (#4346)

5.55 2017-01-17 4.3.5

5.55.1 Improvements

• add exception message for corrupt repodata (#4315)

130 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.55.2 Bug Fixes

• fix package not being found in cache after download (#4297)

• fix logic for Content-Length mismatch (#4311, #4326)

• use unicode_escape after etag regex instead of utf-8 (#4325)

• fix #4323 central condarc file being ignored (#4327)

• fix #4316 a bug in deactivate (#4316)

• pass target_prefix as env_prefix regardless of is_unlink (#4332)

• pass positional argument ‘context’ to BasicClobberError (#4335)

5.55.3 Non-User-Facing Changes

• additional package pinning tests (#4317)

5.56 2017-01-13 4.3.4

5.56.1 Improvements

• vendor url parsing from urllib3 (#4289)

5.56.2 Bug Fixes

• fix some bugs in windows multi-user support (#4277)

• fix problems with channels of type <unknown> (#4290)

• include aliases for first command-line argument (#4279)

• fix for multi-line FTP status codes (#4276)

5.56.3 Non-User-Facing Changes

• make arch in IndexRecord a StringField instead of EnumField

• improve conda-build compatibility (#4266)

5.57 2017-01-10 4.3.3

5.57.1 Improvements

• respect Cache-Control max-age header for repodata (#4220)

• add ‘local_repodata_ttl’ configurability (#4240)

• remove questionable “nothing to install” logic (#4237)

• relax channel noarch requirement for 4.3; warn now, raise in future feature release (#4238)

5.56. 2017-01-13 4.3.4 131

conda Documentation, Release 4.6.1

• add additional info to setup.py warning message (#4258)

5.57.2 Bug Fixes

• remove features properly (#4236)

• do not use IFS to find activate/deactivate scripts to source (#4239)

• fix #4235 print message to stderr (#4241)

• fix relative path to python in activate.bat (#4242)

• fix args.channel references (#4245, #4246)

• ensure cache_fn_url right pad (#4255)

• fix #4256 subprocess calls must have env wrapped in str (#4259)

5.58 2017-01-06 4.3.2

5.58.1 Deprecations/Breaking Changes

• Further refine conda channels specification. To verify if the url of a channel represents a valid conda channel,
we check that noarch/repodata.json and/or noarch/repodata.json.bz2 exist, even if empty. (#3739)

5.58.2 Improvements

• add new ‘path_conflict’ and ‘clobber’ configuration options (#4119)

• separate fetch/extract pass for explicit URLs (#4125)

• update conda homepage to conda.io (#4180)

5.58.3 Bug Fixes

• fix pre/post unlink/link scripts (#4113)

• fix package version regex and bug in create_link (#4132)

• fix history tracking (#4143)

• fix index creation order (#4131)

• fix #4152 conda env export failure (#4175)

• fix #3779 channel UNC path encoding errors on windows (#4190)

• fix progress bar (#4191)

• use context.channels instead of args.channel (#4199)

• don’t use local cached repodata for file:// urls (#4209)

132 Chapter 5. Release notes

file://

conda Documentation, Release 4.6.1

5.58.4 Non-User-Facing Changes

• xfail anaconda token test if local token is found (#4124)

• fix open-ended test failures relating to python 3.6 release (#4145)

• extend timebomb for test_multi_channel_export (#4169)

• don’t unlink dists that aren’t in the index (#4130)

• add python 3.6 and new conda-build test targets (#4194)

5.59 2016-12-19 4.3.1

5.59.1 Improvements

• additional pre-transaction validation (#4090)

• export FileMode enum for conda-build (#4080)

• memoize disk permissions tests (#4091)

• local caching of repodata without remote server calls; new ‘repodata_timeout_secs’ configuration parameter
(#4094)

• performance tuning (#4104)

• add additional fields to dist object serialization (#4102)

5.59.2 Bug Fixes

• fix a noarch install bug on windows (#4071)

• fix a spec mismatch that resulted in python versions getting mixed during packaging (#4079)

• fix rollback linked record (#4092)

• fix #4097 keep split in PREFIX_PLACEHOLDER (#4100)

5.60 2016-12-14 4.3.0 Safety

5.60.1 New Features

• Unlink and Link Packages in a Single Transaction: In the past, conda hasn’t always been safe and defensive
with its disk-mutating actions. It has gleefully clobbered existing files, and mid-operation failures leave envi-
ronments completely broken. In some of the most severe examples, conda can appear to “uninstall itself.” With
this release, the unlinking and linking of packages for an executed command is done in a single transaction. If
a failure occurs for any reason while conda is mutating files on disk, the environment will be returned its pre-
vious state. While we’ve implemented some pre-transaction checks (verifying package integrity for example),
it’s impossible to anticipate every failure mechanism. In some circumstances, OS file permissions cannot be
fully known until an operation is attempted and fails. And conda itself is not without bugs. Moving forward,
unforeseeable failures won’t be catastrophic. (#3833, #4030)

5.59. 2016-12-19 4.3.1 133

conda Documentation, Release 4.6.1

• Progressive Fetch and Extract Transactions: Like package unlinking and linking, the download and extract
phases of package handling have also been given transaction-like behavior. The distinction is the rollback
on error is limited to a single package. Rather than rolling back the download and extract operation for all
packages, the single-package rollback prevents the need for having to re-download every package if an error is
encountered. (#4021, #4030)

• Generic- and Python-Type Noarch/Universal Packages: Along with conda-build 2.1.0, a noarch/universal
type for python packages is officially supported. These are much like universal python wheels. Files in a python
noarch package are linked into a prefix just like any other conda package, with the following additional features:

1. conda maps the site-packages directory to the correct location for the python version in the environment,

2. conda maps the python-scripts directory to either $PREFIX/bin or $PREFIX/Scripts depending on plat-
form,

3. conda creates the python entry points specified in the conda-build recipe, and

4. conda compiles pyc files at install time when prefix write permissions are guaranteed.

Python noarch packages must be “fully universal.” They cannot have OS- or python version-specific dependen-
cies. They cannot have OS- or python version-specific “scripts” files. If these features are needed, traditional
conda packages must be used. (#3712)

• Multi-User Package Caches: While the on-disk package cache structure has been preserved, the core logic
implementing package cache handling has had a complete overhaul. Writable and read-only package caches are
fully supported. (#4021)

• Python API Module: An oft requested feature is the ability to use conda as a python library, obviating the
need to “shell out” to another python process. Conda 4.3 includes a conda.cli.python_api module that facilitates
this use case. While we maintain the user-facing command-line interface, conda commands can be executed
in-process. There is also a conda.exports module to facilitate longer-term usage of conda as a library across
conda conda releases. However, conda’s python code is considered internal and private, subject to change at any
time across releases. At the moment, conda will not install itself into environments other than its original install
environment. (#4028)

• Remove All Locks: Locking has never been fully effective in conda, and it often created a false sense of
security. In this release, multi-user package cache support has been implemented for improved safety by hard-
linking packages in read-only caches to the user’s primary user package cache. Still, users are cautioned that
undefined behavior can result when conda is running in multiple process and operating on the same package
caches and/or environments. (#3862)

5.60.2 Deprecations/Breaking Changes

• Conda now has the ability to refuse to clobber existing files that are not within the unlink instructions of the
transaction. This behavior is configurable via the path_conflict configuration option, which has three possible
values: clobber, warn, and prevent. In 4.3, the default value will be clobber. That will give package maintainers
time to correct current incompatibilities within their package ecosystem. In 4.4, the default will switch to warn,
which means these operations continue to clobber, but the warning messages are displayed. In 4.5, the default
value will switch to prevent. As we tighten up the path_conflict constraint, a new command line flag –clobber
will loosen it back up on an ad hoc basis. Using –clobber overrides the setting for path_conflict to effectively
be clobber for that operation.

• Conda signed packages have been removed in 4.3. Vulnerabilities existed. An illusion of security is worse than
not having the feature at all. We will be incorporating The Update Framework into conda in a future feature
release. (#4064)

• Conda 4.4 will drop support for older versions of conda-build.

134 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.60.3 Improvements

• create a new “trace” log level enabled by -v -v -v or -vvv (#3833)

• allow conda to be installed with pip, but only when used as a library/dependency (#4028)

• the ‘r’ channel is now part of defaults (#3677)

• private environment support for conda (#3988)

• support v1 info/paths.json file (#3927, #3943)

• support v1 info/package_metadata.json (#4030)

• improved solver hint detection, simplified filtering (#3597)

• cache VersionOrder objects to improve performance (#3596)

• fix documentation and typos (#3526, #3572, #3627)

• add multikey configuration validation (#3432)

• some Fish autocompletions (#2519)

• reduce priority for packages removed from the index (#3703)

• add user-agent, uid, gid to conda info (#3671)

• add conda.exports module (#3429)

• make http timeouts configurable (#3832)

• add a pkgs_dirs config parameter (#3691)

• add an ‘always_softlink’ option (#3870, #3876)

• pre-checks for diskspace, etc for fetch and extract #(4007)

• address #3879 don’t print activate message when quiet config is enabled (#3886)

• add zos-z subdir (#4060)

• add elapsed time to HTTP errors (#3942)

5.60.4 Bug Fixes

• account for the Windows Python 2.7 os.environ unicode aversion (#3363)

• fix link field in record object (#3424)

• anaconda api token bug fix; additional tests (#3673)

• fix #3667 unicode literals and unicode decode (#3682)

• add conda-env entrypoint (#3743)

• fix #3807 json dump on conda config --show --json (#3811)

• fix #3801 location of temporary hard links of index.json (#3813)

• fix invalid yml example (#3849)

• add arm platforms back to subdirs (#3852)

• fix #3771 better error message for assertion errors (#3802)

• fix #3999 spaces in shebang replacement (#4008)

5.60. 2016-12-14 4.3.0 Safety 135

conda Documentation, Release 4.6.1

• config –show-sources shouldn’t show force by default (#3891)

• fix #3881 don’t install conda-env in clones of root (#3899)

• conda-build dist compatibility (#3909)

5.60.5 Non-User-Facing Changes

• remove unnecessary eval (#3428)

• remove dead install_tar function (#3641)

• apply PEP-8 to conda-env (#3653)

• refactor dist into an object (#3616)

• vendor appdirs; remove conda’s dependency on anaconda-client import (#3675)

• revert boto patch from #2380 (#3676)

