

Conda Documentation

Welcome to conda's documentation! Conda provides package, dependency, and environment
management for any language. Here, you will find everything you need to get started
using conda in your own projects.

Install

We recommend the following methods to install conda:

Windows
Miniconda installer for:

Windows x86 64-bit [https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe]

macOS
Miniconda installer for:

macOS x86 64-bit [https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.pkg]

macOS M1 64-bit [https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.pkg]

Linux
Miniconda installer for:

Linux x86 64-bit [https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh]

Homebrew
Run the following Homebrew [https://brew.sh/] command:

brew install miniconda

For more detailed instructions, see Miniconda's installation guide

New to conda?

If you are new to conda, we first recommend the following articles:

Getting started guide

Learn the basics of using conda such as creating and adding packages to environments

Managing environments

Learn more about environments and best practices for using them in your projects

See also

Want to get even more in-depth training on how to use conda for free? Check out Anaconda's
free course on conda basics [https://learning.anaconda.cloud/conda-basics].

Other useful resources

Command reference

Full reference for all standard commands and options

Cheatsheets

Get the latest cheatsheet for commonly used commands

Configuring conda

Learn about the various ways conda's behavior can be configured

Glossary

Important vocabulary to know when working with conda

Contributors welcome

Conda is an open source project and always welcomes new contributions.
Please read the following guides to get started developing conda and
making your own contributions.

Contributing 101

Learn more about how the conda project is managed and how to contribute

Development environment

Follow this guide to get your own development environment set up

User guide

In this guide, you will learn the about the common tasks involved with using the conda package manager.

First steps

If you are brand new to conda, then these are guides that you will want to start with first:

	Installing conda
	Follow these instructions to get a working installation of conda on your computer

	Getting started
	Learn the essential commands you need in your day-to-day usage of conda

	Using conda for your project
	A tutorial explaining how to use conda in your projects

See also

Check out Anaconda's free course on conda basics [https://learning.anaconda.cloud/conda-basics]
to learn even more.

Learn more

	Configuring conda
	Reference and explanation for all the ways you can configure conda

	Working with packages
	Learn how to search for and use conda packages

	Working with environments
	Learn how to create, update, remove, and export your conda environments

Additional resources

	Cheat sheet
	Commonly used commands organized into a PDF

	Troubleshooting
	Various solutions to commonly encountered problems

Getting started with conda

Conda is a powerful command line tool for package and environment management that runs on Windows, macOS, and Linux.

This guide to getting started with conda goes over the basics of starting up and using conda to create environments and install packages.

Tip

Anaconda Navigator is a graphical desktop application that enables you to use conda without having to run commands at the command line.

See Getting started with Anaconda Navigator [https://docs.anaconda.com/free/navigator/getting-started] to learn more.

Before you start

You should have already installed conda before beginning this getting started guide. Conda can be found in many distributions, like Anaconda Distribution [https://docs.anaconda.com/free/anaconda/install/], Miniconda [https://docs.anaconda.com/free/miniconda/] or Miniforge [https://github.com/conda-forge/miniforge].

Starting conda

Conda is available on Windows, macOS, or Linux and can be used with any terminal application (or shell).

Windows

	Open either the Command Prompt (cmd.exe) or PowerShell.

macOS

	Open Launchpad.

	Open the Other application folder.

	Open the Terminal application.

Linux
Open a terminal window.

Creating environments

Conda allows you to create separate environments, each containing their own files, packages, and package dependencies. The contents of each environment do not interact with each other.

The most basic way to create a new environment is with the following command:

conda create -n <env-name>

To add packages while creating an environment, specify them after the environment name:

conda create -n myenvironment python numpy pandas

For more information on working with environments, see Managing environments.

Listing environments

To see a list of all your environments:

conda info --envs

A list of environments appears, similar to the following:

conda environments:

 base /home/username/Anaconda3
 myenvironment * /home/username/Anaconda3/envs/myenvironment

Tip

The active environment is the one with an asterisk (*).

To change your current environment back to the default base:

conda activate

Tip

When the environment is deactivated, its name is no longer shown in your prompt, and the asterisk (*) returns to base. To verify, you can repeat the conda info --envs command.

Installing packages

You can also install packages into a previously created environment. To do this, you can either activate the environment you want to modify or specify the environment name on the command line:

via environment activation
conda activate myenvironment
conda install matplotlib

via command line option
conda install --name myenvironment matplotlib

For more information on searching for and installing packages, see Managing packages.

Specifying channels

Channels are locations (on your own computer or elsewhere on the Internet) where packages are stored. By default, conda searches for packages in its default channels.

If a package you want is located in another channel, such as conda-forge, you can manually specify the channel when installing the package:

conda install conda-forge::numpy

You can also override the default channels in your .condarc file. For a direct example, see Channel locations (channels) or read the entire Using the .condarc conda configuration file.

Tip

Find more packages and channels by searching Anaconda.org [https://www.anaconda.org].

Updating conda

To see your conda version, use the following command:

conda --version

No matter which environment you run this command in, conda displays its current version:

conda 23.10.0

Note

If you get an error message command not found: conda, close and reopen
your terminal window and verify that you are logged
into the same user account that you used to install conda.

To update conda to the latest version:

conda update conda

Conda compares your version to the latest available version and then displays what is available to install.

Tip

We recommend that you always keep conda updated to the latest version.
For conda's official version support policy, see CEP 10 [https://github.com/conda-incubator/ceps/blob/main/cep-10.md].

More information

	Conda cheat sheet

	Full documentation [https://conda.io/docs/]

	Free community support [https://groups.google.com/a/anaconda.com/forum/#!forum/anaconda]

Installing conda

To install conda, you must first pick the right installer for you.
The following are the most popular installers currently available:

	Miniconda [https://docs.anaconda.com/free/miniconda/]
	Miniconda is a minimal installer provided by Anaconda. Use this installer
if you want to install most packages yourself.

	Anaconda Distribution [https://www.anaconda.com/download]
	Anaconda Distribution is a full featured installer that comes with a suite
of packages for data science, as well as Anaconda Navigator, a GUI application
for working with conda environments.

	Miniforge [https://github.com/conda-forge/miniforge]
	Miniforge is an installer maintained by the conda-forge community that comes
preconfigured for use with the conda-forge channel. To learn more about conda-forge,
visit their website [https://conda-forge.org].

Tip

If you are just starting out, we recommend installing conda via the
Miniconda installer [https://docs.anaconda.com/free/miniconda/].

System requirements

	A supported operating systems: Windows, macOS, or Linux

	For Miniconda or Miniforge: 400 MB disk space

	For Anaconda: Minimum 3 GB disk space to download and install

	For Windows: Windows 8.1 or newer for Python 3.9, or Windows Vista or newer for Python 3.8

Tip

You do not need administrative or root permissions to install conda if you select a
user-writable install location (e.g. /Users/my-username/conda or C:\Users\my-username\conda).

Regular installation

Follow the instructions for your operating system:

	Windows

	macOS

	Linux

Installing in silent mode

You can use silent installation of
Miniconda, Anaconda, or Miniforge for deployment or testing or building
services, such as GitHub Actions.

Follow the silent-mode instructions for your operating system:

	Windows

	macOS

	Linux

Cryptographic hash verification

SHA-256 checksums are available for
Miniconda [https://docs.anaconda.com/free/miniconda/] and
Anaconda Distribution [https://docs.anaconda.com/free/anaconda/reference/hashes/all/].
We do not recommend using MD5 verification as SHA-256 is more secure.

Download the installer file and, before installing, verify it as follows:

	Windows:

	If you have PowerShell V4 or later:

Open a PowerShell console and verify the file as follows:

Get-FileHash filename -Algorithm SHA256

	If you don't have PowerShell V4 or later:

Use the free online verifier tool [https://gallery.technet.microsoft.com/PowerShell-File-Checksum-e57dcd67]
on the Microsoft website.

	Download the file and extract it.

	Open a Command Prompt window.

	Navigate to the file.

	Run the following command:

Start-PsFCIV -Path C:\path\to\file.ext -HashAlgorithm SHA256 -Online

	macOS: In iTerm or a terminal window enter shasum -a 256 filename.

	Linux: In a terminal window enter sha256sum filename.

Installing on Windows

	Download the installer:

	Miniconda installer for
Windows [https://docs.anaconda.com/free/miniconda/]

	Anaconda Distribution installer for
Windows [https://www.anaconda.com/download/]

	Miniforge installer for Windows [https://github.com/conda-forge/miniforge]

	Verify your installer hashes.

	Double-click the .exe file.

	Follow the instructions on the screen.

If you are unsure about any setting, accept the defaults. You
can change them later.

When installation is finished, from the Start menu, open either Command Prompt (cmd.exe) or
PowerShell

	Test your installation. In your terminal window, run the command conda list. A list of
installed packages appears if it has been installed correctly.

Installing in silent mode

Note

The following instructions are for Miniconda but should also work
for the Anaconda Distribution or Miniforge installers.

Note

As of Anaconda Distribution 2022.05 and Miniconda 4.12.0, the option to add Anaconda
to the PATH environment variable during an All Users installation has been disabled. This
was done to address a security exploit [https://nvd.nist.gov/vuln/detail/CVE-2022-26526].
You can still add Anaconda to the PATH environment variable during a Just Me installation.

To run the the Windows installer for Miniconda in
silent mode, use the /S
argument. The following optional arguments are supported:

	/InstallationType=[JustMe|AllUsers]---Default is JustMe.

	/AddToPath=[0|1]---Default is 0

	/RegisterPython=[0|1]---Make this the system's default
Python.
0 indicates Python won't be registered as the system's default. 1
indicates Python will be registered as the system's default.

	/S---Install in silent mode.

	/D=<installation path>---Destination installation path.
Must be the last argument. Do not wrap in quotation marks.
Required if you use /S.

All arguments are case-sensitive.

Example: The following command installs Miniconda for the
current user without registering Python as the system's default:

start /wait "" Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /D=%UserProfile%\Miniconda3

Updating conda

	Open Command Prompt or PowerShell from the start menu.

	Run conda update conda.

Uninstalling conda

	In the Windows Control Panel, click Add or Remove Program.

	Select Python X.X (Miniconda), where X.X is your version of Python.

	Click Remove Program.

Note

Removing a program is different in Windows 10.

Installing on macOS

Caution

If you use the .pkg installer for Miniconda, beware that those installers may skip
the "Destination Select" page which will cause the installation to fail. If the installer
skips this page, click "Change Install Location..." on the "Installation Type" page,
choose a location for your install, and then click Continue.

	Download the installer:

	Miniconda installer for macOS [https://docs.anaconda.com/free/miniconda/].

	Anaconda installer for macOS [https://www.anaconda.com/download/].

	Miniforge installer for macOS [https://github.com/conda-forge/miniforge/].

	Verify your installer hashes.

	Install:

	Miniconda or Miniforge: in your terminal window, run:

bash <conda-installer-name>-latest-MacOSX-x86_64.sh

	Anaconda Distribution: double-click the .pkg file.

	Follow the prompts on the installer screens. If you are unsure about any setting, accept the defaults. You
can change them later.

	To make the changes take effect, close and then re-open your
terminal window.

	To verify your installation, in your terminal window, run the command conda list.
A list of installed packages appears if it has been installed correctly.

Installing in silent mode

Note

The following instructions are for Miniconda but should also work
for the Anaconda Distribution or Miniforge installers.

To run the silent installation of
Miniconda for macOS or Linux, specify the -b and -p arguments of
the bash installer. The following arguments are supported:

	-b: Batch mode with no PATH modifications to shell scripts.
Assumes that you agree to the license agreement. Does not edit
shell scripts such as .bashrc, .bash_profile, .zshrc, etc.

	-p: Installation prefix/path.

	-f: Force installation even if prefix -p already exists.

Example

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda

Note

In order to initialize after the installation process is done, first run
source <path to conda>/bin/activate and then run conda init --all.

Updating Anaconda or Miniconda

	Open a terminal window.

	Run conda update conda.

Uninstalling Anaconda or Miniconda

	Open a terminal window.

	Remove the entire Miniconda install directory with (this may differ
depending on your installation location)

rm -rf ~/miniconda

	Optional: run conda init --reverse --all to undo changes to shell initialization scripts

	Optional: remove the following hidden file and folders that may have
been created in the home directory:

	.condarc file

	.conda directory

	.continuum directory

By running:

rm -rf ~/.condarc ~/.conda ~/.continuum

Installing on Linux

	Download the installer:

	Miniconda installer for Linux [https://docs.anaconda.com/free/miniconda/].

	Anaconda Distribution installer for Linux [https://www.anaconda.com/download/].

	Miniforge installer for Linux [https://github.com/conda-forge/miniforge/].

	Verify your installer hashes.

	In your terminal window, run:

bash <conda-installer-name>-latest-Linux-x86_64.sh

conda-installer-name will be one of "Miniconda3", "Anaconda", or "Miniforge3".

	Follow the prompts on the installer screens. If you are unsure about any setting, accept the defaults. You
can change them later.

	To make the changes take effect, close and then re-open your
terminal window.

	Test your installation. In your terminal window, run the command conda list.
A list of installed packages appears if it has been installed correctly.

Using with fish shell

To use conda with fish shell, run the following in your terminal:

Add conda binary to $PATH, if not yet added:

fish_add_path <conda-install-location>/condabin

Configure fish-shell:

conda init fish

Installing in silent mode

See the instructions for
installing in silent mode on macOS.

Updating conda

	Open a terminal window.

	Run conda update conda.

Uninstalling conda

	Open a terminal window.

	Remove the entire conda install directory with (this may differ
depending on your installation location)

rm -rf ~/conda

	Optional: run conda init --reverse --all to undo changes to shell initialization scripts

	Optional: remove the following hidden file and folders that
may have been created in the home directory:

	.condarc file

	.conda directory

	.continuum directory

By running:

rm -rf ~/.condarc ~/.conda ~/.continuum

RPM and Debian Repositories for Miniconda

Conda is available as either a RedHat RPM or as a Debian package. The packages are the
equivalent to the Miniconda installer, which only contains conda and its dependencies.
You can use yum or apt to install, uninstall, and manage conda on your system. To
install conda, follow the instructions for your Linux distribution.

To install the RPM on RedHat, CentOS, Fedora distributions, and other RPM-based distributions,
such as openSUSE, download the GPG key and add a repository configuration file for conda.

Import our GPG public key
rpm --import https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc

Add the Anaconda repository
cat <<EOF > /etc/yum.repos.d/conda.repo
[conda]
name=Conda
baseurl=https://repo.anaconda.com/pkgs/misc/rpmrepo/conda
enabled=1
gpgcheck=1
gpgkey=https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc
EOF

Conda is ready to install on your RPM-based distribution.

 # Install it!
 yum install conda
 Loaded plugins: fastestmirror, ovl
 Setting up Install Process
 Loading mirror speeds from cached hostfile
 * base: repo1.dal.innoscale.net
 * extras: mirrordenver.fdcservers.net
 * updates: mirror.tzulo.com
 Resolving Dependencies
 --> Running transaction check
 ---> Package conda.x86_64 0:4.5.11-0 will be installed
 --> Finished Dependency Resolution

 Dependencies Resolved

===
 Package Arch Version Repository Size

===
 Installing:
 conda x86_64 4.5.11-0 conda 73 M

 Transaction Summary

===
 Install 1 Package(s)

 Total download size: 73 M
 Installed size: 210 M
 Is this ok [y/N]:

To install on Debian-based Linux distributions, such as Ubuntu, download the public GPG
key and add the conda repository to the sources list.

Install our public GPG key to trusted store
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg
install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg

Check whether fingerprint is correct (will output an error message otherwise)
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806

Add our Debian repo
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.list

NB: If you receive a Permission denied error when trying to run the above command (because `/etc/apt/sources.list.d/conda.list` is write protected), try using the following command instead:
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | sudo tee -a /etc/apt/sources.list.d/conda.list

Conda is ready to install on your Debian-based distribution.

Install it!
apt update
apt install conda
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
conda
0 upgraded, 1 newly installed, 0 to remove and 3 not upgraded.
Need to get 76.3 MB of archives.
After this operation, 221 MB of additional disk space will be used.
Get:1 https://repo.anaconda.com/pkgs/misc/debrepo/conda stable/main amd64
conda amd64 4.5.11-0 [76.3 MB]
Fetched 76.3 MB in 10s (7733 kB/s)
debconf: delaying package configuration, since apt-utils is not installed
Selecting previously unselected package conda.
(Reading database ... 4799 files and directories currently installed.)
Preparing to unpack .../conda_4.5.11-0_amd64.deb ...
Unpacking conda (4.5.11-0) ...
Setting up conda (4.5.11-0) …

Check to see if the installation is successful by typing:

source /opt/conda/etc/profile.d/conda.sh
conda -V
conda 4.5.11

Installing conda packages with the system package manager makes it very easy
to distribute conda across a cluster of machines running Linux without having
to worry about any non-privileged user modifying the installation.
Any non-privileged user simply needs to run source /opt/conda/etc/profile.d/conda.sh to use conda.

Administrators can also distribute a .condarc file at /opt/conda/.condarc so that a
predefined configuration for channels, package cache directory, and environment locations
is pre-seeded to all users in a large organization. A sample configuration could look like:

channels:
 - defaults
pkg_dirs:
 - /shared/conda/pkgs
 - $HOME/.conda/pkgs
envs_dirs:
 - /shared/conda/envs
 - $HOME/.conda/envs

These RPM and Debian packages also provide another way to set up conda inside a Docker container.

Tip

It is recommended to use this installation method in a read-only manner and upgrade conda using
the respective package manager only.

Tasks

The tasks section is organized into various pages which cover nearly everything
you can do with conda.

Common Tasks

	Managing conda
	Everything necessary to know about managing your installation of conda

	Managing environments
	Various operations involved with creating, updating, exporting, and removing environments, plus more

	Managing channels
	Information about channels and how they are searched through when installing packages

	Managing packages
	Details related to how to find, install, remove, and update packages in a given environment

	Managing python
	Supported versions of Python and tips for updating and using multiple Python versions

	Managing virtual packages
	Learn what virtual packages are and conda uses them

	View command line help
	Get help on the command line for any conda command

Tutorials

	Creating custom channels
	Tutorial walking you through how to create a custom channel and serve it from your local computer

	Creating projects with conda
	Learn how to start a new project with conda using a environment.yml file to manage your dependencies

Managing conda

Verifying that conda is installed

To verify that conda is installed, in your terminal window, run:

conda --version

Conda responds with the version number that you have installed,
such as conda 4.12.0.

If you get an error message, make sure of the following:

	You are logged into the same user account that you used to
install Anaconda or Miniconda.

	You are in a directory that Anaconda or Miniconda can find.

	You have closed and re-opened the terminal window after
installing conda.

Determining your conda version

In addition to the conda --version command explained above,
you can determine what conda version is installed by running
one of the following commands in your terminal window:

conda info

OR

conda -V

Updating conda to the current version

To update conda, in your terminal window, run:

conda update conda

Conda compares versions and reports what is available to install.
It also tells you about other packages that will be automatically
updated or changed with the update. If conda reports that a newer
version is available, type y to update:

Proceed ([y]/n)? y

Suppressing warning message about updating conda

To suppress the following warning message when you do not want
to update conda to the latest version:

==> WARNING: A newer version of conda exists. <==
current version: 4.6.13
latest version: 4.8.0

Update conda by running: conda update -n base conda

Run the following command from your terminal:
conda config --set notify_outdated_conda false

Or add the following line in your .condarc file:
notify_outdated_conda: false

Managing environments

With conda, you can create, export, list, remove, and update
environments that have different versions of Python and/or
packages installed in them. Switching or moving between
environments is called activating the environment. You can also
share an environment file.

There are many options available for the commands described
on this page. For a detailed reference on all available commands,
see commands.

Creating an environment with commands

Use the terminal for the following steps:

	To create an environment:

conda create --name <my-env>

Replace <my-env> with the name of your environment.

	When conda asks you to proceed, type y:

proceed ([y]/n)?

This creates the myenv environment in /envs/. No
packages will be installed in this environment.

	To create an environment with a specific version of Python:

conda create -n myenv python=3.9

	To create an environment with a specific package:

conda create -n myenv scipy

or:

conda create -n myenv python
conda install -n myenv scipy

	To create an environment with a specific version of a package:

conda create -n myenv scipy=0.17.3

or:

conda create -n myenv python
conda install -n myenv scipy=0.17.3

	To create an environment with a specific version of Python and
multiple packages:

conda create -n myenv python=3.9 scipy=0.17.3 astroid babel

Tip

Install all the programs that you want in this environment
at the same time. Installing one program at a time can lead to
dependency conflicts.

To automatically install pip or another program every time a new
environment is created, add the default programs to the
create_default_packages section
of your .condarc configuration file. The default packages are
installed every time you create a new environment. If you do not
want the default packages installed in a particular environment,
use the --no-default-packages flag:

conda create --no-default-packages -n myenv python

Tip

You can add much more to the conda create command.
For details, run conda create --help.

Creating an environment from an environment.yml file

Use the terminal for the following steps:

	Create the environment from the environment.yml file:

conda env create -f environment.yml

The first line of the yml file sets the new environment's
name. For details see Creating an environment file manually.

	Activate the new environment: conda activate myenv

	Verify that the new environment was installed correctly:

conda env list

You can also use conda info --envs.

Specifying a location for an environment

You can control where a conda environment lives by providing a path
to a target directory when creating the environment. For example,
the following command will create a new environment in a subdirectory
of the current working directory called envs:

conda create --prefix ./envs jupyterlab=3.2 matplotlib=3.5 numpy=1.21

You then activate an environment created with a prefix using the same
command used to activate environments created by name:

conda activate ./envs

Specifying a path to a subdirectory of your project directory when
creating an environment has the following benefits:

	It makes it easy to tell if your project uses an isolated environment
by including the environment as a subdirectory.

	It makes your project more self-contained as everything, including
the required software, is contained in a single project directory.

An additional benefit of creating your project’s environment inside a
subdirectory is that you can then use the same name for all your
environments. If you keep all of your environments in your envs
folder, you’ll have to give each environment a different name.

There are a few things to be aware of when placing conda environments
outside of the default envs folder.

	Conda can no longer find your environment with the --name flag.
You’ll generally need to pass the --prefix flag along with the
environment’s full path to find the environment.

	Specifying an install path when creating your conda environments
makes it so that your command prompt is now prefixed with the active
environment’s absolute path rather than the environment’s name.

After activating an environment using its prefix, your prompt will
look similar to the following:

(/absolute/path/to/envs) $

This can result in long prefixes:

(/Users/USER_NAME/research/data-science/PROJECT_NAME/envs) $

To remove this long prefix in your shell prompt, modify the env_prompt
setting in your .condarc file:

conda config --set env_prompt '({name})'

This will edit your .condarc file if you already have one
or create a .condarc file if you do not.

Now your command prompt will display the active environment’s
generic name, which is the name of the environment's root folder:

$ cd project-directory
$ conda activate ./env
(env) project-directory $

Updating an environment

You may need to update your environment for a variety of reasons.
For example, it may be the case that:

	one of your core dependencies just released a new version
(dependency version number update).

	you need an additional package for data analysis
(add a new dependency).

	you have found a better package and no longer need the older
package (add new dependency and remove old dependency).

If any of these occur, all you need to do is update the contents of
your environment.yml file accordingly and then run the following
command:

conda env update --file environment.yml --prune

Note

The --prune option causes conda to remove any dependencies
that are no longer required from the environment.

Cloning an environment

Use the terminal for the following steps:

You can make an exact copy of an environment by creating a clone
of it:

conda create --name myclone --clone myenv

Note

Replace myclone with the name of the new environment.
Replace myenv with the name of the existing environment that
you want to copy.

To verify that the copy was made:

conda info --envs

In the environments list that displays, you should see both the
source environment and the new copy.

Building identical conda environments

You can use explicit specification files to build an identical
conda environment on the same operating system platform, either
on the same machine or on a different machine.

Use the terminal for the following steps:

	Run conda list --explicit to produce a spec list such as:

This file may be used to create an environment using:
$ conda create --name <env> --file <this file>
platform: osx-64
@EXPLICIT
https://repo.anaconda.com/pkgs/free/osx-64/mkl-11.3.3-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/numpy-1.11.1-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/openssl-1.0.2h-1.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/pip-8.1.2-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/python-3.5.2-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/readline-6.2-2.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/setuptools-25.1.6-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/sqlite-3.13.0-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/tk-8.5.18-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/wheel-0.29.0-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/xz-5.2.2-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/zlib-1.2.8-3.tar.bz2

	To create this spec list as a file in the current working
directory, run:

conda list --explicit > spec-file.txt

Note

You can use spec-file.txt as the filename or replace
it with a filename of your choice.

An explicit spec file is not usually cross platform, and
therefore has a comment at the top such as # platform: osx-64
showing the platform where it was created. This platform is the
one where this spec file is known to work. On other platforms,
the packages specified might not be available or dependencies
might be missing for some of the key packages already in the
spec.

To use the spec file to create an identical environment on the
same machine or another machine:

conda create --name myenv --file spec-file.txt

To use the spec file to install its listed packages into an
existing environment:

conda install --name myenv --file spec-file.txt

Conda does not check architecture or dependencies when installing
from a spec file. To ensure that the packages work correctly,
make sure that the file was created from a working environment,
and use it on the same architecture, operating system, and
platform, such as linux-64 or osx-64.

Activating an environment

Activating environments is essential to making the software in the environments
work well. Activation entails two primary functions: adding entries to PATH for
the environment and running any activation scripts that the environment may
contain. These activation scripts are how packages can set arbitrary
environment variables that may be necessary for their operation. You can also
use the config API to set environment variables.

Activation prepends to PATH. This only takes effect
when you have the environment active so it is local to a terminal session,
not global.

Note

When installing Anaconda [http://docs.anaconda.com/anaconda/install.html],
you have the option to “Add Anaconda to my PATH environment variable.”
This is not recommended because it appends Anaconda to PATH.
When the installer appends to PATH, it does not call the activation scripts.

Note

On Windows, PATH is composed of two parts, the system PATH and the
user PATH. The system PATH always comes first. When you install
Anaconda for "Just Me", we add it to the user PATH. When you install
for "All Users", we add it to the system PATH. In the former case,
you can end up with system PATH values taking precedence over
your entries. In the latter case, you do not. We do not recommend
multi-user installs [https://docs.anaconda.com/free/anaconda/install/multi-user/].

To activate an environment: conda activate myenv

Note

Replace myenv with the environment name or directory path.

Conda prepends the path name myenv onto your system command.

You may receive a warning message if you have not activated your environment:

Warning:
This Python interpreter is in a conda environment, but the environment has
not been activated. Libraries may fail to load. To activate this environment
please see https://conda.io/activation.

If you receive this warning, you need to activate your environment. To do
so on Windows, run: c:\Anaconda3\Scripts\activate base in a terminal window.

Windows is extremely sensitive to proper activation. This is because
the Windows library loader does not support the concept of libraries
and executables that know where to search for their dependencies
(RPATH). Instead, Windows relies on a dynamic-link library search order [https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order].

If environments are not active, libraries won't be found and there
will be lots of errors. HTTP or SSL errors are common errors when the
Python in a child environment can't find the necessary OpenSSL library.

Conda itself includes some special workarounds to add its necessary PATH
entries. This makes it so that it can be called without activation or
with any child environment active. In general, calling any executable in
an environment without first activating that environment will likely not work.
For the ability to run executables in activated environments, you may be
interested in the conda run command.

If you experience errors with PATH, review our troubleshooting.

Conda init

Earlier versions of conda introduced scripts to make activation
behavior uniform across operating systems. Conda 4.4 allowed
conda activate myenv. Conda 4.6 added extensive initialization
support so that conda works faster and less disruptively on
a wide variety of shells (bash, zsh, csh, fish, xonsh, and more).
Now these shells can use the conda activate command.
Removing the need to modify PATH makes conda less disruptive to
other software on your system. For more information, read the
output from conda init --help.

One setting may be useful to you when using conda init is:

auto_activate_base: bool

This setting controls whether or not conda activates your base
environment when it first starts up. You'll have the conda
command available either way, but without activating the environment,
none of the other programs in the environment will be available until
the environment is activated with conda activate base. People
sometimes choose this setting to speed up the time their shell takes
to start up or to keep conda-installed software from automatically
hiding their other software.

Nested activation

By default, conda activate will deactivate the current environment
before activating the new environment and reactivate it when
deactivating the new environment. Sometimes you may want to leave
the current environment PATH entries in place so that you can continue
to easily access command-line programs from the first environment.
This is most commonly encountered when common command-line utilities
are installed in the base environment. To retain the current environment
in the PATH, you can activate the new environment using:

conda activate --stack myenv

If you wish to always stack when going from the outermost environment,
which is typically the base environment, you can set the auto_stack
configuration option:

conda config --set auto_stack 1

You may specify a larger number for a deeper level of automatic stacking,
but this is not recommended since deeper levels of stacking are more likely
to lead to confusion.

Environment variable for DLL loading verification

If you don't want to activate your environment and you want Python
to work for DLL loading verification, then follow the
troubleshooting directions.

Warning

If you choose not to activate your environment, then
loading and setting environment variables to activate
scripts will not happen. We only support activation.

Deactivating an environment

To deactivate an environment, type: conda deactivate

Conda removes the path name for the currently active environment from
your system command.

Note

To simply return to the base environment, it's better to call conda
activate with no environment specified, rather than to try to deactivate. If
you run conda deactivate from your base environment, you may lose the
ability to run conda at all. Don't worry, that's local to this shell - you can
start a new one. However, if the environment was activated using --stack
(or was automatically stacked) then it is better to use conda deactivate.

Determining your current environment

Use the terminal for the following steps.

By default, the active environment---the one you are currently
using---is shown in parentheses () or brackets [] at the
beginning of your command prompt:

(myenv) $

If you do not see this, run:

conda info --envs

In the environments list that displays, your current environment
is highlighted with an asterisk (*).

By default, the command prompt is set to show the name of the
active environment. To disable this option:

conda config --set changeps1 false

To re-enable this option:

conda config --set changeps1 true

Viewing a list of your environments

To see a list of all of your environments, in your terminal window, run:

conda info --envs

OR

conda env list

A list similar to the following is displayed:

conda environments:
myenv /home/username/miniconda/envs/myenv
snowflakes /home/username/miniconda/envs/snowflakes
bunnies /home/username/miniconda/envs/bunnies

If this command is run by an administrator, a list of all environments
belonging to all users will be displayed.

Viewing a list of the packages in an environment

To see a list of all packages installed in a specific environment:

	If the environment is not activated, in your terminal window, run:

conda list -n myenv

	If the environment is activated, in your terminal window, run:

conda list

	To see if a specific package is installed in an environment, in your
terminal window, run:

conda list -n myenv scipy

Using pip in an environment

To use pip in your environment, in your terminal window, run:

conda install -n myenv pip
conda activate myenv
pip <pip_subcommand>

Issues may arise when using pip and conda together. When combining conda and pip,
it is best to use an isolated conda environment. Only after conda has been used to
install as many packages as possible should pip be used to install any remaining
software. If modifications are needed to the environment, it is best to create a
new environment rather than running conda after pip. When appropriate, conda and
pip requirements should be stored in text files.

We recommend that you:

	Use pip only after conda
	
	Install as many requirements as possible with conda then use pip.

	Pip should be run with --upgrade-strategy only-if-needed (the default).

	Do not use pip with the --user argument, avoid all users installs.

	Use conda environments for isolation
	
	Create a conda environment to isolate any changes pip makes.

	Environments take up little space thanks to hard links.

	Care should be taken to avoid running pip in the root environment.

	Recreate the environment if changes are needed
	
	Once pip has been used, conda will be unaware of the changes.

	To install additional conda packages, it is best to recreate
the environment.

	Store conda and pip requirements in text files
	
	Package requirements can be passed to conda via the --file argument.

	Pip accepts a list of Python packages with -r or --requirements.

	Conda env will export or create environments based on a file with
conda and pip requirements.

Setting environment variables

If you want to associate environment variables with an environment,
you can use the config API. This is recommended as an alternative to
using activate and deactivate scripts since those are an execution of
arbitrary code that may not be safe.

First, create your environment and activate it:

conda create -n test-env
conda activate test-env

To list any variables you may have, run conda env config vars list.

To set environment variables, run conda env config vars set my_var=value.

Once you have set an environment variable, you have to reactivate your environment:
conda activate test-env.

To check if the environment variable has been set, run
echo $my_var (echo %my_var% on Windows) or conda env config vars list.

When you deactivate your environment, you can use those same commands to see that
the environment variable goes away.

You can specify the environment you want to affect using the -n and -p flags. The -n flag allows you to name the environment and -p allows you to specify the path to the environment.

To unset the environment variable, run conda env config vars unset my_var -n test-env.

When you deactivate your environment, you can see that environment variable goes away by rerunning
echo my_var or conda env config vars list to show that the variable name
is no longer present.

Environment variables set using conda env config vars will be retained in the output of
conda env export. Further, you can declare environment variables in the environment.yml file
as shown here:

name: env-name
channels:
 - conda-forge
 - defaults
dependencies:
 - python=3.7
 - codecov
variables:
 VAR1: valueA
 VAR2: valueB

Saving environment variables

Conda environments can include saved environment variables.

Suppose you want an environment "analytics" to store both a
secret key needed to log in to a server and a path to a
configuration file. The sections below explain how to write a
script named env_vars to do this on Windows and macOS or Linux.

This type of script file can be part of a conda package, in
which case these environment variables become active when an
environment containing that package is activated.

You can name these scripts anything you like. However, multiple
packages may create script files, so be sure to use descriptive
names that are not used by other packages. One popular option is
to give the script a name in the form
packagename-scriptname.sh, or on Windows,
packagename-scriptname.bat.

Windows

	Locate the directory for the conda environment in your
terminal window by running in the command shell %CONDA_PREFIX%.

	Enter that directory and create these subdirectories and
files:

cd %CONDA_PREFIX%
mkdir .\etc\conda\activate.d
mkdir .\etc\conda\deactivate.d
type NUL > .\etc\conda\activate.d\env_vars.bat
type NUL > .\etc\conda\deactivate.d\env_vars.bat

	Edit .\etc\conda\activate.d\env_vars.bat as follows:

set MY_KEY='secret-key-value'
set MY_FILE=C:\path\to\my\file

	Edit .\etc\conda\deactivate.d\env_vars.bat as follows:

set MY_KEY=
set MY_FILE=

When you run conda activate analytics, the environment variables
MY_KEY and MY_FILE are set to the values you wrote into the file.
When you run conda deactivate, those variables are erased.

macOS and Linux

	Locate the directory for the conda environment in your terminal window by running in the terminal echo $CONDA_PREFIX.

	Enter that directory and create these subdirectories and
files:

cd $CONDA_PREFIX
mkdir -p ./etc/conda/activate.d
mkdir -p ./etc/conda/deactivate.d
touch ./etc/conda/activate.d/env_vars.sh
touch ./etc/conda/deactivate.d/env_vars.sh

	Edit ./etc/conda/activate.d/env_vars.sh as follows:

#!/bin/sh

export MY_KEY='secret-key-value'
export MY_FILE=/path/to/my/file/

	Edit ./etc/conda/deactivate.d/env_vars.sh as follows:

#!/bin/sh

unset MY_KEY
unset MY_FILE

When you run conda activate analytics, the environment
variables MY_KEY and MY_FILE are set to the values you wrote into
the file. When you run conda deactivate, those variables are
erased.

Sharing an environment

You may want to share your environment with someone else---for
example, so they can re-create a test that you have done. To
allow them to quickly reproduce your environment, with all of its
packages and versions, give them a copy of your
environment.yml file.

Exporting the environment.yml file

Note

If you already have an environment.yml file in your
current directory, it will be overwritten during this task.

	Activate the environment to export: conda activate myenv

Note

Replace myenv with the name of the environment.

	Export your active environment to a new file:

conda env export > environment.yml

Note

This file handles both the environment's pip packages
and conda packages.

	Email or copy the exported environment.yml file to the
other person.

Exporting an environment file across platforms

If you want to make your environment file work across platforms,
you can use the conda env export --from-history flag. This
will only include packages that you’ve explicitly asked for,
as opposed to including every package in your environment.

For example, if you create an environment and install Python and a package:

conda install python=3.7 codecov

This will download and install numerous additional packages to solve
for dependencies. This will introduce packages that may not be compatible
across platforms.

If you use conda env export, it will export all of those packages.
However, if you use conda env export --from-history, it will
only export those you specifically chose:

(env-name) ➜ ~ conda env export --from-history
name: env-name
channels:
 - conda-forge
 - defaults
dependencies:
 - python=3.7
 - codecov
prefix: /Users/username/anaconda3/envs/env-name

Note

If you installed Anaconda 2019.10 on macOS, your prefix may be
/Users/username/opt/envs/env-name.

Creating an environment file manually

You can create an environment file (environment.yml) manually
to share with others.

EXAMPLE: A simple environment file:

name: stats
dependencies:
 - numpy
 - pandas

EXAMPLE: A more complex environment file:

name: stats2
channels:
 - javascript
dependencies:
 - python=3.9
 - bokeh=2.4.2
 - conda-forge::numpy=1.21.*
 - nodejs=16.13.*
 - flask
 - pip
 - pip:
 - Flask-Testing

Note

Using wildcards

Note the use of the wildcard * when defining a few of the
versions in the complex environment file. Keeping the major and
minor versions fixed while allowing the patch to be any number
allows you to use your environment file to get any bug fixes
while still maintaining consistency in your environment. For
more information on package installation values,
see Package search and install specifications.

Specifying channels outside of "channels"

You may occasionally want to specify which channel conda will
use to install a specific package. To accomplish this, use the
channel::package syntax in dependencies:, as demonstrated
above with conda-forge::numpy (version numbers optional). The
specified channel does not need to be present in the channels:
list, which is useful if you want some—but not all—packages
installed from a community channel such as conda-forge.

You can exclude the default channels by adding nodefaults
to the channels list.

channels:
 - javascript
 - nodefaults

This is equivalent to passing the --override-channels option
to most conda commands.

Adding nodefaults to the channels list in environment.yml
is similar to removing defaults from the channels
list in the .condarc file. However,
changing environment.yml affects only one of your conda
environments while changing .condarc affects them all.

For details on creating an environment from this
environment.yml file, see Creating an environment from an environment.yml file.

Restoring an environment

Conda keeps a history of all the changes made to your environment,
so you can easily "roll back" to a previous version. To list the history of each change to the current environment:
conda list --revisions

To restore environment to a previous revision: conda install --revision=REVNUM
or conda install --rev REVNUM.

Note

Replace REVNUM with the revision number.

Example:
If you want to restore your environment to revision 8, run conda install --rev 8.

Removing an environment

To remove an environment, in your terminal window, run:

conda remove --name myenv --all

You may instead use conda env remove --name myenv.

To verify that the environment was removed, in your terminal window, run:

conda info --envs

The environments list that displays should not show the removed
environment.

Managing channels

Conda channels are the locations where packages are stored.
They serve as the base for hosting and managing packages.
Conda packages are downloaded from remote channels, which are URLs to
directories containing conda packages. The conda command searches a default
set of channels and packages are automatically downloaded and updated
from the default channel [https://repo.anaconda.com/pkgs/]. Read more about
conda channels and the various terms of service
for their use.

Different channels can have the same package, so conda must handle these
channel collisions.

There will be no channel collisions if you use only the defaults channel.
There will also be no channel collisions if all of the channels you use only
contain packages that do not exist in any of the other channels in your list.
The way conda resolves these collisions matters only when you have multiple
channels in your channel list that host the same package.

By default, conda prefers packages from a higher priority
channel over any version from a lower priority channel.
Therefore, you can now safely put channels at the bottom of your
channel list to provide additional packages that are not in the
default channels and still be confident that these channels will
not override the core package set.

Conda collects all of the packages with the same name across all
listed channels and processes them as follows:

	Sorts packages from highest to lowest channel priority.

	Sorts tied packages---packages with the same channel priority---from highest to
lowest version number. For example, if channelA contains NumPy 1.12.0
and 1.13.1, NumPy 1.13.1 will be sorted higher.

	Sorts still-tied packages---packages with the same channel priority and same
version---from highest to lowest build number. For example, if channelA contains
both NumPy 1.12.0 build 1 and build 2, build 2 is sorted first. Any packages
in channelB would be sorted below those in channelA.

	Installs the first package on the sorted list that satisfies
the installation specifications.

Essentially, the order goes:
channelA::numpy-1.13_1 > channelA::numpy-1.12.1_1 > channelA::numpy-1.12.1_0 > channelB::numpy-1.13_1

Note

If strict channel priority is turned on then channelB::numpy-1.13_1 isn't
included in the list at all.

To make conda install the newest version
of a package in any listed channel:

	Add channel_priority: disabled to your .condarc file.

OR

	Run the equivalent command:

conda config --set channel_priority disabled

Conda then sorts as follows:

	Sorts the package list from highest to lowest version number.

	Sorts tied packages from highest to lowest channel priority.

	Sorts tied packages from highest to lowest build number.

Because build numbers from different channels are not
comparable, build number still comes after channel priority.

The following command adds the channel "new_channel" to the top
of the channel list, making it the highest priority:

conda config --add channels new_channel

Conda has an equivalent command:

conda config --prepend channels new_channel

Conda also has a command that adds the new channel to the
bottom of the channel list, making it the lowest priority:

conda config --append channels new_channel

Strict channel priority

As of version 4.6.0, Conda has a strict channel priority feature.
Strict channel priority can dramatically speed up conda operations and
also reduce package incompatibility problems. We recommend setting channel
priority to "strict" when possible.

Details about it can be seen by typing conda config --describe channel_priority.

channel_priority (ChannelPriority)
Accepts values of 'strict', 'flexible', and 'disabled'. The default
value is 'flexible'. With strict channel priority, packages in lower
priority channels are not considered if a package with the same name
appears in a higher priority channel. With flexible channel priority,
the solver may reach into lower priority channels to fulfill
dependencies, rather than raising an unsatisfiable error. With channel
priority disabled, package version takes precedence, and the
configured priority of channels is used only to break ties. In
previous versions of conda, this parameter was configured as either
True or False. True is now an alias to 'flexible'.

channel_priority: flexible

Managing packages

Note

There are many options available for the commands described
on this page. For details, see commands.

Searching for packages

Use the terminal for the following steps.

To see if a specific package, such as SciPy, is available for
installation:

conda search scipy

To see if a specific package, such as SciPy, is available for
installation from Anaconda.org:

conda search --override-channels --channel defaults scipy

To see if a specific package, such as iminuit, exists in a
specific channel, such as http://conda.anaconda.org/mutirri,
and is available for installation:

conda search --override-channels --channel http://conda.anaconda.org/mutirri iminuit

Installing packages

Use the terminal for the following steps.

To install a specific package such as SciPy into an existing
environment "myenv":

conda install --name myenv scipy

If you do not specify the environment name, which in this
example is done by --name myenv, the package installs
into the current environment:

conda install scipy

To install a specific version of a package such as SciPy:

conda install scipy=0.15.0

To install multiple packages at once, such as SciPy and cURL:

conda install scipy curl

Note

It is best to install all packages at once, so that all of
the dependencies are installed at the same time.

To install multiple packages at once and specify the version of
the package:

conda install scipy=0.15.0 curl=7.26.0

To install a package for a specific Python version:

conda install scipy=0.15.0 curl=7.26.0 -n py34_env

If you want to use a specific Python version, it is best to use
an environment with that version. For more information,
see Troubleshooting.

Installing similar packages

Installing packages that have similar filenames and serve similar
purposes may return unexpected results. The package last installed
will likely determine the outcome, which may be undesirable.
If the two packages have different names, or if you're building
variants of packages and need to line up other software in the stack,
we recommend using Mutex metapackages.

Installing packages from Anaconda.org

Packages that are not available using conda install can be
obtained from Anaconda.org, a package management service for
both public and private package repositories. Anaconda.org
is an Anaconda product, just like Anaconda and Miniconda.

To install a package from Anaconda.org:

	In a browser, go to http://anaconda.org.

	To find the package named bottleneck, type bottleneck
in the top-left box named Search Packages.

	Find the package that you want and click it to go to the
detail page.

The detail page displays the name of the channel. In this
example it is the "pandas" channel.

	Now that you know the channel name, use the conda install
command to install the package. In your terminal window, run:

conda install -c pandas bottleneck

This command tells conda to install the bottleneck package
from the pandas channel on Anaconda.org.

	To check that the package is installed, in your terminal window, run:

conda list

A list of packages appears, including bottleneck.

Note

For information on installing packages from multiple
channels, see Managing channels.

Installing non-conda packages

If a package is not available from conda or Anaconda.org, you may be able to
find and install the package via conda-forge or with another package manager
like pip.

Pip packages do not have all the features of conda packages and we recommend
first trying to install any package with conda. If the package is unavailable
through conda, try finding and installing it with
conda-forge [https://conda-forge.org/search.html].

If you still cannot install the package, you can try
installing it with pip. The differences between pip and
conda packages cause certain unavoidable limits in compatibility but conda
works hard to be as compatible with pip as possible.

Note

Both pip and conda are included in Anaconda and Miniconda, so you do not
need to install them separately.

Conda environments replace virtualenv, so there is no need to activate a
virtualenv before using pip.