• move and update ROOT_NO_RM (#3697)

• integration tests for conda clean (#3695, #3699)

• disable coverage on s3 and ftp requests adapters (#3696, #3701)

• github repo hygiene (#3705, #3706)

• major install refactor (#3712)

• remove test timebombs (#4012)

• LinkType refactor (#3882)

• move CrossPlatformStLink and make available as export (#3887)

• make Record immutable (#3965)

• project housekeeping (#3994, #4065)

• context-dependent setup.py files (#4057)

5.61 2017-01-10 4.2.15

5.61.1 Improvements

• use ‘post’ instead of ‘dev’ for commits according to PEP-440 (#4234)

• do not use IFS to find activate/deactivate scripts to source (#4243)

• fix relative path to python in activate.bat (#4244)

5.61.2 Bug Fixes

• replace sed with python for activate and deactivate #4257

136 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.62 2017-01-07 4.2.14

5.62.1 Improvements

• use install.rm_rf for TemporaryDirectory cleanup (#3425)

• improve handling of local dependency information (#2107)

• add default channels to exports for Windows Linux and macOS (#4103)

• make subdir configurable (#4178)

5.62.2 Bug Fixes

• fix conda/install.py single-file behavior (#3854)

• fix the api->conda substitution (#3456)

• fix silent directory removal (#3730)

• fix location of temporary hard links of index.json (#3975)

• fix potential errors in multi-channel export and offline clone (#3995)

• fix auxlib/packaging, git hashes are not limited to 7 characters (#4189)

• fix compatibility with requests >=2.12, add pyopenssl as dependency (#4059)

• fix #3287 activate in 4.1-4.2.3 clobbers non-conda PATH changes (#4211)

5.62.3 Non-User-Facing Changes

• fix open-ended test failures relating to python 3.6 release (#4166)

• allow args passed to cli.main() (#4193, #4200, #4201)

• test against python 3.6 (#4197)

5.63 2016-11-22 4.2.13

5.63.1 Deprecations/Breaking Changes

• show warning message for pre-link scripts (#3727)

• error and exit for install of packages that require conda minimum version 4.3 (#3726)

5.63.2 Improvements

• double/extend http timeouts (#3831)

• let descriptive http errors cover more http exceptions (#3834)

• backport some conda-build configuration (#3875)

5.62. 2017-01-07 4.2.14 137

conda Documentation, Release 4.6.1

5.63.3 Bug Fixes

• fix conda/install.py single-file behavior (#3854)

• fix the api->conda substitution (#3456)

• fix silent directory removal (#3730)

• fix #3910 null check for is_url (#3931)

5.63.4 Non-User-Facing Changes

• flake8 E116, E121, & E123 enabled (#3883)

5.64 2016-11-02 4.2.12

5.64.1 Bug Fixes

• fix #3732, #3471, #3744 CONDA_BLD_PATH (#3747)

• fix #3717 allow no-name channels (#3748)

• fix #3738 move conda-env to ruamel_yaml (#3740)

• fix conda-env entry point (#3745 via #3743)

• fix again #3664 trash emptying (#3746)

5.65 2016-10-23 4.2.11

5.65.1 Improvements

• only try once for windows trash removal (#3698)

5.65.2 Bug Fixes

• fix anaconda api token bug (#3674)

• fix #3646 FileMode enum comparison (#3683)

• fix #3517 conda install --mkdir (#3684)

• fix #3560 hack anaconda token coverup on conda info (#3686)

• fix #3469 alias envs_path to envs_dirs (#3685)

5.66 2016-10-18 4.2.10

5.66.1 Improvements

• add json output for conda info -s (#3588)

138 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• ignore certain binary prefixes on windows (#3539)

• allow conda config files to have .yaml extensions or ‘condarc’ anywhere in filename (#3633)

5.66.2 Bug Fixes

• fix conda-build’s handle_proxy_407 import (#3666)

• fix #3442, #3459, #3481, #3531, #3548 multiple networking and auth issues (#3550)

• add back linux-ppc64le subdir support (#3584)

• fix #3600 ensure links are removed when unlinking (#3625)

• fix #3602 search channels by platform (#3629)

• fix duplicated packages when updating environment (#3563)

• fix #3590 exception when parsing invalid yaml (#3593 via #3634)

• fix #3655 a string decoding error (#3656)

5.66.3 Non-User-Facing Changes

• backport conda.exports module to 4.2.x (#3654)

• travis-ci OSX fix (#3615 via #3657)

5.67 2016-09-27 4.2.9

5.67.1 Bug Fixes

• fix #3536 conda-env messaging to stdout with --json flag (#3537)

• fix #3525 writing to sys.stdout with --json flag for post-link scripts (#3538)

• fix #3492 make NULL falsey with python 3 (#3524)

5.68 2016-09-26 4.2.8

5.68.1 Improvements

• add “error” key back to json error output (#3523)

5.68.2 Bug Fixes

• fix #3453 conda fails with create_default_packages (#3454)

• fix #3455 --dry-run fails (#3457)

• dial down error messages for rm_rf (#3522)

• fix #3467 AttributeError encountered for map config parameter validation (#3521)

5.67. 2016-09-27 4.2.9 139

conda Documentation, Release 4.6.1

5.69 2016-09-16 4.2.7

5.69.1 Deprecations/Breaking Changes

• revert to 4.1.x behavior of conda list --export (#3450, #3451)

5.69.2 Bug Fixes

• don’t add binstar token if it’s given in the channel spec (#3427, #3440, #3444)

• fix #3433 failure to remove broken symlinks (#3436)

5.69.3 Non-User-Facing Changes

• use install.rm_rf for TemporaryDirectory cleanup (#3425)

5.70 2016-09-14 4.2.6

5.70.1 Improvements

• add support for client TLS certificates (#3419)

• address #3267 allow migration of channel_alias (#3410)

• conda-env version matches conda version (#3422)

5.70.2 Bug Fixes

• fix #3409 unsatisfiable dependency error message (#3412)

• fix #3408 quiet rm_rf (#3413)

• fix #3407 padding error messaging (#3416)

• account for the Windows Python 2.7 os.environ unicode aversion (#3363 via #3420)

5.71 2016-09-08 4.2.5

5.71.1 Deprecations/Breaking Changes

• partially revert #3041 giving conda config –add previous –prepend behavior (#3364 via #3370)

• partially revert #2760 adding back conda package command (#3398)

140 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.71.2 Improvements

• order output of conda config --show; make --json friendly (#3384 via #3386)

• clean the pid based lock on exception (#3325)

• improve file removal on all platforms (#3280 via #3396)

5.71.3 Bug Fixes

• fix #3332 allow download urls with :: in them (#3335)

• fix always_yes and not-set argparse args overriding other sources (#3374)

• fix ftp fetch timeout (#3392)

• fix #3307 add try/except block for touch lock (#3326)

• fix CONDA_CHANNELS environment variable splitting (#3390)

• fix #3378 CONDA_FORCE_32BIT environment variable (#3391)

• make conda info channel urls actually give urls (#3397)

• fix cio_test compatibility (#3395 via #3400)

5.72 2016-08-18 4.2.4

5.72.1 Bug Fixes

• fix #3277 conda list package order (#3278)

• fix channel priority issue with duplicated channels (#3283)

• fix local channel channels; add full conda-build unit tests (#3281)

• fix conda install with no package specified (#3284)

• fix #3253 exporting and importing conda environments (#3286)

• fix priority messaging on conda config --get (#3304)

• fix conda list --export; additional integration tests (#3291)

• fix conda update --all idempotence; add integration tests for channel priority (#3306)

5.72.2 Non-User-Facing Changes

• additional conda-env integration tests (#3288)

5.73 2016-08-11 4.2.3

5.73.1 Improvements

• added zsh and zsh.exe to Windows shells (#3257)

5.72. 2016-08-18 4.2.4 141

conda Documentation, Release 4.6.1

5.73.2 Bug Fixes

• allow conda to downgrade itself (#3273)

• fix breaking changes to conda-build from 4.2.2 (#3265)

• fix empty environment issues with conda and conda-env (#3269)

5.73.3 Non-User-Facing Changes

• add integration tests for conda-env (#3270)

• add more conda-build smoke tests (#3274)

5.74 2016-08-09 4.2.2

5.74.1 Improvements

• enable binary prefix replacement on windows (#3262)

• add --verbose command line flag (#3237)

• improve logging and exception detail (#3237, #3252)

• do not remove empty environment without asking; raise an error when a named environment can’t be found
(#3222)

5.74.2 Bug Fixes

• fix #3226 user condarc not available on Windows (#3228)

• fix some bugs in conda config –show* (#3212)

• fix conda-build local channel bug (#3202)

• remove subprocess exiting message (#3245)

• fix comment parsing and channels in conda-env environment.yml (#3258, #3259)

• fix context error with conda-env (#3232)

• fix #3182 conda install silently skipping failed linking (#3184)

5.75 2016-08-01 4.2.1

5.75.1 Improvements

• improve an error message that can happen during conda install –revision (#3181)

• use clean sys.exit with user choice ‘No’ (#3196)

142 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.75.2 Bug Fixes

• critical fix for 4.2.0 error when no git is on PATH (#3193)

• revert #3171 lock cleaning on exit pending further refinement

• patches for conda-build compatibility with 4.2 (#3187)

• fix a bug in –show-sources output that ignored aliased parameter names (#3189)

5.75.3 Non-User-Facing Changes

• move scripts in bin to shell directory (#3186)

5.76 2016-07-28 4.2.0

5.76.1 New Features

• New Configuration Engine: Configuration and “operating context” are the foundation of conda’s functionality.
Conda now has the ability to pull configuration information from a multitude of on-disk locations, including .d
directories and a .condarc file within a conda environment), along with full CONDA_ environment variable
support. Helpful validation errors are given for improperly-specified configuration. Full documentation updates
pending. (#2537, #3160, #3178)

• New Exception Handling Engine: Previous releases followed a pattern of premature exiting (with hard calls
to sys.exit()) when exceptional circumstances were encountered. This release replaces over 100 sys.
exit calls with python exceptions. For conda developers, this will result in tests that are easier to write. For
developers using conda, this is a first step on a long path toward conda being directly importable. For conda
users, this will eventually result in more helpful and descriptive errors messages. (#2899, #2993, #3016, #3152,
#3045)

• Empty Environments: Conda can now create “empty” environments when no initial packages are specified,
alleviating a common source of confusion. (#3072, #3174)