It is possible to have pip installed outside a conda environment or inside a
conda environment.

To gain the benefits of conda integration, be sure to install pip inside the
currently active conda environment and then install packages with that
instance of pip. The command conda list shows packages installed this way,
with a label showing that they were installed with pip.

You can install pip in the current conda environment with the command
conda install pip, as discussed in Using pip in an environment.

If there are instances of pip installed both inside and outside the current
conda environment, the instance of pip installed inside the current conda
environment is used.

To install a non-conda package:

	Activate the environment where you want to put the program:

	In your terminal window, run conda activate myenv.

	To use pip to install a program such as See, in your terminal window, run:

pip install see

	To verify the package was installed, in your terminal window, run:

conda list

If the package is not shown, install pip as described in Using pip in an environment
and try these commands again.

Installing commercial packages

Installing a commercial package such as IOPro is the same as
installing any other package. In your terminal window, run:

conda install --name myenv iopro

This command installs a free trial of one of Anaconda's
commercial packages called IOPro [https://docs.continuum.io/iopro/], which can speed up your
Python processing. Except for academic use, this free trial
expires after 30 days.

Viewing a list of installed packages

Use the terminal for the following steps.

To list all of the packages in the active environment:

conda list

To list all of the packages in a deactivated environment:

conda list -n myenv

Listing package dependencies

To find what packages are depending on a specific package in
your environment, there is not one specific conda command.
It requires a series of steps:

	List the dependencies that a specific package requires to run:
conda search package_name --info

	Find your installation’s package cache directory:
conda info

	Find package dependencies. By default, Anaconda/Miniconda stores packages in ~/anaconda/pkgs/ (or ~/opt/pkgs/ on macOS Catalina).
Each package has an index.json file which lists the package’s dependencies.
This file resides in ~anaconda/pkgs/package_name/info/index.json.

	Now you can find what packages depend on a specific package. Use grep to search all index.json files
as follows: grep package_name ~/anaconda/pkgs/*/info/index.json

The result will be the full package path and version of anything containing the <package_name>.

Example:
grep numpy ~/anaconda3/pkgs/*/info/index.json

Output from the above command:

/Users/testuser/anaconda3/pkgs/anaconda-4.3.0-np111py36_0/info/index.json: numpy 1.11.3 py36_0
/Users/testuser/anaconda3/pkgs/anaconda-4.3.0-np111py36_0/info/index.json: numpydoc 0.6.0 py36_0
/Users/testuser/anaconda3/pkgs/anaconda-4.3.0-np111py36_0/info/index.json: numpy 1.11.3 py36_0

Note this also returned “numpydoc” as it contains the string “numpy”. To get a more specific result
set you can add < and >.

Updating packages

Use conda update command to check to see if a new update is
available. If conda tells you an update is available, you can
then choose whether or not to install it.

Use the terminal for the following steps.

	To update a specific package:

conda update biopython

	To update Python:

conda update python

	To update conda itself:

conda update conda

Note

Conda updates to the highest version in its series, so
Python 3.8 updates to the highest available in the 3.x series.

To update the Anaconda metapackage:

conda update conda
conda update anaconda

Regardless of what package you are updating, conda compares
versions and then reports what is available to install. If no
updates are available, conda reports "All requested packages are
already installed."

If a newer version of your package is available and you wish to
update it, type y to update:

Proceed ([y]/n)? y

Preventing packages from updating (pinning)

Pinning a package specification in an environment prevents
packages listed in the pinned file from being updated.

In the environment's conda-meta directory, add a file
named pinned that includes a list of the packages that you
do not want updated.

EXAMPLE: The file below forces NumPy to stay on the 1.7 series,
which is any version that starts with 1.7. This also forces SciPy to
stay at exactly version 0.14.2:

numpy 1.7.*
scipy ==0.14.2

With this pinned file, conda update numpy keeps NumPy at
1.7.1, and conda install scipy=0.15.0 causes an error.

Use the --no-pin flag to override the update restriction on
a package. In the terminal, run:

conda update numpy --no-pin

Because the pinned specs are included with each conda
install, subsequent conda update commands without
--no-pin will revert NumPy back to the 1.7 series.

Adding default packages to new environments automatically

To automatically add default packages to each new environment that you create:

	Open a terminal window and run:
conda config --add create_default_packages PACKAGENAME1 PACKAGENAME2

	Now, you can create new environments and the default packages will be installed in all of them.

You can also edit the .condarc file with a list of packages to create
by default.

You can override this option at the command prompt with the --no-default-packages flag.

Removing packages

Use the terminal for the following steps.

	To remove a package such as SciPy in an environment such as
myenv:

conda remove -n myenv scipy

	To remove a package such as SciPy in the current environment:

conda remove scipy

	To remove multiple packages at once, such as SciPy and cURL:

conda remove scipy curl

	To confirm that a package has been removed:

conda list

Managing Python

Conda treats Python the same as any other package, so it is easy
to manage and update multiple installations.

Conda supports Python 3.8, 3.9, 3.10, 3.11 and 3.12.

Viewing a list of available Python versions

To list the versions of Python that are available to install,
in your terminal window, run:

conda search python

This lists all packages whose names contain the text python.

To list only the packages whose full name is exactly python,
add the --full-name option. In your terminal window, run:

conda search --full-name python

Installing a different version of Python

To install a different version of Python without overwriting the
current version, create a new environment and install the second
Python version into it:

	Create the new environment:

	To create the new environment for Python 3.9, in your terminal
window run:

conda create -n py39 python=3.9

Note

Replace py39 with the name of the environment you
want to create. python=3.9 is the package and version you
want to install in this new environment. This could be any
package, such as numpy=1.19, or multiple packages.

	Activate the new environment.

	Verify that the new environment is your current
environment.

	To verify that the current environment uses the new Python
version, in your terminal window, run:

python --version

Installing PyPy

To use the PyPy builds you can do the following:

conda config --add channels conda-forge
conda config --set channel_priority strict
conda create -n pypy pypy
conda activate pypy

Using a different version of Python

To switch to an environment that has different version of Python,
activate the environment.

Updating Python

To update Python to the latest version in your environment, run:

conda update python

This command will update you to the latest major release (e.g. from python=3.10 to python=3.12).

If you would like to remain on a minor release, use the conda install command instead:

conda install python=3.10

Managing virtual packages

"Virtual" packages are injected into the conda solver to allow real packages
to depend on features present on the system that cannot be managed directly by
conda, like system driver versions or CPU features. Virtual packages are not
real packages and not displayed by conda list. Instead conda runs a
small bit of code to detect the presence or absence of the system feature that
corresponds to the package. The currently supported list of virtual packages includes:

	__cuda: Maximum version of CUDA supported by the display driver.

	__osx: OSX version if applicable.

	__glibc: Version of glibc supported by the OS.

	__linux: Available when running on Linux.

	__unix: Available when running on OSX or Linux.

	__win: Available when running on Win.

	__conda: Version of conda that is being used for solving.

Other virtual packages will be added in future conda releases. These are denoted
by a leading double-underscore in the package name.

Note

Note that as of version 22.11.0,
virtual packages are
implemented as conda plugins.

Listing detected virtual packages

Use the terminal for the following steps.

To see the list of detected virtual packages, run:

conda info

If a package is detected, you will see it listed in the virtual packages
section, as shown in this example:

 active environment : base
 active env location : /Users/demo/dev/conda/devenv
 shell level : 1
 user config file : /Users/demo/.condarc
populated config files : /Users/demo/.condarc
 conda version : 4.6.3.post8+8f640d35a
 conda-build version : 3.17.8
 python version : 3.7.2.final.0
 virtual packages : __cuda=10.0
 base environment : /Users/demo/dev/conda/devenv (writable)
 channel URLs : https://repo.anaconda.com/pkgs/main/osx-64
 https://repo.anaconda.com/pkgs/main/noarch
 https://repo.anaconda.com/pkgs/free/osx-64
 https://repo.anaconda.com/pkgs/free/noarch
 https://repo.anaconda.com/pkgs/r/osx-64
 https://repo.anaconda.com/pkgs/r/noarch
 package cache : /Users/demo/dev/conda/devenv/pkgs
 /Users/demo/.conda/pkgs
 envs directories : /Users/demo/dev/conda/devenv/envs
 /Users/demo/.conda/envs
 platform : osx-64
 user-agent : conda/4.6.3.post8+8f640d35a requests/2.21.0 CPython/3.7.2 Darwin/17.7.0 OSX/10.13.6
 UID:GID : 502:20
 netrc file : None
 offline mode : False

Overriding detected packages

For troubleshooting, it is possible to override virtual package detection
using an environment variable. Supported variables include:

	CONDA_OVERRIDE_CUDA - CUDA version number or set to "" for no CUDA
detected.

	CONDA_OVERRIDE_OSX - OSX version number or set to "" for no OSX
detected.

	CONDA_OVERRIDE_GLIBC - GLIBC version number or set to "" for no GLIBC.
This only applies on Linux.

Creating custom channels

In this tutorial, we walk through how to create your own channel
that can either be accessed via the local or network file system or served
from a webserver.

To create a custom channel:

	You will need to install conda-build to complete this tutorial. If you do not already have it,
you can install it with the following command:

conda install conda-build

	Organize all the packages in subdirectories for the platforms you wish to serve. Below
is an example of what this may look like:

channel
├── linux-64
│ └── package-1.0-0.tar.bz2
├── osx-64
│ └── package-1.0-0.tar.bz2
└── win-64
 └── package-1.0-0.tar.bz2

	Run conda index on the channel root directory:

conda index channel/

The conda index command generates a file repodata.json,
saved to each repository directory, which conda uses to get
the metadata for the packages in the channel.

Note

Each time you add or modify a package in the channel,
you must rerun conda index for conda to see the update.

	To test custom channels, serve the custom channel using a web
server or using a file:// URL to the channel directory.
Test by sending a search command to the custom channel.

Example: if you want a file in the custom channel location
/opt/channel/linux-64/, search for files in that location:

conda search -c file:///opt/channel/ --override-channels

Note

	The channel URL does not include the platform, as conda
automatically detects and adds the platform.

	The option --override-channels ensures that conda
searches only your specified channel and no other channels,
such as default channels or any other channels you may have
listed in your .condarc file.

If you have set up your private repository correctly, you
get the following output:

Fetching package metadata:

This is followed by a list of the conda packages found. This
verifies that you have set up and indexed your private
repository successfully.

Creating projects

In this tutorial, we will walk through how to set up a new Python project in conda
using an environment.yml file. This file will help you keep track of your
dependencies and share your project with others. We cover how to create your
project, add a simple Python program and update it with new dependencies.

Requirements

To follow along, you will need a working conda installation. Please head
over to our installation guide for instructions on how
to get conda installed if you do not have it.

This tutorial relies heavily on using your computer's terminal (Command Prompt or PowerShell
on Windows), so it is also important to have a working familiarity with using basic commands
such as cd and ls.

Creating the project's files

To start off, we will need a directory that will contain the files for our project. This can
be created with the following command:

mkdir my-project

In this directory, we will now create a new environment.yaml file, which will hold the
dependencies for our Python project. In your text editor (e.g. VSCode, PyCharm, vim, etc.),
create this file and add the following:

name: my-project
channels:
 - defaults
dependencies:
 - python

Let's briefly go over what each part of this file means.

	Name
	The name of your environment. Here, we have chosen the name "my-project", but this can
be anything you want.

	Channels
	Channels specify where you want conda to search for packages. We have chosen the
defaults channel, but others such as conda-forge or bioconda are also possible
to list here.

	Dependencies
	All the dependencies that you need for your project. So far, we have just added python
because we know it will be a Python project. We will add more later.

Creating our environment

Now that we have written a basic environment.yml file, we can create and activate an environment
from it. To do so, run the following commands:

conda env create --file environment.yml
conda activate my-project

Creating our Python application

With our new environment with Python installed, we can create a simple Python program.
In your project folder, create a main.py file and add the following:

def main():
 print("Hello, conda!")

if __name__ == "__main__":
 main()

We can run our simple Python program by running the following command:

python main.py
Hello, conda!

Updating our project with new dependencies

If you want your project to do more than the simple example above, you can use one of the thousands
of available packages on conda channels. To demonstrate this, we will add a new dependency
so that we can pull in some data from the internet and perform a basic analysis.

To perform the data analysis, we will be relying on the Pandas [https://pandas.pydata.org/docs/index.html]
package. To add this to our project, we will need to update our environment.yml file:

name: my-project
channels:
 - defaults
dependencies:
 - python
 - pandas # <-- This is our new dependency

Once we have done that, we can run the conda env update command to install the new package:

conda env update --file environment.yml

Now that our dependencies are installed, we will download some data to use for our analysis.
For this, we will use the U.S. Environmental Protection Agency's
Walkability Index [https://catalog.data.gov/dataset/walkability-index1] dataset
available on data.gov [https://data.gov]. You can download this with the following command:

curl -O https://edg.epa.gov/EPADataCommons/public/OA/EPA_SmartLocationDatabase_V3_Jan_2021_Final.csv

Tip

If you do not have curl, you can visit the above link with a web browser to download it.

For our analysis, we are interested in knowing what percentage of U.S. residents live in highly
walkable areas. This is a question that we can easily answer using the pandas library.
Below is an example of how you might go about doing that:

import pandas as pd

def main():
 """
 Answers the question:

 What percentage of U.S. residents live highly walkable neighborhoods?

 "15.26" is the threshold on the index for a highly walkable area.
 """
 csv_file = "./EPA_SmartLocationDatabase_V3_Jan_2021_Final.csv"
 highly_walkable = 15.26

 df = pd.read_csv(csv_file)

 total_population = df["TotPop"].sum()
 highly_walkable_pop = df[df["NatWalkInd"] >= highly_walkable]["TotPop"].sum()

 percentage = (highly_walkable_pop / total_population) * 100.0

 print(
 f"{percentage:.2f}% of U.S. residents live in highly" "walkable neighborhoods."
)

if __name__ == "__main__":
 main()

Update your main.py file with the code above and run it. You should get the following
answer:

python main.py
10.69% of Americans live in highly walkable neighborhoods

Conclusion

You have just been introduced to creating your own data analysis project by using
the environment.yml file in conda. As the project grows, you may wish to add more dependencies
and also better organize the Python code into separate files and modules.

For even more information about working with environments and environment.yml files,
please see Managing Environments.

Viewing command-line help

To see a list of supported conda commands, in your terminal window, run:

conda --help

or

conda -h

To get help for a specific command, type the command name
followed by --help.

Example

To see help for the create command, in your terminal window, run:

conda create -h

Note

You can see the same command help in commands.

Configuration

The following pages have information on how conda can be customized further through
configuration.

	Using the .condarc conda configuration file
	Learn how to use a settings file (.condarc) to override defaults and maintain
settings across shell sessions

	Settings
	View a list and definition of all the configuration settings that can be used within
conda

	Administering a multi-user conda installation
	How to set up conda as a system administrator for use by multiple users

	Mirroring channels
	Explore how to configure your own channel server mirror with conda

	Disable SSL Verification
	Disabling SSL may be necessary in very limited circumstances; learn how here

	Using non-standard certificates
	Install and configure non-standard certifications for use with conda

	Pip interoperability (experimental)
	An experimental feature that makes conda operate better with pip (no longer supported)

	Free channel (deprecated)
	Explanation of our deprecation of the free channel and how to restore it

Using the .condarc conda configuration file

Overview

The conda configuration file, .condarc, is an optional
runtime configuration file that allows advanced users to
configure various aspects of conda, such as which channels it
searches for packages, proxy settings, and environment
directories. For all of the conda configuration options,
see the configuration page.

Note

A .condarc file can also be used in an
administrator-controlled installation to override the users’
configuration. See Administering a multi-user conda installation.

The .condarc file can change many parameters, including:

	Where conda looks for packages.

	If and how conda uses a proxy server.

	Where conda lists known environments.

	Whether to update the Bash prompt with the currently activated
environment name.

	Whether user-built packages should be uploaded to
Anaconda.org [http://anaconda.org].

	What default packages or features to include in new environments.

Creating and editing

The .condarc file is not included by default, but it is
automatically created in your home directory the first time you
run the conda config command. To create or modify a .condarc
file, open a terminal and enter the conda config command.

The .condarc configuration file follows simple
YAML syntax [https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html].

Example:

conda config --add channels conda-forge

Alternatively, you can open a text editor such as Notepad
on Windows, TextEdit on macOS, or VS Code. Name the new file
.condarc and save it to your user home directory or root
directory. To edit the .condarc file, open it from your
home or root directory and make edits in the same way you would
with any other text file. If the .condarc file is in the root
environment, it will override any in the home directory.

You can find information about your .condarc file by typing
conda info in your terminal. This will give you information about
your .condarc file, including where it is located.

You can also download a sample .condarc file to edit in your editor and save to your user
home directory or root directory.

To set configuration options, edit the .condarc file directly
or use the conda config --set command.

Example:

To set the auto_update_conda option to False, run:

conda config --set auto_update_conda False

For a complete list of conda config commands, see the
command reference. The same list
is available at the terminal by running
conda config --help. You can also see the conda channel
configuration [https://conda.io/projects/conda/en/latest/configuration.html] for more information.

Conda supports a wide range of configuration options. This page
gives a non-exhaustive list of the most frequently used options and
their usage. For a complete list of all available options for your
version of conda, use the conda config --describe command.

Searching for .condarc

Conda looks in the following locations for a .condarc file:

if on_win:
 SEARCH_PATH = (
 "C:/ProgramData/conda/.condarc",
 "C:/ProgramData/conda/condarc",
 "C:/ProgramData/conda/condarc.d",
)
else:
 SEARCH_PATH = (
 "/etc/conda/.condarc",
 "/etc/conda/condarc",
 "/etc/conda/condarc.d/",
 "/var/lib/conda/.condarc",
 "/var/lib/conda/condarc",
 "/var/lib/conda/condarc.d/",
)

SEARCH_PATH += (
 "$CONDA_ROOT/.condarc",
 "$CONDA_ROOT/condarc",
 "$CONDA_ROOT/condarc.d/",
 "$XDG_CONFIG_HOME/conda/.condarc",
 "$XDG_CONFIG_HOME/conda/condarc",
 "$XDG_CONFIG_HOME/conda/condarc.d/",
 "~/.config/conda/.condarc",
 "~/.config/conda/condarc",
 "~/.config/conda/condarc.d/",
 "~/.conda/.condarc",
 "~/.conda/condarc",
 "~/.conda/condarc.d/",
 "~/.condarc",
 "$CONDA_PREFIX/.condarc",
 "$CONDA_PREFIX/condarc",
 "$CONDA_PREFIX/condarc.d/",
 "$CONDARC",
)

XDG_CONFIG_HOME is the path to where user-specific configuration files should
be stored defined following The XDG Base Directory Specification (XDGBDS). Default
to $HOME/.config should be used.
CONDA_ROOT is the path for your base conda install.
CONDA_PREFIX is the path to the current active environment.
CONDARC must be a path to a file named .condarc, condarc, or end with a YAML suffix (.yml or .yaml).

Note

Any condarc files that exist in any of these special search path
directories need to end in a valid yaml extension (".yml" or ".yaml").

Conflict merging strategy

When conflicts between configurations arise, the following strategies are employed:

	Lists - merge

	Dictionaries - merge

	Primitive - clobber

Precedence

The precedence by which the conda configuration is built out is shown below.
Each new arrow takes precedence over the ones before it. For example, config
files (by parse order) will be superseded by any of the other configuration
options. Configuration environment variables (formatted like CONDA_<CONFIG NAME>)
will always take precedence over the other 3.

[image: ../../_images/config-precedence.png]

Obtaining information from the .condarc file

You can use the following commands to get the effective settings for conda.
The effective settings are those that have merged settings from all the sources
mentioned above.

To get all keys and their values:

conda config --get

To get the value of a specific key, such as channels:

conda config --get channels

To show all the configuration file sources and their contents:

conda config --show-sources

Saving settings to your .condarc file

The .condarc file can also be modified via conda commands.
Below are several examples of how to do this.

To add a new value, such as
http://conda.anaconda.org/mutirri, to a specific key, such as
channels:

conda config --add channels http://conda.anaconda.org/mutirri

To remove an existing value, such as
http://conda.anaconda.org/mutirri from a specific key, such as
channels:

conda config --remove channels http://conda.anaconda.org/mutirri

To remove a key, such as channels, and all of its values:

conda config --remove-key channels

To configure channels and their priority for a single
environment, make a .condarc file in the root directory
of that environment.

Sample .condarc file

Because the .condarc file is just a YAML file, it means that
it can be edited directly. Below is an example .condarc file:

This is a sample .condarc file.
It adds the r Anaconda.org channel and enables
the show_channel_urls option.

channel locations. These override conda defaults, i.e., conda will
search *only* the channels listed here, in the order given.
Use "defaults" to automatically include all default channels.
Non-url channels will be interpreted as Anaconda.org usernames
(this can be changed by modifying the channel_alias key; see below).
The default is just 'defaults'.
channels:
 - r
 - defaults

Show channel URLs when displaying what is going to be downloaded
and in 'conda list'. The default is False.
show_channel_urls: True

For more information about this file see:
https://conda.io/docs/user-guide/configuration/use-condarc.html

Settings

This page contains an overview of many important settings available in conda
with examples where possible.

General configuration

channels: Channel locations

Listing channel locations in the .condarc file overrides
conda defaults, causing conda to search only the channels listed there
in the order given.

Use defaults to automatically include all default channels.
Non-URL channels are interpreted as Anaconda.org user or organization
names. You can change this by modifying the channel_alias as described
in channel_alias: Set a channel alias. The default is just defaults.

Example:

channels:
 - <anaconda_dot_org_username>
 - http://some.custom/channel
 - file:///some/local/directory
 - defaults

To select channels for a single environment, put a .condarc
file in the root directory of that environment (or use the
--env option when using conda config).

Example: If you have installed Miniconda with Python 3 in your
home directory and the environment is named "flowers", the
path may be:

~/miniconda3/envs/flowers/.condarc

default_channels: Default channels

Normally, the defaults channel points to several channels at the
repo.anaconda.com [https://repo.anaconda.com/] repository, but if
default_channels is defined, it sets the new list of default channels.
This is especially useful for airgapped and enterprise installations.

To ensure that all users only pull packages from an on-premises
repository, an administrator can set both channel alias and
default_channels.

default_channels:
 - http://some.custom/channel
 - file:///some/local/directory

channel_settings: Extra settings for individual channels

New in version 23.3.0.

With channel_settings, it is possible to add extra configuration options
for individual channels. This is currently used to register additional authentication
handlers for conda via the Auth Handlers plugin hook, but may also
accommodate more use cases in the future.

Here is an example of how it may be defined provided there was an available authentication
handler called, "test-auth-handler" registered via the aforementioned plugin hook:

channel_settings:
 - channel: https://some.custom/channel
 auth: test-auth-handler
 user: my-user-account
 - channel: https://some.base-url-prefix/*
 auth: another-auth-handler

Note

Each entry in channel_settings needs to define the channel attribute so that
the configuration knows which channel these settings are associated with. The channel
attribute may specify a glob-like URL pattern for matching. Note that in this case, the HTTP
schema must match exactly to the channel URL, so a pattern like * is not valid.

auto_update_conda: Update conda automatically

When True, conda updates itself any time a user updates or
installs a package in the root environment. When False,
conda updates itself only if the user manually issues a
conda update command. The default is True.

Example:

auto_update_conda: False

always_yes: Always yes

Choose the yes option whenever asked to proceed, such as
when installing. Same as using the --yes flag at the
command line. The default is False.

Example:

always_yes: True

show_channel_urls: Show channel URLs

Show channel URLs in conda list and when displaying what is
going to be downloaded. The default is False.

Example:

show_channel_urls: True

changeps1: Change command prompt

When using conda activate, change the command prompt from $PS1
to include the activated environment. The default is True.

Example:

changeps1: False

add_pip_as_python_dependency: Add pip as Python dependency

Add pip, wheel, and setuptools as dependencies of Python. This
ensures that pip, wheel, and setuptools are always installed any
time Python is installed. The default is True.

Example:

add_pip_as_python_dependency: False

use_pip: Use pip

Use pip when listing packages with conda list. This does not
affect any conda command or functionality other than the output
of the command conda list. The default is True.

Example:

use_pip: False

proxy_servers: Configure conda for use behind a proxy server

By default, proxy settings are pulled from the HTTP_PROXY and
HTTPS_PROXY environment variables or the system. Setting them
here overrides that default:

proxy_servers:
 http: http://user:pass@corp.com:8080
 https: https://user:pass@corp.com:8080

To give a proxy for a specific scheme and host, use the
scheme://hostname form for the key. This matches for any request
to the given scheme and exact host name:

proxy_servers:
 'http://10.20.1.128': 'http://10.10.1.10:5323'

If you do not include the username and password or if
authentication fails, conda prompts for a username and password.

If your password contains special characters, you need to escape
them as described in Percent-encoding reserved characters [https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters]
on Wikipedia.

Be careful not to use http when you mean https or
https when you mean http.

ssl_verify: SSL verification

If you are behind a proxy that does SSL inspection, such as a
Cisco IronPort Web Security Appliance (WSA), you may need to use
ssl_verify to override the SSL verification settings.

By default, this variable is True, which means that SSL
verification is used and conda verifies certificates for SSL
connections. Setting this variable to False disables the
connection's normal security and is not recommended:

ssl_verify: False

You can also set ssl_verify to a string path to a certificate,
which can be used to verify SSL connections:

ssl_verify: corp.crt

offline: Offline mode only

Filters out all channel URLs that do not use the file://
protocol. The default is False.

Example:

offline: True

Advanced configuration

allow_softlinks: Disallow soft-linking

When allow_softlinks is True, conda uses hard links when
possible and soft links (symlinks) when hard links are not
possible, such as when installing on a different file system
than the one that the package cache is on.

When allow_softlinks is False, conda still uses
hard links when possible, but when it is not possible, conda
copies files. Individual packages can override this option,
specifying that certain files should never be soft linked.

The default is True.

Example:

allow_softlinks: False

channel_alias: Set a channel alias

Whenever you use the -c or --channel flag to give conda a
channel name that is not a URL, conda prepends the channel_alias
to the name that it was given. The default channel_alias is
https://conda.anaconda.org.

If channel_alias is set
to https://my.anaconda.repo:8080/conda/, then a user who runs the
command conda install -c conda-forge some-package will install the
package some-package from https://my.anaconda.repo:8080/conda/conda-forge.

For example, the command:

conda install --channel asmeurer <package>

is the same as:

conda install --channel https://conda.anaconda.org/asmeurer <package>

You can set channel_alias to your own repository.

Example: To set channel_alias to your repository at
https://your.repo.com:

channel_alias: https://your.repo/

On Windows, you must include a slash ("/") at the end of the URL:

Example: https://your.repo/conda/

When channel_alias set to your repository at
https://your.repo.com:

conda install --channel jsmith <package>

is the same as:

conda install --channel https://your.repo.com/jsmith <package>

create_default_packages: Always add packages by default

When creating new environments, add the specified packages by
default. The default packages are installed in every environment
you create. You can override this option at the command prompt
with the --no-default-packages flag. The default is to not
include any packages.

Example:

create_default_packages:
 - pip
 - ipython
 - scipy=0.15.0

track_features: Track features

Enable certain features to be tracked by default. The default is
to not track any features. This is similar to adding MKL to
the create_default_packages list.

Example:

track_features:
 - mkl

update_dependencies: Disable updating of dependencies

By default, conda install updates the given package to the
latest version and installs any dependencies necessary for
that package. However, if dependencies that satisfy the package's
requirements are already installed, conda will not update those
packages to the latest version.

In this case, if you would prefer that conda update all dependencies
to the latest version that is compatible with the environment,
set update_dependencies to True.

The default is False.

Example:

update_dependencies: True

Note

Conda still ensures that dependency specifications are
satisfied. Thus, some dependencies may still be updated or,
conversely, this may prevent packages given at the command line
from being updated to their latest versions. You can always
specify versions at the command line to force conda to install a
given version, such as conda install numpy=1.9.3.

To avoid updating only specific packages in an environment, a
better option may be to pin them. For more information, see
Preventing packages from updating (pinning).

disallow: Disallow installation of specific packages

Disallow the installation of certain packages. The default is to
allow installation of all packages.

Example:

disallow:
 - anaconda

add_anaconda_token: Add Anaconda.org token to automatically see private packages

When the channel alias is Anaconda.org or an Anaconda Server GUI,
you can set the system configuration so that users automatically
see private packages. Anaconda.org was formerly known as
binstar.org. This uses the Anaconda command-line client, which
you can install with conda install anaconda-client, to
automatically add the token to the channel URLs.

The default is True.

Example:

add_anaconda_token: False

Note

Even when set to True, this setting is enabled only if
the Anaconda command-line client is installed and you are
logged in with the anaconda login command.

envs_dirs: Specify environment directories

Specify directories in which environments are located. If this
key is set, the root prefix envs_dir is not used unless
explicitly included. This key also determines where the package
caches are located.

For each envs here, envs/pkgs is used as the pkgs cache,
except for the standard envs directory in the root
directory, for which the normal root_dir/pkgs is used.

Example:

envs_dirs:
 - ~/my-envs
 - /opt/anaconda/envs

The CONDA_ENVS_PATH environment variable overwrites the envs_dirs setting:

	For macOS and Linux:
CONDA_ENVS_PATH=~/my-envs:/opt/anaconda/envs

	For Windows:
set CONDA_ENVS_PATH=C:\Users\joe\envs;C:\Anaconda\envs

pkgs_dirs: Specify package directories

Specify directories in which packages are located. If this
key is set, the root prefix pkgs_dirs is not used unless
explicitly included.

If the pkgs_dirs key is not set, then envs/pkgs is used
as the pkgs cache, except for the standard envs directory in the root
directory, for which the normal root_dir/pkgs is used.

Example:

pkgs_dirs:
 - /opt/anaconda/pkgs

The CONDA_PKGS_DIRS environment variable overwrites the
pkgs_dirs setting:

	For macOS and Linux:
CONDA_PKGS_DIRS=/opt/anaconda/pkgs

	For Windows:
set CONDA_PKGS_DIRS=C:\Anaconda\pkgs

use_only_tar_bz2: Force conda to download only .tar.bz2 packages

Conda 4.7 introduced a new .conda package file format.
.conda is a more compact and faster alternative to .tar.bz2 packages.
It's thus the preferred file format to use where available.

Nevertheless, it's possible to force conda to only download .tar.bz2 packages
by setting the use_only_tar_bz2 boolean to True.

The default is False.

Example:

use_only_tar_bz2: True

Note

This is forced to True if conda-build is installed and older than 3.18.3,
because older versions of conda break when conda feeds it the new file format.

Conda-build configuration

root-dir: Specify conda-build output root directory

Build output root directory. You can also set this with the
CONDA_BLD_PATH environment variable. The default is
<CONDA_PREFIX>/conda-bld/. If you do not have write
permissions to <CONDA_PREFIX>/conda-bld/, the default is
~/conda-bld/.

Example:

conda-build:
 root-dir: ~/conda-builds

output_folder: Specify conda-build build folder (conda-build 3.16.3+)

Folder to dump output package to. Packages are moved here if build or test
succeeds. If unset, the output folder corresponds to the same directory as
root-dir: the root build directory.
.. code-block:: yaml

	conda-build:
	output_folder: conda-bld

pkg_version: Specify conda-build package version

Conda package version to create. Use 2 for .conda packages. If not set, conda-build defaults to .tar.bz2.

conda-build:
 pkg_format: 2

anaconda_upload: Automatically upload conda-build packages to Anaconda.org

Automatically upload packages built with conda-build to
Anaconda.org [http://anaconda.org]. The default is False.

Example:

anaconda_upload: True

anaconda_token: Token to be used for Anaconda.org uploads (conda-build 3.0+)

Tokens are a means of authenticating with Anaconda.org without logging in.
You can pass your token to conda-build with this .condarc setting, or with a CLI
argument. This is unset by default. Setting it implicitly enables
anaconda_upload.

conda-build:
 anaconda_token: gobbledygook

quiet: Limit build output verbosity (conda-build 3.0+)

Conda-build's output verbosity can be reduced with the quiet setting. For
more verbosity, use the CLI flag --debug.

conda-build:
 quiet: true

filename_hashing: Disable filename hashing (conda-build 3.0+)

Conda-build 3 adds hashes to filenames to allow greater customization of
dependency versions. If you find this disruptive, you can disable the hashing
with the following config entry:

conda-build:
 filename_hashing: false

Warning

Conda-build does not check when clobbering packages. If you
utilize conda-build 3's build matrices with a build configuration that is not
reflected in the build string, packages will be missing due to clobbering.

no_verify: Disable recipe and package verification (conda-build 3.0+)

By default, conda-build uses conda-verify to ensure that your recipe
and package meet some minimum sanity checks. You can disable these:

conda-build:
 no_verify: true

set_build_id: Disable per-build folder creation (conda-build 3.0+)

By default, conda-build creates a new folder for each build, named for the
package name plus a timestamp. This allows you to do multiple builds at once.
If you have issues with long paths, you may need to disable this behavior.
You should first try to change the build output root directory with the
root-dir setting described above, but fall back to this as necessary:

conda-build:
 set_build_id: false

skip_existing: Skip building packages that already exist (conda-build 3.0+)

By default, conda-build builds all recipes that you specify. You can instead
skip recipes that are already built. A recipe is skipped if and only if all of
its outputs are available on your currently configured channels.

conda-build:
 skip_existing: true

include_recipe: Omit recipe from package (conda-build 3.0+)

By default, conda-build includes the recipe that was used to build the package.
If this contains sensitive or proprietary information, you can omit the recipe.

conda-build:
 include_recipe: false

Note

If you do not include the recipe, you cannot use conda-build to test
the package after the build completes. This means that you cannot split your
build and test steps across two distinct CLI commands (conda build --notest
recipe and conda build -t recipe). If you need to omit the recipe and
split your steps, your only option is to remove the recipe files from the
tarball artifacts after your test step. Conda-build does not provide tools for
doing that.

activate: Disable activation of environments during build/test (conda-build 3.0+)

By default, conda-build activates the build and test environments prior to
executing the build or test scripts. This adds necessary PATH entries, and also
runs any activate.d scripts you may have. If you disable activation, the PATH
will still be modified, but the activate.d scripts will not run. This is not
recommended, but some people prefer this.

conda-build:
 activate: false

long_test_prefix: Disable long prefix during test (conda-build 3.16.3+)

By default, conda-build uses a long prefix for the test prefix. If you have recipes
that fail in long prefixes but would still like to test them in short prefixes, you
can disable the long test prefix. This is not recommended.

conda-build:
 long_test_prefix: false

The default is true.

pypirc: PyPI upload settings (conda-build 3.0+)

Unset by default. If you have wheel outputs in your recipe, conda-build will
try to upload them to the PyPI repository specified by the pypi_repository
setting using credentials from this file path.

conda-build:
 pypirc: ~/.pypirc

pypi_repository: PyPI repository to upload to (conda-build 3.0+)

Unset by default. If you have wheel outputs in your recipe, conda-build will
try to upload them to this PyPI repository using credentials from the file
specified by the pypirc setting.

conda-build:
 pypi_repository: pypi

Expansion of environment variables

Conda expands environment variables in a subset of configuration settings.
These are:

	channel

	channel_alias

	channels

	client_cert_key

	client_cert

	custom_channels

	custom_multichannels

	default_channels

	envs_dirs

	envs_path

	migrated_custom_channels

	pkgs_dirs

	proxy_servers

	verify_ssl

	allowlist_channels

This allows you to store the credentials of a private repository in an
environment variable, like so:

channels:
 - https://${USERNAME}:${PASSWORD}@my.private.conda.channel

Configuring number of threads

You can use your .condarc file or environment variables to
add configuration to control the number of threads. You may
want to do this to tweak conda to better utilize your system.
If you have a very fast SSD, you might increase the number
of threads to shorten the time it takes for conda to create
environments and install/remove packages.

repodata_threads

	Default number of threads: None

	Threads used when downloading, parsing, and creating repodata
structures from repodata.json files. Multiple downloads from
different channels may occur simultaneously. This speeds up the
time it takes to start solving.

verify_threads

	Default number of threads: 1

	Threads used when verifying the integrity of packages and files
to be installed in your environment. Defaults to 1, as using
multiple threads here can run into problems with slower hard
drives.

execute_threads

	Default number of threads: 1

	Threads used to unlink, remove, link, or copy files into your
environment. Defaults to 1, as using multiple threads here can
run into problems with slower hard drives.

default_threads

	Default number of threads: None

	When set, this value is used for all of the above thread
settings. With its default setting (None), it does not affect
the other settings.

Setting any of the above can be done in .condarc or with
conda config:

At your terminal:

conda config --set repodata_threads 2

In .condarc:

verify_threads: 4

Administering a multi-user conda installation

By default, conda and all of the packages it installs are installed locally with a
user-specific configuration. Administrative privileges are not required, and
no upstream files or other users are affected by the installation.

You can make conda and any number of packages available to a
group of one or more users, while preventing these users
from installing unwanted packages with conda:

	Install conda and the allowed packages, if any, in a
location that is under administrator control and
accessible to users.

	Create a
.condarc system configuration file in
the root directory of the installation. This system-level
configuration file will override any user-level configuration
files installed by the user.

Each user accesses the central conda installation, which reads
settings from the user .condarc configuration file located
in their home directory. The path to the user file is the same
as the root environment prefix displayed by conda info,
as shown in User configuration file below. The user
.condarc file is limited by the system .condarc file.

System configuration settings are commonly used in a
system .condarc file but may also be used in a
user .condarc file. All user configuration settings may
also be used in a system .condarc file.

For information about settings in the .condarc file,
see Using the .condarc conda configuration file.

Example administrator-controlled installation

The following example describes how to view the system
configuration file, review the settings, compare it to a user's
configuration file, and determine what happens when the user
attempts to access a file from a blocked channel. It then
describes how the user must modify their configuration file to
access the channels allowed by the administrator.

System configuration file

	The system configuration file must be in the top-level conda
installation directory. Check the path where conda is located:

$ which conda
/tmp/miniconda/bin/conda

	View the contents of the .condarc file in the
administrator's directory:

cat /tmp/miniconda/.condarc

The following administrative .condarc file
uses the #!final flag to specify the channels,
default channels, and channel_alias available to the user.

$ cat /tmp/miniconda/.condarc

channels: #!final
 - admin

channel_alias: https://conda.anaconda.org/ #!final

The #!final flag is very similar to the !important
rule in CSS; any parameter within the .condarc that is
trailed by the #!final cannot be overwritten by any other
.condarc source. For more information on this flag, see the
Anaconda Blog [https://www.anaconda.com/blog/conda-configuration-engine-power-users]
on the subject.

Because the #!final flag has been used and the channel
defaults are not explicitly specified, users are disallowed
from downloading packages from the default channels. You can
check this in the next procedure.

User configuration file

	Check the location of the user's conda installation:

$ conda info
Current conda install:
. . .
 channel URLs : https://repo.anaconda.com/pkgs/free/osx-64/
 https://repo.anaconda.com/pkgs/pro/osx-64/
 config file : /Users/username/.condarc

The conda info command shows that conda is using the
user's .condarc file, located at
/Users/username/.condarc and that the default channels
such as repo.anaconda.com are listed as channel URLs.

	View the contents of the administrative .condarc file in
the directory that was located in step 1:

$ cat ~/.condarc
channels:
 - defaults

This user's .condarc file specifies only the default
channels, but the administrator config file has blocked
default channels by specifying that only admin is
allowed. If this user attempts to search for a package in the
default channels, they get a message telling them what
channels are allowed:

$ conda search flask
Fetching package metadata:
Error: URL 'http://repo.anaconda.com/pkgs/pro/osx-64/' not
in allowed channels.
Allowed channels are:
 - https://conda.anaconda.org/admin/osx-64/

This error message tells the user to add the admin channel
to their configuration file.

	The user must edit their local .condarc configuration file
to access the package through the admin channel:

channels:
 - admin

The user can now search for packages in the allowed
admin channel.

Mirroring channels

The conda configuration system has several keys that can be used to set up a mirrored context.

The default setup

By default, conda can serve packages from two main locations:

	repo.anaconda.com: this is where defaults points to by default.
This base location is hardcoded in the default value of default_channels:

	https://repo.anaconda.com/pkgs/main

	https://repo.anaconda.com/pkgs/r

	https://repo.anaconda.com/pkgs/msys2

	conda.anaconda.org: this is where conda clients look up community channels like conda-forge or bioconda.
This base location can be configured via channel_alias.

So, when it comes to mirroring these channels, you have to account for those two locations.

Mirror defaults

Use default_channels to overwrite the default configuration. For example:

default_channels:
 - https://my-mirror.com/pkgs/main
 - https://my-mirror.com/pkgs/r
 - https://my-mirror.com/pkgs/msys2

Mirror all community channels

Redefine channel_alias to point to your mirror. For example:

channel_alias: https://my-mirror.com

This will make conda look for all community channels at https://my-mirror.com/conda-forge, https://my-mirror.com/bioconda, etc.

Mirror only some community channels

If you want to mirror only some community channels, you must use custom_channels.
This takes precedence over channel_alias. For example:

custom_channels:
 conda-forge: https://my-mirror.com/conda-forge

With this configuration, conda-forge will be looked up at https://my-mirror.com/conda-forge.
All other community channels will be looked up at https://conda.anaconda.org.

Note

Feel free to explore all the available options in Configuration.

Disabling SSL verification

Using conda with SSL is strongly recommended, but it is possible to disable SSL
and it may be necessary to disable SSL in certain cases.

Some corporate environments use proxy services that use Man-In-The-Middle
(MITM) attacks to sniff encrypted traffic. These services can interfere with
SSL connections such as those used by conda and pip to download packages from
repositories such as PyPI.

If you encounter this interference, you should set up the proxy service's
certificates so that the requests package used by conda can recognize and
use the certificates.

For cases where this is not possible, conda-build versions 3.0.31 and higher
have an option that disables SSL certificate verification and allows this
traffic to continue.

conda skeleton pypi can disable SSL verification when pulling packages
from a PyPI server over HTTPS.

Warning

This option causes your computer to download and execute arbitrary
code over a connection that it cannot verify as secure. This is not
recommended and should only be used if necessary. Use this option at your own
risk.

To disable SSL verification when using conda skeleton pypi, set the
SSL_NO_VERIFY environment variable to either 1 or True (case
insensitive).

On *nix systems:

SSL_NO_VERIFY=1 conda skeleton pypi a_package

And on Windows systems:

set SSL_NO_VERIFY=1
conda skeleton pypi a_package
set SSL_NO_VERIFY=

We recommend that you unset this environment variable immediately after use.
If it is not unset, some other tools may recognize it and incorrectly use
unverified SSL connections.

Using this option will cause requests to emit warnings to STDERR about
insecure settings. If you know that what you're doing is safe, or have been
advised by your IT department that what you're doing is safe, you may ignore
these warnings.

Disabling SSL verification via conda settings

In addition to disabling SSL via environment variables, you can disable it by setting ssl_verify to false in your config files. To do so, run the following commands to disable and enable it:

conda config --set ssl_verify False
Run conda commands with SSL disabled
conda config --set ssl_verify True

Using non-standard certificates

Using conda behind a firewall may require using a non-standard
set of certificates, which requires custom settings.

If you are using a non-standard set of certificates, then the
requests package requires the setting of REQUESTS_CA_BUNDLE.
If you receive an error with self-signed certifications, you may
consider unsetting REQUESTS_CA_BUNDLE as well as CURL_CA_BUNDLE and disabling SSL verification [https://conda.io/projects/conda/en/latest/user-guide/configuration/disable-ssl-verification.html]
to create a conda environment over HTTP.

You may need to set the conda environment to use the root certificate
provided by your company rather than conda’s generic ones.

One workflow to resolve this on macOS is:

	Open Chrome, got to any website, click on the lock icon on the left
of the URL. Click on «Certificate» on the dropdown. In the next window
you see a stack of certificates. The uppermost (aka top line in window)
is the root certificate (e.g. Zscaler Root CA).

	Open macOS keychain, click on «Certificates» and choose among the
many certificates the root certificate that you just identified.
Export this to any folder of your choosing.

	Convert this certificate with OpenSSL: openssl x509 -inform der -in /path/to/your/certificate.cer -out /path/to/converted/certificate.pem

	For a quick check, set your shell to acknowledge the certificate: export REQUESTS_CA_BUNDLE=/path/to/converted/certificate.pem

	To set this permanently, open your shell profile (e.g. .bashrc or .zshrc) and add this line: export REQUESTS_CA_BUNDLE=/path/to/converted/certificate.pem.
Now exit your terminal/shell and reopen. Check again.

Improving interoperability with pip

The conda 4.6.0 release added improved support for interoperability between conda and pip.
This feature is still experimental and is therefore off by default.

With this interoperability,
conda can use pip-installed packages to satisfy dependencies,
cleanly remove pip-installed software, and replace them with
conda packages when appropriate.

If you’d like to try the feature, you can set this .condarc setting:

conda config --set pip_interop_enabled True

Note

Setting pip_interop_enabled to True may slow down conda.

Even without activating this feature, conda now understands pip metadata
more intelligently. For example, if we create an environment with conda:

conda create -y -n some_pip_test python=3.7 imagesize=1.0

Then we update imagesize in that environment using pip:

conda activate some_pip_test
pip install -U imagesize

Prior to conda 4.6.0, the conda list command returned ambiguous results:

imagesize 1.1.0

imagesize 1.0.0 py37_0

Conda 4.6.0 now shows only one entry for imagesize (the newer pip entry):

imagesize 1.1.0 pypi_0 pypi

Using the free channel

The free channel contains packages created prior to
September 26, 2017. Prior to conda 4.7, the free
channel was part of the defaults channel.
Read more about the defaults channel.

Removing the free channel reduced conda's search space
and hid old software. That old software could have incompatible
constraint information. Read more about why we made this change [https://www.anaconda.com/why-we-removed-the-free-channel-in-conda-4-7/].

If you still need the content from the free channel to reproduce
old environments, you can re-add the channel following the directions below.

Adding the free channel to defaults

If you want to add the free channel back into your default list,
use the command:

conda config --set restore_free_channel true

The order of the channels is important. Using the above
command will restore the free channel in the correct order.

Changing .condarc

You can also add the free channel back into your defaults by
changing the .condarc file itself.

Add the following to the conda section of your .condarc file:

restore_free_channel: true

Read more about Using the .condarc conda configuration file.

Package name changes

Some packages that are available in the free channel
have different names in the main channel.

	Package name in free

	Package name in main

	dateutil

	python-dateutil

	gcc

	gcc_linux-64 and similar

	pil

	pillow

	ipython-notebook

	now installable via notebook, a metapackage could be created

	Ipython-qtconsole

	now installable via qtconsole, a metapackage could be created

	beautiful-soup

	beautifulsoup4

	pydot-ng

	pydot

Troubleshooting

You may encounter some errors, such as UnsatisfiableError
or a PackagesNotFoundError.

An example of this error is:

$ conda create -n test -c file:///Users/jsmith/anaconda/conda-bld bad_pkg
Collecting package metadata: done
Solving environment: failed

UnsatisfiableError: The following specifications were found to be in conflict:
 - cryptography=2.6.1 -> openssl[version='>=1.1.1b,<1.1.2a']
 - python=3.7.0 -> openssl[version='>=1.0.2o,<1.0.3a']
Use "conda search <package> --info" to see the dependencies for each package.

This can occur if:

	you’re trying to install a package that is only available in
free and not in main.

	you have older environments in files you want to recreate.
If those spec files reference packages that are in free,
they will not show up.

	a package is dependent upon files found only in the free
channel. Conda will not let you install the package if it cannot
install the dependency, which the package requires to work.

If you encounter these errors, consider using a newer package than
the one in free. If you want those older versions, you can
add the free channel back into your defaults.

Concepts

In this section, we provide you with detailed information about the fundamental concepts
in conda, including information about packages, channels, environments, and plugins, among others.

	Commands
	Conda commands are your interface for interacting with everything

	Packages
	Learn about the different forms a package can take

	Package specification
	Learn about exactly what belongs in a package and what the different metadata files mean

	Package search and install
	The search specifications for a package (for the conda install and conda search commands)

	Channels
	Learn about channels and how they host packages

	Environments
	Learn about how environments work and how they differ from Python's virtual environments

	Installing with conda
	Take a deep dive into exactly what happens during an installation with conda

	Performance
	Understand what impacts the performance and speed of conda and how to improve it

	Conda for data scientists
	See why conda is a such a valuable tool for data scientists

	Plugins
	The behavior of conda can be extended via plugins; learn more here

Commands

The conda command is the primary interface for managing
installations of various packages. It can:

	Query and search the Anaconda package index and current
Anaconda installation.

	Create new conda environments.

	Install and update packages into existing conda environments.

Tip

You can abbreviate many frequently used command options that
are preceded by 2 dashes (--) to just 1 dash and the first
letter of the option. So --name and --envs can be written as -n and -e respectively.

For full usage of each command, including abbreviations, see
commands. You can see the same information at the
command line by viewing the command-line help.

Packages

What is a package?

A package is a compressed tarball file (.tar.bz2) or
.conda file that contains:

	system-level libraries.

	Python or other modules.

	executable programs and other components.

	metadata under the info/ directory.

	a collection of files that are installed directly into an install prefix.

Conda keeps track of the dependencies between packages and platforms.
The conda package format is identical across platforms and
operating systems.

Only files, including symbolic links, are part of a conda
package. Directories are not included. Directories are created
and removed as needed, but you cannot create an empty directory
from the tar archive directly.

.conda file format

The .conda file format was introduced in conda 4.7 as a more
compact, and thus faster, alternative to a tarball.

The .conda file format consists of an outer, uncompressed
ZIP-format container, with 2 inner compressed .tar files.

For the .conda format's initial internal compression format support,
we chose Zstandard (zstd). The actual compression format used does not
matter, as long as the format is supported by libarchive. The compression
format may change in the future as more advanced compression algorithms are
developed and no change to the .conda format is necessary. Only an updated
libarchive would be required to add a new compression format to .conda files.

These compressed files can be significantly smaller than their
bzip2 equivalents. In addition, they decompress much more quickly.
.conda is the preferred file format to use where available,
although we continue to provide .tar.bz2 files in tandem.

Read more about the introduction of the .conda file format [https://www.anaconda.com/understanding-and-improving-condas-performance/].

Note

In conda 4.7 and later, you cannot use package names that
end in “.conda” as they conflict with the .conda file format
for packages.

Using packages

	You may search for packages

conda search scipy

	You may install a package

conda install scipy

	You may build a package after installing conda-build [https://docs.conda.io/projects/conda-build/en/latest/index.html]

conda build my_fun_package

Package structure

.
├── bin
│ └── pyflakes
├── info
│ ├── LICENSE.txt
│ ├── files
│ ├── index.json
│ ├── paths.json
│ └── recipe
└── lib
 └── python3.5

	bin contains relevant binaries for the package.

	lib contains the relevant library files (eg. the .py files).

	info contains package metadata.

Metapackages

When a conda package is used for metadata alone and does not contain
any files, it is referred to as a metapackage.
The metapackage may contain dependencies to several core, low-level libraries
and can contain links to software files that are
automatically downloaded when executed.
Metapackages are used to capture metadata and make complicated package
specifications simpler.

An example of a metapackage is "anaconda," which
collects together all the packages in the Anaconda installer.
The command conda create -n envname anaconda creates an
environment that exactly matches what would be created from the
Anaconda installer. You can create metapackages with the
conda metapackage command. Include the name and version
in the command.

Anaconda metapackage

The Anaconda metapackage is used in the creation of the
Anaconda Distribution [https://docs.anaconda.com/free/anaconda/]
installers so that they have a set of packages associated with them.
Each installer release has a version number, which corresponds
to a particular collection of packages at specific versions.
That collection of packages at specific versions is encapsulated
in the Anaconda metapackage.

The Anaconda metapackage contains several core, low-level
libraries, including compression, encryption, linear algebra, and
some GUI libraries.

Read more about the Anaconda metapackage and Anaconda Distribution [https://www.anaconda.com/whats-in-a-name-clarifying-the-anaconda-metapackage/].

Mutex metapackages

A mutex metapackage is a very simple package that has a
name. It need not have any dependencies or build steps.
Mutex metapackages are frequently an "output" in a recipe
that builds some variant of another package.
Mutex metapackages function as a tool to help achieve mutual
exclusivity among packages with different names.

Let's look at some examples for how to use mutex metapackages
to build NumPy against different BLAS implementations.

Building NumPy with BLAS variants

If you build NumPy with MKL, you also need to build
SciPy, scikit-learn, and anything else using BLAS
also with MKL. It is important to ensure that these
“variants” (packages built with a particular set of options)
are installed together and never with an alternate BLAS
implementation. This is to avoid crashes, slowness, or numerical problems.
Lining up these libraries is both a build-time and an install-time concern.
We’ll show how to use metapackages to achieve this need.

Let's start with the metapackage blas=1.0=mkl:
https://github.com/AnacondaRecipes/intel_repack-feedstock/blob/e699b12/recipe/meta.yaml#L108-L112

Note that mkl is a string of blas.

That metapackage is automatically added as a dependency
using run_exports when someone uses the mkl-devel
package as a build-time dependency:
https://github.com/AnacondaRecipes/intel_repack-feedstock/blob/e699b12/recipe/meta.yaml#L124

By the same token, here’s the metapackage for OpenBLAS:
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L127-L131

And the run_exports for OpenBLAS, as part of
openblas-devel:
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L100

Fundamentally, conda’s model of mutual exclusivity relies on the package name.
OpenBLAS and MKL are obviously not the same package name, and thus are not
mutually exclusive. There’s nothing stopping conda from installing both at
once. There’s nothing stopping conda from installing NumPy with MKL and SciPy
with OpenBLAS. The metapackage is what allows us to achieve the mutual
exclusivity. It unifies the options on a single package name,
but with a different build string. Automating the addition of the
metapackage with run_exports helps ensure the library consumers
(package builders who depend on libraries) will have correct dependency
information to achieve the unified runtime library collection.

Installing NumPy with BLAS variants

To specify which variant of NumPy that you want, you could potentially
specify the BLAS library you want:

conda install numpy mkl

However, that doesn’t actually preclude OpenBLAS from being chosen.
Neither MKL nor its dependencies are mutually exclusive (meaning they
do not have similar names and different version/build-string).

This pathway may lead to some ambiguity and solutions with mixed BLAS,
so using the metapackage is recommended. To specify MKL-powered NumPy
in a non-ambiguous way, you can specify the mutex package (either directly
or indirectly):

conda install numpy “blas=*=mkl”

There is a simpler way to address this, however. For example, you may want to
try another package that has the desired mutex package as a dependency.

OpenBLAS has this with its “nomkl” package:
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L133-L147

Nothing should use “nomkl” as a dependency. It is strictly a utility for users
to facilitate switching from MKL (which is the default) to OpenBLAS.

How did MKL become the default? The solver needs a way to prioritize some packages
over others. We achieve that with an older conda feature called track_features that originally
served a different purpose.

Track_features

One of conda’s optimization goals is to minimize the number of track_features needed
to specify the desired specs. By adding track_features to one or more of the options,
conda will de-prioritize it or “weigh it down.” The lowest priority package is the one
that would cause the most track_features to be activated in the environment. The default
package among many variants is the one that would cause the least track_features to be activated.

There is a catch, though: any track_features must be unique. No two packages can provide the
same track_feature. For this reason, our standard practice is to attach track_features to
the metapackage associated with what we want to be non-default.

Take another look at the OpenBLAS recipe: https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L127-L137

This attached track_features entry is why MKL is chosen over OpenBLAS.
MKL does not have any track_features associated with it. If there are 3 options,
you would attach 0 track_features to the default, then 1 track_features for the next preferred
option, and finally 2 for the least preferred option. However, since you generally only care
about the one default, it is usually sufficient to add 1 track_feature to all options other
than the default option.

More info

For reference, the Visual Studio version alignment on Windows also uses mutex metapackages.
https://github.com/AnacondaRecipes/aggregate/blob/9635228/vs2017/meta.yaml#L24

Noarch packages

Noarch packages are packages that are not architecture specific
and therefore only have to be built once. Noarch packages are
either generic or Python. Noarch generic packages allow users to
distribute docs, datasets, and source code in conda packages.
Noarch Python packages are described below.

Declaring these packages as noarch in the build section of
the meta.yaml reduces shared CI resources. Therefore, all packages
that qualify to be noarch packages should be declared as such.

Noarch Python

The noarch: python directive in the build section
makes pure-Python packages that only need to be built once.

Noarch Python packages cut down on the overhead of building multiple
different pure Python packages on different architectures and Python
versions by sorting out platform and Python version-specific differences
at install time.

In order to qualify as a noarch Python package, all of the following
criteria must be fulfilled:

	No compiled extensions.

	No post-link, pre-link, or pre-unlink scripts.

	No OS-specific build scripts.

	No Python version-specific requirements.

	No skips except for Python version. If the recipe is py3 only,
remove skip statement and add version constraint on Python in host
and run section.

	2to3 is not used.

	Scripts argument in setup.py is not used.

	If console_script entrypoints are in setup.py,
they are listed in meta.yaml.

	No activate scripts.

	Not a dependency of conda.

Note

While noarch: python does not work with selectors, it does
work with version constraints. skip: True # [py2k] can sometimes
be replaced with a constrained Python version in the host and run
subsections, for example: python >=3 instead of just python.

Note

Only console_script entry points have to be listed in meta.yaml.
Other entry points do not conflict with noarch and therefore do
not require extra treatment.

Read more about conda's noarch packages [https://www.anaconda.com/condas-new-noarch-packages/].

Link and unlink scripts

You may optionally execute scripts before and after the link
and unlink steps. For more information, see Adding pre-link, post-link, and pre-unlink scripts [https://docs.conda.io/projects/conda-build/en/latest/resources/link-scripts.html].

More information

For more information, go for a deeper dive in our managing packages guide.
Learn more about package metadata, repository structure and index,
and package match specifications at Package specifications.

Package specification

Package metadata

The info/ directory contains all metadata about a package.
Files in this location are not installed under the install
prefix. Although you are free to add any file to this directory,
conda only inspects the content of the files discussed below.

Info

	files

	a list of all the files in the package (not included in info/)

	index.json

	metadata about the package including platform, version,
dependencies, and build info

{
 "arch": "x86_64",
 "build": "py37hfa4b5c9_1",
 "build_number": 1,
 "depends": [
 "depend > 1.1.1"
],
 "license": "BSD 3-Clause",
 "name": "fun-packge",
 "platform": "linux",
 "subdir": "linux-64",
 "timestamp": 1535416612069,
 "version": "0.0.0"
}

	paths.json

	a list of files in the package, along with their associated SHA-256, size in bytes,
and the type of path (eg. hardlink vs. softlink)

{
 "paths": [
 {
 "_path": "lib/python3.7/site-packages/fun-packge/__init__.py",
 "path_type": "hardlink",
 "sha256": "76f3b6e34feeb651aff33ca59e0279c4eadce5a50c6ad93b961c846f7ba717e9",
 "size_in_bytes": 2067
 },
 {
 "_path": "lib/python3.7/site-packages/fun-packge/__config__.py",
 "path_type": "hardlink",
 "sha256": "348e3602616c1fe4c84502b1d8cf97c740d886002c78edab176759610d287f06",
 "size_in_bytes": 87519
 },
 ...
}

info/index.json

This file contains basic information about the package, such as
name, version, build string, and dependencies. The content of this
file is stored in repodata.json, which is the repository
index file, hence the name index.json. The JSON object is a
dictionary containing the keys shown below. The filename of the
conda package is composed of the first 3 values, as in:
<name>-<version>-<build>.tar.bz2.

	Key

	Type

	Description

	name

	string

	The lowercase name of the package. May contain the "-"
character.

	version

	string

	The package version. May not contain "-". Conda
acknowledges PEP 440 [https://www.python.org/dev/peps/pep-0440/].

	build

	string

	The build string. May not contain "-". Differentiates
builds of packages with otherwise identical names and
versions, such as:

	A build with other dependencies, such as Python 3.4
instead of Python 2.7.

	A bug fix in the build process.

	Some different optional dependencies, such as MKL versus
ATLAS linkage. Nothing in conda actually inspects the
build string. Strings such as np18py34_1 are
designed only for human readability and conda never
parses them.

	build_number

	integer

	A non-negative integer representing the build number of
the package.

Unlike the build string, the build_number is inspected by
conda. Conda uses it to sort packages that have otherwise
identical names and versions to determine the latest one.
This is important because new builds that contain bug
fixes for the way a package is built may be added to a
repository.

	depends

	list of strings

	A list of dependency specifications, where each element
is a string, as outlined in Package match specifications.

	arch

	string

	Optional. The architecture the package is built for.

EXAMPLE: x86_64

Conda currently does not use this key.

	platform

	string

	Optional. The OS that the package is built for.

EXAMPLE: osx

Conda currently does not use this key. Packages for a
specific architecture and platform are usually
distinguished by the repository subdirectory that contains
them---see Repository structure and index.

info/files

Lists all files that are part of the package itself, 1 per line.
All of these files need to get linked into the environment. Any
files in the package that are not listed in this file are not
linked when the package is installed. The directory delimiter for
the files in info/files should always be "/", even on
Windows. This matches the directory delimiter used in the
tarball.

info/has_prefix

Optional file. Lists all files that contain a hard-coded build
prefix or placeholder prefix, which needs to be replaced by the
install prefix at installation time.

Note

Due to the way the binary replacement works, the
placeholder prefix must be longer than the install prefix.

Each line of this file should be either a path, in which case it
is considered a text file with the default placeholder
/opt/anaconda1anaconda2anaconda3, or a space-separated list
of placeholder, mode, and path, where:

	Placeholder is the build or placeholder prefix.

	Mode is either text or binary.

	Path is the relative path of the file to be updated.

EXAMPLE: On Windows:

"Scripts/script1.py"
"C:\Users\username\anaconda\envs_build" text "Scripts/script2.bat"
"C:/Users/username/anaconda/envs/_build" binary "Scripts/binary"

EXAMPLE: On macOS or Linux:

bin/script.sh
/Users/username/anaconda/envs/_build binary bin/binary
/Users/username/anaconda/envs/_build text share/text

Note

The directory delimiter for the relative path must always
be "/", even on Windows. The placeholder may contain either "\"
or "/" on Windows, but the replacement prefix will match the
delimiter used in the placeholder. The default placeholder
/opt/anaconda1anaconda2anaconda3 is an exception, being
replaced with the install prefix using the native path
delimiter. On Windows, the placeholder and path always appear
in quotes to support paths with spaces.

info/license.txt

Optional file. The software license for the package.

info/no_link

Optional file. Lists all files that cannot be linked - either
soft-linked or hard-linked - into environments and are copied
instead.

info/about.json

Optional file. Contains the entries in the about section [https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#about-section]
of the meta.yaml file. The following keys are
added to info/about.json if present in the build recipe:

	home

	dev_url

	doc_url

	license_url

	license

	summary

	description

	license_family

info/recipe

A directory containing the full contents of the build recipe.

meta.yaml.rendered

The fully rendered build recipe. See
conda render [https://docs.conda.io/projects/conda-build/en/latest/resources/commands/conda-render.html].

This directory is present only when the the include_recipe flag
is True in the build section [https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#build-section].

Repository structure and index

A conda repository - or channel - is a directory tree, usually
served over HTTPS, which has platform subdirectories, each of
which contain conda packages and a repository index. The index
file repodata.json lists all conda packages in the platform
subdirectory. Use conda index to create such an index from
the conda packages within a directory. It is simple mapping of
the full conda package filename to the dictionary object in
info/index.json described in link scripts [https://docs.conda.io/projects/conda-build/en/latest/resources/link-scripts.html].

In the following example, a repository provides the conda package
misc-1.0-np17py27_0.tar.bz2 on 64-bit Linux and 32-bit
Windows:

<some path>/linux-64/repodata.json
 repodata.json.bz2
 misc-1.0-np17py27_0.tar.bz2
 /win-32/repodata.json
 repodata.json.bz2
 misc-1.0-np17py27_0.tar.bz2

Note

Both conda packages have identical filenames and are
distinguished only by the repository subdirectory that contains
them.

Package match specifications

This match specification is not the same as the syntax used at
the command line with conda install, such as
conda install python=3.9. Internally, conda translates the
command line syntax to the spec defined in this section.

EXAMPLE: python=3.9 is translated to python 3.9*.

Package dependencies are specified using a match specification.
A match specification is a space-separated string of 1, 2, or 3
parts:

	The first part is always the exact name of the package.

	The second part refers to the version and may contain special
characters:

	| means OR.

EXAMPLE: 1.0|1.2 matches version 1.0 or 1.2

	* matches 0 or more characters in the version string. In
terms of regular expressions, it is the same as r.*````.

EXAMPLE: 1.0|1.4* matches 1.0, 1.4 and 1.4.1b2, but not 1.2.

	<, >, <=, >=, == and != are relational operators on versions,
which are compared using
PEP-440 [https://www.python.org/dev/peps/pep-0440/]. For example,
<=1.0 matches 0.9, 0.9.1, and 1.0, but not 1.0.1.
== and != are exact equality.

Pre-release versioning is also supported such that >1.0b4 will match
1.0b5 and 1.0rc1 but not 1.0b4 or 1.0a5.

EXAMPLE: <=1.0 matches 0.9, 0.9.1, and 1.0, but not 1.0.1.

	, means AND.

EXAMPLE: >=2,<3 matches all packages in the 2 series. 2.0,
2.1 and 2.9 all match, but 3.0 and 1.0 do not.

	, has higher precedence than |, so >=1,<2|>3 means greater
than or equal to 1 AND less than 2 or greater than 3, which
matches 1, 1.3 and 3.0, but not 2.2.

Conda parses the version by splitting it into parts separated
by |. If the part begins with <, >, =, or !, it is parsed as a
relational operator. Otherwise, it is parsed as a version,
possibly containing the "*" operator.

	The third part is always the exact build string. When there are
3 parts, the second part must be the exact version.

Remember that the version specification cannot contain spaces,
as spaces are used to delimit the package, version, and build
string in the whole match specification. python >= 2.7 is an
invalid match specification. Furthermore, python>=2.7 is
matched as any version of a package named python>=2.7.

When using the command line, put double quotes around any package
version specification that contains the space character or any of
the following characters: <, >, *, or |.

EXAMPLE:

conda install numpy=1.11
conda install numpy==1.11
conda install "numpy>1.11"
conda install "numpy=1.11.1|1.11.3"
conda install "numpy>=1.8,<2"

Examples

The OR constraint "numpy=1.11.1|1.11.3" matches with 1.11.1 or
1.11.3.

The AND constraint "numpy>=1.8,<2" matches with 1.8 and 1.9 but
not 2.0.

The fuzzy constraint numpy=1.11 matches 1.11, 1.11.0, 1.11.1,
1.11.2, 1.11.18, and so on.

The exact constraint numpy==1.11 matches 1.11, 1.11.0, 1.11.0.0,
and so on.

The build string constraint "numpy=1.11.2=*nomkl*" matches the
NumPy 1.11.2 packages without MKL but not the normal MKL NumPy
1.11.2 packages.

The build string constraint "numpy=1.11.1|1.11.3=py36_0" matches
NumPy 1.11.1 or 1.11.3 built for Python 3.6 but not any versions
of NumPy built for Python 3.5 or Python 2.7.

The following are all valid match specifications for
numpy-1.8.1-py27_0:

	numpy

	numpy 1.8*

	numpy 1.8.1

	numpy >=1.8

	numpy ==1.8.1

	numpy 1.8|1.8*

	numpy >=1.8,<2

	numpy >=1.8,<2|1.9

	numpy 1.8.1 py27_0

	numpy=1.8.1=py27_0

Version ordering

The class VersionOrder(object) implements an order relation
between version strings.

Version strings can contain the usual alphanumeric characters
(A-Za-z0-9), separated into components by dots and underscores. Empty
segments (i.e. two consecutive dots, a leading/trailing underscore)
are not permitted. An optional epoch number - an integer
followed by ! - can precede the actual version string
(this is useful to indicate a change in the versioning
scheme itself). Version comparison is case-insensitive.

Supported version strings

Conda supports six types of version strings:

	Release versions contain only integers, e.g. 1.0, 2.3.5.

	Pre-release versions use additional letters such as a or rc,
for example 1.0a1, 1.2.beta3, 2.3.5rc3.

	Development versions are indicated by the string dev,
for example 1.0dev42, 2.3.5.dev12.

	Post-release versions are indicated by the string post,
for example 1.0post1, 2.3.5.post2.

	Tagged versions have a suffix that specifies a particular
property of interest, e.g. 1.1.parallel. Tags can be added
to any of the preceding 4 types. As far as sorting is concerned,
tags are treated like strings in pre-release versions.

	An optional local version string separated by + can be appended
to the main (upstream) version string. It is only considered
in comparisons when the main versions are equal, but otherwise
handled in exactly the same manner.

Predictable version ordering

To obtain a predictable version ordering, it is crucial to keep the
version number scheme of a given package consistent over time.
Conda considers prerelease versions as less than release versions.

	Version strings should always have the same number of components
(except for an optional tag suffix or local version string).

	Letters/Strings indicating non-release versions should always
occur at the same position.

Before comparison, version strings are parsed as follows:

	They are first split into epoch, version number, and local version
number at ! and + respectively. If there is no !,
the epoch is set to 0. If there is no +, the local version is
empty.

	The version part is then split into components at . and _.

	Each component is split again into runs of numerals and non-numerals

	Subcomponents containing only numerals are converted to integers.

	Strings are converted to lowercase, with special treatment for dev
and post.

	When a component starts with a letter, the fillvalue 0 is inserted
to keep numbers and strings in phase, resulting in 1.1.a1' == 1.1.0a1'.

	The same is repeated for the local version part.

Examples:

1.2g.beta15.rc => [[0], [1], [2, 'g'], [0, 'beta', 15], [0, 'rc']]

1!2.15.1_ALPHA => [[1], [2], [15], [1, '_alpha']]

The resulting lists are compared lexicographically, where the following
rules are applied to each pair of corresponding subcomponents:

	Integers are compared numerically.

	Strings are compared lexicographically, case-insensitive.

	Strings are smaller than integers, except

	dev versions are smaller than all corresponding versions of other types.

	post versions are greater than all corresponding versions of other types.

	If a subcomponent has no correspondent, the missing correspondent is
treated as integer 0 to ensure '1.1' == 1.1.0'.

The resulting order is:

 0.4
< 0.4.0
< 0.4.1.rc
== 0.4.1.RC # case-insensitive comparison
< 0.4.1
< 0.5a1
< 0.5b3
< 0.5C1 # case-insensitive comparison
< 0.5
< 0.9.6
< 0.960923
< 1.0
< 1.1dev1 # special case ``dev``
< 1.1a1
< 1.1.0dev1 # special case ``dev``
== 1.1.dev1 # 0 is inserted before string
< 1.1.a1
< 1.1.0rc1
< 1.1.0
== 1.1
< 1.1.0post1 # special case ``post``
== 1.1.post1 # 0 is inserted before string
< 1.1post1 # special case ``post``
< 1996.07.12
< 1!0.4.1 # epoch increased
< 1!3.1.1.6
< 2!0.4.1 # epoch increased again

Some packages (most notably OpenSSL) have incompatible version conventions.
In particular, OpenSSL interprets letters as version counters rather than
pre-release identifiers. For OpenSSL, the relation 1.0.1 < 1.0.1a => True # for OpenSSL
holds, whereas conda packages use the opposite ordering.
You can work around this problem by appending a dash to plain
version numbers:

1.0.1a => 1.0.1post.a # ensure correct ordering for OpenSSL

Package search and install specifications

Conda supports the following specifications for conda search and conda install.

Package search

conda search for a specific package or set of packages can be accomplished in several ways. This section includes information on the standard specification and the use of key-value pairs.

Standard specification

[image: ../../_images/conda_search.png]

	channel
	(Optional) Can either be a channel name or URL. Channel names may include letters, numbers, dashes, and underscores.

	subdir
	(Optional) A subdirectory of a channel. Many subdirs are used for architectures, but this is not required. Must have a channel and backslash preceding it. For example: main/noarch

	name
	(Required) Package name. May include the * wildcard. For example, *py* returns all packages that have "py" in their names, such as "numpy", "pytorch", "python", etc.

	version
	(Optional) Package version. May include the * wildcard or a version range(s) in single quotes. For example: numpy=1.17.* returns all numpy packages with a version containing "1.17." and numpy>1.17,<1.19.2 returns all numpy packages with versions greater than 1.17 and less than 1.19.2.

	build
	(Optional) Package build name. May include the * wildcard. For example, numpy 1.17.3 py38* returns all version 1.17.3 numpy packages with a build name that contains the text "py38".

Key-value pairs

Package searches can also be performed using what is called "key-value pair notation", which has different rules than the Standard specification
example image. The search below will return the same list of packages as the standard specification.

$ conda search "numpy[channel=conda-forge, subdir=linux-64, version=1.17.*, build=py38*]"

This notation supports the following key-value pairs:

- build # validated via GlobStrMatch
- build_number # validated via BuildNumberMatch
- channel # validated via ChannelMatch
- features # validated via FeatureMatch
- fn # validated via ExactStrMatch
- license # validated via CaseInsensitiveStrMatch
- license_family # validated via CaseInsensitiveStrMatch
- md5 # validated via ExactStrMatch
- name # validated via GlobLowerStrMatch
- sha256 # validated via ExactStrMatch
- subdir # validated via ExactStrMatch
- track_features # validated via FeatureMatch
- url # validated via ExactStrMatch
- version # validated via VersionSpec

Key-value pair notation can be used at the same time as standard notation.

$ conda search "conda-forge::numpy=1.17.3[subdir=linux-64, build=py38*]"

Warning

Any search values using the key-value pair notation will override values in the rest of the search string. For example, conda search numpy 1.17.3[version=1.19.2] will return packages with the version 1.19.2.

Package installation

When you're installing packages, conda recommends being as concrete as possible. Using * wildcards and version ranges during an install will most likely cause a conflict.

However, * wildcards can still be helpful in an install command when used sparingly.

Installing with wildcards

Let's say you are working on a project that requires version 2.3 of a package. If you upgrade to 2.4 or 3.0, your project will break. You're also using an environment file to create your environment.

In the version 2.3.1, 2 is the major version, 3 is the minor version, and 1 is the patch. Patches typically contain bug fixes, so if you want to keep version 2.3 in your environment without updating to 2.4 or 3.0, but want to take advantage of any bug fixes, using 2.3.* in your environment file would be helpful to you.

Concrete install example

Let's take the search from the Package search section.

$ conda search "conda-forge/linux-64::numpy 1.17.* py38*"

This returns the following:

Loading channels: done
Name Version Build Channel
numpy 1.17.3 py38h95a1406_0 conda-forge
numpy 1.17.5 py38h18fd61f_1 conda-forge
numpy 1.17.5 py38h95a1406_0 conda-forge

You can then choose a specific version and build, if necessary, and edit your conda install command accordingly.

$ conda install "conda-forge/linux-64::numpy 1.17.5 py38h95a1406_0"

Channels

What is a "channel"?

Channels are the locations where packages are stored.
They serve as the base for hosting and managing packages.
Conda packages are downloaded
from remote channels, which are URLs to directories
containing conda packages.
The conda command searches a set of channels. By default,
packages are automatically downloaded and updated from
the default channel [https://repo.anaconda.com/pkgs/], which may require a
paid license, as described in the repository terms of service [https://www.anaconda.com/terms-of-service].
The conda-forge channel is free for all to use.
You can modify which remote channels are automatically searched;
this feature is beneficial when maintaining a private or internal channel.
For details, see how to modify your channel lists.

We use conda-forge as an example channel.
Conda-forge [https://conda-forge.org/] is a community channel
made up of thousands of contributors. Conda-forge itself is
analogous to PyPI but with a unified,
automated build infrastructure and more peer review of
recipes.

Specifying channels when installing packages

	From the command line use --channel

$ conda install scipy --channel conda-forge

You may specify multiple channels by passing the argument multiple times:

$ conda install scipy --channel conda-forge --channel bioconda

Priority decreases from left to right - the first argument is higher priority than the second.

	From the command line use --override-channels to only search the specified channel(s), rather than any channels configured in .condarc. This also ignores conda's default channels.

$ conda search scipy --channel file:/<path to>/local-channel --override-channels

	In .condarc, use the key channels to see a list of channels for conda to search for packages.

Learn more about managing channels.

Conda clone channel RSS feed

We offer a RSS feed that represents all the things
that have been cloned by the channel clone and are
now available behind the CDN (content delivery network).
The RSS feed shows what has happened on a rolling,
two-week time frame and is useful for seeing where
packages are or if a sync has been run.

Let's look at the conda-forge channel RSS feed [https://conda-static.anaconda.org/conda-forge/rss.xml]
as an example.

In that feed, it will tell you every time that it runs a sync.
The feed includes other entries for packages that were added or
removed. Each entry is formatted to show the subdirectory
the package is from, the action that was taken (addition or removal),
and the name of the package. Everything has a publishing date,
per standard RSS practice.

<rss version="0.91">
 <channel>
 <title>conda-forge updates</title>
 <link>https://anaconda.org</link>
 <description>Updates in the last two weeks</description>
 <language>en</language>
 <copyright>Copyright 2019, Anaconda, Inc.</copyright>
 <pubDate>30 Jul 2019 19:45:47 UTC</pubDate>
 <item>
 <title>running sync</title>
 <pubDate>26 Jul 2019 19:26:36 UTC</pubDate>
 </item>
 <item>
 <title>linux-64:add:jupyterlab-1.0.4-py36_0.tar.bz2</title>
 <pubDate>26 Jul 2019 19:26:36 UTC</pubDate>
 </item>
 <item>
 <title>linux-64:add:jupyterlab-1.0.4-py37_0.tar.bz2</title>
 <pubDate>26 Jul 2019 19:26:36 UTC</pubDate>
 </item>

Environments

An environment is a directory that contains a specific
collection of packages that you have installed. For
example, you may have one environment with NumPy 1.7 and its
dependencies, and another environment with NumPy 1.6 for legacy
testing. If you change one environment, your other environments
are not affected. You can easily activate or deactivate
environments, which is how you switch between them. You can also
share your environment with someone by giving them a copy of your
environment.yaml file. For more information, see
Managing environments.

Conda directory structure

ROOT_DIR

The directory that Anaconda or Miniconda was installed into.

EXAMPLES:

/opt/Anaconda #Linux
C:\Anaconda #Windows

/pkgs

Also referred to as PKGS_DIR. This directory contains
decompressed packages, ready to be linked in conda environments.
Each package resides in a subdirectory corresponding to its
canonical name.

/envs

The system location for additional conda environments to be
created.

The following subdirectories comprise the default Anaconda
environment:

/bin

/include

/lib

/share

Other conda environments usually contain the same subdirectories
as the default environment.

Virtual environments

A virtual environment is a tool that helps to
keep dependencies required by different projects
separate by creating isolated spaces for them that
contain per-project dependencies for them.

Users can create virtual environments
using one of several tools such as
Pipenv or Poetry, or a conda virtual
environment. Pipenv and Poetry are based around Python's
built-in venv library, whereas conda has its own notion of virtual
environments that is lower-level (Python itself is a dependency provided
in conda environments).

Scroll to the right in the table below.

Some other traits are:

	
	Python virtual environment

	Conda virtual environment

	Libraries

	Statically link, vendor libraries in wheels,
or use apt/yum/brew/etc.

	Install system-level libraries as conda dependencies.

	System

	Depend on base system install of Python.

	Python is independent from system.

	Extending environment

	Extend environment with pip.

	Extended environment with conda or pip.

	Non-Python dependencies

	
	Manages non-Python dependencies (R, Perl,
arbitrary executables).

	Tracking dependencies

	
	Tracks binary dependencies explicitly.

Why use venv-based virtual environments

	You prefer their workflow or spec formats.

	You prefer to use the system Python and libraries.

	Your project maintainers only publish to PyPI, and
you prefer packages that come more directly from the
project maintainers, rather than someone else providing
builds based on the same code.

Why use conda virtual environments?

	You want control over binary compatibility choices.

	You want to utilize newer language standards, such as C++ 17.

	You need libraries beyond what the system Python offers.

	You want to manage packages from languages other than Python
in the same space.

Workflow differentiators

Some questions to consider as you determine your preferred
workflow and virtual environment:

	Is your environment shared across multiple code projects?

	Does your environment live alongside your code or in a separate place?

	Do your install steps involve installing any external libraries?

	Do you want to ship your environment as an archive of some sort
containing the actual files of the environment?

Package system differentiators

There are potential benefits for choosing PyPI or conda.

PyPI has one global namespace and distributed ownership of that namespace.
Because of this, it is easier within PyPI to have single sources for a package
directly from package maintainers.

Conda has unlimited namespaces (channels) and distributed ownership of a
given channel.
As such, it is easier to ensure binary compatibility within a channel using
conda.

Installing with conda

Conda packages can be installed by running the following command:

conda install <package>

When conda installs a package, it is automatically added to your active
environment. These packages are collections of files and directories
that make up everything you need to use that particular
library or software. For Python packages, these are primarily Python
files that can be imported into other Python applications, but for compiled
software packages, such as ffmpeg, these are typically binary executables
you use directly on your computer.

Note

If you would like to learn more about how environments are structured,
head over to conda environments.

Below is a more precise overview of everything that happens during the installation
process for a single package:

	Currently configured channels (e.g. defaults or conda-forge) are read in order of priority

	Repodata for these configured channels is downloaded and read

	The repodata is searched for the package, starting with the highest priority channel first

	Once the package is found, conda makes a separate download request and then installs it

	This process then repeats for each of the package's dependencies, if there are any

A graphic illustration of this process is shown below:

[image: ../../_images/installing-with-conda.png]

Conda update versus conda install

conda update updates packages to the latest compatible version.
conda install can be used to install any version.

Example:

	If Python 2.7.0 is currently installed, and the latest version of Python 2 is 2.7.5, then conda update python installs Python 2.7.5. It does not install Python 3.

	If Python 3.7.0 is currently installed, and the latest version of Python is 3.9.0, then conda install python=3 installs Python 3.9.0.

Conda uses the same rules for other packages. conda update always installs the highest version with the same major version number, whereas conda install always installs the highest version.

Installing conda packages offline

To install conda packages offline, run:
conda install /path-to-package/package-filename.tar.bz2/

If you prefer, you can create a /tar/ archive file containing
many conda packages and install them all with one command:
conda install /packages-path/packages-filename.tar

Note

If an installed package does not work, it may be missing
dependencies that need to be resolved manually.

Installing packages directly from the file does not resolve
dependencies.

Installing conda packages with a specific build number

If you want to install conda packages with the correct package specification, try
pkg_name=version=build_string. Read more about build strings and package naming conventions [https://docs.conda.io/projects/conda-build/en/latest/concepts/package-naming-conv.html#index-2].
Learn more about package specifications and metadata [https://docs.conda.io/projects/conda-build/en/latest/resources/package-spec.html#package-metadata].

For example, if you want to install llvmlite 0.31.0dev0 on Python 3.7.8, you
would enter:

conda install -c numba/label/dev llvmlite=0.31.0dev0=py37_8

Performance

Conda's performance can be affected by a variety of things.
Unlike many package managers, Anaconda’s repositories generally
don’t filter or remove old packages from the index. This allows old
environments to be easily recreated. However, it does mean that the
index metadata is always growing, and thus conda becomes slower as the
number of packages increases.

How a package is installed

While you are waiting, conda is doing a lot of work installing the
packages. At any point along these steps, performance issues may arise.

Conda follows these steps when installing a package:

	Downloading and processing index metadata.

	Reducing the index.

	Expressing the package data and constraints as a SAT problem.

	Running the solver.

	Downloading and extracting packages.

	Verifying package contents.

	Linking packages from package cache into environments.

Therefore, if you're experiencing a slowdown, evaluate the following questions
to identify potential causes:

	Are you creating a new environment or installing into an existing one?

	Does your environment have pip-installed dependencies in it?

	What channels are you using?

	What packages are you installing?

	Is the channel metadata sane?

	Are channels interacting in bad ways?

Improving conda performance

To address these challenges, you can move packages to archive
channels and follow the methods below to present conda with a smaller, simpler view than
all available packages.

To speed up conda, we offer the following recommendations.

	Are you:
	
	
	Using conda-forge?
	
	Use conda-metachannel to reduce conda’s problem size.

	
	Using bioconda?
	
	Use conda-metachannel to reduce conda’s problem size.

	Read more about docker images [https://github.com/bioconda/bioconda-recipes/issues/13774].

	
	Specifying very broad package specs?
	
	Be more specific. Letting conda filter more candidates makes it faster.
For example, instead of numpy, we recommend numpy=1.15 or, even better, numpy=1.15.4.

	If you are using R, instead of specifying only r-essentials, specify r-base=3.5 r-essentials.

	
	Feeling frustrated with “verifying transaction” and also feeling lucky?
	
	Run conda config --set safety_checks disabled.

	
	Getting strange mixtures of defaults and conda-forge?
	
	Run conda config --set channel_priority strict.

	This also makes things go faster by eliminating possible mixed solutions.

	
	Observing that an Anaconda or Miniconda installation is getting slower over time?
	
	Create a fresh environment. As environments grow, they become harder
and harder to solve. Working with small, dedicated environments can
be much faster.

Read more about how we made conda faster [https://www.anaconda.com/how-we-made-conda-faster-4-7/].

Set strict channel priority

Setting strict channel priority makes it so that if a package exists on
a channel, conda will ignore all packages with the same name on lower
priority channels.

[image: ../../_images/strict-disabled.png]

[image: ../../_images/strict-enabled.png]

This can dramatically reduce package search space and reduces the use of
improperly constrained packages.

One thing to consider is that setting strict channel priority may make
environments unsatisfiable. Learn more about Strict channel priority.

Reduce the index

One option for speeding up conda is to reduce the index. The index is
reduced by conda based upon the user's input specs. It's likely that
your repodata contains package data that is not used in the solving stage.
Filtering out these unnecessary packages before solving can save time.

Making your input specifications more specific improves
the effectiveness of the index reduction and, thus, speeds up the
process. Listing a version and build string for each of your specs can
dramatically reduce the number of packages that are considered when solving
so that the SAT doesn’t have as much work to do.

	Reducing the index:
	
	Reduces unnecessary input into generating solver clauses.

	Reduces solve complexity.

	Prefers newer packages that apply constraints.

Read more on Understanding and Improving Conda's Performance [https://www.anaconda.com/understanding-and-improving-condas-performance/].

Conda for data scientists

Conda is useful for any packaging process but it stands out from other
package and environment management systems through its utility for data
science.

Conda’s benefits include:

	Providing prebuilt packages which avoid the need to deal with compilers or
figuring out how to set up a specific tool.

	Managing one-step installation of tools that
are more challenging to install (such as TensorFlow or IRAF).

	Allowing you to provide your environment to other people across different
platforms, which supports the reproducibility of research workflows.

	Allowing the use of other package management tools, such as pip, inside
conda environments where a library or tools are not already packaged for
conda.

	Providing commonly used data science libraries and tools, such as R, NumPy,
SciPy, and TensorFlow. These are built using optimized, hardware-specific
libraries (such as Intel’s MKL or NVIDIA’s CUDA) which speed up performance
without code changes.

Read more about how conda supports data scientists [https://carpentries-incubator.github.io/introduction-to-conda-for-data-scientists/].

Plugins

In order to enable customization and extra features that are compatible with and discoverable by conda
(but do not necessarily ship as a default part of the conda codebase), an official conda plugin mechanism
has been implemented as of version 22.11.0.

Implementation

Plugins in conda integrate the "hook + entry point" structure by utilizing the Pluggy [https://pluggy.readthedocs.io/en/stable/] Python framework.
This implementation can be broken down via the following two steps:

	Define the hook(s) to be registered

	Register the plugin under the conda entrypoint namespace

Hook

Below is an example of a very basic plugin "hook":

my_plugin.py

import conda.plugins

@conda.plugins.hookimpl
def conda_subcommands(): ...

Packaging using a pyproject.toml file

Below is an example that configures setuptools using a pyproject.toml file (note that the
setup.py file is optional if a pyproject.toml file is defined, and thus will not be discussed here):

pyproject.toml

[build-system]
requires = ["setuptools", "setuptools-scm"]
build-backend = "setuptools.build_meta"

[project]
name = "my-conda-plugin"
version = "1.0.0"
description = "My conda plugin"
requires-python = ">=3.7"
dependencies = ["conda"]

[project.entry-points."conda"]
my-conda-plugin = "my_plugin"

Conda plugins use cases

The new conda plugin API ecosystem brings about many possibilities, including but not limited to:

	Custom subcommands

	Support for packaging-related topics (e.g., virtual packages)

	Development environment integrations (e.g., shells)

	Alternative dependency solver backends

	Network adapters

	Build system integrations

	Non-Python language support (e.g., C, Rust)

	Experimental features that are not currently covered by conda

Benefits of conda plugins

A conda plugin ecosystem enables contributors across the conda community to develop and share new features,
thus bringing about more functionality and focus on the user experience. Though the list below is by no means
exhaustive, some of the benefits of conda plugins include:

	Support for a better distribution of maintenance in the conda community

	Enabling third party contributors to use official APIs instead of having to divert to workarounds and wrappers

	The ability to extend conda internals via official APIs

	Lowering the barrier for contributions from other stakeholders in the conda ecosystem

	... and much more!

Troubleshooting

Using conda in Windows Batch script exits early

In conda 4.6+, the way that you interact with conda goes through a batch script (%PREFIX%\condabin\conda.bat).
Unfortunately, this means it's a little complicated to use conda from other batch scripts. When using batch
scripts from within batch scripts, you must prefix your command with CALL. If you do not do this, your batch
script that calls conda will exit immediately after the conda usage. In other words, if you write this in a .bat file:

conda create myenv python
conda activate myenv
echo test

Neither the activation, nor the echo will happen. You must write this in your batch script:

CALL conda create myenv python
CALL conda activate myenv
echo test

This is known behavior with cmd.exe, and we have not found any way to change it.
https://stackoverflow.com/questions/4798879/how-do-i-run-a-batch-script-from-within-a-batch-script/4798965

NumPy MKL library load failed

Error messages like

Intel MKL FATAL ERROR: Cannot load mkl_intel_thread.dll

or

The ordinal 241 could not be located in the the dynamic link library

Cause

NumPy is unable to load the correct MKL or Intel OpenMP runtime libraries. This
is almost always caused by one of two things:

	The environment with NumPy has not been activated.