• Conda in Private Env: Conda can now be configured to live within its own private environment. While it’s not
yet default behavior, this represents a first step toward separating the root environment into a “conda private”
environment and a “user default” environment. (#3068)

• Regex Version Specification: Regular expressions are now valid version specifiers. For example, ^1\.
[5-8]\.1$|2.2. (#2933)

5.76.2 Deprecations/Breaking Changes

• remove conda init (#2759)

• remove conda package and conda bundle (#2760)

• deprecate conda-env repo; pull into conda proper (#2950, #2952, #2954, #3157, #3163, #3170)

• force use of ruamel_yaml (#2762)

• implement conda config –prepend; change behavior of –add to –append (#3041)

• exit on link error instead of logging it (#2639)

5.76. 2016-07-28 4.2.0 143

conda Documentation, Release 4.6.1

5.76.3 Improvements

• improve locking (#2962, #2989, #3048, #3075)

• clean up requests usage for fetching packages (#2755)

• remove excess output from conda –help (#2872)

• remove os.remove in update_prefix (#3006)

• better error behavior if conda is spec’d for a non-root environment (#2956)

• scale back try_write function on Linux and macOS (#3076)

5.76.4 Bug Fixes

• remove psutil requirement, fixes annoying error message (#3135, #3183)

• fix #3124 add threading lock to memoize (#3134)

• fix a failure with multi-threaded repodata downloads (#3078)

• fix windows file url (#3139)

• address #2800, error with environment.yml and non-default channels (#3164)

5.76.5 Non-User-Facing Changes

• project structure enhancement (#2929, #3132, #3133, #3136)

• clean up channel handling with new channel model (#3130, #3151)

• add Anaconda Cloud / Binstar auth handler (#3142)

• remove dead code (#2761, #2969)

• code refactoring and additional tests (#3052, #3020)

• remove auxlib from project root (#2931)

• vendor auxlib 0.0.40 (#2932, #2943, #3131)

• vendor toolz 0.8.0 (#2994)

• move progressbar to vendor directory (#2951)

• fix conda.recipe for new quirks with conda-build (#2959)

• move captured function to common module (#3083)

• rename CHANGELOG to md (#3087)

5.77 2016-09-08 4.1.12

• fix #2837 “File exists” in symlinked path with parallel activations, #3210

• fix prune option when installing packages, #3354

• change check for placeholder to be more friendly to long PATH, #3349

144 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.78 2016-07-26 4.1.11

• fix PS1 backup in activate script, #3135 via #3155

• correct resolution for ‘handle failures in binstar_client more generally’, #3156

5.79 2016-07-25 4.1.10

• ignore symlink failure because of read-only file system, #3055

• backport shortcut tests, #3064

• fix #2979 redefinition of $SHELL variable, #3081

• fix #3060 –clone root –copy exception, #3080

5.80 2016-07-20 4.1.9

• fix #3104, add global BINSTAR_TOKEN_PAT

• handle failures in binstar_client more generally

5.81 2016-07-12 4.1.8:

• fix #3004 UNAUTHORIZED for url (null binstar token), #3008

• fix overwrite existing redirect shortcuts when symlinking envs, #3025

• partially revert no default shortcuts, #3032, #3047

5.82 2016-07-07 4.1.7:

• add msys2 channel to defaults on Windows, #2999

• fix #2939 channel_alias issues; improve offline enforcement, #2964

• fix #2970, #2974 improve handling of file:// URLs inside channel, #2976

5.83 2016-07-01 4.1.6:

• slow down exp backoff from 1 ms to 100 ms factor, #2944

• set max time on exp_backoff to ~6.5 sec,#2955

• fix #2914 add/subtract from PATH; kill folder output text, #2917

• normalize use of get_index behavior across clone/explicit, #2937

• wrap root prefix check with normcase, #2938

5.78. 2016-07-26 4.1.11 145

file://

conda Documentation, Release 4.6.1

5.84 2016-06-29 4.1.5:

• more conservative auto updates of conda #2900

• fix some permissions errors with more aggressive use of move_path_to_trash, #2882

• fix #2891 error if allow_other_channels setting is used, #2896

• fix #2886, #2907 installing a tarball directly from the package cache, #2908

• fix #2681, #2778 reverting #2320 lock behavior changes, #2915

5.85 2016-06-27 4.1.4:

• fix #2846 revert the use of UNC paths; shorten trash filenames, #2859

• fix exp backoff on Windows, #2860

• fix #2845 URL for local file repos, #2862

• fix #2764 restore full path var on win; create to CONDA_PREFIX env var, #2848

• fix #2754 improve listing pip installed packages, #2873

• change root prefix detection to avoid clobbering root activate scripts, #2880

• address #2841 add lowest and highest priority indication to channel config output, #2875

• add SYMLINK_CONDA to planned instructions, #2861

• use CONDA_PREFIX, not CONDA_DEFAULT_ENV for activate.d, #2856

• call scripts with redirect on win; more error checking to activate, #2852

5.86 2016-06-23 4.1.3:

• ensure conda-env auto update, along with conda, #2772

• make yaml booleans behave how everyone expects them to, #2784

• use accept-encoding for repodata; prefer repodata.json to repodata.json.bz2, #2821

• additional integration and regression tests, #2757, #2774, #2787

• add offline mode to printed info; use offline flag when grabbing channels, #2813

• show conda-env version in conda info, #2819

• adjust channel priority superseded list, #2820

• support epoch ! characters in command line specs, #2832

• accept old default names and new ones when canonicalizing channel URLs #2839

• push PATH, PS1 manipulation into shell scripts, #2796

• fix #2765 broken source activate without arguments, #2806

• fix standalone execution of install.py, #2756

• fix #2810 activating conda environment broken with git bash on Windows, #2795

• fix #2805, #2781 handle both file-based channels and explicit file-based URLs, #2812

146 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• fix #2746 conda create –clone of root, #2838

• fix #2668, #2699 shell recursion with activate #2831

5.87 2016-06-17 4.1.2:

• improve messaging for “downgrades” due to channel priority, #2718

• support conda config channel append/prepend, handle duplicates, #2730

• remove –shortcuts option to internal CLI code, #2723

• fix an issue concerning space characters in paths in activate.bat, #2740

• fix #2732 restore yes/no/on/off for booleans on the command line, #2734

• fix #2642 tarball install on Windows, #2729

• fix #2687, #2697 WindowsError when creating environments on Windows, #2717

• fix #2710 link instruction in conda create causes TypeError, #2715

• revert #2514, #2695, disabling of .netrc files, #2736

• revert #2281 printing progress bar to terminal, #2707

5.88 2016-06-16 4.1.1:

• add auto_update_conda config parameter, #2686

• fix #2669 conda config –add channels can leave out defaults, #2670

• fix #2703 ignore activate symlink error if links already exist, #2705

• fix #2693 install duplicate packages with older version of Anaconda, #2701

• fix #2677 respect HTTP_PROXY, #2695

• fix #2680 broken fish integration, #2685, #2694

• fix an issue with conda never exiting, #2689

• fix #2688 explicit file installs, #2708

• fix #2700 conda list UnicodeDecodeError, #2706

5.89 2016-06-14 4.1.0:

This release contains many small bug fixes for all operating systems, and a few special fixes for Windows behavior.

5.89.1 Notable changes for all systems (Windows, macOS and Linux)

• Channel order now matters. The most significant conda change is that when you add channels, channel order
matters. If you have a list of channels in a .condarc file, conda installs the package from the first channel where
it’s available, even if it’s available in a later channel with a higher version number.

• No version downgrades. Conda remove no longer performs version downgrades on any remaining packages
that might be suggested to resolve dependency losses; the package will just be removed instead.

5.87. 2016-06-17 4.1.2: 147

conda Documentation, Release 4.6.1

• New YAML parser/emitter. PyYAML is replaced with ruamel.yaml, which gives more robust control over
yaml document use. More on ruamel.yaml

• Shebang lines over 127 characters are now truncated (Linux, macOS only). Shebangs are the first line
of the many executable scripts that tell the operating system how to execute the program. They start with #!
. Most OSes don’t support these lines over 127 characters, so conda now checks the length and replaces the
full interpreter path in long lines with /usr/bin/env. When you’re working in a conda environment that
is deeply under many directories, or you otherwise have long paths to your conda environment, make sure you
activate that environment now.

• Changes to conda list command. When looking for packages that aren’t installed with conda, conda list now
examines the Python site-packages directory rather than relying on pip.

• Changes to conda remove command. The command conda remove --all now removes a conda envi-
ronment without fetching information from a remote server on the packages in the environment.

• Conda update can be turned off and on. When turned off, conda will not update itself unless the user manually
issues a conda update command. Previously conda updated any time a user updated or installed a package in
the root environment. Use the option conda config set auto_update_conda false.

• Improved support for BeeGFS. BeeGFS is a parallel cluster file system for performance and designed for easy
installation and management. More on BeeGFS

5.89.2 Windows-only changes

• Shortcuts are no longer installed by default on Windows. Shortcuts can now be installed with the
--shortcuts option. Example 1: Install a shortcut to Spyder with conda install spyder
--shortcut. Note if you have Anaconda (not Miniconda), you already have this shortcut and Spyder. Ex-
ample 2: Install the open source package named console_shortcut. When you click the shortcut icon, a
terminal window will open with the environment containing the console_shortcut package already acti-
vated. conda install console_shortcut --shortcuts

• Skip binary replacement on Windows. Linux & macOS have binaries that are coded with library locations,
and this information must sometimes be replaced for relocatability, but Windows does not generally embed
prefixes in binaries, and was already relocatable. We skip binary replacement on Windows.