	Another software vendor has installed MKL or Intel OpenMP (libiomp5md.dll)
files into the C:\Windows\System32 folder. These files are being loaded
before Anaconda's and they're not compatible.

Solution

If you are not activating your environments, start with doing that. There's more
info at Activating environments. If you are still stuck, you may need to consider
more drastic measures.

	Remove any MKL-related files from C:\Windows\System32. We recommend
renaming them to add .bak to the filename to effectively hide them. Observe
if any other software breaks. Try moving the DLL files alongside the .exe of
the software that broke. If it works again, you can keep things in the
moved state - Anaconda doesn't need MKL in System32, and no other software should need it either. If
you identify software that is installing software here, please contact the
creators of that software. Inform them that their practice of installing
MKL to a global location is fragile and is breaking other people's software
and wasting a lot of time. See the list of guilty parties below.

	You may try a special DLL loading mode that Anaconda builds into Python.
This changes the DLL search path from System32 first to System32 as another
entry on PATH, allowing libraries in your conda environment to be found
before the libraries in System32. Control of this feature is done with
environment variables. Only Python builds beyond these builds will react to
these environment variables:

	Python 2.7.15 build 14

	Python 3.6.8 build 7

	Python 3.7.2 build 8

To update Python from the defaults channel:

conda update -c defaults python

Note

Anaconda has built special patches into its builds of Python to enable
this functionality. If you get your Python package from somewhere else
(e.g. conda-forge), these flags may not do anything.

Control environment variables:

	CONDA_DLL_SEARCH_MODIFICATION_ENABLE

	CONDA_DLL_SEARCH_MODIFICATION_DEBUG

	CONDA_DLL_SEARCH_MODIFICATION_NEVER_ADD_WINDOWS_DIRECTORY

	CONDA_DLL_SEARCH_MODIFICATION_NEVER_ADD_CWD

To set variables on Windows, you may use either the CLI or a Windows GUI.

	CLI: https://superuser.com/questions/79612/setting-and-getting-windows-environment-variables-from-the-command-prompt/79614

	GUI: http://www.dowdandassociates.com/blog/content/howto-set-an-environment-variable-in-windows-gui/

These should be set to a value of 1 to enable them. For example, in a terminal:

set CONDA_DLL_SEARCH_MODIFICATION_ENABLE=1

Note

Only CONDA_DLL_SEARCH_MODIFICATION_ENABLE should be set finally.

List of known software that installs Intel libraries to C:\Windows\System32:

	Amplitube, by IK Multimedia

	ASIO4ALL, by Michael Tippach

If you find others, please let us know. If you're on this list and you want to
fix things, let us know. In either case, the conda issue tracker at
https://github.com/conda/conda/issues is the best way to reach us.

SSL connection errors

This is a broad umbrella of errors with many causes. Here are some we've seen.

CondaHTTPError: HTTP 000 CONNECTION FAILED

If you're on Windows and you see this error, look a little further down in the
error text. Do you see something like this?:

SSLError(MaxRetryError('HTTPSConnectionPool(host=\'repo.anaconda.com\', port=443): Max retries exceeded with url: /pkgs/r/win-32/repodata.json.bz2 (Caused by SSLError("Can\'t connect to HTTPS URL because the SSL module is not available."))'))

The key part there is the last bit:

Caused by SSLError("Can\'t connect to HTTPS URL because the SSL module is not available.")

Conda is having problems because it can't find the OpenSSL libraries that it needs.

Cause

You may observe this error cropping up after a conda update. More recent
versions of conda and more recent builds of Python are more strict about
requiring activation of environments. We're working on better error messages for
them, but here's the story for now. Windows relies on the PATH environment
variable as the way to locate libraries that are not in the immediate folder,
and also not in the C:\Windows\System32 folder. Searching for libraries in the
PATH folders goes from left to right. If you choose to put Anaconda's folders on
PATH, there are several of them:

	(install root)

	(install root)/Library/mingw-w64/bin

	(install root)/Library/usr/bin

	(install root)/Library/bin

	(install root)/Scripts

	(install root)/bin

	(install root)/condabin

Early installers for Anaconda put these on PATH. That was ultimately fragile
because Anaconda isn't the only software on the system. If other software had
similarly named executables or libraries, and came earlier on PATH, Anaconda
could break. On the flip side, Anaconda could break other software if Anaconda
were earlier in the PATH order and shadowed any other executables or libraries.
To make this easier, we began recommending "activation" instead of modifying
PATH. Activation is a tool where conda sets your PATH, and also runs any custom
package scripts which are often used to set additional environment variables
that are necessary for software to run (e.g. JAVA_HOME). Because activation runs
only in a local terminal session (as opposed to the permanent PATH entry), it is
safe to put Anaconda's PATH entries first. That means that Anaconda's libraries
get higher priority when you're running Anaconda but Anaconda doesn't interfere
with other software when you're not running Anaconda.

Anaconda's Python interpreter included a patch for a long time that added the
(install root)/Library/bin folder to that Python's PATH. Unfortunately, this
interfered with reasoning about PATH at all when using that Python interpreter.
We removed that patch in Python 3.7.0, and we regret that this has caused
problems for people who are not activating their environments and who otherwise
do not have the proper entries on PATH. We're experimenting with approaches that
will allow our executables to be less dependent on PATH and more self-aware of
their needed library load paths. For now, though, the only solutions to this
problem are to manage PATH properly.

Our humble opinion is that activation is the easiest way to ensure that things
work. See more information on activation in Activating environments.

Solution

Use shells opened from Anaconda Navigator. If you use a GUI
IDE and you see this error, ask the developers of your IDE to add activation for
conda environments.

SSL certificate errors

Cause

Installing packages may produce a "connection failed" error if you do not have
the certificates for a secure connection to the package repository.

Solution

Pip can use the --use-feature=truststore option to use the operating system
certificate store. This may be of help in typically corporate environments with
https traffic inspection, where the corporate CA is installed in the operating
system certificate store:

pip install --use-feature=truststore

Conda has a similar option:

conda config --set ssl_verify truststore

Alternatively, pip can use the --trusted-host option to indicate that the URL of the
repository is trusted:

pip install --trusted-host pypi.org

Conda has three similar options.

	The option --insecure or -k ignores certificate validation errors for all hosts.

Running conda create --help shows:

Networking Options:
 -k, --insecure Allow conda to perform "insecure" SSL connections and
 transfers. Equivalent to setting 'ssl_verify' to
 'False'.

	The configuration option ssl_verify can be set to False.

Running conda config --describe ssl_verify shows:

ssl_verify (bool, str)
aliases: verify_ssl
conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled and conda operations
will fail if a required URL's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, (2) a path to a
directory containing certificates of trusted CA, or (3) 'truststore'
to use the operating system certificate store.
#
ssl_verify: true

Running conda config --set ssl_verify false modifies ~/.condarc and
sets the -k flag for all future conda operations performed by that user.
Running conda config --help shows other configuration scope options.

When using conda config, the user's conda configuration file at
~/.condarc is used by default. The flag --system will instead write
to the system configuration file for all users at
<CONDA_BASE_ENV>/.condarc. The flag --env will instead write to the
active conda environment's configuration file at
<PATH_TO_ACTIVE_CONDA_ENV>/.condarc. If --env is used and no
environment is active, the user configuration file is used.

	The configuration option ssl_verify can be used to install new certificates.

Running conda config --describe ssl_verify shows:

ssl_verify (bool, str)
aliases: verify_ssl
conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required URL's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, (2) a path to a
directory containing certificates of trusted CA, or (3) 'truststore'
to use the operating system certificate store.
#
ssl_verify: true

Your network administrator can give you a certificate bundle for your
network's firewall. Then ssl_verify can be set to the path of that
certificate authority (CA) bundle and package installation operations will
complete without connection errors.

When using conda config, the user's conda configuration file at
~/.condarc is used by default. The flag --system will instead write
to the system configuration file for all users at
<CONDA_BASE_ENV>/.condarc. The flag --env will instead write to the
active conda environment's configuration file at
<PATH_TO_ACTIVE_CONDA_ENV>/.condarc. If --env is used and no
environment is active, the user configuration file is used.

SSL verification errors

Cause

This error may be caused by lack of activation on Windows or expired
certifications:

SSL verification error: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:590)

Solution

Make sure your conda is up-to-date: conda --version

If not, run: conda update conda

Try using the operating system certificate store. Set you ssl_verify variable to truststore
using the following command:

conda config --set ssl_verify truststore

If using the operating system certificate store does not solve your issue, temporarily
set your ssl_verify variable to false, upgrade the requests package, and then
set ssl_verify back to true using the following commands:

conda config --set ssl_verify false
conda update requests
conda config --set ssl_verify true

You can also set ssl_verify to a string path to a certificate, which can be used to verify
SSL connections. Modify your .condarc and include the following:

ssl_verify: path-to-cert/chain/filename.ext

If the repository uses a self-signed certificate, use the actual path to the certificate.
If the repository is signed by a private certificate authority (CA), the file needs to include
the root certificate and any intermediate certificates.

Permission denied errors during installation

Cause

The umask command determines the mask settings that control
how file permissions are set for newly created files. If you
have a very restrictive umask, such as 077, you get
"permission denied" errors.

Solution

Set a less restrictive umask before calling conda commands.
Conda was intended as a user space tool, but often users need to
use it in a global environment. One place this can go awry is
with restrictive file permissions. Conda creates links when you
install files that have to be read by others on the system.

To give yourself full permissions for files and directories but
prevent the group and other users from having access:

	Before installing, set the umask to 007.

	Install conda.

	Return the umask to the original setting:

umask 007
conda install
umask 077

For more information on umask, see
http://en.wikipedia.org/wiki/Umask.

Permission denied errors after using sudo conda command

Solution

Once you run conda with sudo, you must use sudo forever. We recommend that you NEVER run conda with sudo.

Already installed error message

Cause

If you are trying to fix conda problems without removing the
current installation and you try to reinstall Miniconda or
Anaconda to fix it, you get an error message that Miniconda
or Anaconda is already installed and you cannot continue.

Solution

Install using the --force option.

Download and install the appropriate Miniconda
for your operating system from the Miniconda download page [https://docs.anaconda.com/free/miniconda/] using the force option
--force or -f:

bash Miniconda3-latest-MacOSX-x86_64.sh -f

Note

Substitute the appropriate filename and version for your
operating system.

Note

Be sure that you install to the same location as
your existing install so it overwrites the core conda files and
does not install a duplicate in a new folder.

Conda reports that a package is installed, but it appears not to be

Sometimes conda claims that a package is already installed but
it does not appear to be, for example, a Python package that
gives ImportError.

There are several possible causes for this problem, each with its
own solution.

Cause

You are not in the same conda environment as your package.

Solution

	Make sure that you are in the same conda environment as your
package. The conda info command tells you what environment
is currently active under default environment.

	Verify that you are using the Python from the correct
environment by running:

import sys

print(sys.prefix)

Cause

For Python packages, you have set the PYTHONPATH or PYTHONHOME
variable. These environment variables cause Python to load files
from locations other than the standard ones. Conda works best
when these environment variables are not set, as their typical
use cases are obviated by conda environments and a common issue
is that they cause Python to pick up the wrong or broken
versions of a library.

Solution

For Python packages, make sure you have not set the PYTHONPATH
or PYTHONHOME variables. The command conda info -a displays
the values of these environment variables.

	To unset these environment variables temporarily for the
current terminal session, run unset PYTHONPATH.

	To unset them permanently, check for lines in the files:

	If you use bash---~/.bashrc, ~/.bash_profile,
~/.profile.

	If you use zsh---~/.zshrc.

	If you use PowerShell on Windows, the file output by
$PROFILE.

Cause

You have site-specific directories or, for Python, you have
so-called site-specific files. These are typically located in
~/.local on macOS and Linux. For a full description of the locations of
site-specific packages, see PEP 370 [http://legacy.python.org/dev/peps/pep-0370/]. As with
PYTHONPATH, Python may try importing packages from this
directory, which can cause issues.

Solution

For Python packages, remove site-specific directories and
site-specific files.

Cause

For C libraries, the following environment variables have been
set:

	macOS---DYLD_LIBRARY_PATH.

	Linux---LD_LIBRARY_PATH.

These act similarly to PYTHONPATH for Python. If they are
set, they can cause libraries to be loaded from locations other
than the conda environment. Conda environments obviate most use
cases for these variables. The command conda info -a shows
what these are set to.

Solution

Unset DYLD_LIBRARY_PATH or LD_LIBRARY_PATH.

Cause

Occasionally, an installed package becomes corrupted. Conda works
by unpacking the packages in the pkgs directory and then
hard-linking them to the environment. Sometimes these get
corrupted, breaking all environments that use them. They
also break any additional environments since the same files are hard-linked
each time.

Solution

Run the command conda install -f to unarchive the package
again and relink it. It also does an MD5 verification on the
package. Usually if this is different it is because your
channels have changed and there is a different package with the
same name, version, and build number.

Note

This breaks the links to any other environments that
already had this package installed, so you have to reinstall it
there, too. It also means that running conda install -f a lot
can use up significant disk space if you have many environments.

Note

The -f flag to conda install (--force) implies
--no-deps, so conda install -f package does not reinstall
any of the dependencies of package.

pkg_resources.DistributionNotFound: conda==3.6.1-6-gb31b0d4-dirty

Cause

The local version of conda needs updating.

Solution

Force reinstall conda. A useful way to work off the development
version of conda is to run python setup.py develop on a
checkout of the conda GitHub repository [https://github.com/conda/conda]. However, if you are not
regularly running git pull, it is a good idea to un-develop,
as you will otherwise not get any regular updates to conda. The
normal way to do this is to run python setup.py develop -u.

However, this command does not replace the conda script
itself. With other packages, this is not an issue, as you can
just reinstall them with conda, but conda cannot be used if
conda is installed.

The fix is to use the ./bin/conda executable in the conda
git repository to force reinstall conda. That is, run
./bin/conda install -f conda. You can then verify with
conda info that you have the latest version of conda, and not
a git checkout. The version should not include any hashes.

macOS error "ValueError unknown locale: UTF-8"

Cause

This is a bug in the macOS Terminal app that shows up only in
certain locales. Locales are country-language combinations.

Solution

	Open Terminal in /Applications/Utilities

	Clear the Set locale environment variables on startup checkbox.

[image: ../_images/conda_locale.jpg]

This sets your LANG environment variable to be empty. This may
cause Terminal to use incorrect settings for your locale. The
locale command in Terminal tells you what settings are used.

To use the correct language, add a line to your bash profile,
which is typically ~/.profile:

export LANG=your-lang

Note

Replace your-lang with the correct locale specifier for
your language.

The command locale -a displays all the specifiers. For
example, the language code for US English is en_US.UTF-8. The
locale affects what translations are used when they are available
and also how dates, currencies, and decimals are formatted.

AttributeError or missing getproxies

When running a command such as conda update ipython, you may
get an AttributeError: 'module' object has no attribute
'getproxies'.

Cause

This can be caused by an old version of requests or by having
the PYTHONPATH environment variable set.

Solution

Update requests and be sure PYTHONPATH is not set:

	Run conda info -a to show the requests version and
various environment variables such as PYTHONPATH.

	Update the requests version with
pip install -U requests.

	Clear PYTHONPATH:

	On Windows, clear it the environment variable settings.

	On macOS and Linux, clear it by removing it from the bash
profile and restarting the shell.

Shell commands open from the wrong location

When you run a command within a conda environment, conda does not
access the correct package executable.

Cause

In both bash and zsh, when you enter a command, the shell
searches the paths in PATH one by one until it finds the command.
The shell then caches the location, which is called hashing in
shell terminology. When you run command again, the shell does not
have to search the PATH again.

The problem is that before you installed the program, you ran a command which
loaded and hashed another version of that program in some other location on
the PATH, such as /usr/bin. Then you installed the program
using conda install, but the shell still had the old instance
hashed.

Solution

Reactivate the environment or run hash -r (in bash) or
rehash (in zsh).

When you run conda activate, conda automatically runs
hash -r in bash and rehash in zsh to clear the hashed
commands, so conda finds things in the new path on the PATH. But
there is no way to do this when conda install is run because
the command must be run inside the shell itself, meaning either
you have to run the command yourself or used a source file that
contains the command.

This is a relatively rare problem, since this happens only in the
following circumstances:

	You activate an environment or use the root environment, and
then run a command from somewhere else.

	Then you conda install a program, and then try to run the
program again without running activate or
deactivate.

The command type command_name always tells you exactly what
is being run. This is better than which command_name, which
ignores hashed commands and searches the PATH directly.
The hash is reset by conda activate or by hash -r in bash or
rehash in zsh.

Programs fail due to invoking conda Python instead of system Python

Cause

After installing Anaconda or Miniconda, programs that run
python switch from invoking the system Python to invoking the
Python in the root conda environment. If these programs rely on
the system Python to have certain configurations or dependencies
that are not in the root conda environment Python, the programs
may crash. For example, some users of the Cinnamon desktop
environment on Linux Mint have reported these crashes.

Solution

Edit your .bash_profile and .bashrc files so that the
conda binary directory, such as ~/miniconda3/bin, is no
longer added to the PATH environment variable. You can still run
conda activate and conda deactivate by using their full
path names, such as ~/miniconda3/bin/conda.

You may also create a folder with symbolic links to conda activate
and conda deactivate and then edit your
.bash_profile or .bashrc file to add this folder to your
PATH. If you do this, running python will invoke the system
Python, but running conda commands, conda activate MyEnv,
conda activate root, or conda deactivate will work
normally.

After running conda activate to activate any environment,
including after running conda activate root, running
python will invoke the Python in the active conda environment.

UnsatisfiableSpecifications error

Cause

Some conda package installation specifications are impossible to
satisfy. For example, conda create -n tmp python=3 wxpython=3
produces an "Unsatisfiable Specifications" error because wxPython
3 depends on Python 2.7, so the specification to install Python 3
conflicts with the specification to install wxPython 3.

When an unsatisfiable request is made to conda, conda shows a
message such as this one:

The following specifications were found to be in conflict:
- python 3*
- wxpython 3* -> python 2.7*
Use ``conda search <package> --info`` to see the dependencies
for each package.

This indicates that the specification to install wxpython 3
depends on installing Python 2.7, which conflicts with the
specification to install Python 3.

Solution

Use conda search wxpython --info or conda search 'wxpython=3' --info
to show information about this package and its dependencies:

wxpython 3.0 py27_0

file name : wxpython-3.0-py27_0.tar.bz2
name : wxpython
version : 3.0
build number: 0
build string: py27_0
channel : defaults
size : 34.1 MB
date : 2014-01-10
fn : wxpython-3.0-py27_0.tar.bz2
license_family: Other
md5 : adc6285edfd29a28224c410a39d4bdad
priority : 2
schannel : defaults
url : https://repo.continuum.io/pkgs/free/osx-64/wxpython-3.0-py27_0.tar.bz2
dependencies:
 python 2.7*
 python.app

By examining the dependencies of each package, you should be able
to determine why the installation request produced a conflict and
modify the request so it can be satisfied without conflicts. In
this example, you could install wxPython with Python 2.7:

conda create -n tmp python=2.7 wxpython=3

Package installation fails from a specific channel

Cause

Sometimes it is necessary to install a specific version from a
specific channel because that version is not available from the
default channel.

Solution

The following example describes the problem in detail and its
solution.

Suppose you have a specific need to install the Python
cx_freeze module with Python 3.4. A first step is to create a
Python 3.4 environment:

conda create -n py34 python=3.4

Using this environment you should first attempt:

conda install -n py34 cx_freeze

However, when you do this you get the following error:

Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata
Solving package specifications: .
Error: Package missing in current osx-64 channels:
- cx_freeze

You can search for packages on anaconda.org with

 anaconda search -t conda cx_freeze

The message indicates that cx_freeze cannot be found in the
default package channels. However, there may be a
community-created version available and you can search for it by
running the following command:

$ anaconda search -t conda cx_freeze
Using Anaconda Cloud api site https://api.anaconda.org
Run 'anaconda show <USER/PACKAGE>' to get more details:
Packages:
 Name | Version | Package Types | Platforms
 ------------------------- | ------ | --------------- | ---------------
 inso/cx_freeze | 4.3.3 | conda | linux-64
 pyzo/cx_freeze | 4.3.3 | conda | linux-64, win-32, win-64, linux-32, osx-64
 : http://cx-freeze.sourceforge.net/
 silg2/cx_freeze | 4.3.4 | conda | linux-64
 : create standalone executables from Python scripts
 takluyver/cx_freeze | 4.3.3 | conda | linux-64
Found 4 packages

In this example, there are 4 different places that you could try
to get the package. None of them are officially supported or
endorsed by Anaconda, but members of the conda community have
provided many valuable packages. If you want to go with public
opinion, then the web interface [https://anaconda.org/search?q=cx_freeze] provides more
information:

[image: cx_freeze packages on anaconda.org]

Notice that the pyzo organization has by far the most
downloads, so you might choose to use their package. If so, you
can add their organization's channel by specifying it on the
command line:

$ conda create -c pyzo -n cxfreeze_py34 cx_freeze python=3.4
Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata:
Solving package specifications:

Package plan for installation in environment /Users/username/anaconda/envs/cxfreeze_py34:

The following packages will be downloaded:

 package | build
 ---------------------------|-----------------
 cx_freeze-4.3.3 | py34_4 1.8 MB
 setuptools-20.7.0 | py34_0 459 KB
 --
 Total: 2.3 MB

The following NEW packages will be INSTALLED:

 cx_freeze: 4.3.3-py34_4
 openssl: 1.0.2h-0
 pip: 8.1.1-py34_1
 python: 3.4.4-0
 readline: 6.2-2
 setuptools: 20.7.0-py34_0
 sqlite: 3.9.2-0
 tk: 8.5.18-0
 wheel: 0.29.0-py34_0
 xz: 5.0.5-1
 zlib: 1.2.8-0

Now you have a software environment sandbox created with Python
3.4 and cx_freeze.

Conda automatically upgrades to unwanted version

When making a Python package for an app, you create an
environment for the app from a file req.txt that sets a
certain version, such as python=2.7.9. However, when you
conda install your package, it automatically upgrades to a
later version, such as 2.7.10.

Cause

If you make a conda package for the app using conda-build, you
can set dependencies with specific version numbers. The
requirements lines that say - python could be
- python ==2.7.9 instead. It is important to have 1 space
before the == operator and no space after.

Solution

Exercise caution when coding version requirements.

Conda upgrade error

Cause

Downgrading conda from 4.6.1 to 4.5.x and then trying to conda install conda or conda upgrade conda will produce a solving and upgrade error similar to the following:

Solving environment: failed
CondaUpgradeError: This environment has previously been operated on by a conda version that's newer than the conda currently being used. A newer version of conda is required.
target environment location: /opt/conda
current conda version: 4.5.9
minimum conda version: 4.6

Solution

Change the .condarc file. Set the parameter by editing the .condarc file directly:
allow_conda_downgrades: true in conda version 4.5.12. This will then let you upgrade. If you have something older than 4.5.12, install conda 4.6.1 again from the package cache.

EXAMPLE: If my conda info says package cache : /opt/conda/pkgs and my Python version is 3.7, then on the command line, type conda install /opt/conda/pkgs/conda-4.6.1-py37_0.tar.bz2 to resolve the issue.

ValidationError: Invalid value for timestamp

Cause

This happens when certain packages are installed with conda 4.3.28, and then
conda is downgraded to 4.3.27 or earlier.

Solution

See https://github.com/conda/conda/issues/6096.

Unicode error after installing Python 2

Example: UnicodeDecodeError: 'ascii' codec can't decode byte 0xd3 in position 1: ordinal not in range(128)

Cause

Python 2 is incapable of handling unicode properly, especially on Windows. In this case, if any character in your PATH env. var contains anything that is not ASCII then you see this exception.

Solution

Remove all non-ASCII from PATH or switch to Python 3.

Windows environment has not been activated

Cause

You may receive a warning message if you have not activated your environment:

Warning:
This Python interpreter is in a conda environment, but the environment has
not been activated. Libraries may fail to load. To activate this environment
please see https://conda.io/activation

Solution

If you receive this warning, you need to activate your environment.
To do so on Windows, on a terminal via PowerShell or the Command Prompt, run:
call <your anaconda/miniconda install location>\Scripts\activate base.

The system cannot find the path specified on Windows

Cause

PATH does not contain entries for all of the necessary conda directories.
PATH may have too many entries from 3rd party software adding itself to
PATH at install time, despite the user not needing to run the software via PATH lookup.

Solution

Strip PATH to have fewer entries and activate your environment.

If there's some software that needs to be found on PATH (you run it via
the CLI), we recommend that you create your own batch files to set PATH
dynamically within a console session, rather than permanently modifying
PATH in the system settings.

For example, a new conda prompt batch file that first strips PATH, then
calls the correct activation procedure could look like:

set
PATH=”%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;%SYSTEMROOT%\System32\WindowsPowerShell\v1.0\;<3rd-party-entries>”
call “<miniconda/anaconda root>\Scripts\activate”

If you need to run 3rd party software (software other than Windows
built-ins and Anaconda) from this custom conda prompt, then you should add
those entries (and only those strictly necessary) to the set PATH entry
above. Note that only the quotes wrapping the entire expression should be
there. That is how variables are properly set in batch scripts, and these
account for any spaces in any entries in PATH. No additional quotes should
be within the value assigned to PATH.

To make 3rd party software take precedence over the same-named programs
as supplied by conda, add it to PATH after activating conda:

set
“PATH=%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;%SYSTEMROOT%\System32\WindowsPowerShell\v1.0\”
call “<miniconda/anaconda root>\Scripts\activate”
set “PATH=<3rd-party-entries>;%PATH%”

To make conda software take precedence, call the activation script last.
Because activation prepends the conda environment PATH entries,
they have priority.

set
PATH=”%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;%SYSTEMROOT%\System32\WindowsPowerShell\v1.0\;<3rd-party-entries>”
call “<miniconda/anaconda root>\Scripts\activate”

Cheat sheet

See the conda cheatsheet PDF
(1 MB) for a single-page summary of the most important
information about using conda (link always points to the latest version).

Versions

	conda 4.14.x (latest)

	conda 4.12.x

	conda 4.6.x

Configuration

##
Channel Configuration
##

channels (sequence: primitive)
aliases: channel
env var string delimiter: ','
The list of conda channels to include for relevant operations.

channels:
- defaults

channel_alias (str)
The prepended url location to associate with channel names.

channel_alias: https://conda.anaconda.org

channel_settings (sequence: map)
env var string delimiter: ','
A list of mappings that allows overriding certain settings for a
single channel. Each list item should include at least the "channel"
key and the setting you would like to override.

channel_settings: []

default_channels (sequence: primitive)
env var string delimiter: ','
The list of channel names and/or urls used for the 'defaults'
multichannel.

default_channels:
- https://repo.anaconda.com/pkgs/main
- https://repo.anaconda.com/pkgs/r

override_channels_enabled (bool)
Permit use of the --override-channels command-line flag.

override_channels_enabled: true

allowlist_channels (sequence: primitive)
aliases: whitelist_channels
env var string delimiter: ','
The exclusive list of channels allowed to be used on the system. Use
of any other channels will result in an error. If conda-build channels
are to be allowed, along with the --use-local command line flag, be
sure to include the 'local' channel in the list. If the list is empty
or left undefined, no channel exclusions will be enforced.

allowlist_channels: []

custom_channels (map: primitive)
A map of key-value pairs where the key is a channel name and the value
is a channel location. Channels defined here override the default
'channel_alias' value. The channel name (key) is not included in the
channel location (value). For example, to override the location of
the 'conda-forge' channel where the url to repodata is
https://anaconda-repo.dev/packages/conda-forge/linux-64/repodata.json,
add an entry 'conda-forge: https://anaconda-repo.dev/packages'.

custom_channels:
pkgs/pro: https://repo.anaconda.com

custom_multichannels (map: sequence)
A multichannel is a metachannel composed of multiple channels. The two
reserved multichannels are 'defaults' and 'local'. The 'defaults'
multichannel is customized using the 'default_channels' parameter. The
'local' multichannel is a list of file:// channel locations where
conda-build stashes successfully-built packages. Other multichannels
can be defined with custom_multichannels, where the key is the
multichannel name and the value is a list of channel names and/or
channel urls.

custom_multichannels: {}

migrated_channel_aliases (sequence: primitive)
env var string delimiter: ','
A list of previously-used channel_alias values. Useful when switching
between different Anaconda Repository instances.

migrated_channel_aliases: []

migrated_custom_channels (map: primitive)
A map of key-value pairs where the key is a channel name and the value
is the previous location of the channel.

migrated_custom_channels: {}

add_anaconda_token (bool)
aliases: add_binstar_token
In conjunction with the anaconda command-line client (installed with
`conda install anaconda-client`), and following logging into an
Anaconda Server API site using `anaconda login`, automatically apply a
matching private token to enable access to private packages and
channels.

add_anaconda_token: true

allow_non_channel_urls (bool)
Warn, but do not fail, when conda detects a channel url is not a valid
channel.

allow_non_channel_urls: false

restore_free_channel (bool)
" Add the "free" channel back into defaults, behind
"main" in priority. The "free" channel was removed
from the collection of default channels in conda 4.7.0.

restore_free_channel: false

repodata_fns (sequence: primitive)
env var string delimiter: ','
Specify filenames for repodata fetching. The default is
('current_repodata.json', 'repodata.json'), which tries a subset of
the full index containing only the latest version for each package,
then falls back to repodata.json. You may want to specify something
else to use an alternate index that has been reduced somehow.

repodata_fns:
- current_repodata.json
- repodata.json

use_only_tar_bz2 (NoneType, bool)
A boolean indicating that only .tar.bz2 conda packages should be
downloaded. This is forced to True if conda-build is installed and
older than 3.18.3, because older versions of conda break when conda
feeds it the new file format.

use_only_tar_bz2:

repodata_threads (int)
Threads to use when downloading and reading repodata. When not set,
defaults to None, which uses the default ThreadPoolExecutor behavior.

repodata_threads: 0

fetch_threads (int)
Threads to use when downloading packages. When not set, defaults to
None, which uses the default ThreadPoolExecutor behavior.

fetch_threads: 0

experimental (sequence: primitive)
env var string delimiter: ','
List of experimental features to enable.

experimental: []

no_lock (bool)
Disable index cache lock (defaults to enabled).

no_lock: false

repodata_use_zst (bool)
Disable check for `repodata.json.zst`; use `repodata.json` only.

repodata_use_zst: true

##
Basic Conda Configuration
##

envs_dirs (sequence: primitive)
aliases: envs_path
env var string delimiter: ':'
The list of directories to search for named environments. When
creating a new named environment, the environment will be placed in
the first writable location.

envs_dirs: []

pkgs_dirs (sequence: primitive)
env var string delimiter: ','
The list of directories where locally-available packages are linked
from at install time. Packages not locally available are downloaded
and extracted into the first writable directory.

pkgs_dirs: []

default_threads (int)
Threads to use by default for parallel operations. Default is None,
which allows operations to choose themselves. For more specific
control, see the other *_threads parameters: * repodata_threads -
for fetching/loading repodata * verify_threads - for verifying
package contents in transactions * execute_threads - for carrying
out the unlinking and linking steps

default_threads: 0

##
Network Configuration
##

client_ssl_cert (NoneType, str)
aliases: client_cert
A path to a single file containing a private key and certificate (e.g.
.pem file). Alternately, use client_ssl_cert_key in conjunction with
client_ssl_cert for individual files.

client_ssl_cert:

client_ssl_cert_key (NoneType, str)
aliases: client_cert_key
Used in conjunction with client_ssl_cert for a matching key file.

client_ssl_cert_key:

local_repodata_ttl (bool, int)
For a value of False or 0, always fetch remote repodata (HTTP 304
responses respected). For a value of True or 1, respect the HTTP
Cache-Control max-age header. Any other positive integer values is the
number of seconds to locally cache repodata before checking the remote
server for an update.

local_repodata_ttl: 1

offline (bool)
Restrict conda to cached download content and file:// based urls.

offline: false

proxy_servers (map: primitive)
A mapping to enable proxy settings. Keys can be either (1) a
scheme://hostname form, which will match any request to the given
scheme and exact hostname, or (2) just a scheme, which will match
requests to that scheme. Values are are the actual proxy server, and
are of the form 'scheme://[user:password@]host[:port]'. The optional
'user:password' inclusion enables HTTP Basic Auth with your proxy.

proxy_servers: {}

remote_connect_timeout_secs (float)
The number seconds conda will wait for your client to establish a
connection to a remote url resource.

remote_connect_timeout_secs: 9.15

remote_max_retries (int)
The maximum number of retries each HTTP connection should attempt.

remote_max_retries: 3

remote_backoff_factor (int)
The factor determines the time HTTP connection should wait for
attempt.

remote_backoff_factor: 1

remote_read_timeout_secs (float)
Once conda has connected to a remote resource and sent an HTTP
request, the read timeout is the number of seconds conda will wait for
the server to send a response.

remote_read_timeout_secs: 60.0

ssl_verify (bool, str)
aliases: verify_ssl
Conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required url's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, (2) a path to a
directory containing certificates of trusted CA, or (3) 'truststore'
to use the operating system certificate store.

ssl_verify: true

##
Solver Configuration
##

aggressive_update_packages (sequence: primitive)
env var string delimiter: ','
A list of packages that, if installed, are always updated to the
latest possible version.

aggressive_update_packages:
- ca-certificates
- certifi
- openssl

auto_update_conda (bool)
aliases: self_update
Automatically update conda when a newer or higher priority version is
detected.

auto_update_conda: true

channel_priority (ChannelPriority)
Accepts values of 'strict', 'flexible', and 'disabled'. The default
value is 'flexible'. With strict channel priority, packages in lower
priority channels are not considered if a package with the same name
appears in a higher priority channel. With flexible channel priority,
the solver may reach into lower priority channels to fulfill
dependencies, rather than raising an unsatisfiable error. With channel
priority disabled, package version takes precedence, and the
configured priority of channels is used only to break ties. In
previous versions of conda, this parameter was configured as either
True or False. True is now an alias to 'flexible'.

channel_priority: flexible

create_default_packages (sequence: primitive)
env var string delimiter: ','
Packages that are by default added to a newly created environments.

create_default_packages: []

disallowed_packages (sequence: primitive)
aliases: disallow
env var string delimiter: '&'
Package specifications to disallow installing. The default is to allow
all packages.

disallowed_packages: []

force_reinstall (bool)
Ensure that any user-requested package for the current operation is
uninstalled and reinstalled, even if that package already exists in
the environment.

force_reinstall: false

pinned_packages (sequence: primitive)
env var string delimiter: '&'
A list of package specs to pin for every environment resolution. This
parameter is in BETA, and its behavior may change in a future release.

pinned_packages: []

pip_interop_enabled (bool)
Allow the conda solver to interact with non-conda-installed python
packages.

pip_interop_enabled: false

track_features (sequence: primitive)
env var string delimiter: ','
A list of features that are tracked by default. An entry here is
similar to adding an entry to the create_default_packages list.

track_features: []

solver (str)
aliases: experimental_solver
A string to choose between the different solver logics implemented in
conda. A solver logic takes care of turning your requested packages
into a list of specs to add and/or remove from a given environment,
based on their dependencies and specified constraints.

solver: libmamba

##
Package Linking and Install-time Configuration
##

allow_softlinks (bool)
When allow_softlinks is True, conda uses hard-links when possible, and
soft-links (symlinks) when hard-links are not possible, such as when
installing on a different filesystem than the one that the package
cache is on. When allow_softlinks is False, conda still uses hard-
links when possible, but when it is not possible, conda copies files.
Individual packages can override this setting, specifying that certain
files should never be soft-linked (see the no_link option in the build
recipe documentation).

allow_softlinks: false

always_copy (bool)
aliases: copy
Register a preference that files be copied into a prefix during
install rather than hard-linked.

always_copy: false

always_softlink (bool)
aliases: softlink
Register a preference that files be soft-linked (symlinked) into a
prefix during install rather than hard-linked. The link source is the
'pkgs_dir' package cache from where the package is being linked.
WARNING: Using this option can result in corruption of long-lived
conda environments. Package caches are *caches*, which means there is
some churn and invalidation. With this option, the contents of
environments can be switched out (or erased) via operations on other
environments.

always_softlink: false

path_conflict (PathConflict)
The method by which conda handle's conflicting/overlapping paths
during a create, install, or update operation. The value must be one
of 'clobber', 'warn', or 'prevent'. The '--clobber' command-line flag
or clobber configuration parameter overrides path_conflict set to
'prevent'.

path_conflict: clobber

rollback_enabled (bool)
Should any error occur during an unlink/link transaction, revert any
disk mutations made to that point in the transaction.

rollback_enabled: true

safety_checks (SafetyChecks)
Enforce available safety guarantees during package installation. The
value must be one of 'enabled', 'warn', or 'disabled'.

safety_checks: warn

extra_safety_checks (bool)
Spend extra time validating package contents. Currently, runs sha256
verification on every file within each package during installation.

extra_safety_checks: false

signing_metadata_url_base (NoneType, str)
Base URL for obtaining trust metadata updates (i.e., the `*.root.json`
and `key_mgr.json` files) used to verify metadata and (eventually)
package signatures.

signing_metadata_url_base:

shortcuts (bool)
Allow packages to create OS-specific shortcuts (e.g. in the Windows
Start Menu) at install time.

shortcuts: true

shortcuts_only (sequence: primitive)
env var string delimiter: ','
Create shortcuts only for the specified package names.

shortcuts_only: []

non_admin_enabled (bool)
Allows completion of conda's create, install, update, and remove
operations, for non-privileged (non-root or non-administrator) users.

non_admin_enabled: true

separate_format_cache (bool)
Treat .tar.bz2 files as different from .conda packages when filenames
are otherwise similar. This defaults to False, so that your package
cache doesn't churn when rolling out the new package format. If you'd
rather not assume that a .tar.bz2 and .conda from the same place
represent the same content, set this to True.

separate_format_cache: false

verify_threads (int)
Threads to use when performing the transaction verification step.
When not set, defaults to 1.

verify_threads: 0

execute_threads (int)
Threads to use when performing the unlink/link transaction. When not
set, defaults to 1. This step is pretty strongly I/O limited, and you
may not see much benefit here.

execute_threads: 0

##
Conda-build Configuration
##

bld_path (str)
The location where conda-build will put built packages. Same as
'croot', but 'croot' takes precedence when both are defined. Also used
in construction of the 'local' multichannel.

bld_path: ''

croot (str)
The location where conda-build will put built packages. Same as
'bld_path', but 'croot' takes precedence when both are defined. Also
used in construction of the 'local' multichannel.

croot: ''

anaconda_upload (NoneType, bool)
aliases: binstar_upload
Automatically upload packages built with conda build to anaconda.org.

anaconda_upload:

conda_build (map: primitive)
aliases: conda-build
General configuration parameters for conda-build.

conda_build: {}

##
Output, Prompt, and Flow Control Configuration
##

always_yes (NoneType, bool)
aliases: yes
Automatically choose the 'yes' option whenever asked to proceed with a
conda operation, such as when running `conda install`.

always_yes:

auto_activate_base (bool)
Automatically activate the base environment during shell
initialization.

auto_activate_base: true

auto_stack (int)
Implicitly use --stack when using activate if current level of nesting
(as indicated by CONDA_SHLVL environment variable) is less than or
equal to specified value. 0 or false disables automatic stacking, 1 or
true enables it for one level.

auto_stack: 0

changeps1 (bool)
When using activate, change the command prompt ($PS1) to include the
activated environment.

changeps1: true

env_prompt (str)
Template for prompt modification based on the active environment.
Currently supported template variables are '{prefix}', '{name}', and
'{default_env}'. '{prefix}' is the absolute path to the active
environment. '{name}' is the basename of the active environment
prefix. '{default_env}' holds the value of '{name}' if the active
environment is a conda named environment ('-n' flag), or otherwise
holds the value of '{prefix}'. Templating uses python's str.format()
method.

env_prompt: '({default_env}) '

json (bool)
Ensure all output written to stdout is structured json.

json: false

notify_outdated_conda (bool)
Notify if a newer version of conda is detected during a create,
install, update, or remove operation.

notify_outdated_conda: true

quiet (bool)
Disable progress bar display and other output.

quiet: false

report_errors (NoneType, bool)
Opt in, or opt out, of automatic error reporting to core maintainers.
Error reports are anonymous, with only the error stack trace and
information given by `conda info` being sent.

report_errors:

show_channel_urls (NoneType, bool)
Show channel URLs when displaying what is going to be downloaded.

show_channel_urls:

verbosity (int)
aliases: verbose
Sets output log level. 0 is warn. 1 is info. 2 is debug. 3 is trace.

verbosity: 0

unsatisfiable_hints (bool)
A boolean to determine if conda should find conflicting packages in
the case of a failed install.

unsatisfiable_hints: true

unsatisfiable_hints_check_depth (int)
An integer that specifies how many levels deep to search for
unsatisfiable dependencies. If this number is 1 it will complete the
unsatisfiable hints fastest (but perhaps not the most complete). The
higher this number, the longer the generation of the unsat hint will
take. Defaults to 3.

unsatisfiable_hints_check_depth: 2

number_channel_notices (int)
Sets the number of channel notices to be displayed when running
commands the "install", "create", "update", "env create", and "env
update" . Defaults to 5. In order to completely suppress channel
notices, set this to 0.

number_channel_notices: 5

##
Plugin Configuration
##

no_plugins (bool)
Disable all currently-registered plugins, except built-in conda
plugins.

no_plugins: false

Commands

Conda provides many commands for managing packages and environments.
The links on this page provide help for each command.
You can also access help from the command line with the
--help flag:

conda install --help

The following commands are part of conda:

	conda clean
	Removal Targets

	Output, Prompt, and Flow Control Options

	conda compare
	Positional Arguments

	Output, Prompt, and Flow Control Options

	Target Environment Specification

	conda config
	Output, Prompt, and Flow Control Options

	Config File Location Selection

	Config Subcommands

	Config Modifiers

	conda create
	Positional Arguments

	Named Arguments

	Target Environment Specification

	Channel Customization

	Solver Mode Modifiers

	Package Linking and Install-time Options

	Networking Options

	Output, Prompt, and Flow Control Options

	conda doctor
	Named Arguments

	Target Environment Specification

	conda env
	Positional Arguments

	conda info
	Named Arguments

	Output, Prompt, and Flow Control Options

	conda init
	Positional Arguments

	Named Arguments

	setup type

	Output, Prompt, and Flow Control Options

	conda install
	Positional Arguments

	Named Arguments

	Target Environment Specification

	Channel Customization

	Solver Mode Modifiers

	Package Linking and Install-time Options

	Networking Options

	Output, Prompt, and Flow Control Options

	conda list
	Positional Arguments

	Named Arguments

	Target Environment Specification

	Output, Prompt, and Flow Control Options

	conda notices
	Channel Customization

	Output, Prompt, and Flow Control Options

	conda package
	Named Arguments

	Target Environment Specification

	conda remove
	Positional Arguments

	Named Arguments

	Target Environment Specification

	Channel Customization

	Solver Mode Modifiers

	Networking Options

	Output, Prompt, and Flow Control Options

	conda rename
	Positional Arguments

	Named Arguments

	Target Environment Specification

	conda run
	Positional Arguments

	Named Arguments

	Target Environment Specification

	conda search
	Named Arguments

	Channel Customization

	Networking Options

	Output, Prompt, and Flow Control Options

	conda update
	Positional Arguments

	Named Arguments

	Target Environment Specification

	Channel Customization

	Solver Mode Modifiers

	Package Linking and Install-time Options

	Networking Options

	Output, Prompt, and Flow Control Options

Conda vs. pip vs. virtualenv commands

If you have used pip and virtualenv in the past, you can use
conda to perform all of the same operations. Pip is a package
manager and virtualenv is an environment manager. conda is both.

Scroll to the right to see the entire table.

	Task

	Conda package and environment manager command

	Pip package manager command

	Virtualenv environment manager command

	Install a package

	conda install $PACKAGE_NAME

	pip install $PACKAGE_NAME

	X

	Update a package

	conda update --name $ENVIRONMENT_NAME $PACKAGE_NAME

	pip install --upgrade $PACKAGE_NAME

	X

	Update package manager

	conda update conda

	Linux/macOS: pip install -U pip Win: python -m pip install -U pip

	X

	Uninstall a package

	conda remove --name $ENVIRONMENT_NAME $PACKAGE_NAME

	pip uninstall $PACKAGE_NAME

	X

	Create an environment

	conda create --name $ENVIRONMENT_NAME python

	X

	cd $ENV_BASE_DIR; virtualenv $ENVIRONMENT_NAME

	Activate an environment

	conda activate $ENVIRONMENT_NAME*

	X

	source $ENV_BASE_DIR/$ENVIRONMENT_NAME/bin/activate

	Deactivate an environment

	conda deactivate

	X

	deactivate

	Search available packages

	conda search $SEARCH_TERM

	pip search $SEARCH_TERM

	X

	Install package from specific source

	conda install --channel $URL $PACKAGE_NAME

	pip install --index-url $URL $PACKAGE_NAME

	X

	List installed packages

	conda list --name $ENVIRONMENT_NAME

	pip list

	X

	Create requirements file

	conda list --export

	pip freeze

	X

	List all environments

	conda info --envs

	X

	Install virtualenv wrapper, then lsvirtualenv

	Install other package manager

	conda install pip

	pip install conda

	X

	Install Python

	conda install python=x.x

	X

	X

	Update Python

	conda update python*

	X

	X

* conda activate only works on conda 4.6 and later versions.
For conda versions prior to 4.6, type:

	Windows: activate

	Linux and macOS: source activate

* conda update python updates to the most recent in the series,
so any Python 2.x would update to the latest 2.x and any Python 3.x
to the latest 3.x.

conda clean

Remove unused packages and caches.

usage: conda clean [-h] [-a] [-i] [-p] [-t] [-f] [-c [TEMPFILES ...]] [-l]
 [--json] [-v] [-q] [-d] [-y]

Removal Targets

	-a, --all

	Remove index cache, lock files, unused cache packages, tarballs, and logfiles.

	-i, --index-cache

	Remove index cache.

	-p, --packages

	Remove unused packages from writable package caches. WARNING: This does not check for packages installed using symlinks back to the package cache.

	-t, --tarballs

	Remove cached package tarballs.

	-f, --force-pkgs-dirs

	Remove all writable package caches. This option is not included with the --all flag. WARNING: This will break environments with packages installed using symlinks back to the package cache.

	-c, --tempfiles

	Remove temporary files that could not be deleted earlier due to being in-use. The argument for the --tempfiles flag is a path (or list of paths) to the environment(s) where the tempfiles should be found and removed.

	-l, --logfiles

	Remove log files.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

	-d, --dry-run

	Only display what would have been done.

	-y, --yes

	Sets any confirmation values to 'yes' automatically. Users will not be asked to confirm any adding, deleting, backups, etc.

Examples:

conda clean --tarballs

conda compare

Compare packages between conda environments.

usage: conda compare [-h] [--json] [-v] [-q] [-n ENVIRONMENT | -p PATH] file

Positional Arguments

	file

	Path to the environment file that is to be compared against.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Examples:

Compare packages in the current environment with respect
to 'environment.yml' located in the current working directory:

conda compare environment.yml

Compare packages installed into the environment 'myenv' with respect
to 'environment.yml' in a different directory:

conda compare -n myenv path/to/file/environment.yml

conda config

Modify configuration values in .condarc.

This is modeled after the git config command. Writes to the user .condarc
file (/home/docs/.condarc) by default. Use the
--show-sources flag to display all identified configuration locations on
your computer.

usage: conda config [-h] [--json] [-v] [-q] [--system | --env | --file FILE]
 [--show [SHOW ...] | --show-sources | --validate |
 --describe [DESCRIBE ...] | --write-default]
 [--get [KEY ...] | --append KEY VALUE | --prepend KEY
 VALUE | --set KEY VALUE | --remove KEY VALUE |
 --remove-key KEY | --stdin]

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Config File Location Selection

Without one of these flags, the user config file at '/home/docs/.condarc' is used.

	--system

	Write to the system .condarc file at '/home/docs/checkouts/readthedocs.org/user_builds/continuumio-conda/envs/latest/.condarc'.

	--env

	Write to the active conda environment .condarc file (<no active environment>). If no environment is active, write to the user config file (/home/docs/.condarc).

	--file

	Write to the given file.

Config Subcommands

	--show

	Display configuration values as calculated and compiled. If no arguments given, show information for all configuration values.

	--show-sources

	Display all identified configuration sources.

	--validate

	Validate all configuration sources. Iterates over all .condarc files and checks for parsing errors.

	--describe

	Describe given configuration parameters. If no arguments given, show information for all configuration parameters.

	--write-default

	Write the default configuration to a file. Equivalent to conda config --describe > ~/.condarc.

Config Modifiers

	--get

	Get a configuration value.

	--append

	Add one configuration value to the end of a list key.

	--prepend, --add

	Add one configuration value to the beginning of a list key.

	--set

	Set a boolean or string key.

	--remove

	
	Remove a configuration value from a list key.
	This removes all instances of the value.

	--remove-key

	Remove a configuration key (and all its values).

	--stdin

	Apply configuration information given in yaml format piped through stdin.

See conda config --describe or https://conda.io/docs/config.html
for details on all the options that can go in .condarc.

Examples:

Display all configuration values as calculated and compiled:

conda config --show

Display all identified configuration sources:

conda config --show-sources

Print the descriptions of all available configuration
options to your command line:

conda config --describe

Print the description for the "channel_priority" configuration
option to your command line:

conda config --describe channel_priority

Add the conda-canary channel:

conda config --add channels conda-canary

Set the output verbosity to level 3 (highest) for
the current activate environment:

conda config --set verbosity 3 --env

Add the 'conda-forge' channel as a backup to 'defaults':

conda config --append channels conda-forge

conda create

Create a new conda environment from a list of specified packages.

To use the newly-created environment, use 'conda activate envname'.
This command requires either the -n NAME or -p PREFIX option.

usage: conda create [-h] [--clone ENV] (-n ENVIRONMENT | -p PATH) [-c CHANNEL]
 [--use-local] [--override-channels]
 [--repodata-fn REPODATA_FNS] [--experimental {jlap,lock}]
 [--no-lock] [--repodata-use-zst | --no-repodata-use-zst]
 [--strict-channel-priority] [--no-channel-priority]
 [--no-deps | --only-deps] [--no-pin] [--copy]
 [--no-shortcuts] [--shortcuts-only SHORTCUTS_ONLY] [-C]
 [-k] [--offline] [--json] [-v] [-q] [-d] [-y]
 [--download-only] [--show-channel-urls] [--file FILE]
 [--no-default-packages] [--subdir SUBDIR]
 [--solver {classic}] [-m] [--dev]
 [package_spec ...]

Positional Arguments

	package_spec

	List of packages to install or update in the conda environment.

Named Arguments

	--clone

	Create a new environment as a copy of an existing local environment.

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. --file=file1 --file=file2).

	-m, --mkdir

	--mkdir is pending deprecation and will be removed in 25.3. Redundant argument.

	--dev

	Use sys.executable -m conda in wrapper scripts instead of CONDA_EXE. This is mainly for use during tests where we test new conda sources against old Python versions.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	Additional channel to search for packages. These are URLs searched in the order they are given (including local directories using the 'file://' syntax or simply a path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels from .condarc are searched (unless --override-channels is given). You can use 'defaults' to get the default packages for conda. You can also use any name and the .condarc channel_alias value will be prepended. The default channel_alias is https://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to '-c local'.

	--override-channels

	Do not search default or .condarc channels. Requires --channel.

	--repodata-fn

	Specify file name of repodata on the remote server where your channels are configured or within local backups. Conda will try whatever you specify, but will ultimately fall back to repodata.json if your specs are not satisfiable with what you specify here. This is used to employ repodata that is smaller and reduced in time scope. You may pass this flag more than once. Leftmost entries are tried first, and the fallback to repodata.json is added for you automatically. For more information, see conda config --describe repodata_fns.

	--experimental

	Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'. lock: use locking when reading, updating index (repodata.json) cache. Now enabled.

	--no-lock

	Disable locking when reading, updating index (repodata.json) cache.

	--repodata-use-zst, --no-repodata-use-zst

	Check for/do not check for repodata.json.zst. Enabled by default. (default: Null)

	--subdir, --platform

	Possible choices: emscripten-wasm32, wasi-wasm32, freebsd-64, linux-32, linux-64, linux-aarch64, linux-armv6l, linux-armv7l, linux-ppc64, linux-ppc64le, linux-riscv64, linux-s390x, osx-64, osx-arm64, win-32, win-64, win-arm64, zos-z

Use packages built for this platform. The new environment will be configured to remember this choice. Should be formatted like 'osx-64', 'linux-32', 'win-64', and so on. Defaults to the current (native) platform.

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config --show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--no-default-packages

	Ignore create_default_packages in the .condarc file.

	--solver

	Possible choices: classic

Choose which solver backend to use.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

	--no-shortcuts

	Don't install start menu shortcuts

	--shortcuts-only

	Install shortcuts only for this package name. Can be used several times.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired. This is useful if you don't want conda to check whether a new version of the repodata file exists, which will save bandwidth.

	-k, --insecure

	Allow conda to perform "insecure" SSL connections and transfers. Equivalent to setting 'ssl_verify' to 'false'.

	--offline

	Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

	-d, --dry-run

	Only display what would have been done.

	-y, --yes

	Sets any confirmation values to 'yes' automatically. Users will not be asked to confirm any adding, deleting, backups, etc.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config --show show_channel_urls.

Examples:

Create an environment containing the package 'sqlite':

conda create -n myenv sqlite

Create an environment (env2) as a clone of an existing environment (env1):

conda create -n env2 --clone path/to/file/env1

conda doctor

Display a health report for your environment.

usage: conda doctor [-v] [-h] [-n ENVIRONMENT | -p PATH]

Named Arguments

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

conda env

usage: conda env [-h] command ...

Positional Arguments

	command

	Possible choices: config, create, export, list, remove, update

conda env config

Configure a conda environment.

usage: conda env config [-h] {vars} ...

Examples:

conda env config vars list
conda env config --append channels conda-forge

conda env config vars

Interact with environment variables associated with Conda environments.

usage: conda env config vars [-h] {list,set,unset} ...

Examples:

conda env config vars list -n my_env
conda env config vars set MY_VAR=something OTHER_THING=ohhhhya
conda env config vars unset MY_VAR

conda env config vars list

List environment variables for a conda environment.

usage: conda env config vars list [-h] [-n ENVIRONMENT | -p PATH] [--json]
 [-v] [-q]

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Example:

conda env config vars list -n my_env

conda env config vars set

Set environment variables for a conda environment.

usage: conda env config vars set [-h] [-n ENVIRONMENT | -p PATH] [vars ...]

Positional Arguments

	vars

	Environment variables to set in the form <KEY>=<VALUE> separated by spaces

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Example:

conda env config vars set MY_VAR=weee

conda env config vars unset

Unset environment variables for a conda environment.

usage: conda env config vars unset [-h] [-n ENVIRONMENT | -p PATH] [vars ...]

Positional Arguments

	vars

	Environment variables to unset in the form <KEY> separated by spaces

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Example:

conda env config vars unset MY_VAR

conda env create

Create an environment based on an environment definition file.

If using an environment.yml file (the default), you can name the
environment in the first line of the file with 'name: envname' or
you can specify the environment name in the CLI command using the
-n/--name argument. The name specified in the CLI will override
the name specified in the environment.yml file.

Unless you are in the directory containing the environment definition
file, use -f to specify the file path of the environment definition
file you want to use.

usage: conda env create [-h] [-f FILE] [-n ENVIRONMENT | -p PATH] [-C] [-k]
 [--offline] [--no-default-packages] [--json] [-v] [-q]
 [-d] [-y] [--solver {classic}] [--subdir SUBDIR]
 [remote_definition]

Positional Arguments

	remote_definition

	Remote environment definition / IPython notebook

Named Arguments

	-f, --file

	Environment definition file (default: environment.yml)

	--no-default-packages

	Ignore create_default_packages in the .condarc file.

	--solver

	Possible choices: classic

Choose which solver backend to use.

	--subdir, --platform

	Possible choices: emscripten-wasm32, wasi-wasm32, freebsd-64, linux-32, linux-64, linux-aarch64, linux-armv6l, linux-armv7l, linux-ppc64, linux-ppc64le, linux-riscv64, linux-s390x, osx-64, osx-arm64, win-32, win-64, win-arm64, zos-z

Use packages built for this platform. The new environment will be configured to remember this choice. Should be formatted like 'osx-64', 'linux-32', 'win-64', and so on. Defaults to the current (native) platform.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired. This is useful if you don't want conda to check whether a new version of the repodata file exists, which will save bandwidth.

	-k, --insecure

	Allow conda to perform "insecure" SSL connections and transfers. Equivalent to setting 'ssl_verify' to 'false'.

	--offline

	Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

	-d, --dry-run

	Only display what would have been done.

	-y, --yes

	Sets any confirmation values to 'yes' automatically. Users will not be asked to confirm any adding, deleting, backups, etc.

Examples:

conda env create
conda env create -n envname
conda env create folder/envname
conda env create -f /path/to/environment.yml
conda env create -f /path/to/requirements.txt -n envname
conda env create -f /path/to/requirements.txt -p /home/user/envname

conda env export

Export a given environment

usage: conda env export [-h] [-c CHANNEL] [--override-channels]
 [-n ENVIRONMENT | -p PATH] [-f FILE] [--no-builds]
 [--ignore-channels] [--json] [-v] [-q]
 [--from-history]

Named Arguments

	-c, --channel

	Additional channel to include in the export

	--override-channels

	Do not include .condarc channels

	-f, --file

	File name or path for the exported environment. Note: This will silently overwrite any existing file of the same name in the current directory.

	--no-builds

	Remove build specification from dependencies

	--ignore-channels

	Do not include channel names with package names.

	--from-history

	Build environment spec from explicit specs in history

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Examples:

conda export
conda export --file FILE_NAME

conda env list

List the Conda environments.

usage: conda env list [-h] [--json] [-v] [-q]

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Examples:

conda env list
conda env list --json

conda env remove

Remove an environment.

Removes a provided environment. You must deactivate the existing
environment before you can remove it.

usage: conda env remove [-h] [-n ENVIRONMENT | -p PATH] [--solver {classic}]
 [--json] [-v] [-q] [-d] [-y]

Named Arguments

	--solver

	Possible choices: classic

Choose which solver backend to use.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

	-d, --dry-run

	Only display what would have been done.

	-y, --yes

	Sets any confirmation values to 'yes' automatically. Users will not be asked to confirm any adding, deleting, backups, etc.

Examples:

conda env remove --name FOO
conda env remove -n FOO

conda env update

Update the current environment based on environment file.

usage: conda env update [-h] [-n ENVIRONMENT | -p PATH] [-f FILE] [--prune]
 [--json] [-v] [-q] [--solver {classic}]
 [remote_definition]

Positional Arguments

	remote_definition

	remote environment definition / IPython notebook

Named Arguments

	-f, --file

	environment definition (default: environment.yml)

	--prune

	remove installed packages not defined in environment.yml

	--solver

	Possible choices: classic

Choose which solver backend to use.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Examples:

conda env update
conda env update -n=foo
conda env update -f=/path/to/environment.yml
conda env update --name=foo --file=environment.yml
conda env update vader/deathstar

conda info

Display information about current conda install.

usage: conda info [-h] [--json] [-v] [-q] [-a] [--base] [-e] [-s]
 [--unsafe-channels]

Named Arguments

	-a, --all

	--all is deprecated and will be removed in 24.9. Use --verbose instead.

	--base

	Display base environment path.

	-e, --envs

	List all known conda environments.

	-s, --system

	List environment variables.

	--unsafe-channels

	Display list of channels with tokens exposed.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

conda init

Initialize conda for shell interaction.

usage: conda init [-h] [--all] [--user] [--no-user] [--system] [--reverse]
 [--json] [-v] [-q] [-d]
 [SHELLS ...]

Positional Arguments

	SHELLS

	Possible choices: bash, fish, tcsh, xonsh, zsh, powershell

One or more shells to be initialized. If not given, the default value is 'bash' on unix and 'cmd.exe' & 'powershell' on Windows. Use the '--all' flag to initialize all shells. Available shells: ['bash', 'fish', 'powershell', 'tcsh', 'xonsh', 'zsh']

Named Arguments

	--all

	Initialize all currently available shells.

	-d, --dry-run

	Only display what would have been done.

setup type

	--user

	Initialize conda for the current user (default).

	--no-user

	Don't initialize conda for the current user.

	--system

	Initialize conda for all users on the system.

	--reverse

	Undo effects of last conda init.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Key parts of conda's functionality require that it interact directly with the shell
within which conda is being invoked. The conda activate and conda deactivate commands
specifically are shell-level commands. That is, they affect the state (e.g. environment
variables) of the shell context being interacted with. Other core commands, like
conda create and conda install, also necessarily interact with the shell environment.
They're therefore implemented in ways specific to each shell. Each shell must be configured
to make use of them.

This command makes changes to your system that are specific and customized for each shell.
To see the specific files and locations on your system that will be affected before, use
the '--dry-run' flag. To see the exact changes that are being or will be made to each
location, use the '--verbose' flag.

IMPORTANT: After running conda init, most shells will need to be closed and restarted for
changes to take effect.

conda install

Install a list of packages into a specified conda environment.

This command accepts a list of package specifications (e.g, bitarray=0.8)
and installs a set of packages consistent with those specifications and
compatible with the underlying environment. If full compatibility cannot
be assured, an error is reported and the environment is not changed.

Conda attempts to install the newest versions of the requested packages. To
accomplish this, it may update some packages that are already installed, or
install additional packages. To prevent existing packages from updating,
use the --freeze-installed option. This may force conda to install older
versions of the requested packages, and it does not prevent additional
dependency packages from being installed.

If you wish to skip dependency checking altogether, use the '--no-deps'
option. This may result in an environment with incompatible packages, so
this option must be used with great caution.

conda can also be called with a list of explicit conda package filenames
(e.g. ./lxml-3.2.0-py27_0.tar.bz2). Using conda in this mode implies the
--no-deps option, and should likewise be used with great caution. Explicit
filenames and package specifications cannot be mixed in a single command.

usage: conda install [-h] [--revision REVISION] [-n ENVIRONMENT | -p PATH]
 [-c CHANNEL] [--use-local] [--override-channels]
 [--repodata-fn REPODATA_FNS] [--experimental {jlap,lock}]
 [--no-lock] [--repodata-use-zst | --no-repodata-use-zst]
 [--strict-channel-priority] [--no-channel-priority]
 [--no-deps | --only-deps] [--no-pin] [--copy]
 [--no-shortcuts] [--shortcuts-only SHORTCUTS_ONLY] [-C]
 [-k] [--offline] [--json] [-v] [-q] [-d] [-y]
 [--download-only] [--show-channel-urls] [--file FILE]
 [--solver {classic}] [--force-reinstall]
 [--freeze-installed | --update-deps | -S | --update-all | --update-specs]
 [-m] [--clobber] [--dev]
 [package_spec ...]

Positional Arguments

	package_spec

	List of packages to install or update in the conda environment.

Named Arguments

	--revision

	Revert to the specified REVISION.

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. --file=file1 --file=file2).

	--dev

	Use sys.executable -m conda in wrapper scripts instead of CONDA_EXE. This is mainly for use during tests where we test new conda sources against old Python versions.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	Additional channel to search for packages. These are URLs searched in the order they are given (including local directories using the 'file://' syntax or simply a path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels from .condarc are searched (unless --override-channels is given). You can use 'defaults' to get the default packages for conda. You can also use any name and the .condarc channel_alias value will be prepended. The default channel_alias is https://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to '-c local'.

	--override-channels

	Do not search default or .condarc channels. Requires --channel.

	--repodata-fn

	Specify file name of repodata on the remote server where your channels are configured or within local backups. Conda will try whatever you specify, but will ultimately fall back to repodata.json if your specs are not satisfiable with what you specify here. This is used to employ repodata that is smaller and reduced in time scope. You may pass this flag more than once. Leftmost entries are tried first, and the fallback to repodata.json is added for you automatically. For more information, see conda config --describe repodata_fns.

	--experimental

	Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'. lock: use locking when reading, updating index (repodata.json) cache. Now enabled.

	--no-lock

	Disable locking when reading, updating index (repodata.json) cache.

	--repodata-use-zst, --no-repodata-use-zst

	Check for/do not check for repodata.json.zst. Enabled by default. (default: Null)

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config --show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--solver

	Possible choices: classic

Choose which solver backend to use.

	--force-reinstall

	Ensure that any user-requested package for the current operation is uninstalled and reinstalled, even if that package already exists in the environment.

	--freeze-installed, --no-update-deps

	Do not update or change already-installed dependencies.

	--update-deps

	Update dependencies that have available updates.

	-S, --satisfied-skip-solve

	Exit early and do not run the solver if the requested specs are satisfied. Also skips aggressive updates as configured by the 'aggressive_update_packages' config setting. Use 'conda info --describe aggressive_update_packages' to view your setting. --satisfied-skip-solve is similar to the default behavior of 'pip install'.

	--update-all, --all

	Update all installed packages in the environment.

	--update-specs

	Update based on provided specifications.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

	--no-shortcuts

	Don't install start menu shortcuts

	--shortcuts-only

	Install shortcuts only for this package name. Can be used several times.

	-m, --mkdir

	--mkdir is pending deprecation and will be removed in 25.3. Use conda create instead.

	--clobber

	Allow clobbering (i.e. overwriting) of overlapping file paths within packages and suppress related warnings.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired. This is useful if you don't want conda to check whether a new version of the repodata file exists, which will save bandwidth.

	-k, --insecure

	Allow conda to perform "insecure" SSL connections and transfers. Equivalent to setting 'ssl_verify' to 'false'.

	--offline

	Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

	-d, --dry-run

	Only display what would have been done.

	-y, --yes

	Sets any confirmation values to 'yes' automatically. Users will not be asked to confirm any adding, deleting, backups, etc.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config --show show_channel_urls.

Examples:

Install the package 'scipy' into the currently-active environment:

conda install scipy

Install a list of packages into an environment, myenv:

conda install -n myenv scipy curl wheel

Install a specific version of 'python' into an environment, myenv:

conda install -p path/to/myenv python=3.11

conda list

List installed packages in a conda environment.

usage: conda list [-h] [-n ENVIRONMENT | -p PATH] [--json] [-v] [-q]
 [--show-channel-urls] [--reverse] [-c] [-f] [--explicit]
 [--md5] [-e] [-r] [--no-pip]
 [regex]

Positional Arguments

	regex

	List only packages matching this regular expression.

Named Arguments

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config --show show_channel_urls.

	--reverse

	List installed packages in reverse order.

	-c, --canonical

	Output canonical names of packages only.

	-f, --full-name

	Only search for full names, i.e., ^<regex>$. --full-name NAME is identical to regex '^NAME$'.

	--explicit

	List explicitly all installed conda packages with URL (output may be used by conda create --file).

	--md5

	Add MD5 hashsum when using --explicit.

	-e, --export

	Output explicit, machine-readable requirement strings instead of human-readable lists of packages. This output may be used by conda create --file.

	-r, --revisions

	List the revision history.

	--no-pip

	Do not include pip-only installed packages.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Examples:

List all packages in the current environment:

conda list

List all packages in reverse order:

conda list --reverse

List all packages installed into the environment 'myenv':

conda list -n myenv

List all packages that begin with the letters "py", using regex:

conda list ^py

Save packages for future use:

conda list --export > package-list.txt

Reinstall packages from an export file:

conda create -n myenv --file package-list.txt

conda notices

Retrieve latest channel notifications.

Conda channel maintainers have the option of setting messages that
users will see intermittently. Some of these notices are informational
while others are messages concerning the stability of the channel.

usage: conda notices [-h] [-c CHANNEL] [--use-local] [--override-channels]
 [--repodata-fn REPODATA_FNS] [--experimental {jlap,lock}]
 [--no-lock] [--repodata-use-zst | --no-repodata-use-zst]
 [--json] [-v] [-q]

Channel Customization

	-c, --channel

	Additional channel to search for packages. These are URLs searched in the order they are given (including local directories using the 'file://' syntax or simply a path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels from .condarc are searched (unless --override-channels is given). You can use 'defaults' to get the default packages for conda. You can also use any name and the .condarc channel_alias value will be prepended. The default channel_alias is https://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to '-c local'.

	--override-channels

	Do not search default or .condarc channels. Requires --channel.

	--repodata-fn

	Specify file name of repodata on the remote server where your channels are configured or within local backups. Conda will try whatever you specify, but will ultimately fall back to repodata.json if your specs are not satisfiable with what you specify here. This is used to employ repodata that is smaller and reduced in time scope. You may pass this flag more than once. Leftmost entries are tried first, and the fallback to repodata.json is added for you automatically. For more information, see conda config --describe repodata_fns.

	--experimental

	Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'. lock: use locking when reading, updating index (repodata.json) cache. Now enabled.

	--no-lock

	Disable locking when reading, updating index (repodata.json) cache.

	--repodata-use-zst, --no-repodata-use-zst

	Check for/do not check for repodata.json.zst. Enabled by default. (default: Null)

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Examples:

conda notices

conda notices -c defaults

conda package

Create low-level conda packages. (EXPERIMENTAL)

usage: conda package [-h] [-n ENVIRONMENT | -p PATH] [-w PATH [PATH ...]] [-r]
 [-u] [--pkg-name PKG_NAME] [--pkg-version PKG_VERSION]
 [--pkg-build PKG_BUILD]

Named Arguments

	-w, --which

	Given some file's PATH, print which conda package the file came from.

	-r, --reset

	Remove all untracked files and exit.

	-u, --untracked

	Display all untracked files and exit.

	--pkg-name

	Designate package name of the package being created.

	--pkg-version

	Designate package version of the package being created.

	--pkg-build

	Designate package build number of the package being created.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

conda remove

Remove a list of packages from a specified conda environment.

Use --all flag to remove all packages and the environment itself.

This command will also remove any package that depends on any of the
specified packages as well---unless a replacement can be found without
that dependency. If you wish to skip this dependency checking and remove
just the requested packages, add the '--force' option. Note however that
this may result in a broken environment, so use this with caution.

usage: conda remove [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
 [--override-channels] [--repodata-fn REPODATA_FNS]
 [--experimental {jlap,lock}] [--no-lock]
 [--repodata-use-zst | --no-repodata-use-zst] [--features]
 [--force-remove] [--no-pin] [--solver {classic}] [-C] [-k]
 [--offline] [--json] [-v] [-q] [-d] [-y] [--all]
 [--keep-env] [--dev]
 [package_name ...]

Positional Arguments

	package_name

	Package names to remove from the environment.

Named Arguments

	--all

	Remove all packages, i.e., the entire environment.

	--keep-env

	Used with --all, delete all packages but keep the environment.

	--dev

	Use sys.executable -m conda in wrapper scripts instead of CONDA_EXE. This is mainly for use during tests where we test new conda sources against old Python versions.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	Additional channel to search for packages. These are URLs searched in the order they are given (including local directories using the 'file://' syntax or simply a path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels from .condarc are searched (unless --override-channels is given). You can use 'defaults' to get the default packages for conda. You can also use any name and the .condarc channel_alias value will be prepended. The default channel_alias is https://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to '-c local'.

	--override-channels

	Do not search default or .condarc channels. Requires --channel.

	--repodata-fn

	Specify file name of repodata on the remote server where your channels are configured or within local backups. Conda will try whatever you specify, but will ultimately fall back to repodata.json if your specs are not satisfiable with what you specify here. This is used to employ repodata that is smaller and reduced in time scope. You may pass this flag more than once. Leftmost entries are tried first, and the fallback to repodata.json is added for you automatically. For more information, see conda config --describe repodata_fns.

	--experimental

	Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'. lock: use locking when reading, updating index (repodata.json) cache. Now enabled.

	--no-lock

	Disable locking when reading, updating index (repodata.json) cache.

	--repodata-use-zst, --no-repodata-use-zst

	Check for/do not check for repodata.json.zst. Enabled by default. (default: Null)

Solver Mode Modifiers

	--features

	Remove features (instead of packages).

	--force-remove, --force

	Forces removal of a package without removing packages that depend on it. Using this option will usually leave your environment in a broken and inconsistent state.

	--no-pin

	Ignore pinned package(s) that apply to the current operation. These pinned packages might come from a .condarc file or a file in <TARGET_ENVIRONMENT>/conda-meta/pinned.

	--solver

	Possible choices: classic

Choose which solver backend to use.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired. This is useful if you don't want conda to check whether a new version of the repodata file exists, which will save bandwidth.

	-k, --insecure

	Allow conda to perform "insecure" SSL connections and transfers. Equivalent to setting 'ssl_verify' to 'false'.

	--offline

	Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

	-d, --dry-run

	Only display what would have been done.

	-y, --yes

	Sets any confirmation values to 'yes' automatically. Users will not be asked to confirm any adding, deleting, backups, etc.

Examples:

Remove the package 'scipy' from the currently-active environment:

conda remove scipy

Remove a list of packages from an environemnt 'myenv':

conda remove -n myenv scipy curl wheel

Remove all packages from environment myenv and the environment itself:

conda remove -n myenv --all

Remove all packages from the environment myenv but retain the environment:

conda remove -n myenv --all --keep-env

conda rename

Rename an existing environment.

This command renames a conda environment via its name (-n/--name) or
its prefix (-p/--prefix).

The base environment and the currently-active environment cannot be renamed.

usage: conda rename [-h] [-n ENVIRONMENT | -p PATH] [--force] [-d] destination

Positional Arguments

	destination

	New name for the conda environment.

Named Arguments

	--force

	Force rename of an environment.

	-d, --dry-run

	Only display what would have been done by the current command, arguments, and other flags.

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Examples:

conda rename -n test123 test321

conda rename --name test123 test321

conda rename -p path/to/test123 test321

conda rename --prefix path/to/test123 test321

conda run

Run an executable in a conda environment.

usage: conda run [-h] [-n ENVIRONMENT | -p PATH] [-v] [--dev]
 [--debug-wrapper-scripts] [--cwd CWD] [--no-capture-output]
 ...

Positional Arguments

	executable_call

	Executable name, with additional arguments to be passed to the executable on invocation.

Named Arguments

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	--dev

	Sets CONDA_EXE to python -m conda, assuming the current working directory contains the root of conda development sources. This is mainly for use during tests where we test new conda sources against old Python versions.

	--debug-wrapper-scripts

	When this is set, where implemented, the shell wrapper scriptswill use the echo command to print debugging information to stderr (standard error).

	--cwd

	Current working directory for command to run in. Defaults to the user's current working directory if no directory is specified.

	--no-capture-output, --live-stream

	Don't capture stdout/stderr (standard out/standard error).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Example:

$ conda create -y -n my-python-env python=3
$ conda run -n my-python-env python --version

conda search

Search for packages and display associated information using the MatchSpec format.

MatchSpec is a query language for conda packages.

usage: conda search [-h] [--envs] [-i] [--subdir SUBDIR]
 [--skip-flexible-search] [-c CHANNEL] [--use-local]
 [--override-channels] [--repodata-fn REPODATA_FNS]
 [--experimental {jlap,lock}] [--no-lock]
 [--repodata-use-zst | --no-repodata-use-zst] [-C] [-k]
 [--offline] [--json] [-v] [-q]

Named Arguments

	--envs

	Search all of the current user's environments. If run as Administrator (on Windows) or UID 0 (on unix), search all known environments on the system.

	-i, --info

	Provide detailed information about each package.

	--subdir, --platform

	Search the given subdir. Should be formatted like 'osx-64', 'linux-32', 'win-64', and so on. The default is to search the current platform.

	--skip-flexible-search

	Do not perform flexible search if initial search fails.

Channel Customization

	-c, --channel

	Additional channel to search for packages. These are URLs searched in the order they are given (including local directories using the 'file://' syntax or simply a path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels from .condarc are searched (unless --override-channels is given). You can use 'defaults' to get the default packages for conda. You can also use any name and the .condarc channel_alias value will be prepended. The default channel_alias is https://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to '-c local'.

	--override-channels

	Do not search default or .condarc channels. Requires --channel.

	--repodata-fn

	Specify file name of repodata on the remote server where your channels are configured or within local backups. Conda will try whatever you specify, but will ultimately fall back to repodata.json if your specs are not satisfiable with what you specify here. This is used to employ repodata that is smaller and reduced in time scope. You may pass this flag more than once. Leftmost entries are tried first, and the fallback to repodata.json is added for you automatically. For more information, see conda config --describe repodata_fns.

	--experimental

	Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'. lock: use locking when reading, updating index (repodata.json) cache. Now enabled.

	--no-lock

	Disable locking when reading, updating index (repodata.json) cache.

	--repodata-use-zst, --no-repodata-use-zst

	Check for/do not check for repodata.json.zst. Enabled by default. (default: Null)

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired. This is useful if you don't want conda to check whether a new version of the repodata file exists, which will save bandwidth.

	-k, --insecure

	Allow conda to perform "insecure" SSL connections and transfers. Equivalent to setting 'ssl_verify' to 'false'.

	--offline

	Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

Examples:

Search for a specific package named 'scikit-learn':

conda search scikit-learn

Search for packages containing 'scikit' in the package name:

conda search *scikit*

Note that your shell may expand '*' before handing the command over to conda.
Therefore, it is sometimes necessary to use single or double quotes around the query:

conda search '*scikit'
conda search "*scikit*"

Search for packages for 64-bit Linux (by default, packages for your current
platform are shown):

conda search numpy[subdir=linux-64]

Search for a specific version of a package:

conda search 'numpy>=1.12'

Search for a package on a specific channel:

conda search conda-forge::numpy
conda search 'numpy[channel=conda-forge, subdir=osx-64]'

conda update

Update conda packages to the latest compatible version.

This command accepts a list of package names and updates them to the latest
versions that are compatible with all other packages in the environment.

Conda attempts to install the newest versions of the requested packages. To
accomplish this, it may update some packages that are already installed, or
install additional packages. To prevent existing packages from updating,
use the --no-update-deps option. This may force conda to install older
versions of the requested packages, and it does not prevent additional
dependency packages from being installed.

usage: conda update [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
 [--override-channels] [--repodata-fn REPODATA_FNS]
 [--experimental {jlap,lock}] [--no-lock]
 [--repodata-use-zst | --no-repodata-use-zst]
 [--strict-channel-priority] [--no-channel-priority]
 [--no-deps | --only-deps] [--no-pin] [--copy]
 [--no-shortcuts] [--shortcuts-only SHORTCUTS_ONLY] [-C]
 [-k] [--offline] [--json] [-v] [-q] [-d] [-y]
 [--download-only] [--show-channel-urls] [--file FILE]
 [--solver {classic}] [--force-reinstall]
 [--freeze-installed | --update-deps | -S | --update-all | --update-specs]
 [--clobber]
 [package_spec ...]

Positional Arguments

	package_spec

	List of packages to install or update in the conda environment.

Named Arguments

	--file

	Read package versions from the given file. Repeated file specifications can be passed (e.g. --file=file1 --file=file2).

Target Environment Specification

	-n, --name

	Name of environment.

	-p, --prefix

	Full path to environment location (i.e. prefix).

Channel Customization

	-c, --channel

	Additional channel to search for packages. These are URLs searched in the order they are given (including local directories using the 'file://' syntax or simply a path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels from .condarc are searched (unless --override-channels is given). You can use 'defaults' to get the default packages for conda. You can also use any name and the .condarc channel_alias value will be prepended. The default channel_alias is https://conda.anaconda.org/.

	--use-local

	Use locally built packages. Identical to '-c local'.

	--override-channels

	Do not search default or .condarc channels. Requires --channel.

	--repodata-fn

	Specify file name of repodata on the remote server where your channels are configured or within local backups. Conda will try whatever you specify, but will ultimately fall back to repodata.json if your specs are not satisfiable with what you specify here. This is used to employ repodata that is smaller and reduced in time scope. You may pass this flag more than once. Leftmost entries are tried first, and the fallback to repodata.json is added for you automatically. For more information, see conda config --describe repodata_fns.

	--experimental

	Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'. lock: use locking when reading, updating index (repodata.json) cache. Now enabled.

	--no-lock

	Disable locking when reading, updating index (repodata.json) cache.

	--repodata-use-zst, --no-repodata-use-zst

	Check for/do not check for repodata.json.zst. Enabled by default. (default: Null)

Solver Mode Modifiers

	--strict-channel-priority

	Packages in lower priority channels are not considered if a package with the same name appears in a higher priority channel.

	--no-channel-priority

	Package version takes precedence over channel priority. Overrides the value given by conda config --show channel_priority.

	--no-deps

	Do not install, update, remove, or change dependencies. This WILL lead to broken environments and inconsistent behavior. Use at your own risk.

	--only-deps

	Only install dependencies.

	--no-pin

	Ignore pinned file.

	--solver

	Possible choices: classic

Choose which solver backend to use.

	--force-reinstall

	Ensure that any user-requested package for the current operation is uninstalled and reinstalled, even if that package already exists in the environment.

	--freeze-installed, --no-update-deps

	Do not update or change already-installed dependencies.

	--update-deps

	Update dependencies that have available updates.

	-S, --satisfied-skip-solve

	Exit early and do not run the solver if the requested specs are satisfied. Also skips aggressive updates as configured by the 'aggressive_update_packages' config setting. Use 'conda info --describe aggressive_update_packages' to view your setting. --satisfied-skip-solve is similar to the default behavior of 'pip install'.

	--update-all, --all

	Update all installed packages in the environment.

	--update-specs

	Update based on provided specifications.

Package Linking and Install-time Options

	--copy

	Install all packages using copies instead of hard- or soft-linking.

	--no-shortcuts

	Don't install start menu shortcuts

	--shortcuts-only

	Install shortcuts only for this package name. Can be used several times.

	--clobber

	Allow clobbering of overlapping file paths within packages, and suppress related warnings.

Networking Options

	-C, --use-index-cache

	Use cache of channel index files, even if it has expired. This is useful if you don't want conda to check whether a new version of the repodata file exists, which will save bandwidth.

	-k, --insecure

	Allow conda to perform "insecure" SSL connections and transfers. Equivalent to setting 'ssl_verify' to 'false'.

	--offline

	Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

	--json

	Report all output as json. Suitable for using conda programmatically.

	-v, --verbose

	Can be used multiple times. Once for detailed output, twice for INFO logging, thrice for DEBUG logging, four times for TRACE logging.

	-q, --quiet

	Do not display progress bar.

	-d, --dry-run

	Only display what would have been done.

	-y, --yes

	Sets any confirmation values to 'yes' automatically. Users will not be asked to confirm any adding, deleting, backups, etc.

	--download-only

	Solve an environment and ensure package caches are populated, but exit prior to unlinking and linking packages into the prefix.

	--show-channel-urls

	Show channel urls. Overrides the value given by conda config --show show_channel_urls.

Examples:

conda update -n myenv scipy

Release notes

This information is drawn from the GitHub conda project
changelog: https://github.com/conda/conda/blob/main/CHANGELOG.md

24.3.0 (2024-03-12)

Enhancements

	Show first few characters of undecodeable response if repodata.json raises
JSONDecodeError. (#11804)

	Update conda.gateways.subprocess.subprocess_call to use text=True to avoid manual encoding/decoding. (#13240)

	Add a new plugin hook giving plugin authors the ability to define new settings. (#13554)

	Optimize module imports to speed up conda activate. (#13567 via #13568)

	Move conda env export to conda export and alias the old command to the new command. (#13577)

	Report progress while running conda install --revision <idx>. (#13611)

	Add conda.testing.tmp_channel pytest fixture to create a temporary local channel for testing. (#13634)

Bug fixes

	Print traceback on KeyboardInterrupt instead of raising another AttributeError exception, when conda debugging logs are enabled. (#13531)

	Parse integer channel notice IDs as str instead of raising an exception. (#13543)

	Add direct runtime dependency on zstandard for use when downloading repodata.json.zst. (#13551)

	Fallback to repodata.json if repodata.json.zst cannot be decompressed as zstandard. (#13558)

	conda rename command no longer throws an error when conda is not active. (#13565)

	Fallback to repodata.json from repodata.json.zst on most 4xx error codes. (#13573)

	Fix excess resource usage by log handling when fetching repodata. (#13541 via #13628)

	Re-enable --subdir and --platform flags to be available for conda env create command. (#13632)

	Fix __archspec virtual package on Windows to return microarchitecture instead of the default x86_64. (#13641)

Deprecations

	Discontinue custom docker images. Use images provided by Anaconda Inc. [https://hub.docker.com/r/continuumio/miniconda3] or conda-forge [https://hub.docker.com/r/condaforge/miniforge3] instead. (#13162)

	Mark conda.common.compat.encode_arguments as pending deprecation. (#13240)

	Remove conda.export.handle_proxy_407. (#13629)

	Mark conda.testing.integration.make_temp_channel as pending deprecation. Use conda.testing.tmp_channel fixture instead. (#13634)

	Mark conda.testing.integration.running_a_python_capable_of_unicode_subprocessing as pending deprecation. (#13634)

	Mark conda.testing.integration.set_tmpdir as pending deprecation. Use tmp_path, conda.testing.path_factory, or conda.testing.tmp_env instead. (#13634)

	Mark conda.testing.integration._get_temp_prefix as pending deprecation. Use tmp_path, conda.testing.path_factory, or conda.testing.tmp_env instead. (#13634)

	Mark conda.testing.integration.make_temp_prefix as pending deprecation. Use tmp_path, conda.testing.path_factory, or conda.testing.tmp_env instead. (#13634)

	Mark conda.testing.integration.FORCE_temp_prefix as pending deprecation. Use tmp_path, conda.testing.path_factory, or conda.testing.tmp_env instead. (#13634)

	Mark conda.testing.integration.create_temp_location as pending deprecation. Use tmp_path or conda.testing.path_factory instead. (#13634)

	Mark conda.testing.integration.tempdir as pending deprecation. Use tmp_path or conda.testing.path_factory instead. (#13634)

	Mark conda.testing.integration.reload_config as pending deprecation. Use conda.base.context.reset_context instead. (#13634)

	Postpone conda.base.context.Context.conda_exe deprecation to conda 24.9. (#13634)

	Postpone conda.testing.integration.run_command deprecation to conda 25.3. (#13634)

	Postpone loading subcommands from executables deprecation to conda 25.3. (#13634)

	Remove vendored conda._vendor.boltons. Use boltons package instead. (#12681 via #13634)

	Remove conda.auxlib.packaging. Use a modern build system instead; see https://packaging.python.org/en/latest/tutorials/packaging-projects#creating-pyproject-toml for more details. (#12681 via #13634)

	Remove conda env create --force. Use conda env create --yes instead. (#12681 via #13634)

	Remove conda info PACKAGE. Use conda search PACKAGE --info instead. (#12681 via #13634)

	Remove conda.core.subdir_data.fetch_repodata_remote_request. Use conda.core.subdir_data.SubdirData.repo_fetch.fetch_latest_parsed instead." (#12681 via #13634)

	Remove conda.exports.memoized. Use functools.lru_cache instead. (#12681 via #13634)

	Remove conda.gateways.disk.read._digest_path. Use conda.gateways.disk.read.compute_sum instead. (#12681 via #13634)

	Remove conda.gateways.disk.read.compute_md5sum. Use conda.gateways.disk.read.compute_sum(path, "md5") instead. (#12681 via #13634)

	Remove conda.gateways.disk.read.compute_sha256sum. Use conda.gateways.disk.read.compute_sum(path, "sha256") instead. (#12681 via #13634)

	Remove conda.instructions.PREFIX. (#12681 via #13634)

	Remove conda.instructions.PREFIX_CMD. (#12681 via #13634)

	Remove conda.testing.encode_for_env_var. (#12681 via #13634)

	Remove conda.testing.conda_check_versions_aligned. (#12681 via #13634)

	Remove conda.testing.helpers.run_inprocess_conda_command. Use conda.testing.tmp_env instead. (#12681 via #13634)

	Remove conda.testing.helpers.capture_json_with_argv. (#12681 via #13634)

	Remove conda.testing.integration.get_conda_list_tuple. Use conda.core.prefix_data.PrefixData.get instead. (#12681 via #13634)

	Remove conda.utils.md5_file. Use conda.gateways.disk.read.compute_sum(path, "md5") instead. (#12681 via #13634)

	Remove conda.utils.hashsum_file. Use conda.gateways.disk.read.compute_sum instead. (#12681 via #13634)

	Remove conda.utils.safe_open. Use open instead. (#12681 via #13634)

	Remove python -m conda_env. Use conda env or python -m conda env instead. (#12681 via #13634)

	Remove conda_env.env.load_from_directory. (#12681 via #13634)

	Remove conda_env.pip_util.get_pip_version. (#12681 via #13634)

	Remove conda_env.pip_util.PipPackage. (#12681 via #13634)

	Remove conda_env.pip_util.installed. (#12681 via #13634)

	Remove conda_env.pip_util._canonicalize_name. (#12681 via #13634)

	Remove conda_env.pip_util.add_pip_installed. (#12681 via #13634)

Docs

	Update the navigation links for Miniconda. (#13572)

Other

	Remove dev/* scripts in favor of conda-incubator/setup-miniconda GitHub Action in .github/workflows/tests.yml. (#13162)

	Stop chaining commands for steps in .github/workflows/tests.yml. (#12418 via #13162)

	Modernize tests. (#13547, #13292)

	Run GitHub tests workflow also on osx-arm64 (aka Apple Silicon) runners. Enable osx-arm64 canary builds. Fix or disable broken tests. (#13617)

	Upload stable release artifacts to GitHub releases during releases. (#13399)

Contributors

	@beeankha

	@conda-bot

	@dbast

	@dholth

	@FFY00

	@isuruf

	@jaimergp

	@jezdez

	@jjhelmus

	@kenodegard

	@zklaus made their first contribution in https://github.com/conda/conda/pull/13579

	@ForgottenProgramme

	@mbargull

	@travishathaway

	@pre-commit-ci[bot]

24.1.2 (2024-02-15)

Bug fixes

	Fix deprecated fetch_repodata_remote_request when repodata_use_zst is enabled. (#13595)

Contributors

	@dholth

24.1.1 (2024-02-12)

Bug fixes

	Fallback to repodata.json if repodata.json.zst cannot be decompressed as zstandard. (#13558)

	Fallback to repodata.json from repodata.json.zst on most 4xx error codes. (#13573)

Contributors

	@dholth

24.1.0 (2024-01-24)

Special announcement

The conda_env.* modules have been merged into the conda package!