Complete list:

• clean up activate and deactivate scripts, moving back to conda repo, #1727, #2265, #2291, #2473, #2501, #2484

• replace pyyaml with ruamel_yaml, #2283, #2321

• better handling of channel collisions, #2323, #2369 #2402, #2428

• improve listing of pip packages with conda list, #2275

• re-license progressbar under BSD 3-clause, #2334

• reduce the amount of extraneous info in hints, #2261

• add –shortcuts option to install shortcuts on windows, #2623

• skip binary replacement on windows, #2630

• don’t show channel urls by default in conda list, #2282

• package resolution and solver tweaks, #2443, #2475, #2480

• improved version & build matching, #2442, #2488

• print progress to the terminal rather than stdout, #2281

• verify version specs given on command line are valid, #2246

148 Chapter 5. Release notes

http://yaml.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Shebang_(Unix)
http://www.beegfs.com/content/documentation/

conda Documentation, Release 4.6.1

• fix for try_write function in case of odd permissions, #2301

• fix a conda search –spec error, #2343

• update User-Agent for conda connections, #2347

• remove some dead code paths, #2338, #2374

• fixes a thread safety issue with http requests, #2377, #2383

• manage BeeGFS hard-links non-POSIX configuration, #2355

• prevent version downgrades during removes, #2394

• fix conda info –json, #2445

• truncate shebangs over 127 characters using /usr/bin/env, #2479

• extract packages to a temporary directory then rename, #2425, #2483

• fix help in install, #2460

• fix re-install bug when sha1 differs, #2507

• fix a bug with file deletion, #2499

• disable .netrc files, #2514

• dont fetch index on remove –all, #2553

• allow track_features to be a string or a list in .condarc, #2541

• fix #2415 infinite recursion in invalid_chains, #2566

• allow channel_alias to be different than binstar, #2564

5.90 2016-07-09 4.0.11:

• allow auto_update_conda from sysrc, #3015 via #3021

5.91 2016-06-29 4.0.10:

• fix #2846 revert the use of UNC paths; shorten trash filenames, #2859 via #2878

• fix some permissions errors with more aggressive use of move_path_to_trash, #2882 via #2894

5.92 2016-06-15 4.0.9:

• add auto_update_conda config parameter, #2686

5.93 2016-06-03 4.0.8:

• fix a potential problem with moving files to trash, #2587

5.90. 2016-07-09 4.0.11: 149

conda Documentation, Release 4.6.1

5.94 2016-05-26 4.0.7:

• workaround for boto bug, #2380

5.95 2016-05-11 4.0.6:

• log “custom” versions as updates rather than downgrades, #2290

• fixes a TypeError exception that can occur on install/update, #2331

• fixes an error on Windows removing files with long path names, #2452

5.96 2016-03-16 4.0.5:

• improved help documentation for install, update, and remove, #2262

• fixes #2229 and #2250 related to conda update errors on Windows, #2251

• fixes #2258 conda list for pip packages on Windows, #2264

5.97 2016-03-10 4.0.4:

• revert #2217 closing request sessions, #2233

5.98 2016-03-10 4.0.3:

• adds a conda clean –all feature, #2211

• solver performance improvements, #2209

• fixes conda list for pip packages on windows, #2216

• quiets some logging for package downloads under python 3, #2217

• more urls for conda list –explicit, #1855

• prefer more “latest builds” for more packages, #2227

• fixes a bug with dependency resolution and features, #2226

5.99 2016-03-08 4.0.2:

• fixes track_features in ~/.condarc being a list, see also #2203

• fixes incorrect path in lock file error #2195

• fixes issues with cloning environments, #2193, #2194

• fixes a strange interaction between features and versions, #2206

• fixes a bug in low-level SAT clause generation creating a preference for older versions, #2199

150 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.100 2016-03-07 4.0.1:

• fixes an install issue caused by md5 checksum mismatches, #2183

• remove auxlib build dependency, #2188

5.101 2016-03-04 4.0.0:

• The solver has been retooled significantly. Performance should be improved in most circumstances, and a
number of issues involving feature conflicts should be resolved.

• conda update <package> now handles depedencies properly according to the setting of the “update_deps”
configuration:

–update-deps: conda will also update any dependencies as needed to install the latest verison of the
requrested packages. The minimal set of changes required to achieve this is sought.

—no-update-deps: conda will update the packages only to the extent that no updates to the
dependencies are required

The previous behavior, which would update the packages without regard to their dependencies, could result in a
broken configuration, and has been removed.

• Conda finally has an official logo.

• Fix conda clean –packages on Windows, #1944

• Conda sub-commands now support dashes in names, #1840

5.102 2016-02-19 3.19.3:

• fix critical issue, see #2106

5.103 2016-02-19 3.19.2:

• add basic activate/deactivate, conda activate/deactivate/ls for fish, see #545

• remove error when CONDA_FORCE_32BIT is set on 32-bit systems, #1985

• suppress help text for –unknown option, #2051

• fix issue with conda create –clone post-link scripts, #2007

• fix a permissions issue on windows, #2083

5.104 2016-02-01 3.19.1:

• resolve.py: properly escape periods in version numbers, #1926

• support for pinning Lua by default, #1934

• remove hard-coded test URLs, a module cio_test is now expected when CIO_TEST is set

5.100. 2016-03-07 4.0.1: 151

conda Documentation, Release 4.6.1

5.105 2015-12-17 3.19.0:

• OpenBSD 5.x support, #1891

• improve install CLI to make Miniconda -f work, #1905

5.106 2015-12-10 3.18.9:

• allow chaning default_channels (only applies to “system” condarc), from from CLI, #1886

• improve default for –show-channel-urls in conda list, #1900

5.107 2015-12-03 3.18.8:

• always attempt to delete files in rm_rf, #1864

5.108 2015-12-02 3.18.7:

• simplify call to menuinst.install()

• add menuinst as dependency on Windows

• add ROOT_PREFIX to post-link (and pre_unlink) environment

5.109 2015-11-19 3.18.6:

• improve conda clean when user lacks permissions, #1807

• make show_channel_urls default to True, #1771

• cleaner write tests, #1735

• fix documentation, #1709

• improve conda clean when directories don’t exist, #1808

5.110 2015-11-11 3.18.5:

• fix bad menuinst exception handling, #1798

• add workaround for unresolved dependencies on Windows

5.111 2015-11-09 3.18.4:

• allow explicit file to contain MD5 hashsums

• add –md5 option to “conda list –explicit”

• stop infinite recursion during certain resolve operations, #1749

152 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• add dependencies even if strictness == 3, #1766

5.112 2015-10-15 3.18.3:

• added a pruning step for more efficient solves, #1702

• disallow conda-env to be installed into non-root environment

• improve error output for bad command input, #1706

• pass env name and setup cmd to menuinst, #1699

5.113 2015-10-12 3.18.2:

• add “conda list –explicit” which contains the URLs of all conda packages to be installed, and can used with the
install/create –file option, #1688

• fix a potential issue in conda clean

• avoid issues with LookupErrors when updating Python in the root environment on Windows

• don’t fetch the index from the network with conda remove

• when installing conda packages directly, “conda install <pkg>.tar.bz2”, unlink any installed package with that
name, not just the installed one

• allow menu items to be installed in non-root env, #1692

5.114 2015-09-28 3.18.1:

• fix: removed reference to win_ignore_root in plan module

5.115 2015-09-28 3.18.0:

• allow Python to be updated in root environment on Windows, #1657

• add defaults to specs after getting pinned specs (allows to pin a different version of Python than what is installed)

• show what older versions are in the solutions in the resolve debug log

• fix some issues with Python 3.5

• respect –no-deps when installing from .tar or .tar.bz2

• avoid infinite recursion with NoPackagesFound and conda update –all –file

• fix conda update –file

• toposort: Added special case to remove ‘pip’ dependency from ‘python’

• show dotlog messages during hint generation with –debug

• disable the max_only heuristic during hint generation

5.112. 2015-10-15 3.18.3: 153

conda Documentation, Release 4.6.1

• new version comparison algorithm, which consistently compares any version string, and better handles version
strings using things like alpha, beta, rc, post, and dev. This should remove any inconsistent version comparison
that would lead to conda installing an incorrect version.

• use the trash in rm_rf, meaning more things will get the benefit of the trash system on Windows

• add the ability to pass the –file argument multiple times

• add conda upgrade alias for conda update

• add update_dependencies condarc option and –update-deps/–no-update-deps command line flags

• allow specs with conda update –all

• add –show-channel-urls and –no-show-channel-urls command line options

• add always_copy condarc option

• conda clean properly handles multiple envs directories. This breaks backwards compatibility with some of the
–json output. Some of the old –json keys are kept for backwards compatibility.

5.116 2015-09-11 3.17.0:

• add windows_forward_slashes option to walk_prefix(), see #1513

• add ability to set CONDA_FORCE_32BIT environment variable, it should should only be used when running
conda-build, #1555

• add config option to makes the python dependency on pip optional, #1577

• fix an UnboundLocalError

• print note about pinned specs in no packages found error

• allow wildcards in AND-connected version specs

• print pinned specs to the debug log

• fix conda create –clone with create_default_packages

• give a better error when a proxy isn’t found for a given scheme

• enable running ‘conda run’ in offline mode

• fix issue where hardlinked cache contents were being overwritten

• correctly skip packages whose dependencies can’t be found with conda update –all

• use clearer terminology in -m help text.

• use splitlines to break up multiple lines throughout the codebase

• fix AttributeError with SSLError

5.117 2015-08-10 3.16.0:

• rename binstar -> anaconda, see #1458

• fix –use-local when the conda-bld directory doesn’t exist

• fixed –offline option when using “conda create –clone”, see #1487

• don’t mask recursion depth errors

154 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• add conda search –reverse-dependency

• check whether hardlinking is available before linking when using “python install.py –link” directly, see #1490

• don’t exit nonzero when installing a package with no dependencies

• check which features are installed in an environment via track_features, not features

• set the verify flag directly on CondaSession (fixes conda skeleton not respecting the ssl_verify option)

5.118 2015-07-23 3.15.1:

• fix conda with older versions of argcomplete

• restore the –force-pscheck option as a no-op for backwards compatibility

5.119 2015-07-22 3.15.0:

• sort the output of conda info package correctly

• enable tab completion of conda command extensions using argcomplete. Command extensions that import
conda should use conda.cli.conda_argparse.ArgumentParser instead of argparse.ArgumentParser. Otherwise,
they should enable argcomplete completion manually.

• allow psutil and pycosat to be updated in the root environment on Windows

• remove all mentions of pscheck. The –force-pscheck flag has been removed.