To improve the integration of the conda env subcommand (previously standalone), we’ve moved its
code into the conda package, while allowing old conda env commands to still work via Python
import redirects. This is a first step of many to improving the user experience of the conda
command line interface related to environment management. (#13168)

Enhancements

	Verify signatures on to-be-installed packages instead of on all packages. (#11545, #13053)

	Add new pre-solves and post-solves plugin hooks. (#13053)

	Add support for Python 3.12. (#13072)

	Check repodata.json.zst for faster repodata downloads. (#13256)

	Add --skip-flexible-search option in conda search to skip flexible search. (#13315)

	Provide a more useful warning when attempting to rename a non-existent prefix. (#13387)

	Add a new flag --keep-env to be used with conda remove --all. It allows users to delete all packages in the environment while retaining the environment itself. (#13419)

	Add a Y/N prompt warning users that conda env remove and conda remove --all deletes not only the conda packages but the entirety of the specified environment. (#13440)

	Add --repodata-use-zst/--no-repodata-use-zst flag to control repodata.json.zst check; corresponding repodata_use_zst: true/false for .condarc. Default is to check for repodata.json.zst. Disable if remote returns unparseable repodata.json.zst instead of correct data or 404. (#13504)

Bug fixes

	Create the ~/.conda directory before trying to write to the environments.txt file. (#13338)

	Ensure PackageRecord.timestamp is dumped in milliseconds. (#13483)

	Fix error when setting a non-default repodata filename via CONDA_REPODATA_FNS. (#13490)

	Fix the config file location where the integrated Anaconda client gateway loads user configuration from. This is a regression introduced in conda 23.11.0 when the platformdirs library was adopted. (#13517 via #13520)

	Interpret missing Cache-Control header as max-age=0 instead of exception. (#13522)

Deprecations

	Mark conda_env/cli/common as pending deprecation. Use conda.cli.common instead. (#13168)

	Mark conda_env/cli/main_config as pending deprecation. Use conda.cli.main_env_config instead. (#13168)

	Mark conda_env/cli/main_create as pending deprecation. Use conda.cli.main_env_create instead. (#13168)

	Mark conda_env/cli/main_export as pending deprecation. Use conda.cli.main_env_export instead. (#13168)

	Mark conda_env/cli/main_list as pending deprecation. Use conda.cli.main_env_list instead. (#13168)

	Mark conda_env/cli/main_remove as pending deprecation. Use conda.cli.main_env_remove instead. (#13168)

	Mark conda_env/cli/main_update as pending deprecation. Use conda.cli.main_env_update instead. (#13168)

	Mark conda_env/cli/main_vars as pending deprecation. Use conda.cli.main_env_vars instead. (#13168)

	Mark conda_env/env as pending deprecation. Use conda.env.env instead. (#13168)

	Mark conda_env/installers/base as pending deprecation. Use conda.env.installers.base instead. (#13168)

	Mark conda_env/installers/conda as pending deprecation. Use conda.env.installers.conda instead. (#13168)

	Mark conda_env/installers/pip as pending deprecation. Use conda.env.installers.pip instead. (#13168)

	Mark conda_env/pip_util as pending deprecation. Use conda.env.pip_util instead. (#13168)

	Mark conda_env/specs as pending deprecation. Use conda.env.specs instead. (#13168)

	Mark conda_env/specs/binstar as pending deprecation. Use conda.env.specs.binstar instead. (#13168)

	Mark conda_env/specs/requirements as pending deprecation. Use conda.env.specs.requirements instead. (#13168)

	Mark conda_env/specs/yaml_file as pending deprecation. Use conda.env.specs.yaml_file instead. (#13168)

	Mark conda.testing.integration.make_temp_package_cache as pending deprecation. (#13511)

Docs

	Update Getting Started documentation in User Guide. (#13190)

	Add GoatCounter (https://www.goatcounter.com/) as an analytics tool. (#13384)

	Add type hints and doc strings to conda.cli.main_info. (#13445)

	Add type hints and doc strings to conda.cli.main_search. (#13465)

Other

	Add type hinting for VersionOrder class. (#13380)

	Re-enable and apply pyupgrade via ruff. (#13272, #13433)

	Start tracking performance in continuous integration and automatically report about it in pull requests. (#13460)

	Add tmp_pkgs_dir fixture to replace make_temp_package_cache. (#13511)

	Improve lock API for the repodata cache. (#13455)

Contributors

	@beeankha

	@conda-bot

	@dbast

	@dholth

	@jaimergp

	@jezdez

	@johnnynunez

	@kathatherine

	@kenodegard

	@ForgottenProgramme

	@marcoesters

	@mfansler

	@schuylermartin45 made their first contribution in https://github.com/conda/conda/pull/13385

	@travishathaway

	@pre-commit-ci[bot]

	@samhaese made their first contribution in https://github.com/conda/conda/pull/13465

23.11.0 (2023-11-30)

Special announcement

New menuinst v2 [https://github.com/conda/menuinst/releases/tag/2.0.0] support!

conda has supported Start menu items on Windows for a long time. This is what allows users to open up their Miniconda prompt on CMD (Command Prompt) with an initialized conda session. This menu item (or shortcut) creation logic is provided by the menuinst package.

With the release of 23.11.0, conda now supports menuinst v2 [https://github.com/conda/menuinst/releases/tag/2.0.0], which enables the same experience across Windows, Linux, and macOS. This means package builders will be able to provide desktop icons across all operating systems, which can be especially useful for GUI applications. See the documentation [https://conda.github.io/menuinst/] for more details.

If you don’t want conda to create shortcuts, you can disable it via:

	shortcuts: false entry in your .condarc configuration

	CONDA_SHORTCUTS=false environment variable

	--no-shortcuts command-line flag

Enhancements

	Add support for menuinst v2, enabling shortcuts across all platforms (Windows, Linux, macOS) using a new JSON schema (see CEP-11 [https://github.com/conda-incubator/ceps/blob/main/cep-11.md]). Retain support for old v1-style JSON menus. (#11882)

	Stop using vendored chardet package by requests/pip; explicitly depend on charset_normalizer. (#13171)

	Introduce a new plugin hook, CondaHealthCheck, as part of conda doctor. (#13186)

	Include activate and deactivate in the --help command list. (#13191)

	Prioritize download of larger packages to prevent smaller ones from waiting. (#13248)

	Display the used solver in conda info output for debugging purposes. (#13265)

	Add __conda virtual package. (#13266)

	Switch from appdirs to platformdirs. (#13306)

	Implement resume capability for interrupted package downloads. (#8695)

Bug fixes

	Log expected JLAP range-request errors at info level, occurring when the remote file has rolled over. (#12913)

	Fix a bug causing an error when options like --debug are used without specifying a command. (#13232)

	Improve CTRL-C (cancellation) handling for parallel download threads. (#13234)

	Allow overriding of CONDA_FETCH_THREADS/fetch_threads to set parallel package downloads beyond the default 5. (#13263)

	Require requests >=2.28 for enhanced response.json() exception handling. (#13346)

	Apply callback=reset_context in conda.plan to resolve conda-build + conda-libmamba-solver incompatibilities. (conda-libmamba-solver#393 [https://github.com/conda/conda-libmamba-solver/issues/393] and conda-libmamba-solver#386 [https://github.com/conda/conda-libmamba-solver/issues/386] via #13357)

Deprecations

	Deprecate conda.plugins.subcommands.doctor.health_checks.display_health_checks function. (#13186)

	Deprecate conda.plugins.subcommands.doctor.health_checks.display_report_heading function. (#13186)

	Remove ruamel_yaml fallback; use ruamel.yaml exclusively. (#13218)

	Deprecate conda.gateways.anaconda_client.EnvAppDirs in favor of platformdirs. (#13306)

	Mark conda._vendor.cpuinfo for pending deprecation. (#13313)

	Deprecate conda._vendor.distro in favor of the distro package. (#13317)

Docs

	Add the conda-sphinx-theme to the conda documentation. (#13298)

	Update specific pages to remove redundant TOC entries. (#13298)

	Include instructions on updating conda in the main README.md. (#13343)

Other

	Add a lighter weight s3 test; update embedded test package index. (#13085)

	Refactor code to use lazy imports for all relative imports in conda.cli.main_*, and separate argparse configuration functions from conda.cli.conda_argparse to their respective conda.cli.main_* modules. (#13173)

	Move custom argparse.Actions to conda.cli.actions (e.g., NullCountAction), and relocate helper argparse functions to conda.cli.helpers (e.g., add_parser_prefix). (#13173)

	Update upper bound for ruamel.yaml to <0.19 following the release of 0.18. (#13258)

	Replace black with ruff format in pre-commit. (#13272)

Contributors

	@AniketP04 made their first contribution in https://github.com/conda/conda/pull/13224

	@beeankha

	@13rac1 made their first contribution in https://github.com/conda/conda/pull/13191

	@conda-bot

	@dholth

	@eltociear

	@jaimergp

	@jezdez

	@kathatherine

	@kenodegard

	@kennethlaskoski made their first contribution in https://github.com/conda/conda/pull/13322

	@ForgottenProgramme

	@marcoesters

	@opoplawski

	@scruel made their first contribution in https://github.com/conda/conda/pull/13274

	@travishathaway

	@gfggithubleet made their first contribution in https://github.com/conda/conda/pull/13270

	@pre-commit-ci[bot]

23.10.0 (2023-10-30)

✨ Special announcement ✨

This is an announcement about an important change in conda’s functionality:

With this 23.10.0 release we are changing the default solver of conda to conda-libmamba-solver [https://conda.github.io/conda-libmamba-solver/]! 🥳 🚀

The previously “classic” solver is based on pycosat [https://github.com/conda/pycosat]/Picosat [http://fmv.jku.at/picosat/] and will remain part of conda for the foreseeable future, a fallback is possible and available.

Why are we switching the solver?

In short: to make conda faster and more accurate.

A “solver” is the core component of most package managers; it calculates which dependencies (and which version of those dependencies) to install when a user requests to install a package from a package repository. To address growth-related challenges within the conda ecosystem, the conda maintainers, alongside partners Anaconda, Quansight and QuantStack, introduced a new conda dependency solver based on the Mamba project [https://mamba.readthedocs.io] in December 2022.

Since July 2023, the conda-libmamba-solver [https://github.com/conda/conda-libmamba-solver] plugin has been included in all major conda ecosystem installers (miniforge, miniconda, mambaforge and Anaconda Distribution), but was disabled by default. As soon as these installers are updated to contain conda 23.10.0 or later, they will automatically default to using the conda-libmamba-solver plugin.

What can I do if this update doesn’t work for me?

If the new solver is not working as you expect:

	Check if the behavior you are observing is a known issue [https://github.com/conda/conda-libmamba-solver/issues/283] or a deliberate change [https://conda.github.io/conda-libmamba-solver/libmamba-vs-classic/#intentional-deviations-from-classic].

	If that’s not the case, please consider submitting a bug report or feature request in the conda-libmamba-solver repository [https://github.com/conda/conda-libmamba-solver/issues/new/choose].

	If necessary, you can go back to using the classic solver without modifying your conda installation:

	When possible, pass the command line option --solver=classic to your conda calls.

	Otherwise (e.g. for conda build ... or constructor ...), set the environment variable CONDA_SOLVER=classic.

	For permanent changes, use the conda configuration system: conda config --set solver classic.

Where can I learn more about conda-libmamba-solver?

The documentation of the conda-libmamba-solver plugin can be found on conda.github.io/conda-libmamba-solver [https://conda.github.io/conda-libmamba-solver/].

For more information about the conda-libmamba-solver rollout plan, please also see our blog post from earlier this year [https://conda.org/blog/2023-07-05-conda-libmamba-solver-rollout].

Enhancements

	Provide --platform and --subdir flags to create environments for non-native platforms, remembering that choice in future operations. (#11505 via #11794)

	IMPORTANT: Set solver: libmamba as the new default solver. (#12984)

Bug fixes

	Check name of symlink, not its target against valid configuration file names (condarc, .condarc, or *.yml/yaml). (#12956)

	Have conda doctor ignore blank lines in ~/.conda/environments.txt. (#12984)

Deprecations

	Mark conda.cli.main.generate_parser as pending deprecation. Use conda.cli.conda_argparse.generate_parser instead. (#13144)

	Mark conda.auxlib.collection.firstitem as pending deprecation. (#13144)

	Mark conda.auxlib.collection.call_each as pending deprecation. (#13144)

	Mark conda.auxlib.compat.NoneType as pending deprecation. (#13144)

	Mark conda.auxlib.compat.primative_types as pending deprecation. (#13144)

	Mark conda.auxlib.compat.utf8_writer as pending deprecation. (#13144)

	Mark conda.auxlib.exceptions.AuthenticationError as pending deprecation. (#13144)

	Mark conda.auxlib.exceptions.NotFoundError as pending deprecation. (#13144)

	Mark conda.auxlib.exceptions.InitializationError as pending deprecation. (#13144)

	Mark conda.auxlib.exceptions.SenderError as pending deprecation. (#13144)

	Mark conda.auxlib.exceptions.AssignmentError as pending deprecation. (#13144)

	Mark conda.auxlib.type_coercion.boolify_truthy_string_ok as pending deprecation. (#13144)

	Mark conda.auxlib.type_coercion.listify as pending deprecation. (#13144)

	Mark conda.models.dist.IndexRecord as pending deprecation for removal in 24.9. (#13193)

	Mark conda.exports.fetch_index as pending deprecation for removal in 24.9. Use conda.core.index.fetch_index instead. (#13194)

Other

	Constrain minimum conda-build version to >=3.27. (#13177)

Contributors

	@conda-bot

	@dholth

	@jaimergp

	@jezdez

	@kenodegard

	@timhoffm

	@pre-commit-ci[bot]

23.9.0 (2023-09-27)

Special announcement

This is an announcement about an important and positive future change in conda’s functionality:

We will change the default solver of conda to conda-libmamba-solver [https://conda.github.io/conda-libmamba-solver/] in a special 23.10.0 release in the near future!

You can already benefit from it today by configuring your conda installation to use it [https://conda.github.io/conda-libmamba-solver/getting-started/#usage] (e.g. by running conda config --set solver libmamba).

The current “classic” solver is based on pycosat [https://github.com/conda/pycosat]/Picosat [http://fmv.jku.at/picosat/] and will remain part of conda for the foreseeable future, a fallback is possible and available (see below).

Plan to change the default solver

Here is our updated plan to change the default solver, to better follow CEP 8 [https://github.com/conda-incubator/ceps/blob/main/cep-8.md] and reduce the potential impact on conda users:

	The upcoming, special 23.10.0 release will be dedicated to the switch of the default solver to libmamba.

	Users will be able to opt out of the libmamba solver and use the classic solver instead, by using one of these options:

	the --solver=classic command line option,

	the CONDA_SOLVER=classic environment variable or

	running conda config --set solver classic.

	All development of conda-libmamba-solver plugin happens in the conda-libmamba-solver repo [https://github.com/conda/conda-libmamba-solver], including issue tracking.

	The documentation of the conda-libmamba-solver plugin can be found on conda.github.io/conda-libmamba-solver [https://conda.github.io/conda-libmamba-solver/].

For more information about the conda-libmamba-solver rollout plan, please also see our blog post from earlier this year [https://conda.org/blog/2023-07-05-conda-libmamba-solver-rollout].

Context

A “solver” is the core component of most package managers; it calculates which dependencies (and which version of those dependencies) to install when a user requests to install a package from a package repository. To address growth-related challenges within the conda ecosystem, the conda maintainers, alongside partners Anaconda, Quansight and QuantStack, introduced a new conda dependency solver based on the Mamba project [https://mamba.readthedocs.io] in December 2022.

Since July 2023, that conda-libmamba-solver [https://github.com/conda/conda-libmamba-solver] plugin has been included in and automatically installed with all major conda ecosystem installers (miniforge, miniconda, mambaforge and Anaconda Distribution), with the default solver configuration unchanged.

Enhancements

	Improve speed of fish shell initialization. (#12811)

	Directly suppress use of binstar (conda) token when fetching trust metadata. (#12889)

	Add a new “auth handler” plugin hook for conda. (#12911)

	Lock index cache metadata by default. Added --no-lock option in case of
problems, should not be necessary. Older --experimental=lock no longer has
an effect. (#12920)

	Add context.register_envs option to control whether to register environments
in ~/.conda/environments.txt when they are created. Defaults to true. (#12924)

	Inject a new detailed output verbosity level (i.e., the old debug level -vv is now -vvv). (#12985, #12977, #12420, #13036)

	Add support for truststore to the ssl_verify config option, enabling conda to use the operating system certificate store (requires Python 3.10 or later). (#13075 and #13149)

	Add emscripten-wasm32 and wasi-wasm32 platforms to known platforms. (#13095)

	Adds the py.typed marker file to the conda package for compliance with PEP-561. (#13107)

	Import boto3 only when S3 channels are used, saving startup time. (#12914)

Bug fixes

	When using pip dependencies with conda env create, check the directory permissions before writing to disk. (#11610)

	Hide InsecureRequestWarning for JLAP when CONDA_SSL_VERIFY=false, matching
non-JLAP behavior. (#12731)

	Disallow ability to create a conda environment with a colon in the prefix. (#13044)

	Fix AttributeError logging response with nonexistent request when using JLAP
with file:/// URIs. (#12966)

	Do not show progress bars in non-interactive runs for cleaner logs. (#12982)

	Fix S3 bucket name. (#12989)

	Default --json and --debug to NULL so as to not override CONDA_JSON and CONDA_DEBUG environment variables. (#12987)

	XonshActivator now uses source-bash in non-interactive mode to avoid
side-effects from interactively loaded RC files. (#13012)

	Fix conda remove --all --json output. (#13019)

	Update test data to stop triggering security scanners’ false-positives. (#13034)

	Fix performance regression of basic commands (e.g., conda info) on WSL. (#13035)

	Configure conda to ignore “Retry-After” header to avoid the scenarios when this value is very large and causes conda to hang indefinitely. (#13050)

	Treat JSONDecodeError on repodata.info.json as a warning, equivalent to a
missing repodata.info.json. (#13056)

	Fix sorting error for conda config --show-sources --json. (#13076)

	Catch OSError in find_commands to account for incorrect PATH entries on
Windows. (#13125)

	Catch a NotWritableError when trying to find the first writable package cache dir. (#9609)

	conda env update --prune uses only the specs coming from environment.yml file and ignores the history specs. (#9614)

Deprecations

	Removed conda.another_unicode(). (#12948)

	Removed conda._vendor.toolz. (#12948, #13141)

	Removed conda._vendor.tqdm. (#12948)

	Removed conda.auxlib.decorators.memoized decorator. (#12948)

	Removed conda.base.context.Context.experimental_solver. (#12948)

	Removed conda.base.context.Context.conda_private. (#12948)

	Removed conda.base.context.Context.cuda_version. (#12948)

	Removed conda.base.context.get_prefix(). (#12948)

	Removed conda.cli.common.ensure_name_or_prefix(). (#12948)

	Removed --experimental-solver command line option. (#12948)

	Removed conda.common.cuda module. (#12948)

	Removed conda.common.path.explode_directories(already_split). (#12948)

	Removed conda.common.url.escape_channel_url(). (#12948)

	Removed conda.core.index.check_whitelist(). (#12948)

	Removed conda.core.solve._get_solver_class(). (#12948)

	Removed conda.core.subdir_data.read_mod_and_etag(). (#12948)

	Removed conda.gateways.repodata.RepodataState.load(). (#12948)

	Removed conda.gateways.repodata.RepodataState.save(). (#12948)

	Removed conda.lock module. (#12948)

	Removed conda_env.cli.common.stdout_json(). (#12948)

	Removed conda_env.cli.common.get_prefix(). (#12948)

	Removed conda_env.cli.common.find_prefix_name(). (#12948)

	Remove import of deprecated cgi module by deprecating ftp STOR support.
(#13013)

	Require boto3 for S3 support and drop support for the older boto as it
doesn’t support our minimum required version of Python. (#13112)

	Reduce startup delay from deprecations module by using sys._getframe()
instead of inspect.stack(). (#12919)

Other

	Use Ruff linter in pre-commit configuration (#12279)

	Remove unused cache_path arguments from RepoInterface/JlapRepoInterface;
replaced by cache object. (#12927)

Contributors

	@beenje

	@beeankha

	@chbrandt

	@chenghlee

	@conda-bot

	@dbast

	@dholth

	@duncanmmacleod

	@gforsyth

	@eltociear

	@jaimergp

	@jezdez

	@jmcarpenter2 made their first contribution in https://github.com/conda/conda/pull/13034

	@kenodegard

	@ForgottenProgramme

	@Mon-ius made their first contribution in https://github.com/conda/conda/pull/12811

	@otaithleigh made their first contribution in https://github.com/conda/conda/pull/13035

	@psteyer made their first contribution in https://github.com/conda/conda/pull/11610

	@tarcisioe made their first contribution in https://github.com/conda/conda/pull/9614

	@travishathaway

	@wolfv made their first contribution in https://github.com/conda/conda/pull/13095

	@zeehio made their first contribution in https://github.com/conda/conda/pull/13075

	@pre-commit-ci[bot]

23.7.4 (2023-09-12)

Enhancements

	Use os.scandir() to find conda subcommands without stat() overhead. (#13033, #13067)

Bug fixes

	Fix S3 bucket name in test suite. (#12989)

	Fix performance regression of basic commands (e.g., conda info) on WSL. (#13035)

	Catch PermissionError raised by conda.cli.find_commands.find_commands when user’s $PATH contains restricted paths. (#13062, #13089)

	Fix sorting error for conda config --show-sources --json. (#13076)

Contributors

	@beeankha

	@dholth

	@kenodegard

	@otaithleigh made their first contribution in https://github.com/conda/conda/pull/13035

23.7.3 (2023-08-21)

Bug fixes

	Fix regression for supporting conda executable plugins installed into non-base environments. (#13006)

Contributors

	@kenodegard

23.7.2 (2023-07-27)

Bug fixes

	Fix regression in parsing --json and --debug flags for executable plugins. (#12935, #12936)

Contributors

	@kenodegard

23.7.1 (2023-07-26)

Bug fixes

	Patch parsed args with pre_args to correctly parse --json and --debug arguments. (#12928, #12929)

Contributors

	@jezdez

	@kenodegard

23.7.0 (2023-07-25)

Enhancements

	Add conda.deprecations.DeprecationHandler.action helper to deprecate argparse.Actions. (#12493)

	Add support for the FreeBSD operating system and register freebsd-64 as a known subdirectory for FreeBSD on x86-64. (#12647)

	Do not mock $CONDA_PREFIX when --name or --prefix is provided. (#12696)

	Add support for sha256 filters in the MatchSpec syntax (e.g. *[sha256=f453db4ffe2271ec492a2913af4e61d4a6c118201f07de757df0eff769b65d2e]). (#12654 via #12707)

	Add a new health check to conda doctor detecting altered packages in an environment by comparing expected and computed sha256 checksums. (#12757)

	Add new pre_commands and post_commands plugin hooks allowing plugins to run code before and after conda subcommands. (#12712, #12758, #12864)

	Stop using distutils directly in favor of the vendored version in setuptools 60 and later or standard library equivalents. (#11136)

	Add a CITATION.cff file to the root of the repository to make it easier for users to cite conda. (#12781)

	Add optional CondaSubcommand.configure_parser allowing third-party plugins to hook into conda’s argument parser. (#12814)

	Only display third-party subcommands in conda --help and not for every other subcommand. (#12814, #12740)

	Add a new config option, no_plugins, a --no-plugins command line flag, and a CONDA_NO_PLUGINS environment variable that disables external plugins for built-in conda commands. (#12748)

	Register plugins using their canonical/fully-qualified name instead of the easily spoofable entry point name. (#12869)

	De-duplicate plugin and legacy subcommands in conda --help. (#12893)

	Implement a 2-phase parser to better handle plugin disabling (via --no-plugins). (#12910)

	Refactor subcommand parsing to use a greedy parser since argparse.REMAINDER has known issues [https://github.com/python/cpython/issues/61252]. (#12910)

Bug fixes

	Use requests.exceptions.JSONDecodeError for ensuring compatibility with different json implementations used by requests. This fixes a bug that caused only the first of multiple given source URLs to be tried. This also raises the minimum required requests version to 2.27.0. (#12683)

	Don’t export __osx virtual package when CONDA_OVERRIDE_OSX="". (#12715)

	Fix erroneous conda deactivate behavior of unsetting preexisting environment variables that are identical to those set during conda activate. (#12769)

	Correct third-party subcommands to receive remaining arguments instead of a blanket sys.argv[2:] which broke conda_cli testing. (#12814, #12910)

Deprecations

	Mark conda.base.context.context.root_dir as pending deprecation. Use conda.base.context.context.root_prefix instead. (#12701)

	Mark conda.plugins.subcommands.doctor.cli.get_prefix as pending deprecation. Use conda.base.context.context.target_prefix instead. (#12725)

	Mark conda.models.leased_path_entry.LeasedPathEntry as pending deprecation. (#12735)

	Mark conda.models.enums.LeasedPathType as pending deprecation. (#12735)

	Mark conda.common.temporary_content_in_file as pending deprecation. Use tempfile instead. (#12795)

	Mark conda.cli.python_api as pending deprecation. Use conda.testing.conda_cli fixture instead. (#12796)

Docs

	Document how to use the new pre_commands and post_commands plugin hooks. (#12712, #12758)

	Add docstrings to all public modules. (#12792)

	Auto-generate API docs using sphinx-autoapi. (#12798)

	Convert all manual redirects into config using sphinx-reredirects. (#12798)

	Revise the plugins index page to make it easier to understand how to create a conda plugin. (#12802)

	Add missing conda env CLI docs. (#12841)

Other

	Update tests/cli/test_main_rename.py to use latest fixtures. (#12517)

	Update tests/test_activate.py to test the new behavior. (#12769)

	Re-enable all conda_env tests and remove irrelevant tests. (#12813)

	Convert all unittest-style tests to pytest-style. (#12819)

	Convert tests/test-recipes into local noarch packages instead of relying on conda-test channel and local builds. (#12879)

Contributors

	@beeankha

	@conda-bot

	@dariocurr

	@jaimergp

	@jezdez

	@johanneskoester made their first contribution in https://github.com/conda/conda/pull/12683

	@jjhelmus

	@kalawac made their first contribution in https://github.com/conda/conda/pull/12738

	@kenodegard

	@schackartk made their first contribution in https://github.com/conda/conda/pull/12781

	@lesteve made their first contribution in https://github.com/conda/conda/pull/12715

	@ForgottenProgramme

	@marcoesters made their first contribution in https://github.com/conda/conda/pull/12863

	@mpotane made their first contribution in https://github.com/conda/conda/pull/11740

	@mattkram made their first contribution in https://github.com/conda/conda/pull/12730

	@morremeyer made their first contribution in https://github.com/conda/conda/pull/12871

	@mcg1969

	@travishathaway

	@pre-commit-ci[bot]

23.5.2 (2023-07-13)

Bug fixes

	Correct native_path_to_unix failure to handle no paths (e.g., an empty string or an empty iterable). (#12880)

Contributors

	@kenodegard

23.5.1 (2023-07-12)

Bug fixes

	Add (back) the cygpath fallback logic since cygpath is not always available on Windows. (#12873)

Contributors

	@kenodegard

23.5.0 (2023-05-17)

Enhancements

	Add conda doctor subcommand plugin. (#474)

	Add Python 3.11 support. (#12256)

	Add conda list --reverse to return a reversed list of installed packages. (#11954)

	Switch from setup.py to pyproject.toml and use Hatchling [https://pypi.org/project/hatchling/] for our build system. (#12509)

	Optimize which Python modules get imported during conda activate calls to make it faster. (#12550)

	Add conda_cli fixture to replace conda.testing.helpers.run_inprocess_conda_command and conda.testing.integration.run_command. (#12592)

	Add tmp_env fixture to replace conda.testing.integration.make_temp_env. (#12592)

	Add path_factory fixture to replace custom prefix logic like conda.testing.integration._get_temp_prefix and conda.testing.integration.make_temp_prefix. (#12592)

	Refactor the way that the Activator classes are defined in conda/activate.py. (#12627)

	Warn about misconfiguration when signature verification is enabled. (#12639)

Bug fixes

	conda clean no longer fails if we failed to get the file stats. (#12536)

	Provide fallback version if conda.deprecations.DeprecationHandler receives a bad version. (#12541)

	Ensure the default value for defaults includes msys2 when context.subdir is win-* on non-Windows platforms. (#12555)

	Avoid TypeError when non-string types are written to the index cache metadata. (#12562)

	conda.core.package_cache_data.UrlsData.get_url no longer fails when package_path has .conda extension. (#12516)

	Stop pre-converting paths to Unix style on Windows in conda.sh, so that they are prefix replaceable upon installation, which got broken by #12509. It also relies on cygpath at runtime, which all msys2/cygwin bash versions on Windows should have available. (#12627)

Deprecations

	Mark conda_env.pip_util.get_pip_version as pending deprecation. (#12492)

	Mark conda_env.pip_util.PipPackage as pending deprecation. (#12492)

	Mark conda_env.pip_util.installed as pending deprecation. (#12492)

	Mark conda_env.pip_util._canonicalize_name as pending deprecation. (#12492)

	Mark conda_env.pip_util.add_pip_installed as pending deprecation. (#12492)

	Mark conda_env.env.load_from_directory as pending deprecation. (#12492)

	Mark python -m conda_env.cli.main as pending deprecation. Use conda env instead. (#12492)

	Mark python -m conda_env as pending deprecation. Use conda env instead. (#12492)

	Mark conda.auxlib.packaging for deprecation in 24.3.0. (#12509)

	Rename index cache metadata file .state.json to .info.json to track draft CEP. (#12669)

	Mark conda.testing.integration.get_conda_list_tuple as pending deprecation. Use conda.core.prefix_data.PrefixData().get() instead. (#12676)

	Mark conda.testing.encode_for_env_var as pending deprecation. (#12677)

	Mark conda.testing.integration.temp_chdir as pending deprecation. Use monkeypatch.chdir instead. (#12678)

Docs

	Change the README example from IPython Notebook and NumPy to PyTorch. (#12579)

	Discuss options available to properly configure mirrored channels. (#12583, #12641)

	Add flake8-docstrings to pre-commit. (#12620)

Other

	Update retry language in flexible solve and repodata logs to be less ominous. (#12612)

	Improve repodata / subdir_data programming interface (#12521). Index cache metadata has changed to .info.json to better align with the draft CEP [https://github.com/conda-incubator/ceps/pull/48]. Improve cache locking when using jlap. Improve jlap logging. (#12572)

	Format with black and replaced pre-commit’s darker hook with black. (#12554)

	Format with isort and add pre-commit isort hook. (#12554)

	Add functional tests around conda’s content trust code. (#11805)

	Enable flake8 checks that are now handled by black. (#12620)

Contributors

	@beeankha

	@chbrandt made their first contribution in https://github.com/conda/conda/pull/12419

	@chenghlee

	@conda-bot

	@dholth

	@THEdavehogue made their first contribution in https://github.com/conda/conda/pull/12612

	@HeavenEvolved made their first contribution in https://github.com/conda/conda/pull/12496

	@eltociear

	@jaimergp

	@jezdez

	@johnnynunez made their first contribution in https://github.com/conda/conda/pull/12256

	@kenodegard

	@ForgottenProgramme

	@pkmooreanaconda

	@tl-hbk made their first contribution in https://github.com/conda/conda/pull/12604

	@vic-ma made their first contribution in https://github.com/conda/conda/pull/12579

	@pre-commit-ci[bot]

	@sausagenoods made their first contribution in https://github.com/conda/conda/pull/12631

23.3.1 (2023-03-28)

Enhancements

	Fix and re-enable binstar tests. Replace custom property caching with functools.cached_property. (#12495)

Bug fixes

	Restore default argument for SubdirData method used by conda-index. (#12513)

	Include conda.gateways.repodata.jlap submodule in package. (#12545)

Other

	Add linux-s390x to multi-arch ci/dev container. (#12498)

	Expose a MINIO_RELEASE environment variable to provide a way to pin minio versions in CI setup scripts. (#12525)

	Add jsonpatch dependency to support --experimental=jlap feature. (#12528)

Contributors

	@conda-bot

	@dbast

	@dholth

	@jaimergp

	@kenodegard

	@ForgottenProgramme

23.3.0 (2023-03-14)

Enhancements

	Allow the use of environment variables for channel urls in environment.yaml. (#10018)

	Improved error message for conda env create if the environment file is missing. (#11883)

	Stop using toolz.dicttoolz.merge and toolz.dicttoolz.merge_with. (#12039)

	Add support for incremental repodata.json updates with --experimental=jlap on the command line or experimental: ["jlap"] in .condarc (#12090). Note: switching between “use jlap” and “don’t use jlap” invalidates the cache.

	Added a new conda.deprecations module for easier & standardized deprecation. Includes decorators to mark functions, modules, classes, and arguments for deprecation and functions to mark modules, constants, and topics for deprecation. (#12125)

	Adds a new channel_settings configuration parameter that will be used to override arbitrary settings on per-channel basis. (#12239)

	Improve speed of repodata.json parsing by deferring creation of individual PackageRecord objects. (#8500)

	Refactor subcommand argument parsing to make it easier to understand. This calls the plugin before invoking the default argument parsing. (#12285)

	Handle I/O errors raised while retrieving channel notices. (#12312)

	Add support for the 64-bit RISC-V architecture on Linux. (#12319)

	Update vendored version of py-cpuinfo to 0.9.0. (#12319)

	Improved code coverage. (#12346, #12457, #12469)

	Add a note about use_only_tar_bz2 being enabled on PackagesNotFoundError exceptions. (#12353)

	Added to conda CLI help that conda remove -n <myenv> --all can be used to delete environments. (#12378)

	Handle Python import errors gracefully when loading conda plugins from entrypoints. (#12460)

Bug fixes

	Fixed errors when renaming without an active environment. (#11915)

	Prevent double solve attempt if PackagesNotFoundError is raised. (#12201)

	Virtual packages follow context.subdir instead of platform.system() to enable cross-platform installations. (#12219)

	Don’t export __glibc virtual package when CONDA_OVERRIDE_GLIBC="". (#12267)

	Fix arg_parse pass-through for --version and --help in conda.xsh. (#12344)

	Filter out None path values from pwd.getpwall() on Unix systems, for users without home directories, when running as root. (#12063)

	Catch ChunkedEncodingError exceptions to prevent network error tracebacks hitting the output. (#12196 via #12487)

	Fix race conditions in mkdir_p_sudo_safe. (#12490)

Deprecations

	Drop toolz.itertoolz.unique in favor of custom conda.common.iterators.unique implementation. (#12252)

	Stop using OrderedDict/odict since dict preserves insert order since Python 3.7. (#12254)

	Mark conda._vendor.boltons for deprecation in 23.9.0. (#12272, #12482)

	Mark conda_exe in context.py and a topic in print_package_info cli/main_info.py for official deprecation. (#12398)

	Remove unused chain, methodcaller, mkdtemp, StringIO imports in conda.common.compat; apply other fixes from ruff --fix . in the test suite. (#12294)

	Remove unused optimization for searching packages based on *[track_features=<feature name>]. (#12314)

	Remove Notebook spec support from conda env; this was deprecated already and scheduled to be remove in version 4.5. (#12307)

	Mark conda_exe in context.py and a topic in print_package_info cli/main_info.py for official deprecation. (#12276)

	Marking conda.utils.hashsum_file as pending deprecation. Use conda.gateways.disk.read.compute_sum instead. (#12414)

	Marking conda.utils.md5_file as pending deprecation. Use conda.gateways.disk.read.compute_sum(path, "md5") instead. (#12414)

	Marking conda.gateways.disk.read.compute_md5sum as pending deprecation. Use conda.gateways.disk.read.compute_sum(path, "md5") instead. (#12414)

	Marking conda.gateways.disk.read.compute_sha256sum as pending deprecation. Use conda.gateways.disk.read.compute_sum(path, "sha256") instead. (#12414)

	Drop Python 3.7 support. (#12436)

Docs

	Added docs for conda.deprecations. (#12452)

	Updated some instances of “Anaconda Cloud” to be “Anaconda.org [http://Anaconda.org]”. (#12238)

	Added documentation on the specifications for conda search and conda install. (#12304)

	Mark conda.utils.safe_open for deprecation. Use builtin open instead. (#12415)

Other

	Update <cache key>.json.state repodata.json cache format; check mtime against cached repodata.json. (#12090)

	Skip redundant tar --no-same-owner when running as root on Linux, since newer conda-package-handling avoids setting ownership from the archive. (#12231)

	Add additional extensions to conda.common.path for future use. (#12261)

	Pass --cov in test runner scripts but not in setup.cfg defaults, for easier debugging. (#12268)

	Constrain conda-build to at least >=3.18.3, released 2019-06-20. (#12309)

	Improve start.bat Windows development script. (#12311)

	Provide conda-forge-based Docker images and fix the bundled minio binary. (#12335)

	Add support for conda-forge-based CI runtimes. On Linux (all architectures), unit & integration tests will use Python 3.10. On Windows, Python 3.8. On macOS, only the unit tests are run with conda-forge (instead of defaults!), using Python 3.9. (#12350, #12447 via #12448)

	Fix testing data issue where the subdir entry in some files was mismatched. (#12389)

	Initialize conda after installing test requirements during CI. (#12446)

	Speedup pre-commit by a factor of 15 by removing ignored hooks (pylint/bandit). This locally reduces the pre-commit runtime from ~43sec to 2.9sec and thus makes it possible to run pre-commit in a loop during development to constantly provide feedback and style the code. (#12466)

Contributors

	@AdrianFreundQC made their first contribution in https://github.com/conda/conda/pull/11883

	@sanzoghenzo made their first contribution in https://github.com/conda/conda/pull/12074

	@beeankha

	@conda-bot

	@dbast

	@dholth

	@FelisNivalis made their first contribution in https://github.com/conda/conda/pull/11915

	@gforsyth made their first contribution in https://github.com/conda/conda/pull/12344

	@eltociear made their first contribution in https://github.com/conda/conda/pull/12377

	@jaimergp

	@jezdez

	@jjhelmus

	@kannanjayachandran made their first contribution in https://github.com/conda/conda/pull/12363

	@kathatherine

	@kenodegard

	@ForgottenProgramme

	@ryanskeith made their first contribution in https://github.com/conda/conda/pull/12439

	@31Sanskrati made their first contribution in https://github.com/conda/conda/pull/12371

	@travishathaway

	@pre-commit-ci[bot]

23.1.0 (2023-01-17)

Bug fixes

	Detect CUDA driver version in subprocess. (#11667)

	Fixes the behavior of the --no-user flag in conda init so that a user’s .bashrc, etc. remains unaltered, as expected. (#11949)

	Fix several more user facing MatchSpec crashes that were identified by fuzzing efforts. (#12099)

	Lock sys.stdout to avoid corrupted --json multithreaded download progress. (#12231)

Docs

	Optional Bash completion support has been removed starting in v4.4.0, and not just deprecated. (#11171)

	Documented optional channel::package syntax for specifying dependencies in environment.yml files. (#11890)

Other

	Refactor repodata.json fetching; update on-disk cache format. Based on work by @FFY00. (#11600)

	Environment variable overwriting WARNING is printed only if the env vars are different from those specified in the OS. (#12128)

	Added conda-libmamba-solver run constraint. (#12156)

	Updated ruamel.yaml version. (#12156)

	Added tqdm dependency. (#12191)

	Use itertools.chain.from_iterable instead of equivalent tlz.concat. (#12165)

	Use toolz.unique instead of vendored copy. (#12165)

	Use itertools.islice instead of toolz.take. (#12165)

	Update CI test workflow to only run test suite when code changes occur. (#12180)

	Added Python 3.10 canary builds. (#12184)

Contributors

	@beeankha

	@dholth

	@dariocurr made their first contribution in https://github.com/conda/conda/pull/12128

	@FFY00 made their first contribution in https://github.com/conda/conda/pull/11600

	@jezdez

	@jay-tau made their first contribution in https://github.com/conda/conda/pull/11738

	@kenodegard

	@pkmooreanaconda

	@sven6002 made their first contribution in https://github.com/conda/conda/pull/12162

	@ReveStobinson made their first contribution in https://github.com/conda/conda/pull/12213

	@travishathaway

	@XuehaiPan made their first contribution in https://github.com/conda/conda/pull/11667

	@xylar made their first contribution in https://github.com/conda/conda/pull/11949

	@pre-commit-ci[bot]

22.11.1 (2022-12-06)

Bug fixes

	Restore default virtual package specs as in 22.9.0 (#12148)

	re-add __unix/__win packages

	restore __archspec version/build string composition

Other

	Skip test suite for non-code changes. (#12141)

Contributors

	@LtDan33

	@jezdez

	@kenodegard

	@mbargull

	@travishathaway

22.11.0 (2022-11-23)

Enhancements

	Add LD_PRELOAD to env variable list. (#10665)

	Improve CLI warning about updating conda. (#11300)

	Conda’s initialize block in the user’s profiles will check whether the conda executable exists before calling the conda hook. (#11374)

	Switch to tqdm as a real dependency. (#12005)

	Add a new plugin mechanism. (#11435)

	Add an informative message if explicit install fails due to requested packages not being in the cache. (#11591)

	Download and extract packages in parallel. Greatly speeds up package downloads when latency is high. Controlled by the new fetch_threads config parameter, defaulting to 5 parallel downloads. Thanks @shuges-uk for reporting. (#11841)

	Add a new plugin hook for virtual packages and convert existing code for virtual packages (from index.py [http://index.py]) into plugins. (#11854)

	Require ruamel.yaml. (#11868, #11837)

	Stop using toolz.accumulate. (#12020)

	Stop using toolz.groupby. (#11913)

	Remove vendored six package. (#11979)

	Add the ability to extend the solver backends with the conda_solvers plugin hook. (#11993)

	Stop using toolz.functoolz.excepts. (#12016)

	Stop using toolz.itertoolz.concatv. (#12020)

	Also try UTF16 and UTF32 encodings when replacing the prefix. (#9946)

Bug fixes

	conda env update would ask for user input and hang when working with pip installs of git repos and the repo was previously checked out. Tell pip not to ask for user input for that case. (#11818)

	Fix for conda update and conda install issues related to channel notices. (#11852)

	Signature verification printed None when disabled, changes default metadata_signature_status to an empty string instead. (#11944)

	Fix importlib warnings when importing conda.cli.python_api on python=3.10. (#11975)

	Several user facing MatchSpec crashes were identified by fuzzing efforts. (#11999)

	Apply minimal fixes to deal with these (and similar) crashes. (#12014)

	Prevent conda from using /bin/sh + exec trick for its own entry point, which drops $PS1 on some shells (#11885, #11893 via #12043).

	Handle CTRL+C during package downloading more gracefully. (#12056)

	Prefer the outer name when a MatchSpec specifies a package’s name twice package-name[name=package-name] (#12062)

Deprecations

	Add a pending deprecation warning for when importing tqdm from conda._vendor. (#12005)

	Drop ruamel_yaml and ruamel_yaml_conda in favor of ruamel.yaml. (#11837)

	context.experimental_solver is now marked for pending deprecation. It is replaced by context.solver. The same applies to the --experimental-solver flag, the CONDA_EXPERIMENTAL_SOLVER environment variable, and the ExperimentalSolverChoice enum, which will be replaced by --solver, EXPERIMENTAL_SOLVER and SolverChoice, respectively. (#11889)

	Mark context.conda_private as pending deprecation. (#12101)

Docs

	Add corresponding documentation for the new plugins mechanism. (#11435)

	Update conda cheatsheet for the 4.14.0 release. The cheatsheet now includes an example for conda rename. (#11768)

	Document conda-build package format v2, also known as the .conda-format. (#11881)

	Remove allow_other_channels config option from documentation, as the option no longer exists. (#11866)

	Fix bad URL to “Introduction to conda for Data Scientists” course in conda docs. (#9782)

Other

	Add a comment to the code that explains why .bashrc is modified on Linux and .bash_profile is modified on Windows/macOS when executing conda init. (#11849)

	Add --mach and --arch options to dev/start. (#11851)

	Remove encoding pragma in file headers, as it’s not needed in Python 3 anymore. (#11880)

	Refactor conda init SHELLS as argparse choices. (#11897)

	Drop pragma fixes from pre-commit checks. (#11909)

	Add pyupgrade to pre-commit checks. This change affects many files. Existing pull requests may need to be updated, rebased, or merged to address conflicts. (#11909)

	Add aarch64 and ppc64le as additional CI platforms for smoke testing. (#11911)

	Serve package files needed for testing using local server. (#12024)

	Update canary builds to guarantee builds for the commits that trigger workflow. (#12040)

Contributors

	@arq0017 made their first contribution in https://github.com/conda/conda/pull/11810

	@beeankha

	@conda-bot

	@dbast

	@dholth

	@erykoff

	@consideRatio made their first contribution in https://github.com/conda/conda/pull/12028

	@jaimergp

	@jezdez

	@kathatherine

	@kenodegard

	@ForgottenProgramme made their first contribution in https://github.com/conda/conda/pull/11926

	@hmaarrfk made their first contribution in https://github.com/conda/conda/pull/9946

	@NikhilRaverkar made their first contribution in https://github.com/conda/conda/pull/11842

	@pavelzw made their first contribution in https://github.com/conda/conda/pull/11849

	@pkmooreanaconda made their first contribution in https://github.com/conda/conda/pull/12014

	@fragmede made their first contribution in https://github.com/conda/conda/pull/11818

	@SatyamVyas04 made their first contribution in https://github.com/conda/conda/pull/11870

	@timhoffm

	@travishathaway

	@dependabot made their first contribution in https://github.com/conda/conda/pull/11965

	@pre-commit-ci[bot]

	@wulmer

22.9.0 (2022-09-14)

Special announcement

If you have been following the conda project previously, you will notice a change in our version number for this release. We have officially switched to the CalVer [https://calver.org/] versioning system as agreed upon in CEP 8 [https://github.com/conda-incubator/ceps/blob/main/cep-8.md] (Conda Enhancement Proposal).

Please read that CEP for more information, but here is a quick synopsis. We hope that this versioning system and our release schedule will help make our releases more predictable and transparent to the community going forward. We are now committed to making at least one release every two months, but keep in mind that we can (and most likely will) be making minor version releases within this window.

Enhancements

	Replace vendored toolz with toolz dependency. (#11589, #11700)

	Update bundled Python launchers for Windows (conda/shell/cli-*.exe) to match the ones found in conda-build. (#11676)

	Add win-arm64 as a known platform (subdir). (#11778)

Bug fixes

	Remove extra prefix injection related to the shell interface breaking conda run. (#11666)

	Better support for shebang instructions in prefixes with spaces. (#11676)

	Fix noarch entry points in Unicode-containing prefixes on Windows. (#11694)

	Ensure that exceptions that are raised show up properly instead of resulting in a blank [y/N] prompt. (#11746)

Deprecations

	Mark conda._vendor.toolz as pending deprecation. (#11704)

	Removes vendored version of urllib3. (#11705)

Docs

	Added conda capitalization standards to CONTRIBUTING file. (#11712)

Other

	Add arm64 support to development script . ./dev/start. (#11752)

	Update canary-release version to resolve canary build issue. (#11761)

	Renamed canary recipe from conda.recipe to recipe. (#11774)

Contributors

	@beeankha

	@chenghlee

	@conda-bot

	@dholth

	@isuruf

	@jaimergp

	@jezdez

	@razzlestorm made their first contribution in https://github.com/conda/conda/pull/11736

	@jakirkham

	@kathatherine

	@kenodegard

	@scdub made their first contribution in https://github.com/conda/conda/pull/11816

	@travishathaway

	@pre-commit-ci[bot]

4.14.0 (2022-08-02)

Enhancements

	Only star activated environment in conda info --envs/conda env list. (#10764)

	Adds new sub-command, conda notices, for retrieving channel notices. (#11462)

	Notices will be intermittently shown after running, install, create, update, env create or env update. New notices will only be shown once. (#11462)

	Implementation of a new rename subcommand. (#11496)

	Split SSLError from HTTPError to help resolve HTTP 000 errors. (#11564)

	Include the invalid package name in the error message. (#11601)

	Bump requests version (>=2.20.1) and drop monkeypatching. (#11643)

	Rename whitelist_channels to allowlist_channels. (#11647)

	Always mention channel when notifying about a new conda update. (#11671)

Bug fixes

	Correct a misleading conda --help error message. (#11625)

	Fix support for CUDA version detection on WSL2. (#11626)

	Fixed the bug when providing empty environment.yml to conda env create command. (#11556, #11630)

	Fix MD5 hash generation for FIPS-enabled systems. (#11658)

	Fixed TypeError encountered when logging is set to DEBUG and the package’s JSON cannot be read. (#11679)

Deprecations

	conda.cli.common.ensure_name_or_prefix is pending deprecation in a future release. (#11490)

	Mark conda.lock as pending deprecation. (#11571)

	Remove lgtm.com [http://lgtm.com] config. (#11572)

	Remove Python 2.7 conda.common.url.is_ipv6_address_win_py27 implementation. (#11573)

	Remove redundant conda.resolve.dashlist definition. (#11578)

	Mark conda_env.cli.common.get_prefix and conda.base.context.get_prefix as pending deprecation in favor of conda.base.context.determine_target_prefix. (#11594)

	Mark conda_env.cli.common.stdout_json as pending deprecation in favor of conda.cli.common.stdout_json. (#11595)

	Mark conda_env.cli.common.find_prefix_name as pending deprecation. (#11596)

	Mark conda.auxlib.decorators.memoize as pending deprecation in favor of functools.lru_cache. (#11597)

	Mark conda.exports.memoized as pending deprecation in favor of functools.lru_cache. (#11597)

	Mark conda.exports.handle_proxy_407 as pending deprecation. (#11597)

	Refactor conda.activate._Activator.get_export_unset_vars to use **kwargs instead of OrderedDict. (#11649)

	Mark conda.another_to_unicode as pending deprecation. (#11678)

Docs

	Corresponding documentation of notices subcommand. (#11462)

	Corresponding documentation of rename subcommand. (#11496)

	Correct docs URL to https://docs.conda.io. (#11508)

	Updated the list of environment variables that can now expand in the Use Condarc [https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/use-condarc.html#expansion-of-environment-variables] section. (#11514)

	Include notice that the “All Users” installation option in the Anaconda Installer is no longer available due to security concerns [https://github.com/ContinuumIO/anaconda-distribution-installer/commit/301e84f84b63d654045d4d7871b726de39fc9bb5]. (#11528)

	Update conda-zsh-completeion link [https://github.com/conda-incubator/conda-zsh-completion]. (#11541)

	Missing pip as a dependency when including a pip-installed dependency. (#11543)

	Convert README.rst to README.md. (#11544)

	Updated docs and CLI help to include information on conda init arguments. (#11574)

	Added docs for writing integration tests. (#11604)

	Updated conda env create CLI documentation description and examples to be more helpful. (#11611)

Other

	Display tests summary in CI. (#11558)

	Update Dockerfile and ci-images.yml flow to build multi arch images. (#11560)

	Rename master branch to main. (#11570)

Contributors

	@drewja made their first contribution in #11614

	@beeankha

	@topherocity made their first contribution in #11658

	@conda-bot

	@dandv made their first contribution in #11636

	@dbast

	@dholth

	@deepyaman made their first contribution in #11598

	@dogukanteber made their first contribution in #11556/#11630

	@jaimergp

	@kathatherine

	@kenodegard

	@nps1ngh made their first contribution in #10764

	@pseudoyim made their first contribution in #11528

	@SamStudio8 made their first contribution in #11679

	@SamuelWN made their first contribution in #11543

	@spencermathews made their first contribution in #11508

	@timgates42

	@timhoffm made their first contribution in #11601

	@travishathaway

	@esc

	@pre-commit-ci[bot]

4.13.0 (2022-05-19)

Enhancements

	Introducing conda clean --logfiles to remove logfiles generated by conda-libmamba-solver. (#11387)

	Add the solver name and version to the user-agent. (#11415, #11455)

	Attempt parsing HTTP errors as a JSON and extract error details. If present, prefer these details instead of those hard-coded. (#11440)

Bug fixes

	Fix inconsistencies with conda clean --dryrun (#11385)

	Standardize tarball & package finding in conda clean (#11386, #11391)

	Fix escape_channel_url logic on Windows (#11416)

	Use ‘Accept’ header, not ‘Content-Type’ in GET header (#11446)

	Allow extended user-agent collection to fail but log the exception (#11455)

Deprecations

	Removing deprecated conda.cli.activate. Originally deprecated in conda 4.6.0 in May 2018. (#11309)

	Removing deprecated conda.compat. Originally deprecated in conda 4.6.0 in May 2018. (#11322)

	Removing deprecated conda.install. Originally deprecated in conda 4.6.0 in May 2018. (#11323)

	Removing deprecated conda.cli.main_help. Originally deprecated in conda 4.6.0 in May 2018. (#11325)

	Removed unused conda.auxlib.configuration. (#11349)

	Removed unused conda.auxlib.crypt. (#11349)

	Removed unused conda.auxlib.deprecation. (#11349)

	Removed unused conda.auxlib.factory. (#11349)

	Removed minimally used conda.auxlib.path. (#11349)

	Removed conda.exports.CrossPlatformStLink, a Windows Python <3.2 fix for os.lstat.st_nlink. (#11351)

	Remove Python 2.7 and other legacy code (#11364)

	conda run --live-stream aliases conda run --no-capture-output. (#11422)

	Removes unused exceptions. (#11424)

	Combines conda_env.exceptions with conda.exceptions. (#11425)

	Drop Python 3.6 support. (#11453)

	Remove outdated test test_init_dev_and_NoBaseEnvironmentError (#11469)

Docs

	Initial implementation of deep dive docs (#11059)

	Correction of RegisterPython description in Windows Installer arguments. (#11312)

	Added autodoc documentation for conda compare. (#11336)

	Remove duplicated instruction in manage-python.rst (#11381)

	Updated conda cheatsheet. (#11443)

	Fix typos throughout the codebase (#11448)

	Fix conda activate example (#11471)

	Updated conda 4.12 cheatsheet with new anaconda distribution version (#11479)

Other

	Add Python 3.10 as a test target. (#10992)

	Replace custom conda._vendor with vendoring [https://github.com/pradyunsg/vendoring] (#11290)

	Replace conda.auxlib.collection.frozendict with vendored frozendict (#11398)

	Reorganize and new tests for conda.cli.main_clean (#11360)

	Removing vendored usage of urllib3 and instead implementing our own wrapper around std. lib urllib (#11373)

	Bump vendored py-cpuinfo version 4.0.0 → 8.0.0. (#11393)

	Add informational Codecov status checks (#11400)

Contributors

	@beeankha made their first contribution in #11469

	@ChrisPanopoulos made their first contribution in #11312

	@conda-bot

	@dholth

	@jaimergp

	@jezdez

	@kathatherine made their first contribution in #11443

	@kenodegard

	@kianmeng made their first contribution in #11448

	@simon9500 made their first contribution in #11381

	@thomasrockhu-codecov made their first contribution in #11400

	@travishathaway made their first contribution in #11373

	@pre-commit-ci[bot]

4.12.0 (2022-03-08)

Enhancements

	Add support for libmamba integrations. (#11193)

This is a new experimental and opt-in feature that allows use of the new
conda-libmamba-solver [https://github.com/conda-incubator/conda-libmamba-solver]
for an improved user experience, based on the libmamba community project -
the library version of the mamba package manager [https://github.com/mamba-org/mamba].

Please follow these steps to try out the new libmamba solver integration:

	Make sure you have conda-libmamba-solver [https://github.com/conda-incubator/conda-libmamba-solver]
installed in your conda base environment.

	Try out the solver using the --experimental-solver=libmamba command line option.

E.g. with a dry-run to install the scipy package:

conda create -n demo scipy --dry-run --experimental-solver=libmamba

Or install in an activated conda environment:

conda activate my-environment
conda install scipy --experimental-solver=libmamba

	Make sure that conda env update -f sets env vars from the referenced yaml file. (#10652)

	Improve command line argument quoting, especially for conda run. (#11189)

	Allow conda run to work in read-only environments. (#11215)

	Add support for prelink_message. (#11123)

	Added conda.CONDA_SOURCE_ROOT. (#11182)

Bug fixes

	Refactored conda.utils.ensure_comspec_set into conda.utils.get_comspec. (#11168)

	Refactored conda.cli.common.is_valid_prefix into conda.cli.common.validate_prefix. (#11172)

	Instantiate separate S3 session for thread-safety. (#11038)

	Change overly verbose info log to debug. (#11260)

	Remove five.py [http://five.py] and update metaclass definitions. (#11267)

	Remove unnecessary conditional in setup.py [http://setup.py] (#11013)

Docs

	Clarify on AIE messaging in download.rst. (#11221)

	Fix conda environment variable echo, update example versions. (#11237)

	Fixed link in docs. (#11268)

	Update profile examples. (#11278)

	Fix typos. (#11070)

	Document conda run command. (#11299)

Other

	Added macOS to continuous integration. (#10875)

	Added ability to build per-pullrequest review builds. (#11135)

	Improved subprocess handling on Windows. (#11179)

	Add CONDA_SOURCE_ROOT env var. (#11182)

	Automatically check copyright/license disclaimer & encoding pragma. (#11183)

	Development environment per Python version. (#11233)

	Add concurrency group to cancel GHA runs on repeated pushes to branch/PR. (#11258)

	Only run GHAs on non-forks. (#11265)

Contributors

	@opoplawski

	@FaustinCarter

	@jaimergp

	@rhoule-anaconda

	@jezdez

	@hajapy

	@erykoff

	@uwuvalon

	@kenodegard

	@manics

	@NaincyKumariKnoldus

	@autotmp

	@yuvipanda

	@astrojuanlu

	@marcelotrevisani

4.11.0 (2021-11-22)

Enhancements

	Allow channel_alias to interpolate environment variables.

	Support running conda with PyPy on Windows.

	Add ability to add, append and prepend to sequence values when using the conda config subcommand.

	Support Python 3.10 in version parser.

	Add XDG_CONFIG_HOME to the conda search path following the XDG Base Directory Specification (XDGBDS) [https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html].

Bug fixes

	Fix the PowerShell activator to not show an error when unsetting environment variables.

	Remove superfluous eval statements in fish shell integration.

	Indent the conda fish integration file using fish_indent.

	Fix handling of environment variables containing equal signs (=).

	Handle permission errors when listing all known prefixes.

	Catch Unicode decoding errors when parsing conda-meta files.

	Fix handling write errors when trying to create package cache or env directories.

Docs

	Update path of conda repo in RHEL based systems to /etc/yum.repos.d/conda.repo.

	Fix the advanced pip example to stop using the now invalid file: prefix.

	Minor docs cleanup and adding Code of Conduct.

	Add auto-built architecture documentation for conda based on the C4 Model [https://c4model.com]. See the conda documentation for more information.

	Expand the contributing documentation with a section about static code analysis and code linting.

	Add developer guide section [https://docs.conda.io/projects/conda/en/latest/dev-guide/] to the documentation, including a conda architecture overview [https://docs.conda.io/projects/conda/en/latest/architecture.html].

	Stop referring to updating anaconda when conda update fails with an error.

Other

	Build Docker images periodically on GitHub Actions for the continuous integration testing on Linux, storing them on GitHub Packages’s registry for reduced latency and cost when using Docker Hub.

	Simplify the Linux GitHub actions workflows by combining used shell scripts.

	Add periodic GitHub Actions workflow to review old issues in the conda issue tracker and mark them as stale if no feedback is provided in a sensible amount of time, eventually closing them.

	Add periodic GitHub Actions workflow to lock the comment threads of old issues and pull requests in the conda GitHub repository to surface regressions with new issues instead.

	Refactor test suite to use more GitHub Actions runners in parallel, reducing total run time by 50%.

	Switched the issue tracker to use forms with additional questions for bug reporters to help in ticket triage.

	Add and automatically run pre-commit as part of the CI system to improve the code quality continuously and raise issues in contributed patches early on.

The used code linters are: flake8 [https://flake8.pycqa.org/], pylint [https://pylint.org/] and bandit [https://bandit.readthedocs.io/].

The Python code formatter black [https://black.readthedocs.io/] is used as well but is only enforced on changed code in a commit and not to the whole code base at once.

	Automatically build the conda package upon the successful merge into the master branch and upload it to the conda-canary channel on anaconda.org [http://anaconda.org].

To try conda out simply run:

conda install -c conda-canary/label/dev conda

	Automate adding new issues to public GitHub project board [https://github.com/orgs/conda/projects/4] to facilitate issue triage.

	Update GitHub issue and pull request labels to be more consistent.

	Start using rever [https://regro.github.io/rever-docs/] for release management.

	(preview) Enable one-click gitpod and GitHub Codespaces setup for Linux development.

Contributors

	Benjamin Bertrand

	Chawye Hsu

	Cheng H. Lee

	Dan Meador

	Daniel Bast

	Daniel Holth

	Gregor Kržmanc

	Hsin-Hsiang Peng

	Ilan Cosman

	Isuru Fernando

	Jaime Rodríguez-Guerra

	Jan-Benedikt Jagusch

	Jannis Leidel

	John Flavin

	Jonas Haag

	Ken Odegard

	Kfir Zvi

	Mervin Fansler

	bfis

	mkincaid

	pre-commit CI

4.10.3 (2021-06-29)

Bug fixes

	Reverts “Don’t create an unused S3 client at import time (#10516)”
in 4.10.2 that introduced a regression for users using S3 based
channels. (#10756)

4.10.2 (2021-06-25)

Enhancements

	Add --dry-run option to conda env create (#10635)

	Print warning about pip-installed dependencies only once (#10638)

	Explicit install now respects --download-only flag (#10688)

	Bump vendored tqdm version (#10721)

Bug fixes

	Fix changeps1 handling for PowerShell (#10624)

	Handle unbound $PS1 so sh activation does not fail with set -u (#10701)

	Fix sh activation so $PATH is properly restored on errors (#10631)

	Fix -c option handling so defaults channel is not always re-added (#10735)

	Fix artifact verification-related warnings and errors (#10627, #10677)

	Fix log level used in conda/core/prefix_data.py (#9998)

	Fix log level used when fetching artifact verification metadata (#10621)

	Don’t create an unused S3 client at import time (#10516)

	Don’t load binstar_client until needed (#10692)

	Reflect dropping of older Python versions in setup.py (#10642)

Docs

	Merge release notes and changelog to reduce maintenance burden (#10745)

	Add mentions to PyPy, Anaconda terms of service (#10329, #10712)

	Update Python versions in examples (#10329, #10744)

	Update install macOS instructions (#10728)

Contributors

	@AlbertDeFusco

	@awwad

	@casperdcl

	@cgranade

	@chenghlee

	@ColemanTom

	@dan-hook

	@dbast

	@ericpre

	@HedgehogCode

	@jamesp

	@jezdez

	@johnhany97

	@lightmare

	@mattip

	@maxerbubba

	@mrakitin

	@stinos

	@thermokarst

4.10.1 (2021-04-12)

Bug fixes

	Fix version detection for __linux virtual package (#10599)

	Fix import from conda_content_trust (#10589)

	Fix how URL for verification metadata files are constructed (#10617)

	Partially fix profile $PATH setup on MSYS2 (#10459)

	Remove .empty directory even when rsync is not installed (#10331)

Contributors

	@awwad

	@chenghlee

	@codepage949

	@niklasholm

4.10.0 (2021-03-30)

NOTE: This release formally drops support for Python 2.7 and Python < 3.6.

Enhancements

	Add pilot support for metadata signatures and verification (#10578)

	Add __linux virtual package (#10552, #10561)

	Support nested keys when using conda config --get (#10447, #10572)

	Support installing default packages when using conda env create (#10530)

	Support HTTP sources for conda env update -f (#10536)

	Make macOS code signing operations less verbose (#10372)

Bug fixes

	Fix conda search crashing on Python 3.9 (#10542)

	Allow {channel}::pip to satisfy pip requirements (#10550)

	Support {host}:{port} specifications in environment YAML files (#10417)

	Fall back to system .condarc if user .condarc is absent (#10479)

	Try UTF-16 if UTF-8 fails when reading environment YAML files (#10356)

	Properly parse Python version >= 3.10 (#10478)

	Fix zsh initialization when $ZDOTDIR is defined (#10413)

	Fix path handling for csh (#10410)

	Fix setup.py requirement for vendored ruamel_yaml_conda (#10441)

	Fix errors when pickling vendored auxlib objects (#10386)

Docs

	Document the __unix and __windows virtual packages (#10511)

	Update list of supported and default versions of Python (#10531)

	Favor using pip instead of setup.py when setting up CI (#10308)

Miscellaneous

	CI: drop Python 2.7 and add Python 3.9 (#10548)

Contributors

	@awwad

	@BastianZim

	@beenje

	@bgobbi

	@blubs

	@chenghlee

	@cjmartian

	@ericpre

	@erykoff

	@felker

	@giladmaya

	@jamesmyatt

	@mingwandroid

	@opoplawski

	@saadparwaiz1

	@saucoide

4.9.2 (2020-11-10)

Enhancements

	Use vendored tqdm in conda.resolve for better consistency (#10337)

Bug fixes

	Revert to previous naming scheme for repodata cache files when
use_only_tar_bz2 config option is false (#10350)

Docs

	Fix missing release notes (#10342)

	Fix permission errors when configuring deb repositories (#10347)

Contributors

	@chenghlee

	@csoja

	@dylanmorroll

	@sscherfke

4.9.1 (2020-10-26)

Enhancements

	Respect PEP 440 ~= “compatible release” clause (#10313)

Bug fixes

	Remove preload_openssl for Win32 (#10298)

	Add if exist to Windows registry hook (#10305)

Contributors

	@mingwandroid

4.9.0 (2020-10-19)

Enhancements

	Add osx-arm64 as a recognized platform (#10128, #10134, #10137)

	Resign files modified during installation on ARM64 macOS (#10260)

	Add __archspec virtual package to identify CPU microarchitecture (#9930)

	Add __unix and __win virtual packages (#10214)

	Add --no-capture--output option to conda run (#9646)

	Add --live-stream option to conda run (#10270)

	Export and import environment variables set using conda env config (#10169)

	Cache repodata from file:// channels (#9730)

	Do not relink already-installed packages (#10208)

	Speed up JSON formatting in logz module (#10189)

Bug fixes:

	Stop env remove --dry-run from actually removing environments (#10261)

	Virtual package requirements are now considered by the solver (#10057)

	Fix cached filename processing when using only tar.bz2 (#10193)

	Stop showing solver hints about CUDA when it is not a dependency (#10275)

	Ignore virtual packages when checking environment consistency (#10196)

	Fix config --json output errors in certain circumstances (#10194)

	More consistent error handling by conda shell (#10238)

	Bump vendored version of tqdm to fix various threading and I/O bugs (#10266)

Docs

	Correctly state default /AddToPath option in Windows installer (#10179)

	Fix typos in --repodata-fn help text (#10279)

Miscellaneous

	Update CI infrastructure to use GitHub Actions (#10176, #10186, #10234)

	Update README badge to show GitHub Actions status (#10254)

Contributors

	@AlbertDeFusco

	@angloyna

	@bbodenmiller

	@casperdcl

	@chenghlee

	@chrisburr

	@cjmartian

	@dhirschfeld

	@ericpre

	@gabrielcnr

	@InfiniteChai

	@isuruf

	@jjhelmus

	@LorcanHamill

	@maresb

	@mingwandroid

	@mlline00

	@xhochy

	@ydmytryk

4.8.5 (2020-09-14)

Enhancements

	Add osx-arm64 as a recognized platform (#10128, #10134)

Contributors

	@isuruf

	@jjhelmus

4.8.4 (2020-08-06)

Enhancements

	Add linux-ppc64 as a recognized platform (#9797, #9877)

	Add linux-s390x as a recognized platform (#9933, #10051)

	Add spinner to pip installer (#10032)

	Add support for running conda in PyPy (#9764)

	Support creating conda environments using remote specification files (#9835)

	Allow request retries on various HTTP errors (#9919)

	Add compare command for environments against a specification file (#10022)

	Add (preliminary) support for JSON-format activation (#8727)

	Properly handle the CURL_CA_BUNDLE environment variable (#10078)

	More uniformly handle $CONDA_PREFIX when exporting environments (#10092)

	Enable trailing _ to anchor OpenSSL-like versions (#9859)

	Replace listdir and glob with scandir (#9889)

	Ignore virtual packages when searching for constrained packages (#10117)

	Add virtual packages to be considered in the solver (#10057)

Bug fixes:

	Prevent remove --all from deleting non-environment directories (#10086)

	Prevent create --dry-run --yes from deleting existing environments (#10090)

	Remove extra newline from environment export file (#9649)

	Print help on incomplete conda env config command rather than crashing (#9660)

	Correctly set exit code/errorlevel when conda run exits (#9665)

	Send “inconsistent environment” warnings to stderr to avoid breaking JSON output (#9738)

	Fix output formatting from post-link scripts (#9841)

	Fix URL parsing for channel subdirs (#9844)

	Fix conda env export -f sometimes producing empty output files (#9909)

	Fix handling of Python releases with two-digit minor versions (#9999)

	Do not use gid to determine if user is an admin on *nix platforms (#10002)

	Suppress spurious xonsh activation warnings (#10005)

	Fix crash when running conda update --all on a nonexistent environment (#10028)

	Fix collections import for Python 3.8 (#10093)

	Fix regex-related deprecation warnings (#10093, #10096)

	Fix logic error when running under Python 2.7 on 64-bit platforms (#10108)

	Fix Python 3.8 leaked semaphore issue (#10115)

Docs

	Fix formatting and typos (#9623, #9689, #9898, #10042)

	Correct location for yum repository configuration files (#9988)

	Clarify usage for the --channel option (#10054)

	Clarify Python is not installed by default into new environments (#10089)

Miscellaneous

	Fixes to tests and CI pipelines (#9842, #9863, #9938, #9960, #10010)

	Remove conda-forge dependencies for developing conda (#9857, #9871)

	Audit YAML usage for safe_load vs round_trip_load (#9902)

Contributors

	@alanhdu

	@angloyna

	@Anthchirp

	@Arrowbox

	@bbodenmiller

	@beenje

	@bernardoduarte

	@birdsarah

	@bnemanich

	@chenghlee

	@ChihweiLHBird

	@cjmartian

	@ericpre

	@error404-beep

	@esc

	@hartb

	@hugobuddel

	@isuruf

	@jjhelmus

	@kalefranz

	@mingwandroid

	@mlline00

	@mparry

	@mrocklin

	@necaris

	@pdnm

	@pradghos

	@ravigumm

	@Reissner

	@scopatz

	@sidhant007

	@songmeixu

	@speleo3

	@tomsaleeba

	@WinstonPais

4.8.3 (2020-03-13)

Docs

	Add release notes for 4.8.2 to docs (#9632)

	Fix typos in docs (#9637, #9643)

	Grammatical and formatting changes (#9647)

Bug fixes:

	Account for channel is specs (#9748)

Contributors

	@bernardoduarte

	@forrestwaters

	@jjhelmus

	@msarahan

	@rrigdon

	@timgates42

4.8.2 (2020-01-24)

Enhancements

	Solver messaging improvements (#9560)

Docs

	Added precedence and conflict info (#9565)

	Added how to set env variables with config API (#9536)

	Updated user guide, deleted Overview, minor clean up (#9581)

	Add code of conduct (#9601, #9602, #9603, #9603, #9604 #9605)

Bug fixes:

	change fish prompt only if changeps1 is true (#7000)

	make frozendict JSON serializable (#9539)

	Conda env create empty dir (#9543)

Contributors

	@msarahan

	@jjhelmus

	@rrigdon

	@soapy1

	@teake

	@csoja

	@kfranz

4.8.1 (2019-12-19)

Enhancements

	improve performance for conda run by avoiding Popen.communicate (#9381)

	Put conda keyring in /usr/share/keyrings on Debian (#9424)

	refactor common.logic to fix some bugs and prepare for better modularity (#9427)

	Support nested configuration (#9449)

	Support Object configuration parameters (#9465)

	Use freeze_installed to speed up conda env update (#9511)

	add networking args to conda env create (#9525)

Docs

	fix string concatenation running words together regarding CONDA_EXE (#9411)

	Fix typo (“list” -> “info”) (#9433)

	typo in condarc key envs_dirs (#9478)

	Clarify channel priority and package sorting (#9492)

	improve description of DLL loading verification and activating environments (#9453)

	Installing with specific build number (#9534)

Bug fixes:

	Fix calling python api run_command with list and string arguments (#9331)

	revert init bash completion (#9421)

	set tmp to shortened path that excludes spaces (#9409)

	avoid function redefinition upon resourcing conda.fish (#9444)

	propagate pip error level when creating envs with conda env (#9460)

	fix incorrect chown call (#9464)

	Add subdir to PackageRecord dist_str (#9418)

	Fix running conda activate in multiple processes on windows (#9477)

	Don’t check in pkgs for trash (#9472)

	remove setuptools from run_constrained in recipe (#9485)

	Fix __conda_activate function to correctly return exit code (#9532)

	fix overly greedy capture done by subprocess for conda run (#9537)

Contributors

	@AntoinePrv

	@brettcannon

	@bwildenhain

	@cjmartian

	@felker

	@forrestwaters

	@gilescope

	@isuruf

	@jeremyjliu

	@jjhelmus

	@jhultman

	@marcuscaisey

	@mbargull

	@mingwandroid

	@msarahan

	@okhoma

	@osamoylenko

	@rrigdon

	@rulerofthehuns

	@soapy1

	@tartansandal

4.8.0 (2019-11-04)

Enhancements

	retry downloads if they fail, controlled by remote_max_retries and remote_backoff_factor configuration values (#9318)

	redact authentication information in some URLs (#9341)

	add osx version virtual package , __osx (#9349)

	add glibc virtual package, __glibc (#9358)

Docs

	removeed references to MD5s from docs (#9247)

	Add docs on CONDA_DLL_SEARCH_MODIFICATION_ENABLED (#9286)

	document threads, spec history and configuration (#9327)

	more documentation on channels (#9335)

	document the .condarc search order (#9369)

	various minor documentation fixes (#9238, #9248, #9267, #9334, #9351, #9372, #9378, #9388, #9391, #9393)

Bug fixes

	fix issues with xonsh activation on Windows (#8246)

	remove unsupported --lock argument from conda clean (#8310)

	do not add sys_prefix_path to failed activation or deactivation (#9282)

	fix csh setenv command (#9284)

	do not memorize PackageRecord.combined_depends (#9289)

	use CONDA_INTERNAL_OLDPATH rather than OLDPATH in activation script (#9303)

	fixes xonsh activation and tab completion (#9305)

	fix what channels are queried when context.offline is True (#9385)

Contributors

	@analog-cbarber

	@andreasg123

	@beckermr

	@bryant1410

	@colinbrislawn

	@felker

	@forrestwaters

	@gabrielcnr

	@isuruf

	@jakirkham

	@jeremyjliu

	@jjhelmus

	@jooh

	@jpigla

	@marcelotrevisani

	@melund

	@mfansler

	@mingwandroid

	@msarahan

	@rrigdon

	@scopatz

	@soapy1

	@WillyChen123

	@xhochy

4.7.12 (2019-09-12)

Enhancements

	add support for env file creation based on explicit specs in history (#9093)

	detect prefix paths when -p nor -n not given (#9135)

	Add config parameter to disable conflict finding (for faster time to errors) (#9190)

Bug fixes

	fix race condition with creation of repodata cache dir (#9073)

	fix ProxyError expected arguments (#9123)

	makedirs to initialize .conda folder when registering env - fixes permission errors with .conda folders not existing when package cache gets created (#9215)

	fix list duplicates errors in reading repodata/prefix data (#9132)

	fix neutered specs not being recorded in history, leading to unsatisfiable environments later (#9147)

	Standardize “conda env list” behavior between platforms (#9166)

	add JSON output to conda env create/update (#9204)

	speed up finding conflicting specs (speed regression in 4.7.11) (#9218)

Contributors

	@beenje

	@Bezier89

	@cjmartian

	@forrestwaters

	@jjhelmus

	@martin-raden

	@msarahan

	@nganani

	@rrigdon

	@soapy1

	@WesRoach

	@zheaton

4.7.11 (2019-08-06)

Enhancements

	add config for control of number of threads. These can be set in condarc or using environment variables. Names/default values are: default_threads/None, repodata_threads/None, verify_threads/1, execute_threads/1 (#9044)

Bug fixes

	fix repodata_fns from condarc not being respected (#8998)

	Fix handling of UpdateModifiers other than FREEZE_INSTALLED (#8999)

	Improve conflict finding graph traversal (#9006)

	Fix setuptools being removed due to conda run_constrains (#9014)

	Avoid calling find_conflicts until all retries are spent (#9015)

	refactor _conda_activate.bat in hopes of improving behavior in parallel environments (#9021)

	Add support for local version specs in PYPI installed packages (#9025)

	fix boto3 initialization race condition (#9037)

	Fix return condition in package_cache_data (#9039)

	utilize libarchive_enabled attribute provided by conda-package-handling to fall back to .tar.bz2 files only. (#9041, #9053)

	Fix menu creation on windows having race condition, leading to popups about python.exe not being found (#9044)

	Improve list error when egg-link leads to extra egg-infos (#9045)

	Fix incorrect RemoveError when operating on an env that has one of conda’s deps, but is not the env in which the current conda in use resides (#9054)

Docs

	Document new package format better

	Document conda init command

	Document availability of RSS feed for CDN-backed channels that clone

Contributors

	@Bezier89

	@forrestwaters

	@hajapy

	@ihnorton

	@matthewwardrop

	@msarahan

	@rogererens

	@rrigdon

	@soapy1

4.7.10 (2019-07-19)

Bug fixes

	fix merging of specs

	fix bugs in building of chains in prefix graph

Contributors

	@msarahan

4.7.9 (2019-07-18)

Bug fixes

	fix Non records in comprehension

	fix potential keyerror in depth-first search

	fix PackageNotFound attribute error

Contributors

	@jjhelmus

	@msarahan

4.7.8 (2019-07-17)

Improvements

	improve unsatisfiable messages - try to group and explain output better. Remove lots of extraneous stuff that was showing up in 4.7.7 (#8910)

	preload openssl on windows to avoid library conflicts and missing library issues (#8949)

Bug fixes

	fix handling of channels where more than one channel contains packages with similar name, subdir, version and build_number. This was causing mysterious unsatisfiable errors for some users. (#8938)

	reverse logic check in checking channel equality, because == is not reciprocal to != with py27 (no __ne__) (#8938)

	fix an infinite loop or otherwise large process with building the unsatisfiable info. Improve the depth-first search implementation. (#8941)

	streamline fallback paths to unfrozen solve in case frozen fails. (#8942)

	Environment activation output only shows conda activate envname now, instead of sometimes showing just activate. (#8947)

Contributors

	@forrestwaters

	@jjhelmus

	@katietz

	@msarahan

	@rrigdon

	@soapy1

4.7.7 (2019-07-12)

Improvements

	When an update command doesn’t do anything because installed software conflicts with the update, information about the conflict is shown, rather than just saying “all requests are already satisfied” (#8899)

Bug fixes

	fix missing package_type attr in finding virtual packages (#8917)

	fix parallel operations of loading index to preserve channel ordering (#8921, #8922)

	filter PrefixRecords out from PackageRecords when making a graph to show unsatisfiable deps. Fixes comparison error between mismatched types. (#8924)

	install entry points before running post-link scripts, because post link scripts may depend on entry points. (#8925)

Contributors

	@jjhelmus

	@msarahan

	@rrigdon

	@soapy1

4.7.6 (2019-07-11)

Improvements

	Improve cuda virtual package conflict messages to show the __cuda virtual package as part of the conflict (#8834)

	add additional debugging info to Resolve.solve (#8895)

Bug fixes

	deduplicate error messages being shown for post-link scripts. Show captured stdout/stderr on failure (#8833)

	fix the checkout step in the Windows dev env setup instructions (#8827)

	bail out early when implicit python pinning renders an explicit spec unsatisfiable (#8834)

	handle edge cases in pinned specs better (#8843)

	extract package again if url is None (#8868)

	update docs regarding indexing and subdirs (#8874)

	remove warning about conda-build needing an update that was bothering people (#8884)

	only add repodata fn into cache key when fn is not repodata.json (#8900)

	allow conda to be downgraded with an explicit spec (#8892)

	add target to specs from historic specs (#8901)

	improve message when solving with a repodata file before repodata.json fails (#8907)

	fix distutils usage for “which” functionality. Fix inability to change python version in envs with noarch packages (#8909)

	fix anaconda metapackage being removed because history matching was too restrictive (#8911)

	make freezing less aggressive; add fallback to non-frozen solve (#8912)

Contributors

	@forrestwaters

	@jjhelmus

	@mcopes73

	@msarahan

	@richardjgowers

	@rrigdon

	@soapy1

	@twinssbc

4.7.5 (2019-06-24)

Improvements

	improve wording in informational message when a particular *_repodata.json can’t be found. No need for alarm. (#8808)

Bug fixes

	restore tests being run on win-32 appveyor (#8801)

	fix Dist class handling of .conda files (#8816)

	fix strict channel priority handling when a package is unsatisfiable and thus not present in the collection (#8819)

	handle JSONDecodeError better when package is corrupted at extract time (#8820)

Contributors

	@dhirschfeld

	@msarahan

	@rrigdon

4.7.4 (2019-06-19)

Improvements

	Revert to and improve the unsatisfiability determination from 4.7.2 that was reverted in 4.7.3. It’s faster. (#8783)

Bug fixes

	fix tcsh/csh init scripts (#8792)

Docs improvements

	clean up docs of run_command

	fix broken links

	update docs environment.yaml file to update conda-package-handling

	conda logo favicon

	update strict channel priority info

	noarch package content ported from conda-forge

	add info about conda-forge

	remove references to things as they were before conda 4.1. That was a long time ago. This is not a history book.

Contributors

	@jjhelmus

	@msarahan

	@rrigdon

	@soapy1

4.7.3 (2019-06-14)

Bug fixes

	target prefix overrid applies to entry points in addition to replacements in standard files (#8769)

	Revert to solver-based unsatisfiability determination (#8775)

	fix renaming of existing prompt function in powershell (#8774)

Contributors

	@jjhelmus

	@msarahan

	@rrigdon

	@ScottEvtuch

4.7.2 (2019-06-10)

Behavior changes

	unsatisfiability is determined in a slightly different way now. It no longer
uses the SAT solver, but rather determines whether any specs have no
candidates at all after running through get_reduced_index. This has been
faster in benchmarks, but we welcome further data from your use cases about
whether this was a good change. (#8741)

	when using the --only-deps flag for the install command, conda now
explicitly records those specs in your history. This primarily serves to
reduce conda accidentally removing packages that you have actually requested. (#8766)

Improvements

	UnsatisfiableError messages are now grouped into categories and explained a bit better. (#8741)

	–repodata-fn argument can be passed multiple times to have more fallback
paths. repodata_fns conda config setting does the same thing, but saves you
from needing to do it for every command invocation. (#8741)

Bug fixes

	fix channel flip-flopping that was happening when adding a channel other than earlier ones (#8741)

	refactor flow control for multiple repodata files to not use exceptions (#8741)

	force conda to use only old .tar.bz2 files if conda-build <3.18.3 is
installed. Conda-build breaks when inspecting file contents, and this is fixed
in conda-build 3.18.3 (#8741)

	use --force when using rsync to improve behavior with folders that may exist
in the destination somehow. (#8750)

	handle EPERM errors when renaming, because MacOS lets you remove or create
files, but not rename them. Thanks Apple. (#8755)

	fix conda removing packages installed via install with --only-deps flag when
either update or remove commands are run. See behavior changes above.
(#8766)

Contributors

	@csosborn

	@jjhelmus

	@katietz

	@msarahan

	@rrigdon

4.7.1 (2019-05-30)

Improvements

	Base initial solver specs map on explicitly requested specs (new and historic) (#8689)

	Improve anonymization of automatic error reporting (#8715)

	Add option to keep using .tar.bz2 files, in case new .conda isn’t working for whatever reason (#8723)

Bug fixes

	fix parsing hyphenated PyPI specs (change hyphens in versions to .) (#8688)

	fix PrefixRecord creation when file inputs are .conda files (#8689)

	fix PrefixRecord creation for pip-installed packages (#8689)

	fix progress bar stopping at 75% (no extract progress with new libarchive) (#8689)

	preserve pre-4.7 download() interface in conda.exports (#8698)

	virtual packages (such as cuda) are represented by leading double underscores
by convention, to avoid confusion with existing single underscore packages
that serve other purposes (#8738)

Deprecations/Breaking Changes

	The --prune flag no longer does anything. Pruning is implicitly the
standard behavior now as a result of the initial solver specs coming from
explicitly requested specs. Conda will remove packages that are not explicitly
requested and are not required directly or indirectly by any explicitly
installed package.