• added support for S3 channels

• fix color issues from pip in conda list on Windows

• add support for other machine types on Linux, in particular ppc64le

• add non_x86_linux_machines set to config module

• allow ssl_verify to accept strings in addition to boolean values in condarc

• enable –set to work with both boolean and string values

5.120 2015-06-29 3.14.1:

• make use of Crypto.Signature.PKCS1_PSS module, see #1388

• note when features are being used in the unsatisfiable hint

5.121 2015-06-16 3.14.0:

• add ability to verify signed packages, see #1343 (and conda-build #430)

• fix issue when trying to add ‘pip’ dependency to old python packages

• provide option “conda info –unsafe-channels” for getting unobscured channel list, #1374

5.118. 2015-07-23 3.15.1: 155

conda Documentation, Release 4.6.1

5.122 2015-06-04 3.13.0:

• avoid the Windows file lock by moving files to a trash directory, #1133

• handle env dirs not existing in the Environments completer

• rename binstar.org -> anaconda.org, see #1348

• speed up ‘source activate’ by ~40%

5.123 2015-05-05 3.12.0:

• correctly allow conda to update itself

• print which file leads to the “unable to remove file” error on Windows

• add support for the no_proxy environment variable, #1171

• add a much faster hint generation for unsatisfiable packages, which is now always enabled (previously it would
not run if there were more than ten specs). The new hint only gives one set of conflicting packages, rather than
all sets, so multiple passes may be necessary to fix such issues

• conda extensions that import conda should use conda.cli.conda_argparser.ArgumentParser instead of arg-
parse.ArgumentParser to conform to the conda help guidelines (e.g., all help messages should be capitalized
with periods, and the options should be preceded by “Options:” for the sake of help2man).

• add confirmation dialog to conda remove. Fixes conda remove –dry-run.

5.124 2015-04-22 3.11.0:

• fix issue where forced update on Windows could cause a package to break

• remove detection of running processes that might conflict

• deprecate –force-pscheck (now a no-op argument)

• make conda search –outdated –names-only work, fixes #1252

• handle the history file not having read or write permissions better

• make multiple package resolutions warning easier to read

• add –full-name to conda list

• improvements to command help

5.125 2015-04-06 3.10.1:

• fix logic in @memoized for unhashable args

• restored json cache of repodata, see #1249

• hide binstar tokens in conda info –json

• handle CIO_TEST=‘2 ‘

• always find the solution with minimal number of packages, even if there are many solutions

156 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• allow comments at the end of the line in requirement files

• don’t update the progressbar until after the item is finished running

• add conda/<version> to HTTP header User-Agent string

5.126 2015-03-12 3.10.0:

• change default repo urls to be https

• add –offline to conda search

• add –names-only and –full-name to conda search

• add tab completion for packages to conda search

5.127 2015-02-24 3.9.1:

• pscheck: check for processes in the current environment, see #1157

• don’t write to the history file if nothing has changed, see #1148

• conda update –all installs packages without version restrictions (except for Python), see #1138

• conda update –all ignores the anaconda metapackage, see #1138

• use forward slashes for file urls on Windows

• don’t symlink conda in the root environment from activate

• use the correct package name in the progress bar info

• use json progress bars for unsatisfiable dependencies hints

• don’t let requests decode gz files when downloaded

5.128 2015-02-16 3.9.0:

• remove (de)activation scripts from conda, those are now in conda-env

• pip is now always added as a Python dependency

• allow conda to be installed into environments which start with _

• add argcomplete tab completion for environments with the -n flag, and for package names with install, update,
create, and remove

5.129 2015-02-03 3.8.4:

• copy (de)activate scripts from conda-env

• Add noarch (sub) directory support

5.126. 2015-03-12 3.10.0: 157

conda Documentation, Release 4.6.1

5.130 2015-01-28 3.8.3:

• simplified how ROOT_PREFIX is obtained in (de)activate

5.131 2015-01-27 3.8.2:

• add conda clean –source-cache to clean the conda build source caches

• add missing quotes in (de)activate.bat, fixes problem in Windows when conda is installed into a directory with
spaces

• fix conda install –copy

5.132 2015-01-23 3.8.1:

• add missing utf-8 decoding, fixes Python 3 bug when icondata to json file

5.133 2015-01-22 3.8.0:

• move active script into conda-env, which is now a new dependency

• load the channel urls in the correct order when using concurrent.futures

• add optional ‘icondata’ key to json files in conda-meta directory, which contain the base64 encoded png file or
the icon

• remove a debug print statement

5.134 2014-12-18 3.7.4:

• add –offline option to install, create, update and remove commands, and also add ability to set “offline: True” in
condarc file

• add conda uninstall as alias for conda remove

• add conda info –root

• add conda.pip module

• fix CONDARC pointing to non-existing file, closes issue #961

• make update -f work if the package is already up-to-date

• fix possible TypeError when printing an error message

• link packages in topologically sorted order (so that pre-link scripts can assume that the dependencies are in-
stalled)

• add –copy flag to install

• prevent the progressbar from crashing conda when fetching in some situations

158 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.135 2014-11-05 3.7.3:

• conda install from a local conda package (or a tar fill which contains conda packages), will now also install the
dependencies listed by the installed packages.

• add SOURCE_DIR environment variable in pre-link subprocess

• record all created environments in ~/.conda/environments.txt

5.136 2014-10-31 3.7.2:

• only show the binstar install message once

• print the fetching repodata dot after the repodata is fetched

• write the install and remove specs to the history file

• add ‘-y’ as an alias to ‘–yes’

• the –file option to conda config now defaults to os.environ.get(‘CONDARC’)

• some improvements to documentation (–help output)

• add user_rc_path and sys_rc_path to conda info –json

• cache the proxy username and password

• avoid warning about conda in pscheck

• make ~/.conda/envs the first user envs dir

5.137 2014-10-07 3.7.1:

• improve error message for forgetting to use source with activate and deactivate, see issue #601

• don’t allow to remove the current environment, see issue #639

• don’t fail if binstar_client can’t be imported for other reasons, see issue #925

• allow spaces to be contained in conda run

• only show the conda install binstar hint if binstar is not installed

• conda info package_spec now gives detailed info on packages. conda info path has been removed, as it is
duplicated by conda package -w path.

5.138 2014-09-19 3.7.0:

• faster algorithm for –alt-hint

• don’t allow channel_alias with allow_other_channels: false if it is set in the system .condarc

• don’t show long “no packages found” error with update –all

• automatically add the Binstar token to urls when the binstar client is installed and logged in

• carefully avoid showing the binstar token or writing it to a file

• be more careful in conda config about keys that are the wrong type

5.135. 2014-11-05 3.7.3: 159

conda Documentation, Release 4.6.1

• don’t expect directories starting with conda- to be commands

• no longer recommend to run conda init after pip installing conda. A pip installed conda will now work without
being initialized to create and manage other environments

• the rm function on Windows now works around access denied errors

• fix channel urls now showing with conda list with show_channel_urls set to true

5.139 2014-09-08 3.6.4:

• fix removing packages that aren’t in the channels any more

• Pretties output for –alt-hint

5.140 2014-09-04 3.6.3:

• skip packages that can’t be found with update –all

• add –use-local to search and remove

• allow –use-local to be used along with -c (–channels) and –override-channels. –override-channels now requires
either -c or –use-local

• allow paths in has_prefix to be quoted, to allow for spaces in paths on Windows

• retain Linux/macOS style path separators for prefixes in has_prefix on Windows (if the placeholder path uses /,
replace it with a path that uses /, not \)

• fix bug in –use-local due to API changes in conda-build

• include user site directories in conda info -s

• make binary has_prefix replacement work with spaces after the prefix

• make binary has_prefix replacement replace multiple occurrences of the placeholder in the same null-terminated
string

• don’t show packages from other platforms as installed or cached in conda search

• be more careful about not warning about conda itself in pscheck

• Use a progress bar for the unsatisfiable packages hint generation

• Don’t use TemporaryFile in try_write, as it is too slow when it fails

• Ignore InsecureRequestWarning when ssl_verify is False

• conda remove removes features tracked by removed packages in track_features

5.141 2014-08-20 3.6.2:

• add –use-index-cache to conda remove

• fix a bug where features (like mkl) would be selected incorrectly

• use concurrent.future.ThreadPool to fetch package metadata asynchronously in Python 3.

• do the retries in rm_rf on every platform

160 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• use a higher cutoff for package name misspellings

• allow changing default channels in “system” .condarc

5.142 2014-08-13 3.6.1:

• add retries to download in fetch module

• improved error messages for missing packages

• more robust rm_rf on Windows

• print multiline help for subcommands correctly

5.143 2014-08-11 3.6.0:

• correctly check if a package can be hard-linked if it isn’t extracted yet

• change how the package plan is printed to better show what is new, updated, and downgraded

• use suggest_normalized_version in the resolve module. Now versions like 1.0alpha that are not directly recog-
nized by verlib’s NormalizedVersion are supported better

• conda run command, to run apps and commands from packages

• more complete –json API. Every conda command should fully support –json output now.

• show the conda_build and requests versions in conda info

• include packages from setup.py develop in conda list (with use_pip)

• raise a warning instead of dying when the history file is invalid

• use urllib.quote on the proxy password

• make conda search –outdated –canonical work

• pin the Python version during conda init

• fix some metadata that is written for Python during conda init

• allow comments in a pinned file

• allow installing and updating menuinst on Windows

• allow conda create with both –file and listed packages

• better handling of some nonexistent packages

• fix command line flags in conda package

• fix a bug in the ftp adapter

5.144 2014-06-10 3.5.5:

• remove another instance pycosat version detection, which fails on Windows, see issue #761

5.142. 2014-08-13 3.6.1: 161

conda Documentation, Release 4.6.1

5.145 2014-06-10 3.5.4:

• remove pycosat version detection, which fails on Windows, see issue #761

5.146 2014-06-09 3.5.3:

• fix conda update to correctly not install packages that are already up-to-date

• always fail with connection error in download

• the package resolution is now much faster and uses less memory

• add ssl_verify option in condarc to allow ignoring SSL certificate verification, see issue #737

5.147 2014-05-27 3.5.2:

• fix bug in activate.bat and deactivate.bat on Windows

5.148 2014-05-26 3.5.1:

• fix proxy support - conda now prompts for proxy username and password again

• fix activate.bat on Windows with spaces in the path

• update optional psutil dependency was updated to psutil 2.0 or higher

5.149 2014-05-15 3.5.0:

• replace use of urllib2 with requests. requests is now a hard dependency of conda.

• add ability to only allow system-wise specified channels

• hide binstar from output of conda info

5.150 2014-05-05 3.4.3:

• allow prefix replacement in binary files, see issue #710

• check if creating hard link is possible and otherwise copy, during install

• allow circular dependencies

5.151 2014-04-21 3.4.2:

• conda clean –lock: skip directories that don’t exist, fixes #648

• fixed empty history file causing crash, issue #644

• remove timezone information from history file, fixes issue #651

162 Chapter 5. Release notes

conda Documentation, Release 4.6.1

• fix PackagesNotFound error for missing recursive dependencies

• change the default for adding cache from the local package cache - known is now the default and the option to
use index metadata from the local package cache is –unknown

• add –alt-hint as a method to get an alternate form of a hint for unsatisfiable packages

• add conda package –ls-files to list files in a package

• add ability to pin specs in an environment. To pin a spec, add a file called pinned to the environment’s conda-
meta directory with the specs to pin. Pinned specs are always kept installed, unless the –no-pin flag is used.

• fix keyboard interrupting of external commands. Now keyboard interrupting conda build correctly removes the
lock file

• add no_link ability to conda, see issue #678

5.152 2014-04-07 3.4.1:

• always use a pkgs cache directory associated with an envs directory, even when using -p option with an arbitrary
a prefix which is not inside an envs dir

• add setting of PYTHONHOME to conda info –system

• skip packages with bad metadata

5.153 2014-04-02 3.4.0:

• added revision history to each environment:

– conda list –revisions

– conda install –revision

– log is stored in conda-meta/history

• allow parsing pip-style requirement files with –file option and in command line arguments, e.g. conda install
‘numpy>=1.7’, issue #624

• fix error message for –file option when file does not exist

• allow DEFAULTS in CONDA_ENVS_PATH, which expands to the defaults settings, including the condarc file

• don’t install a package with a feature (like mkl) unless it is specifically requested (i.e., that feature is already
enabled in that environment)

• add ability to show channel URLs when displaying what is going to be downloaded by setting
“show_channel_urls: True” in condarc

• fix the –quiet option

• skip packages that have dependencies that can’t be found

5.154 2014-03-24 3.3.2:

• fix the –file option

• check install arguments before fetching metadata

5.152. 2014-04-07 3.4.1: 163

conda Documentation, Release 4.6.1

• fix a printing glitch with the progress bars

• give a better error message for conda clean with no arguments

• don’t include unknown packages when searching another platform

5.155 2014-03-19 3.3.1:

• Fix setting of PS1 in activate.

• Add conda update –all.

• Allow setting CONDARC=’ ‘ to use no condarc.

• Add conda clean –packages.

• Don’t include bin/conda, bin/activate, or bin/deactivate in conda package.

5.156 2014-03-18 3.3.0:

• allow new package specification, i.e. ==, >=, >, <=, <, != separated by ‘,’ for example: >=2.3,<3.0

• add ability to disable self update of conda, by setting “self_update: False” in .condarc

• Try installing packages using the old way of just installing the maximum versions of things first. This provides
a major speedup of solving the package specifications in the cases where this scheme works.

• Don’t include python=3.3 in the specs automatically for the Python 3 version of conda. This allows you to do
“conda create -n env package” for a package that only has a Python 2 version without specifying “python=2”.
This change has no effect in Python 2.

• Automatically put symlinks to conda, activate, and deactivate in each environment on Linux and macOS.

• On Linux and macOS, activate and deactivate now remove the root environment from the PATH. This should
prevent “bleed through” issues with commands not installed in the activated environment but that are installed
in the root environment. If you have “setup.py develop” installed conda on Linux or macOS, you should run
this command again, as the activate and deactivate scripts have changed.

• Begin work to support Python 3.4.

• Fix a bug in version comparison

• Fix usage of sys.stdout and sys.stderr in environments like pythonw on Windows where they are nonstandard
file descriptors.

5.157 2014-03-12 3.2.1:

• fix installing packages with irrational versions

• fix installation in the api

• use a logging handler to print the dots

164 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.158 2014-03-11 3.2.0:

• print dots to the screen for progress

• move logic functions from resolve to logic module

5.159 2014-03-07 3.2.0a1:

• conda now uses pseudo-boolean constraints in the SAT solver. This allows it to search for all versions at once,
rather than only the latest (issue #491).

• Conda contains a brand new logic submodule for converting pseudo-boolean constraints into SAT clauses.

5.160 2014-03-07 3.1.1:

• check if directory exists, fixed issue #591

5.161 2014-03-07 3.1.0:

• local packages in cache are now added to the index, this may be disabled by using the –known option, which
only makes conda use index metadata from the known remote channels

• add –use-index-cache option to enable using cache of channel index files

• fix ownership of files when installing as root on Linux

• conda search: add ‘.’ symbol for extracted (cached) packages

5.162 2014-02-20 3.0.6:

• fix ‘conda update’ taking build number into account

5.163 2014-02-17 3.0.5:

• allow packages from create_default_packages to be overridden from the command line

• fixed typo install.py, issue #566

• try to prevent accidentally installing into a non-root conda environment

5.164 2014-02-14 3.0.4:

• conda update: don’t try to update packages that are already up-to-date

5.158. 2014-03-11 3.2.0: 165

conda Documentation, Release 4.6.1

5.165 2014-02-06 3.0.3:

• improve the speed of clean –lock

• some fixes to conda config

• more tests added

• choose the first solution rather than the last when there are more than one, since this is more likely to be the one
you want.

5.166 2014-02-03 3.0.2:

• fix detection of prefix being writable

5.167 2014-01-31 3.0.1:

• bug: not having track_features in condarc now uses default again

• improved test suite

• remove numpy version being treated special in plan module

• if the post-link.(bat|sh) fails, don’t treat it as though it installed, i.e. it is not added to conda-meta

• fix activate if CONDA_DEFAULT_ENV is invalid

• fix conda config –get to work with list keys again

• print the total download size

• fix a bug that was preventing conda from working in Python 3

• add ability to run pre-link script, issue #548

5.168 2014-01-24 3.0.0:

• removed build, convert, index, and skeleton commands, which are now part of the conda-build project: https:
//github.com/conda/conda-build

• limited pip integration to conda list, that means conda install no longer calls pip install # !!!

• add ability to call sub-commands named ‘conda-x’

• The -c flag to conda search is now shorthand for –channel, not –canonical (this is to be consistent with other
conda commands)

• allow changing location of .condarc file using the CONDARC environment variable

• conda search now shows the channel that the package comes from

• conda search has a new –platform flag for searching for packages in other platforms.

• remove condarc warnings: issue #526#issuecomment-33195012

166 Chapter 5. Release notes

https://github.com/conda/conda-build
https://github.com/conda/conda-build

conda Documentation, Release 4.6.1

5.169 2014-01-17 2.3.1:

• add ability create info/no_softlink

• add conda convert command to convert non-platform-dependent packages from one platform to another (exper-
imental)

• unify create, install, and update code. This adds many features to create and update that were previously only
available to install. A backwards incompatible change is that conda create -f now means –force, not –file.

5.170 2014-01-16 2.3.0:

• automatically prepend http://conda.binstar.org/ (or the value of channel_alias in the .condarc file) to channels
whenever the channel is not a URL or the word ‘defaults or ‘system’

• recipes made with the skeleton pypi command will use setuptools instead of distribute

• re-work the setuptools dependency and entry_point logic so that non console_script entry_points for packages
with a dependency on setuptools will get correct build script with conda skeleton pypi

• add -m, –mkdir option to conda install

• add ability to disable soft-linking

5.171 2014-01-06 2.2.8:

• add check for chrpath (on Linux) before build is started, see issue #469

• conda build: fixed ELF headers not being recognized on Python 3

• fixed issues: #467, #476

5.172 2014-01-02 2.2.7:

• fixed bug in conda build related to lchmod not being available on all platforms

5.173 2013-12-31 2.2.6:

• fix test section for automatic recipe creation from pypi using –build-recipe

• minor Py3k fixes for conda build on Linux

• copy symlinks as symlinks, issue #437

• fix explicit install (e.g. from output of conda list -e) in root env

• add pyyaml to the list of packages which can not be removed from root environment

• fixed minor issues: #365, #453

5.169. 2014-01-17 2.3.1: 167

http://conda.binstar.org/

conda Documentation, Release 4.6.1

5.174 2013-12-17 2.2.5:

• conda build: move broken packages to conda-bld/broken

• conda config: automatically add the ‘defaults’ channel

• conda build: improve error handling for invalid recipe directory

• add ability to set build string, issue #425

• fix LD_RUN_PATH not being set on Linux under Python 3, see issue #427, thanks peter1000

5.175 2013-12-10 2.2.4:

• add support for execution with the -m switch (issue #398), i.e. you can execute conda also as: python -m conda

• add a deactivate script for windows

• conda build adds .pth-file when it encounters an egg (TODO)

• add ability to preserve egg directory when building using build/preserve_egg_dir: True

• allow track_features in ~/.condarc

• Allow arbitrary source, issue #405

• fixed minor issues: #393, #402, #409, #413

5.176 2013-12-03 2.2.3:

• add “foreign mode”, i.e. disallow install of certain packages when using a “foreign” Python, such as the system
Python

• remove activate/deactivate from source tarball created by sdist.sh, in order to not overwrite activate script from
virtualenvwrapper

5.177 2013-11-27 2.2.2:

• remove ARCH environment variable for being able to change architecture

• add PKG_NAME, PKG_VERSION to environment when running build.sh, .<name>-post-link.sh and .<name>-
pre-unlink.sh

5.178 2013-11-15 2.2.1:

• minor fixes related to make conda pip installable

• generated conda meta-data missing ‘files’ key, fixed issue #357

168 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.179 2013-11-14 2.2.0:

• add conda init command, to allow installing conda via pip

• fix prefix being replaced by placeholder after conda build on Linux and macOS

• add ‘use_pip’ to condarc configuration file

• fixed activate on Windows to set CONDA_DEFAULT_ENV

• allow setting “always_yes: True” in condarc file, which implies always using the –yes option whenever asked
to proceed

5.180 2013-11-07 2.1.0:

• fix rm_egg_dirs so that the .egg_info file can be a zip file

• improve integration with pip * conda list now shows pip installed packages * conda install will try to install via
“pip install” if no conda package is available (unless –no-pip is provided) * conda build has a new –build-recipe
option which will create a recipe (stored in <root>/conda-recipes) from pypi then build a conda package (and
install it) * pip list and pip install only happen if pip is installed

• enhance the locking mechanism so that conda can call itself in the same process.

5.181 2013-11-04 2.0.4:

• ensure lowercase name when generating package info, fixed issue #329

• on Windows, handle the .nonadmin files

5.182 2013-10-28 2.0.3:

• update bundle format

• fix bug when displaying packages to be downloaded (thanks Crystal)

5.183 2013-10-27 2.0.2:

• add –index-cache option to clean command, see issue #321

• use RPATH (instead of RUNPATH) when building packages on Linux

5.184 2013-10-23 2.0.1:

• add –no-prompt option to conda skeleton pypi

• add create_default_packages to condarc (and –no-default-packages option to create command)

5.179. 2013-11-14 2.2.0: 169

conda Documentation, Release 4.6.1

5.185 2013-10-01 2.0.0:

• added user/root mode and ability to soft-link across filesystems

• added create –clone option for copying local environments

• fixed behavior when installing into an environment which does not exist yet, i.e. an error occurs

• fixed install –no-deps option

• added –export option to list command

• allow building of packages in “user mode”

• regular environment locations now used for build and test

• add ability to disallow specification names

• add ability to read help messages from a file when install location is RO

• restore backwards compatibility of share/clone for conda-api

• add new conda bundle command and format

• pass ARCH environment variable to build scripts

• added progress bar to source download for conda build, issue #230

• added ability to use url instead of local file to conda install –file and conda create –file options

5.186 2013-09-06 1.9.1:

• fix bug in new caching of repodata index

5.187 2013-09-05 1.9.0:

• add caching of repodata index

• add activate command on Windows

• add conda package –which option, closes issue 163

• add ability to install file which contains multiple packages, issue 256

• move conda share functionality to conda package –share

• update documentation

• improve error messages when external dependencies are unavailable

• add implementation for issue 194: post-link or pre-unlink may append to a special file ${PREFIX}/.messages.txt
for messages, which is display to the user’s console after conda completes all actions

• add conda search –outdated option, which lists only installed packages for which newer versions are available

• fixed numerous Py3k issues, in particular with the build command

170 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.188 2013-08-16 1.8.2:

• add conda build –check option

• add conda clean –lock option

• fixed error in recipe causing conda traceback, issue 158

• fixes conda build error in Python 3, issue 238

• improve error message when test command fails, as well as issue 229

• disable Python (and other packages which are used by conda itself) to be updated in root environment on
Windows

• simplified locking, in particular locking should never crash conda when files cannot be created due to permission
problems

5.189 2013-08-07 1.8.1:

• fixed conda update for no arguments, issue 237

• fix setting prefix before calling should_do_win_subprocess() part of issue 235

• add basic subversion support when building

• add –output option to conda build

5.190 2013-07-31 1.8.0:

• add Python 3 support (thanks almarklein)

• add Mercurial support when building from source (thanks delicb)

• allow Python (and other packages which are used by conda itself) to be updated in root environment on Windows

• add conda config command

• add conda clean command

• removed the conda pip command

• improve locking to be finer grained

• made activate/deactivate work with zsh (thanks to mika-fischer)

• allow conda build to take tarballs containing a recipe as arguments

• add PKG_CONFIG_PATH to build environment variables

• fix entry point scripts pointing to wrong python when building Python 3 packages

• allow source/sha1 in meta.yaml, issue 196

• more informative message when there are unsatisfiable package specifications

• ability to set the proxy urls in condarc

• conda build asks to upload to binstar. This can also be configured by changing binstar_upload in condarc.

• basic tab completion if the argcomplete package is installed and eval “$(register-python-argcomplete conda)” is
added to the bash profile.

5.188. 2013-08-16 1.8.2: 171

conda Documentation, Release 4.6.1

5.191 2013-07-02 1.7.2:

• fixed conda update when packages include a post-link step which was caused by subprocess being lazily im-
ported, fixed by 0d0b860

• improve error message when ‘chrpath’ or ‘patch’ is not installed and needed by build framework

• fixed sharing/cloning being broken (issue 179)

• add the string LOCKERROR to the conda lock error message

5.192 2013-06-21 1.7.1:

• fix “executable” not being found on Windows when ending with .bat when launching application

• give a better error message from when a repository does not exist

5.193 2013-06-20 1.7.0:

• allow ${PREFIX} in app_entry

• add binstar upload information after conda build finishes

5.194 2013-06-20 1.7.0a2:

• add global conda lock file for only allowing one instance of conda to run at the same time

• add conda skeleton command to create recipes from PyPI

• add ability to run post-link and pre-unlink script

5.195 2013-06-13 1.7.0a1:

• add ability to build conda packages from “recipes”, using the conda build command, for some examples, see:
https://github.com/ContinuumIO/conda-recipes

• fixed bug in conda install –force

• conda update command no longer uses anaconda as default package name

• add proxy support

• added application API to conda.api module

• add -c/–channel and –override-channels flags (issue 121).

• add default and system meta-channels, for use in .condarc and with -c (issue 122).

• fixed ability to install ipython=0.13.0 (issue 130)

172 Chapter 5. Release notes

https://github.com/ContinuumIO/conda-recipes

conda Documentation, Release 4.6.1

5.196 2013-06-05 1.6.0:

• update package command to reflect changes in repodata

• fixed refactoring bugs in share/clone

• warn when anaconda processes are running on install in Windows (should fix most permissions errors on Win-
dows)

5.197 2013-05-31 1.6.0rc2:

• conda with no arguments now prints help text (issue 111)

• don’t allow removing conda from root environment

• conda update python does no longer update to Python 3, also ensure that conda itself is always installed into the
root environment (issue 110)

5.198 2013-05-30 1.6.0rc1:

• major internal refactoring

• use new “depends” key in repodata

• uses pycosat to solve constraints more efficiently

• add hard-linking on Windows

• fixed linking across filesystems (issue 103)

• add conda remove –features option

• added more tests, in particular for new dependency resolver

• add internal DSL to perform install actions

• add package size to download preview

• add conda install –force and –no-deps options

• fixed conda help command

• add conda remove –all option for removing entire environment

• fixed source activate on systems where sourcing a gives “bash” as $0

• add information about installed versions to conda search command

• removed known “locations”

• add output about installed packages when update and install do nothing

• changed default when prompted for y/n in CLI to yes

5.199 2013-04-29 1.5.2:

• fixed issue 59: bad error message when pkgs dir is not writable

5.196. 2013-06-05 1.6.0: 173

conda Documentation, Release 4.6.1

5.200 2013-04-19 1.5.1:

• fixed issue 71 and (73 duplicate): not being able to install packages starting with conda (such as ‘conda-api’)

• fixed issue 69 (not being able to update Python / NumPy)

• fixed issue 76 (cannot install mkl on OSX)

5.201 2013-03-22 1.5.0:

• add conda share and clone commands

• add (hidden) –output-json option to clone, share and info commands to support the conda-api package

• add repo sub-directory type ‘linux-armv6l’

5.202 2013-03-12 1.4.6:

• fixed channel selection (issue #56)

5.203 2013-03-11 1.4.5:

• fix issue #53 with install for meta packages

• add -q/–quiet option to update command

5.204 2013-03-09 1.4.4:

• use numpy 1.7 as default on all platfroms

5.205 2013-03-09 1.4.3:

• fixed bug in conda.builder.share.clone_bundle()

5.206 2013-03-08 1.4.2:

• feature selection fix for update

• Windows: don’t allow linking or unlinking python from the root environment because the file lock, see issue
#42

174 Chapter 5. Release notes

conda Documentation, Release 4.6.1

5.207 2013-03-07 1.4.1:

• fix some feature selection bugs

• never exit in activate and deactivate

• improve help and error messages

5.208 2013-03-05 1.4.0:

• fixed conda pip NAME==VERSION

• added conda info –license option

• add source activate and deactivate commands

• rename the old activate and deactivate to link and unlink

• add ability for environments to track “features”

• add ability to distinguish conda build packages from Anaconda packages by adding a “file_hash” meta-data field
in info/index.json

• add conda.builder.share module

5.209 2013-02-05 1.3.5:

• fixed detecting untracked files on Windows

• removed backwards compatibility to conda 1.0 version

5.210 2013-01-28 1.3.4:

• fixed conda installing itself into environments (issue #10)

• fixed non-existing channels being silently ignored (issue #12)

• fixed trailing slash in ~/.condarc file cause crash (issue #13)

• fixed conda list not working when ~/.condarc is missing (issue #14)

• fixed conda install not working for Python 2.6 environment (issue #17)

• added simple first cut implementation of remove command (issue #11)

• pip, build commands: only package up new untracked files

• allow a system-wide <sys.prefix>/.condarc (~/.condarc takes precedence)

• only add pro channel is no condarc file exists (and license is valid)

5.211 2013-01-23 1.3.3:

• fix conda create not filtering channels correctly

• remove (hidden) –test and –testgui options

5.207. 2013-03-07 1.4.1: 175

conda Documentation, Release 4.6.1

5.212 2013-01-23 1.3.2:

• fix deactivation of packages with same build number note that conda upgrade did not suffer from this problem,
as was using separate logic

5.213 2013-01-22 1.3.1:

• fix bug in conda update not installing new dependencies

5.214 2013-01-22 1.3.0:

• added conda package command

• added conda index command

• added -c, –canonical option to list and search commands

• fixed conda –version on Windows

• add this changelog

5.215 2012-11-21 1.2.1:

• remove ambiguity from conda update command

5.216 2012-11-20 1.2.0:

• “conda upgrade” now updates from AnacondaCE to Anaconda (removed upgrade2pro

• add versioneer

5.217 2012-11-13 1.1.0:

• Many new features implemented by Bryan

5.218 2012-09-06 1.0.0:

• initial release

176 Chapter 5. Release notes

CHAPTER 6

Command reference

• Conda general commands

• Conda vs. pip vs. virtualenv commands

Conda provides many commands for managing packages and environments. The links on this page provide help for
each command. You can also access help from the command line with the --help flag:

conda install --help

6.1 Conda general commands

The following commands are part of conda:

6.2 Conda vs. pip vs. virtualenv commands

If you have used pip and virtualenv in the past, you can use conda to perform all of the same operations. Pip is a
package manager, and virtualenv is an environment manager. Conda is both.

177

conda Documentation, Release 4.6.1

Task Conda package and en-
vironment manager com-
mand

Pip package manager com-
mand

Virtualenv environment
manager command

Install a
package

conda install
$PACKAGE_NAME

pip install
$PACKAGE_NAME

X

Update a
package

conda update --name
$ENVIRONMENT_NAME
$PACKAGE_NAME

pip install --upgrade
$PACKAGE_NAME

X

Update pack-
age manager

conda update conda Linux/macOS: pip install
-U pip Win: python -m
pip install -U pip

X

Uninstall a
package

conda remove --name
$ENVIRONMENT_NAME
$PACKAGE_NAME

pip uninstall
$PACKAGE_NAME

X

Create an en-
vironment

conda create --name
$ENVIRONMENT_NAME
python

X cd $ENV_BASE_DIR;
virtualenv
$ENVIRONMENT_NAME

Activate an
environment

source activate
$ENVIRONMENT_NAME

X source
$ENV_BASE_DIR/
$ENVIRONMENT_NAME/
bin/activate

Deactivate an
environment

source deactivate X deactivate

Search
available
packages

conda search
$SEARCH_TERM

pip search
$SEARCH_TERM

X

Install pack-
age from spe-
cific source

conda install
--channel $URL
$PACKAGE_NAME

pip install
--index-url $URL
$PACKAGE_NAME

X

List installed
packages

conda list --name
$ENVIRONMENT_NAME

pip list X

Create re-
quirements
file

conda list --export pip freeze X

List all envi-
ronments

conda info --envs X Install virtualenv wrapper,
then lsvirtualenv

Install other
package
manager

conda install pip pip install conda X

Install
Python

conda install
python=x.x

X X

Update
Python

conda update
python*

X X

* conda update python updates to the most recent in the series, so any Python 2.x would update to the latest
2.x and any Python 3.x to the latest 3.x.

178 Chapter 6. Command reference

CHAPTER 7

Glossary

• .condarc

• activate/deactivate environment

• Anaconda

• Anaconda Cloud

• Anaconda Navigator

• Channels

• Conda

• Conda environment

• Conda package

• Conda repository

• Metapackage

• Miniconda

• Noarch package

• Package manager

• Packages

• Repository

• Silent mode installation

179

conda Documentation, Release 4.6.1

7.1 .condarc

The Conda Runtime Configuration file, an optional .yaml file that allows you to configure many aspects of conda,
such as which channels it searches for packages, proxy settings and environment directories. A .condarc file is
not included by default, but it is automatically created in your home directory when you use the conda config
command. The .condarc file can also be located in a root environment, in which case it overrides any .condarc
in the home directory. For more information, see Using the .condarc conda configuration file and Administering a
multi-user conda installation. Pronounced “conda r-c”.

7.2 activate/deactivate environment

Conda commands used to switch or move between installed environments. The activate command prepends the
path of your current environment to the PATH environment variable so that you do not need to type it each time.
deactivate removes it. Even when an environment is deactivated, you can still execute programs in that environ-
ment by specifying their paths directly, as in ~/anaconda/envs/envname/bin/program_name. When an
environment is activated, you can execute the program in that environment with just program_name.

NOTE: Replace envname with the name of the environment and replace program_name with the name of the
program.

7.3 Anaconda

A downloadable, free, open source, high-performance and optimized Python and R distribution. Anaconda includes
conda, conda build, Python and 100+ automatically installed, open source scientific packages and their dependencies
that have been tested to work well together, including SciPy, NumPy and many others. Use the conda install
command to easily install 1,000+ popular open source packages for data science—including advanced and scientific
analytics—from the Anaconda repository. Use the conda command to install thousands more open source packages.

Because Anaconda is a Python distribution, it can make installing Python quick and easy even for new users.

Available for Windows, macOS and Linux, all versions of Anaconda are supported by the community.

See also Miniconda and Conda.

7.4 Anaconda Cloud

A web-based repository hosting service in the cloud. Packages created locally can be published to the cloud to be
shared with others. Free accounts on Cloud can publish packages to be shared publicly. Paid subscriptions to Cloud
can designate packages as private to be shared with authorized users. Anaconda Cloud is a public version of Anaconda
Repository.

7.5 Anaconda Navigator

A desktop graphical user interface (GUI) included in all versions of Anaconda that allows you to easily manage conda
packages, environments, channels and notebooks without a command line interface (CLI).

180 Chapter 7. Glossary

conda Documentation, Release 4.6.1

7.6 Channels

The locations of the repositories where conda looks for packages. Channels may point to a Cloud repository or a private
location on a remote or local repository that you or your organization created. The conda channel command
has a default set of channels to search, beginning with https://repo.continuum.io/pkgs/, which you may override, for
example, to maintain a private or internal channel. These default channels are referred to in conda commands and in
the .condarc file by the channel name “defaults.”

7.7 Conda

The package and environment manager program bundled with Anaconda that installs and updates conda packages and
their dependencies. Conda also lets you easily switch between conda environments on your local computer.

7.8 Conda environment

A folder or directory that contains a specific collection of conda packages and their dependencies, so they can be
maintained and run separately without interference from each other. For example, you may use a conda environment
for only Python 2 and Python 2 packages, maintain another conda environment with only Python 3 and Python 3
packages, and maintain another for R language packages. Environments can be created from:

• The Navigator GUI.

• The command line.

• An environment specification file with the name your-environment-name.yml.

NOTE: Replace your-environment-name with the name of your environment.

7.9 Conda package

A compressed file that contains everything that a software program needs in order to be installed and run, so that you
do not have to manually find and install each dependency separately. A conda package includes system-level libraries,
Python or R language modules, executable programs and other components. You manage conda packages with conda.

7.10 Conda repository

A cloud-based repository that contains 720+ open source certified packages that are easily installed locally with the
conda install command. Anyone can access the repository from:

• The Navigator GUI.

• A Terminal or Anaconda Prompt using conda commands.

• https://repo.continuum.io/pkgs/.

7.6. Channels 181

https://repo.continuum.io/pkgs/
https://repo.continuum.io/pkgs/

conda Documentation, Release 4.6.1

7.11 Metapackage

A conda package that only lists dependencies and does not include any functional programs or libraries. The meta-
package may contain links to software files that are automatically downloaded when executed. An example of a
metapackage is “anaconda,” which collects together all the packages in the Anaconda installer. The command conda
create -n envname anaconda creates an environment that exactly matches what would be created from the
Anaconda installer. You can create metapackages with the conda metapackage command.

7.12 Miniconda

A free minimal installer for conda. Miniconda is a small, bootstrap version of Anaconda that includes only conda,
Python, the packages they depend on and a small number of other useful packages, including pip, zlib and a few others.
Use the conda install command to install 720+ additional conda packages from the Anaconda repository.

Because Miniconda is a Python distribution, and it can make installing Python quick and easy even for new users.

See also Anaconda and Conda.

7.13 Noarch package

A conda package that contains nothing specific to any system architecture, so it may be installed from any system.
When conda searches for packages on any system in a channel, conda checks both the system-specific subdirectory,
such as linux-64, and the noarch directory. Noarch is a contraction of “no architecture”.

7.14 Package manager

A collection of software tools that automates the process of installing, updating, configuring and removing computer
programs for a computer’s operating system. Also known as a package management system. Conda is a package
manager.

7.15 Packages

Software files and information about the software, such as its name, the specific version and a description, bundled
into a file that can be installed and managed by a package manager.

7.16 Repository

Any storage location from which software assets may be retrieved and installed on a local computer. See also Anaconda
Cloud and Conda repository.

7.17 Silent mode installation

When installing Miniconda or Anaconda in silent mode, screen prompts are not shown on screen and default settings
are automatically accepted.

182 Chapter 7. Glossary

Python Module Index

c
conda.api, 94
conda.cli.python_api, 93
conda.core.solve, 91

183

conda Documentation, Release 4.6.1

184 Python Module Index

Index

C
CLEAN (conda.cli.python_api.Commands attribute), 93
Commands (class in conda.cli.python_api), 93
conda.api (module), 94
conda.cli.python_api (module), 93
conda.core.solve (module), 91
CONFIG (conda.cli.python_api.Commands attribute), 93
CREATE (conda.cli.python_api.Commands attribute), 93

D
DepsModifier (class in conda.core.solve), 91

F
first_writable() (conda.api.PackageCacheData

static method), 96

G
get() (conda.api.PackageCacheData method), 97
get() (conda.api.PrefixData method), 98

H
HELP (conda.cli.python_api.Commands attribute), 93

I
INFO (conda.cli.python_api.Commands attribute), 93
INSTALL (conda.cli.python_api.Commands attribute),

93
is_writable (conda.api.PackageCacheData at-

tribute), 97
is_writable (conda.api.PrefixData attribute), 98
iter_records() (conda.api.PackageCacheData

method), 97
iter_records() (conda.api.PrefixData method), 98
iter_records() (conda.api.SubdirData method), 96

L
LIST (conda.cli.python_api.Commands attribute), 93

N
NO_DEPS (conda.core.solve.DepsModifier attribute), 91
NOT_SET (conda.core.solve.DepsModifier attribute), 91

O
ONLY_DEPS (conda.core.solve.DepsModifier attribute),

91

P
PackageCacheData (class in conda.api), 96
PrefixData (class in conda.api), 98

Q
query() (conda.api.PackageCacheData method), 97
query() (conda.api.PrefixData method), 98
query() (conda.api.SubdirData method), 96
query_all() (conda.api.PackageCacheData static

method), 97
query_all() (conda.api.SubdirData static method),

96

R
reload() (conda.api.PackageCacheData method), 97
reload() (conda.api.PrefixData method), 98
reload() (conda.api.SubdirData method), 96
REMOVE (conda.cli.python_api.Commands attribute), 93
run_command() (in module conda.cli.python_api), 93

S
SEARCH (conda.cli.python_api.Commands attribute), 93
solve_final_state() (conda.api.Solver method),

94
solve_final_state() (conda.core.solve.Solver

method), 91
solve_for_diff() (conda.api.Solver method), 95
solve_for_diff() (conda.core.solve.Solver

method), 92
solve_for_transaction() (conda.api.Solver

method), 95

185

conda Documentation, Release 4.6.1

solve_for_transaction()
(conda.core.solve.Solver method), 93

Solver (class in conda.api), 94
Solver (class in conda.core.solve), 91
SubdirData (class in conda.api), 96

U
UPDATE (conda.cli.python_api.Commands attribute), 93

186 Index

	User guide
	Conda Commands
	Conda Configuration
	Conda Python API
	Release notes
	Command reference
	Glossary
	Python Module Index