Docs improvements

	Document removal of the free channel from defaults (#8682)

	Add reference to conda config --describe (#8712)

	Add a tutorial for .condarc modification (#8737)

Contributors

	@alexhall

	@cjmartian

	@kalefranz

	@martinkou

	@msarahan

	@rrigdon

	@soapy1

4.7.0 (2019-05-17)

Improvements

	Implement support for “virtual” CUDA packages, to make conda consider the system-installed CUDA driver and act accordingly (#8267)

	Support and prefer new .conda file format where available (#8265, #8639)

	Use comma-separated env names in prompt when stacking envs (#8431)

	show valid choices in error messages for enums (#8602)

	freeze already-installed packages when running conda install as a first attempt, to speed up the solve in existing envs. Fall back to full solve as necessary (#8260, #8626)

	add optimization criterion to prefer arch over noarch packages when otherwise equivalent (#8267)

	Remove free channel from defaults collection. Add restore_free_channel config parameter if you want to keep it. (#8579)

	Improve unsatisfiable hints (#8638)

	Add capability to use custom repodata filename, for smaller subsets of repodata (#8670)

	Parallelize SubdirData readup (#8670)

	Parallelize transaction verification and execution (#8670)

Bug fixes

	Fix PATH handling with deactivate.d scripts (#8464)

	Fix usage of deprecated collections ABCs (#)

	fix tcsh/csh initialization block (#8591)

	fix missing CWD display in powershell prompt (#8596)

	wrap_subprocess_call: fallback to sh if no bash (#8611)

	move TemporaryDirectory to avoid importing from conda.compat (#8671)

	fix missing conda-package-handling dependency in dev/start (#8624)

	fix path_to_url string index out of range error (#8265)

	fix conda init for xonsh (#8644)

	fix fish activation (#8645)

	improve error handling for read-only filesystems (#8665, #8674)

	break out of minimization when bisection has nowhere to go (#8672)

	Handle None values for link channel name gracefully (#8680)

Contributors

	@chrisburr

	@EternalPhane

	@jjhelmus

	@kalefranz

	@mbargull

	@msarahan

	@rrigdon

	@scopatz

	@seibert

	@soapy1

	@nehaljwani

	@nh3

	@teake

	@yuvalreches

4.6.14 (2019-04-17)

Bug fixes

	export extra function in powershell Conda.psm1 script (fixes anaconda powershell prompt) (#8570)

Contributors

	@msarahan

4.6.13 (2019-04-16)

Bug fixes

	disable test_legacy_repodata on win-32 (missing dependencies) (#8540)

	Fix activation problems on windows with bash, powershell, and batch. Improve tests. (#8550, #8564)

	pass -U flag to for pip dependencies in conda env when running “conda env update” (#8542)

	rename conda.common.os to conda.common._os to avoid shadowing os built-in (#8548)

	raise exception when pip subprocess fails with conda env (#8562)

	fix installing recursive requirements.txt files in conda env specs with python 2.7 (#8562)

	Don’t modify powershell prompt when “changeps1” setting in condarc is False (#8465)

Contributors

	@dennispg

	@jjhelmus

	@jpgill86

	@mingwandroid

	@msarahan

	@noahp

4.6.12 (2019-04-10)

Bug fixes

	Fix compat import warning (#8507)

	Adjust collections import to avoid deprecation warning (#8499)

	Fix bug in CLI tests (#8468)

	Disallow the number sign in environment names (#8521)

	Workaround issues with noarch on certain repositories (#8523)

	Fix activation on Windows when spaces are in path (#8503)

	Fix conda init profile modification for powershell (#8531)

	Point conda.bat to condabin (#8517)

	Fix various bugs in activation (#8520, #8528)

Docs improvements

	Fix links in README (#8482)

	Changelogs for 4.6.10 and 4.6.11 (#8502)

Contributors

@Bezier89
@duncanmmacleod
@ivigamberdiev
@javabrett
@jjhelmus
@katietz
@mingwandroid
@msarahan
@nehaljwani
@rrigdon

4.6.11 (2019-04-04)

Bug fixes

	Remove sys.prefix from front of PATH in basic_posix (#8491)

	add import to fix conda.core.index.get_index (#8495)

Docs improvements

	Changelogs for 4.6.10

Contributors

	@jjhelmus

	@mingwandroid

	@msarahan

4.6.10 (2019-04-01)

Bug fixes

	Fix python-3 only FileNotFoundError usage in initialize.py [http://initialize.py] (#8470)

	Fix more JSON encode errors for the _Null data type (#8471)

	Fix non-posix-compliant == in conda.sh [http://conda.sh] (#8475, #8476)

	improve detection of pip dependency in environment.yml files to avoid warning message (#8478)

	fix condabin\conda.bat use of dp0, making PATH additions incorrect (#8480)

	init_fish_user: don’t assume config file exists (#8481)

	Fix for chcp output ending with . (#8484)

Docs improvements

	Changelogs for 4.6.8, 4.6.9

Contributors

	@duncanmmacleod

	@nehaljwani

	@ilango100

	@jjhelmus

	@mingwandroid

	@msarahan

	@rrigdon

4.6.9 (2019-03-29)

Improvements

	Improve CI for docs commits (#8387, #8401, #8417)

	Implement conda init --reverse to undo rc file and registry changes (#8400)

	Improve handling of unicode systems (#8342, #8435)

	Force the “COMSPEC” environment variable to always point to cmd.exe on windows. This was an implicit assumption that was not always true. (#8457, #8461)

Bug fixes

	Add central C:/ProgramData/conda as a search path on Windows (#8272)

	remove direct use of ruamel_yaml (prefer internal abstraction, yaml_load) (#8392)

	Fix/improve conda init support for fish shell (#8437)

	Improve solver behavior in the presence of inconsistent environments (such as pip as a conda dependency of python, but also installed via pip itself) (#8444)

	Handle read-only filesystems for environments.txt (#8451, #8453)

	Fix conda env commands involving pip-installed dependencies being installed into incorrect locations (#8435)

Docs improvements

	updated cheatsheet (#8402)

	updated color theme (#8403)

Contributors

	@blackgear

	@dhirschfeld

	@jakirkham

	@jjhelmus

	@katietz

	@mingwandroid

	@msarahan

	@nehaljwani

	@rrigdon

	@soapy1

	@spamlrot-tic

4.6.8 (2019-03-06)

Bug fixes

	detect when parser fails to parse arguments (#8328)

	separate post-link script running from package linking. Do linking of all packages first, then run any post-link
scripts after all packages are present. Ideally, more forgiving in presence of cycles. (#8350)

	quote path to temporary requirements files generated by conda env. Fixes issues with spaces. (#8352)

	improve some exception handling around checking for presence of folders in extraction of tarballs (#8360)

	fix reporting of packages when channel name is None (#8379)

	fix the post-creation helper message from “source activate” to “conda activate” (#8370)

	Add safety checks for directory traversal exploits in tarfiles. These may be disabled using the safety_checks
configuration parameter. (#8374)

Docs improvements

	document MKL DLL hell and new Python env vars to control DLL search behavior (#8315)

	add github template for reporting speed issues (#8344)

	add in better use of sphinx admonitions (notes, warnings) for better accentuation in docs (#8348)

	improve skipping CI builds when only docs changes are involved (#8336)

Contributors

	@albertmichaelj

	@jjhelmus

	@matta9001

	@msarahan

	@rrigdon

	@soapy1

	@steffenvan

4.6.7 (2019-02-21)

Bug fixes

	skip scanning folders for contents during reversal of transactions. Just ignore folders. A bit messier, but a lot faster. (#8266)

	fix some logic in renaming trash files to fix permission errors (#8300)

	wrap pip subprocess calls in conda-env more cleanly and uniformly (#8307)

	revert conda prepending to PATH in cli main file on windows (#8307)

	simplify conda run code to use activation subprocess wrapper. Fix a few conda tests to use conda run. (#8307)

Docs improvements

	fixed duplicated “to” in managing envs section (#8298)

	flesh out docs on activation (#8314)

	correct git syntax for adding a remote in dev docs (#8316)

	unpin sphinx version in docs requirements (#8317)

Contributors

	@jjhelmus

	@MarckK

	@msarahan

	@rrigdon

	@samgd

4.6.6 (2019-02-18)

Bug fixes

	fix incorrect syntax prepending to PATH for conda CLI functionality (#8295)

	fix rename_tmp.bat operating on folders, leading to hung interactive dialogs. Operate only on files. (#8295)

Contributors

	@mingwandroid

	@msarahan

4.6.5 (2019-02-15)

Bug fixes

	Make super in resolve.py [http://resolve.py] python 2 friendly (#8280)

	support unicode paths better in activation scripts on Windows (#)

	set PATH for conda.bat to include Conda’s root prefix, so that libraries can be found when using conda when the root env is not activated (#8287, #8292)

	clean up warnings/errors about rsync and trash files (#8290)

Contributors

	@jjhelmus

	@mingwandroid

	@msarahan

	@rrigdon

4.6.4 (2019-02-13)

Improvements

	allow configuring location of instrumentation records (#7849)

	prepend conda-env pip commands with env activation to fix library loading (#8263)

Bug fixes

	resolve #8176 SAT solver choice error handling (#8248)

	document pip_interop_enabled config parameter (#8250)

	ensure prefix temp files are inside prefix (#8253)

	ensure script_caller is bound before use (#8254)

	fix overzealous removal of folders after cleanup of failed post-link scripts (#8259)

	fix #8264: Allow ‘int’ datatype for values to non-sequence parameters (#8268)

Deprecations/Breaking Changes

	remove experimental featureless_minimization_disabled feature flag (#8249)

Contributors

	@davemasino

	@geremih

	@jjhelmus

	@kalefranz

	@msarahan

	@minrk

	@nehaljwani

	@prusse-martin

	@rrigdon

	@soapy1

4.6.3 (2019-02-07)

Improvements

	Implement -stack switch for powershell usage of conda (#8217)

	Enable system-wide initialization for conda shell support (#8219)

	Activate environments prior to running post-link scripts (#8229)

	Instrument more solve calls to prioritize future optimization efforts (#8231)

	print more env info when searching in envs (#8240)

Bug fixes

	resolve #8178, fix conda pip interop assertion error with egg folders (#8184)

	resolve #8157, fix token leakage in errors and config output (#8163)

	resolve #8185, fix conda package filtering with embedded/vendored python metadata (#8198)

	resolve #8199, fix errors on .* in version specs that should have been specific to the ~= operator (#8208)

	fix .bat scripts for handling paths on Windows with spaces (#8215)

	fix powershell scripts for handling paths on Windows with spaces (#8222)

	handle missing rename script more gracefully (especially when updating/installing conda itself) (#8212)

Contributors

	@dhirschfeld

	@jjhelmus

	@kalefranz

	@msarahan

	@murrayreadccdc

	@nehaljwani

	@rrigdon

	@soapy1

4.6.2 (2019-01-29)

Improvements

	Documentation restructuring/improvements (#8139, #8143)

	rewrite rm_rf to use native system utilities and rename trash files (#8134)

Bug fixes

	fix UnavailableInvalidChannel errors when only noarch subdir is present (#8154)

	document, but disable the allow_conda_downgrades flag, pending re-examination of the warning, which was blocking conda operations after an upgrade-downgrade cycle across minor versions. (#8160)

	fix conda env export missing pip entries without use of pip interop enabled setting (#8165)

Contributors

	@jjhelmus

	@msarahan

	@nehaljwani

	@rrigdon

4.5.13 (2019-01-29)

Improvements

	document the allow_conda_downgrades configuration parameter (#8034)

	remove conda upgrade message (#8161)

Contributors

	@msarahan

	@nehaljwani

4.6.1 (2019-01-21)

Improvements

	optimizations in get_reduced_index (#8117, #8121, #8122)

Bug Fixes

	fix faulty onerror call for rm (#8053)

	fix activate.bat to use more direct call to conda.bat (don’t require conda init; fix non-interactive script) (#8113)

Contributors

	@jjhelmus

	@msarahan

	@pv

4.6.0 (2019-01-15)

New Feature Highlights

	resolve #7053 preview support for conda operability with pip; disabled by default (#7067, #7370, #7710, #8050)

	conda initialize (#6518, #7388, #7629)

	resolve #7194 add ‘–stack’ flag to ‘conda activate’; remove max_shlvl
config (#7195, #7226, #7233)

	resolve #7087 add non-conda-installed python packages into PrefixData (#7067, #7370)

	resolve #2682 add ‘conda run’ preview support (#7320, #7625)

	resolve #626 conda wrapper for PowerShell (#7794, #7829)

Deprecations/Breaking Changes

	resolve #6915 remove ‘conda env attach’ and ‘conda env upload’ (#6916)

	resolve #7061 remove pkgs/pro from defaults (#7162)

	resolve #7078 add deprecation warnings for ‘conda.cli.activate’,
‘conda.compat’, and ‘conda.install’ (#7079)

	resolve #7194 add ‘–stack’ flag to ‘conda activate’; remove max_shlvl
config (#7195)

	resolve #6979, #7086 remove Dist from majority of project (#7216, #7252)

	fix #7362 remove --license from conda info and related code paths (#7386)

	resolve #7309 deprecate ‘conda info package_name’ (#7310)

	remove ‘conda clean --source-cache’ and defer to conda-build (#7731)

	resolve #7724 move windows package cache and envs dirs back to .conda directory (#7725)

	disallow env names with colons (#7801)

Improvements

	import speedups (#7122)

	–help cleanup (#7120)

	fish autocompletion for conda env (#7101)

	remove reference to ‘system’ channel (#7163)

	add http error body to debug information (#7160)

	warn creating env name with space is not supported (#7168)

	support complete MatchSpec syntax in environment.yml files (#7178)

	resolve #4274 add option to remove an existing environment with ‘conda create’ (#7133)

	add ability for conda prompt customization via ‘env_prompt’ config param (#7047)

	resolve #7063 add license and license_family to MatchSpec for ‘conda search’ (#7064)

	resolve #7189 progress bar formatting improvement (#7191)

	raise log level for errors to error (#7229)

	add to conda.exports (#7217)

	resolve #6845 add option -S / --satisfied-skip-solve to exit early for satisfied specs (#7291)

	add NoBaseEnvironmentError and DirectoryNotACondaEnvironmentError (#7378)

	replace menuinst subprocessing by ctypes win elevation (4.6.0a3) (#7426)

	bump minimum requests version to stable, unbundled release (#7528)

	resolve #7591 updates and improvements from namespace PR for 4.6 (#7599)

	resolve #7592 compatibility shims (#7606)

	user-agent context refactor (#7630)

	solver performance improvements with benchmarks in common.logic (#7676)

	enable fuzzy-not-equal version constraint for pip interop (#7711)

	add -d short option for --dry-run (#7719)

	add --force-pkgs-dirs option to conda clean (#7719)

	address #7709 ensure --update-deps unlocks specs from previous user requests (#7719)

	add package timestamp information to output of ‘conda search --info’ (#7722)

	resolve #7336 ‘conda search’ tries “fuzzy match” before showing PackagesNotFound (#7722)

	resolve #7656 strict channel priority via ‘channel_priority’ config option or --strict-channel-priority CLI flag (#7729)

	performance improvement to cache hash value on PackageRecord (#7715)

	resolve #7764 change name of ‘condacmd’ dir to ‘condabin’; use on all platforms (#7773)

	resolve #7782 implement PEP-440 ‘~=’ compatible release operator (#7783)

	disable timestamp prioritization when not needed (#7894, #8012)

	compile pyc files for noarch packages in batches (#8015)

	disable per-file sha256 safety checks by default; add extra_safety_checks condarc option to enable them (#8017)

	shorten retries for file removal on windows, where in-use files can’t be removed (#8024)

	expand env vars in custom_channels, custom_multichannels, default_channels, migrated_custom_channels, and whitelist_channels (#7826)

	encode repodata to utf-8 while caching, to fix unicode characters in repodata (#7873)

Bug Fixes

	fix #7107 verify hangs when a package is corrupted (#7131)

	fix #7145 progress bar uses stderr instead of stdout (#7146)

	fix typo in conda.fish (#7152)

	fix #2154 conda remove should complain if requested removals don’t exist (#7135)

	fix #7094 exit early for --dry-run with explicit and clone (#7096)

	fix activation script sort order (#7176)

	fix #7109 incorrect chown with sudo (#7180)

	fix #7210 add suppressed --mkdir back to ‘conda create’ (fix for 4.6.0a1) (#7211)

	fix #5681 conda env create / update when --file does not exist (#7385)

	resolve #7375 enable conda config --set update_modifier (#7377)

	fix #5885 improve conda env error messages and add extra tests (#7395)

	msys2 path conversion (#7389)

	fix autocompletion in fish (#7575)

	fix #3982 following 4.4 activation refactor (#7607)

	fix #7242 configuration load error message (#7243)

	fix conda env compatibility with pip 18 (#7612)

	fix #7184 remove conflicting specs to find solution to user’s active request (#7719)

	fix #7706 add condacmd dir to cmd.exe path on first activation (#7735)

	fix #7761 spec handling errors in 4.6.0b0 (#7780)

	fix #7770 ‘conda list regex’ only applies regex to package name (#7784)

	fix #8076 load metadata from index to resolve inconsistent envs (#8083)

Non-User-Facing Changes

	resolve #6595 use OO inheritance in activate.py [http://activate.py] (#7049)

	resolve #7220 pep8 project renamed to pycodestyle (#7221)

	proxy test routine (#7308)

	add .mailmap and .cla-signers (#7361)

	add copyright headers (#7367)

	rename common.platform to common.os and split among windows, linux, and unix utils (#7396)

	fix windows test failures when symlink not available (#7369)

	test building conda using conda-build (#7251)

	solver test metadata updates (#7664)

	explicitly add Mapping, Sequence to common.compat (#7677)

	add debug messages to communicate solver stages (#7803)

	add undocumented sat_solver config parameter (#7811)

Preview Releases

	4.6.0a1 at d5bec21d1f64c3bc66c2999cfc690681e9c46177 on 2018-04-20

	4.6.0a2 at c467517ca652371ebc4224f0d49315b7ec225108 on 2018-05-01

	4.6.0b0 at 21a24f02b2687d0895de04664a4ec23ccc75c33a on 2018-09-07

	4.6.0b1 at 1471f043eed980d62f46944e223f0add6a9a790b on 2018-10-22

	4.6.0rc1 at 64bde065f8343276f168d2034201115dff7c5753 on 2018-12-31

Contributors

	@cgranade

	@fabioz

	@geremih

	@goanpeca

	@jesse-

	@jjhelmus

	@kalefranz

	@makbigc

	@mandeep

	@mbargull

	@msarahan

	@nehaljwani

	@ohadravid

	@teake

4.5.12 (2018-12-10)

Improvements

	backport ‘allow_conda_downgrade’ configuration parameter, default is False (#7998)

	speed up verification by disabling per-file sha256 checks (#8017)

	indicate Python 3.7 support in setup.py [http://setup.py] file (#8018)

	speed up solver by reduce the size of reduced index (#8016)

	speed up solver by skipping timestamp minimization when not needed (#8012)

	compile pyc files more efficiently, will speed up install of noarch packages (#8025)

	avoid waiting for removal of files on Windows when possible (#8024)

Bug Fixes

	update integration tests for removal of ‘features’ key (#7726)

	fix conda.bat return code (#7944)

	ensure channel name is not NoneType (#8021)

Contributors

	@debionne

	@jjhelmus

	@kalefranz

	@msarahan

	@nehaljwani

4.5.11 (2018-08-21)

Improvements

	resolve #7672 compatibility with ruamel.yaml 0.15.54 (#7675)

Contributors

	@CJ-Wright

	@mbargull

4.5.10 (2018-08-13)

Bug Fixes

	fix conda env compatibility with pip 18 (#7627)

	fix py37 compat 4.5.x (#7641)

	fix #7451 don’t print name, version, and size if unknown (#7648)

	replace glob with fnmatch in PrefixData (#7645)

Contributors

	@jesse-

	@nehaljwani

4.5.9 (2018-07-30)

Improvements

	resolve #7522 prevent conda from scheduling downgrades (#7598)

	allow skipping feature maximization in resolver (#7601)

Bug Fixes

	fix #7559 symlink stat in localfs adapter (#7561)

	fix #7486 activate with no PATH set (#7562)

	resolve #7522 prevent conda from scheduling downgrades (#7598)

Contributors

	@kalefranz

	@loriab

4.5.8 (2018-07-10)

Bug Fixes

	fix #7524 should_bypass_proxies for requests 2.13.0 and earlier (#7525)

Contributors

	@kalefranz

4.5.7 (2018-07-09)

Improvements

	resolve #7423 add upgrade error for unsupported repodata_version (#7415)

	raise CondaUpgradeError for conda version downgrades on environments (#7517)

Bug Fixes

	fix #7505 temp directory for UnlinkLinkTransaction should be in target prefix (#7516)

	fix #7506 requests monkeypatch fallback for old requests versions (#7515)

Contributors

	@kalefranz

	@nehaljwani

4.5.6 (2018-07-06)

Bug Fixes

	resolve #7473 py37 support (#7499)

	fix #7494 History spec parsing edge cases (#7500)

	fix requests 2.19 incompatibility with NO_PROXY env var (#7498)

	resolve #7372 disable http error uploads and CI cleanup (#7498, #7501)

Contributors

	@kalefranz

4.5.5 (2018-06-29)

Bug Fixes

	fix #7165 conda version check should be restricted to channel conda is from (#7289, #7303)

	fix #7341 ValueError n cannot be negative (#7360)

	fix #6691 fix history file parsing containing comma-joined version specs (#7418)

	fix msys2 path conversion (#7471)

Contributors

	@goanpeca

	@kalefranz

	@mingwandroid

	@mbargull

4.5.4 (2018-05-14)

Improvements

	resolve #7189 progress bar improvement (#7191 via #7274)

Bug Fixes

	fix twofold tarball extraction, improve progress update (#7275)

	fix #7253 always respect copy LinkType (#7269)

Contributors

	@jakirkham

	@kalefranz

	@mbargull

4.5.3 (2018-05-07)

Bug Fixes

	fix #7240 conda’s configuration context is not initialized in conda.exports (#7244)

4.5.2 (2018-04-27)

Bug Fixes

	fix #7107 verify hangs when a package is corrupted (#7223)

	fix #7094 exit early for --dry-run with explicit and clone (#7224)

	fix activation/deactivation script sort order (#7225)

4.5.1 (2018-04-13)

Improvements

	resolve #7075 add anaconda.org [http://anaconda.org] search message to PackagesNotFoundError (#7076)

	add CondaError details to auto-upload reports (#7060)

Bug Fixes

	fix #6703,#6981 index out of bound when running deactivate on fish shell (#6993)

	properly close over $_CONDA_EXE variable (#7004)

	fix condarc map parsing with comments (#7021)

	fix #6919 csh prompt (#7041)

	add _file_created attribute (#7054)

	fix handling of non-ascii characters in custom_multichannels (#7050)

	fix #6877 handle non-zero return in CSH (#7042)

	fix #7040 update tqdm to version 4.22.0 (#7157)

4.5.0 (2018-03-20)

New Feature Highlights

	A new flag, ‘–envs’, has been added to ‘conda search’. In this mode,
‘conda search’ will look for the package query in existing conda environments
on your system. If ran as UID 0 (i.e. root) on unix systems or as an
Administrator user on Windows, all known conda environments for all users
on the system will be searched. For example, ‘conda search --envs openssl’
will show the openssl version and environment location for all
conda-installed openssl packages.

Deprecations/Breaking Changes

	resolve #6886 transition defaults from repo.continuum.io [http://repo.continuum.io] to repo.anaconda.com [http://repo.anaconda.com] (#6887)

	resolve #6192 deprecate ‘conda help’ in favor of --help CLI flag (#6918)

	resolve #6894 add http errors to auto-uploaded error reports (#6895)

Improvements

	resolve #6791 conda search --envs (#6794)

	preserve exit status in fish shell (#6760)

	resolve #6810 add CONDA_EXE environment variable to activate (#6923)

	resolve #6695 outdated conda warning respects --quiet flag (#6935)

	add instructions to activate default environment (#6944)

API

	resolve #5610 add PrefixData, SubdirData, and PackageCacheData to conda/api.py (#6922)

Bug Fixes

	channel matchspec fixes (#6893)

	fix #6930 add missing return statement to S3Adapter (#6931)

	fix #5802, #6736 enforce disallowed_packages configuration parameter (#6932)

	fix #6860 infinite recursion in resolve.py [http://resolve.py] for empty track_features (#6928)

	set encoding for PY2 stdout/stderr (#6951)

	fix #6821 non-deterministic behavior from MatchSpec merge clobbering (#6956)

	fix #6904 logic errors in prefix graph data structure (#6929)

Non-User-Facing Changes

	fix several lgtm.com [http://lgtm.com] flags (#6757, #6883)

	cleanups and refactors for conda 4.5 (#6889)

	unify location of record types in conda/models/records.py (#6924)

	resolve #6952 memoize url search in package cache loading (#6957)

4.4.11 (2018-02-23)

Improvements

	resolve #6582 swallow_broken_pipe context manager and Spinner refactor (#6616)

	resolve #6882 document max_shlvl (#6892)

	resolve #6733 make empty env vars sequence-safe for sequence parameters (#6741)

	resolve #6900 don’t record conda skeleton environments in environments.txt (#6908)

Bug Fixes

	fix potential error in ensure_pad(); add more tests (#6817)

	fix #6840 handle error return values in conda.sh [http://conda.sh] (#6850)

	use conda.gateways.disk for misc.py [http://misc.py] imports (#6870)

	fix #6672 don’t update conda during conda-env operations (#6773)

	fix #6811 don’t attempt copy/remove fallback for rename failures (#6867)

	fix #6667 aliased posix commands (#6669)

	fix #6816 fish environment autocomplete (#6885)

	fix #6880 build_number comparison not functional in match_spec (#6881)

	fix #6910 sort key prioritizes build string over build number (#6911)

	fix #6914, #6691 conda can fail to update packages even though newer versions exist (#6921)

	fix #6899 handle Unicode output in activate commands (#6909)

4.4.10 (2018-02-09)

Bug Fixes

	fix #6837 require at least futures 3.0.0 (#6855)

	fix #6852 ensure temporary path is writable (#6856)

	fix #6833 improve feature mismatch metric (via 4.3.34 #6853)

4.4.9 (2018-02-06)

Improvements

	resolve #6632 display package removal plan when deleting an env (#6801)

Bug Fixes

	fix #6531 don’t drop credentials for conda-build workaround (#6798)

	fix external command execution issue (#6789)

	fix #5792 conda env export error common in path (#6795)

	fix #6390 add CorruptedEnvironmentError (#6778)

	fix #5884 allow --insecure CLI flag without contradicting meaning of ssl_verify (#6782)

	fix MatchSpec.match() accepting dict (#6808)

	fix broken Anaconda Prompt for users with spaces in paths (#6825)

	JSONDecodeError was added in Python 3.5 (#6848)

	fix #6796 update PATH/prompt on reactivate (#6828)

	fix #6401 non-ascii characters on windows using expanduser (#6847)

	fix #6824 import installers before invoking any (#6849)

4.4.8 (2018-01-25)

Improvements

	allow falsey values for default_python to avoid pinning python (#6682)

	resolve #6700 add message for no space left on device (#6709)

	make variable ‘sourced’ local for posix shells (#6726)

	add column headers to conda list results (#5726)

Bug Fixes

	fix #6713 allow parenthesis in prefix path for conda.bat (#6722)

	fix #6684 --force message (#6723)

	fix #6693 KeyError with ‘–update-deps’ (#6694)

	fix aggressive_update_packages availability (#6727)

	fix #6745 don’t truncate channel priority map in conda installer (#6746)

	add workaround for system Python usage by lsb_release (#6769)

	fix #6624 can’t start new thread (#6653)

	fix #6628 ‘conda install --rev’ in conda 4.4 (#6724)

	fix #6707 FileNotFoundError when extracting tarball (#6708)

	fix #6704 unexpected token in conda.bat (#6710)

	fix #6208 return for no pip in environment (#6784)

	fix #6457 env var cleanup (#6790)

	fix #6645 escape paths for argparse help (#6779)

	fix #6739 handle unicode in environment variables for py2 activate (#6777)

	fix #6618 RepresenterError with ‘conda config --set’ (#6619)

	fix #6699 suppress memory error upload reports (#6776)

	fix #6770 CRLF for cmd.exe (#6775)

	fix #6514 add message for case-insensitive filesystem errors (#6764)

	fix #6537 AttributeError value for url not set (#6754)

	fix #6748 only warn if unable to register environment due to EACCES (#6752)

4.4.7 (2018-01-08)

Improvements

	resolve #6650 add upgrade message for unicode errors in python 2 (#6651)

Bug Fixes

	fix #6643 difference between ‘==’ and ‘exact_match_’ (#6647)

	fix #6620 KeyError(u’CONDA_PREFIX’,) (#6652)

	fix #6661 remove env from environments.txt (#6662)

	fix #6629 ‘conda update --name’ AssertionError (#6656)

	fix #6630 repodata AssertionError (#6657)

	fix #6626 add setuptools as constrained dependency (#6654)

	fix #6659 conda list explicit should be dependency sorted (#6671)

	fix #6665 KeyError for channel ‘’ (#6668, #6673)

 Glossary

Glossary

.condarc

The Conda Runtime Configuration file, an optional .yaml file
that allows you to configure many aspects of conda, such as which
channels it searches for packages, proxy settings, and environment
directories. A .condarc file is not included by default, but
it is automatically created in your home directory
when you use the conda config command. The .condarc file
can also be located in a root environment, in which case it
overrides any .condarc in the home directory. For more
information, see Using the .condarc conda configuration file
and Administering a multi-user conda installation.
Pronounced "conda r-c".

Activate/Deactivate environment

Conda commands used to switch or move between installed
environments. The conda activate command prepends the path of your
current environment to the PATH environment variable so that you
do not need to type it each time. deactivate removes it.
Even when an environment is deactivated, you can still execute
programs in that environment by specifying their paths directly,
as in ~/anaconda/envs/envname/bin/program_name. When an
environment is activated, you can execute the program in that
environment with just program_name.

Note

Replace envname with the name of the environment and
replace program_name with the name of the program.

Anaconda

A downloadable, free, open-source, high-performance, and optimized
Python and R distribution. Anaconda includes
conda, conda-build, Python, and 250+
automatically installed, open-source scientific packages and
their dependencies that have been tested to work well together,
including SciPy, NumPy, and many others. Use the conda install command
to easily install 7,500+ popular open-source packages
for data science--including advanced and scientific
analytics--from the Anaconda repository. Use the conda
command to install thousands more open-source packages.

Because Anaconda is a Python distribution, it can make
installing Python quick and easy even for new users.

Available for Windows, macOS, and Linux, all versions of
Anaconda are supported by the community.

See also Miniconda and conda.

Anaconda.org

A web-based, repository hosting service in the cloud. Packages
created locally can be published to the cloud to be shared with
others. Anaconda.org [https://docs.anaconda.com/anacondaorg/] is a public version of Anaconda Repository
and was formerly known as Anaconda Cloud.

Anaconda Navigator

A desktop graphical user interface (GUI) included in all versions
of Anaconda that allows you to easily manage conda packages,
environments, channels, and notebooks without a command line
interface (CLI). See more about Navigator [https://docs.anaconda.com/navigator/].

Channels

The locations of the repositories where conda looks for packages.
Channels may point to a Cloud repository or a private
location on a remote or local repository that you or your organization
created. The conda channel command has a default set of channels to
search, beginning with https://repo.anaconda.com/pkgs/, which you may
override, for example, to maintain a private or internal channel.
These default channels are referred to in conda commands and in
the .condarc file by the channel name "defaults."

conda

The package and environment manager program bundled with Anaconda
that installs and updates conda packages and their dependencies.
Conda also lets you easily switch between conda environments on
your local computer.

conda environment

A folder or directory that contains a specific collection of
conda packages and their dependencies, so they can be maintained
and run separately without interference from each other. For
example, you may use a conda environment for only Python 2 and
Python 2 packages, maintain another conda environment with only
Python 3 and Python 3 packages, and maintain another for R
language packages. Environments can be created from:

	The Navigator GUI

	The command line

	An environment specification file with the name
your-environment-name.yml

conda package

A compressed file that contains everything that a software
program needs in order to be installed and run, so that you do
not have to manually find and install each dependency separately.
A conda package includes system-level libraries, Python or R
language modules, executable programs, and other components. You
manage conda packages with conda.

conda repository

A cloud-based repository that contains 7,500+ open-source certified
packages that are easily installed locally with the
conda install command. Anyone can access the repository from:

	The Navigator GUI

	A terminal using conda commands

	https://repo.anaconda.com/pkgs/

Metapackage

A metapackage is a very simple package that has at least a name
and a version. It need not have any dependencies or build steps.
Metapackages may list dependencies to several core,
low-level libraries and may contain links to software files
that are automatically downloaded when executed.

Miniconda

A free minimal installer for conda. Miniconda [https://docs.anaconda.com/free/miniconda/]
is a small, bootstrap version of Anaconda that includes only conda,
Python, the packages they depend on, and a small number of other useful
packages, including pip, zlib, and a few others. Use the
conda install command to install 7,500+ additional conda
packages from the Anaconda repository.

Miniconda is a Python distribution that can make
installing Python quick and easy even for new users.

See also Anaconda and conda.

Noarch package

A conda package that contains nothing specific to any system
architecture, so it may be installed from any system. When conda
searches for packages on any system in a channel, conda checks
both the system-specific subdirectory, such as linux-64, and
the noarch directory. Noarch is a contraction of "no architecture".

Package manager

A collection of software tools that automates the process of
installing, updating, configuring, and removing computer programs
for a computer's operating system. Also known as a package management
system. Conda is a package manager.

Packages

Software files and information about the software, such as its
name, the specific version, and a description, bundled into a
file that can be installed and managed by a package manager.

Plugins

Plugins, sometimes referred to as add-ons or extensions, are software or modules
that add new functions to a host program (e.g., conda) without directly altering
the host program itself. Amongst other uses, plugins support is utilized to
enable third-party developers to extend an application, support easily adding new
features, and to reduce the size of an application by not loading unused features.

Repository

Any storage location from which software assets may be retrieved
and installed on a local computer. See also
Anaconda.org and
conda repository.

Silent mode installation

When installing Miniconda or Anaconda in silent mode, screen
prompts are not shown on screen and default settings are
automatically accepted.

 Developer guide

Developer guide

	Architecture

	Contributing to conda

	Development Environment

	Deep dives
	conda install

	conda init and conda activate

	conda config and context

	Solvers

	Writing Tests

	Deprecations

	Releasing

	Plugins
	Auth Handlers

	Health Checks

	Post-commands

	Pre-commands

	Settings

	Solvers

	Subcommands

	Virtual Packages

	Specifications
	Technical specification: solver state

	Common initialization

	Processing specs for conda install

	Processing specs for conda remove

	API

 Architecture

Architecture

Conda is a complex system of many components and can be hard to
understand for users and developers alike. The following
C4 model [https://c4model.com/] based architecture diagrams should help in that regard.
As a refresher, the C4 model tries to visualize complex software
systems at different levels of detail, and explaining the functionality
to different types of audience.

Note

These diagrams represent the state of conda at the time
when the documentation was automatically build as part of the
development process for conda 24.3.1.dev56 (Apr 16, 2024).

C4 stands for the for levels:

	Context

	Container

	Component

	Code

Level 1: Context

This is the overview, 30,000 feet view on conda, to better understand
how conda in the center of the diagram interacts with other
systems and how users relate to it.

More information about how to interpret this diagram can be found in
the C4 model [https://c4model.com/] documentation about the System Context diagram [https://c4model.com/#SystemContextDiagram].

[image: @startuml !include <C4/C4_Dynamic> !include ../includes/base.puml System(conda, "conda", "Software package and environment management system") SystemDb_Ext(channels, "Channels", "Software package storage systems") ' Include relationships here once we've set the differences. !include ../includes/rels.puml @enduml]

Level 2: Container

This level is zooming in to conda on a system level, which was
in the center of the Level 1 diagram, to show the high-level shape
of the software architecture of and the various responsibilities
in conda, including major technology choices and communication
patterns between the various containers.

More information about how to interpret the following diagrams can be found
in the C4 model [https://c4model.com/] documentation about the Container diagram [https://c4model.com/#ContainerDiagram].

Channels

The following diagram focuses on the channels container from the level 1
diagram.

[image: @startuml !include <C4/C4_Container.puml> !include ../includes/base.puml ' Define the items different to the base diagram Container(conda, "conda", "Software package and environment management system") Container_Boundary(channels, "Channels") { Container_Boundary(community, "Community-maintained channels") { ContainerDb_Ext(bioconda, "bioconda", "Bioinformatics software") ContainerDb_Ext(conda_forge, "conda-forge", "General purpose software") ContainerDb_Ext(other_channels, "other", "Other channels") } Container_Boundary(defaults, "Defaults channel, maintained by Anaconda Inc.") { ContainerDb(msys2, "MSYS2", "Windows-only software packages") ContainerDb(mro, "R", "Microsoft R Open software packages") ContainerDb(anaconda, "anaconda", "Main software packages") } } ' Include relationships here once we've set the differences. !include ../includes/rels.puml @enduml]

Conda

The following diagram focuses on the conda container from the level 1 diagram.

[image: @startuml !include <C4/C4_Container.puml> !include ../includes/base.puml ' Define the items different to the base diagram Container_Boundary(conda, "Conda") { Container(conda_api, "conda.api", "Python API", "High-level, public Python API to interact with lower-level functionality") Container(conda_base, "conda.base", "Base", "Fast base code loaded on every conda run") Container(conda_cli, "conda.cli", "Command Line Interface", "Handles user commands and is divided into subcommands") Container(conda_core, "conda.core", "Core", "Contains core application logic, e.g. solver") Container(conda_common, "conda.common", "Common", "Generic code that lives next to rest of Conda") Container(conda_exceptions, "conda.exceptions", "Exceptions", "Project-wide exception subclasses") Container(conda_gateways, "conda.gateways", "I/O", "File and network handling code") Container(conda_models, "conda.models", "Models", "Data classes for conda-internal handling") Container(conda_resolve, "conda.resolve", "Resolve", "Low-level solver code") Container(conda_shell, "conda.shell", "Shell", "Shell support code") Container(conda_vendor, "conda._vendor", "Vendor", "Manually maintained") } ContainerDb_Ext(channels, "Channels", "Software package storage systems") ' Include relationships here once we've set the differences. !include ../includes/rels.puml @enduml]

Level 3: Component

Yet another zoom-in, in which individual containers from Level 2
are decomposed to show major building blocks in conda and their
interactions. Those building blocks are called components in
the sense that they each have a higher function and relate to
an identifiable responsibility and implementation details.

[image: @startuml packages_conda set namespaceSeparator none left to right direction skinparam nodesep 5 skinparam ranksep 5 package "conda" as conda #77AADD { } package "conda.__main__" as conda.__main__ #77AADD { } package "conda._version" as conda._version #77AADD { } package "conda.activate" as conda.activate #77AADD { } package "conda.auxlib" as conda.auxlib #99DDFF { } package "conda.auxlib.collection" as conda.auxlib.collection #99DDFF { } package "conda.auxlib.decorators" as conda.auxlib.decorators #99DDFF { } package "conda.auxlib.entity" as conda.auxlib.entity #99DDFF { } package "conda.auxlib.exceptions" as conda.auxlib.exceptions #99DDFF { } package "conda.auxlib.ish" as conda.auxlib.ish #99DDFF { } package "conda.auxlib.logz" as conda.auxlib.logz #99DDFF { } package "conda.auxlib.type_coercion" as conda.auxlib.type_coercion #99DDFF { } package "conda.base" as conda.base #44BB99 { } package "conda.base.constants" as conda.base.constants #44BB99 { } package "conda.base.context" as conda.base.context #44BB99 { } package "conda.base.exceptions" as conda.base.exceptions #44BB99 { } package "conda.cli" as conda.cli #BBCC33 { } package "conda.cli.actions" as conda.cli.actions #BBCC33 { } package "conda.cli.common" as conda.cli.common #BBCC33 { } package "conda.cli.conda_argparse" as conda.cli.conda_argparse #BBCC33 { } package "conda.cli.find_commands" as conda.cli.find_commands #BBCC33 { } package "conda.cli.helpers" as conda.cli.helpers #BBCC33 { } package "conda.cli.install" as conda.cli.install #BBCC33 { } package "conda.cli.main" as conda.cli.main #BBCC33 { } package "conda.cli.main_clean" as conda.cli.main_clean #BBCC33 { } package "conda.cli.main_compare" as conda.cli.main_compare #BBCC33 { } package "conda.cli.main_config" as conda.cli.main_config #BBCC33 { } package "conda.cli.main_create" as conda.cli.main_create #BBCC33 { } package "conda.cli.main_env" as conda.cli.main_env #BBCC33 { } package "conda.cli.main_env_config" as conda.cli.main_env_config #BBCC33 { } package "conda.cli.main_env_create" as conda.cli.main_env_create #BBCC33 { } package "conda.cli.main_env_export" as conda.cli.main_env_export #BBCC33 { } package "conda.cli.main_env_list" as conda.cli.main_env_list #BBCC33 { } package "conda.cli.main_env_remove" as conda.cli.main_env_remove #BBCC33 { } package "conda.cli.main_env_update" as conda.cli.main_env_update #BBCC33 { } package "conda.cli.main_env_vars" as conda.cli.main_env_vars #BBCC33 { } package "conda.cli.main_export" as conda.cli.main_export #BBCC33 { } package "conda.cli.main_info" as conda.cli.main_info #BBCC33 { } package "conda.cli.main_init" as conda.cli.main_init #BBCC33 { } package "conda.cli.main_install" as conda.cli.main_install #BBCC33 { } package "conda.cli.main_list" as conda.cli.main_list #BBCC33 { } package "conda.cli.main_mock_activate" as conda.cli.main_mock_activate #BBCC33 { } package "conda.cli.main_mock_deactivate" as conda.cli.main_mock_deactivate #BBCC33 { } package "conda.cli.main_notices" as conda.cli.main_notices #BBCC33 { } package "conda.cli.main_package" as conda.cli.main_package #BBCC33 { } package "conda.cli.main_pip" as conda.cli.main_pip #BBCC33 { } package "conda.cli.main_remove" as conda.cli.main_remove #BBCC33 { } package "conda.cli.main_rename" as conda.cli.main_rename #BBCC33 { } package "conda.cli.main_run" as conda.cli.main_run #BBCC33 { } package "conda.cli.main_search" as conda.cli.main_search #BBCC33 { } package "conda.cli.main_update" as conda.cli.main_update #BBCC33 { } package "conda.cli.python_api" as conda.cli.python_api #BBCC33 { } package "conda.common" as conda.common #AAAA00 { } package "conda.common._logic" as conda.common._logic #AAAA00 { } package "conda.common._os" as conda.common._os #EEDD88 { } package "conda.common._os.linux" as conda.common._os.linux #EEDD88 { } package "conda.common._os.unix" as conda.common._os.unix #EEDD88 { } package "conda.common._os.windows" as conda.common._os.windows #EEDD88 { } package "conda.common.configuration" as conda.common.configuration #AAAA00 { } package "conda.common.constants" as conda.common.constants #AAAA00 { } package "conda.common.decorators" as conda.common.decorators #AAAA00 { } package "conda.common.disk" as conda.common.disk #AAAA00 { } package "conda.common.io" as conda.common.io #AAAA00 { } package "conda.common.iterators" as conda.common.iterators #AAAA00 { } package "conda.common.logic" as conda.common.logic #AAAA00 { } package "conda.common.path" as conda.common.path #AAAA00 { } package "conda.common.pkg_formats" as conda.common.pkg_formats #EE8866 { } package "conda.common.pkg_formats.python" as conda.common.pkg_formats.python #EE8866 { } package "conda.common.serialize" as conda.common.serialize #AAAA00 { } package "conda.common.signals" as conda.common.signals #AAAA00 { } package "conda.common.toposort" as conda.common.toposort #AAAA00 { } package "conda.common.url" as conda.common.url #AAAA00 { } package "conda.core" as conda.core #FFAABB { } package "conda.core.envs_manager" as conda.core.envs_manager #FFAABB { } package "conda.core.index" as conda.core.index #FFAABB { } package "conda.core.initialize" as conda.core.initialize #FFAABB { } package "conda.core.link" as conda.core.link #FFAABB { } package "conda.core.package_cache" as conda.core.package_cache #FFAABB { } package "conda.core.package_cache_data" as conda.core.package_cache_data #FFAABB { } package "conda.core.path_actions" as conda.core.path_actions #FFAABB { } package "conda.core.portability" as conda.core.portability #FFAABB { } package "conda.core.prefix_data" as conda.core.prefix_data #FFAABB { } package "conda.core.solve" as conda.core.solve #FFAABB { } package "conda.core.subdir_data" as conda.core.subdir_data #FFAABB { } package "conda.deprecations" as conda.deprecations #77AADD { } package "conda.env" as conda.env #DDDDDD { } package "conda.env.env" as conda.env.env #DDDDDD { } package "conda.env.installers" as conda.env.installers #77AADD { } package "conda.env.installers.base" as conda.env.installers.base #77AADD { } package "conda.env.installers.conda" as conda.env.installers.conda #77AADD { } package "conda.env.installers.pip" as conda.env.installers.pip #77AADD { } package "conda.env.pip_util" as conda.env.pip_util #DDDDDD { } package "conda.env.specs" as conda.env.specs #99DDFF { } package "conda.env.specs.binstar" as conda.env.specs.binstar #99DDFF { } package "conda.env.specs.requirements" as conda.env.specs.requirements #99DDFF { } package "conda.env.specs.yaml_file" as conda.env.specs.yaml_file #99DDFF { } package "conda.exception_handler" as conda.exception_handler #77AADD { } package "conda.exceptions" as conda.exceptions #77AADD { } package "conda.gateways" as conda.gateways #44BB99 { } package "conda.gateways.anaconda_client" as conda.gateways.anaconda_client #44BB99 { } package "conda.gateways.connection" as conda.gateways.connection #BBCC33 { } package "conda.gateways.connection.adapters" as conda.gateways.connection.adapters #AAAA00 { } package "conda.gateways.connection.adapters.ftp" as conda.gateways.connection.adapters.ftp #AAAA00 { } package "conda.gateways.connection.adapters.http" as conda.gateways.connection.adapters.http #AAAA00 { } package "conda.gateways.connection.adapters.localfs" as conda.gateways.connection.adapters.localfs #AAAA00 { } package "conda.gateways.connection.adapters.s3" as conda.gateways.connection.adapters.s3 #AAAA00 { } package "conda.gateways.connection.download" as conda.gateways.connection.download #BBCC33 { } package "conda.gateways.connection.session" as conda.gateways.connection.session #BBCC33 { } package "conda.gateways.disk" as conda.gateways.disk #EEDD88 { } package "conda.gateways.disk.create" as conda.gateways.disk.create #EEDD88 { } package "conda.gateways.disk.delete" as conda.gateways.disk.delete #EEDD88 { } package "conda.gateways.disk.link" as conda.gateways.disk.link #EEDD88 { } package "conda.gateways.disk.lock" as conda.gateways.disk.lock #EEDD88 { } package "conda.gateways.disk.permissions" as conda.gateways.disk.permissions #EEDD88 { } package "conda.gateways.disk.read" as conda.gateways.disk.read #EEDD88 { } package "conda.gateways.disk.test" as conda.gateways.disk.test #EEDD88 { } package "conda.gateways.disk.update" as conda.gateways.disk.update #EEDD88 { } package "conda.gateways.logging" as conda.gateways.logging #44BB99 { } package "conda.gateways.repodata" as conda.gateways.repodata #EE8866 { } package "conda.gateways.repodata.jlap" as conda.gateways.repodata.jlap #FFAABB { } package "conda.gateways.repodata.jlap.core" as conda.gateways.repodata.jlap.core #FFAABB { } package "conda.gateways.repodata.jlap.fetch" as conda.gateways.repodata.jlap.fetch #FFAABB { } package "conda.gateways.repodata.jlap.interface" as conda.gateways.repodata.jlap.interface #FFAABB { } package "conda.gateways.repodata.lock" as conda.gateways.repodata.lock #EE8866 { } package "conda.gateways.subprocess" as conda.gateways.subprocess #44BB99 { } package "conda.history" as conda.history #77AADD { } package "conda.instructions" as conda.instructions #77AADD { } package "conda.models" as conda.models #DDDDDD { } package "conda.models.channel" as conda.models.channel #DDDDDD { } package "conda.models.dist" as conda.models.dist #DDDDDD { } package "conda.models.enums" as conda.models.enums #DDDDDD { } package "conda.models.leased_path_entry" as conda.models.leased_path_entry #DDDDDD { } package "conda.models.match_spec" as conda.models.match_spec #DDDDDD { } package "conda.models.package_info" as conda.models.package_info #DDDDDD { } package "conda.models.prefix_graph" as conda.models.prefix_graph #DDDDDD { } package "conda.models.records" as conda.models.records #DDDDDD { } package "conda.models.version" as conda.models.version #DDDDDD { } package "conda.notices" as conda.notices #77AADD { } package "conda.notices.cache" as conda.notices.cache #77AADD { } package "conda.notices.core" as conda.notices.core #77AADD { } package "conda.notices.fetch" as conda.notices.fetch #77AADD { } package "conda.notices.types" as conda.notices.types #77AADD { } package "conda.notices.views" as conda.notices.views #77AADD { } package "conda.plan" as conda.plan #77AADD { } package "conda.plugins" as conda.plugins #99DDFF { } package "conda.plugins.hookspec" as conda.plugins.hookspec #99DDFF { } package "conda.plugins.manager" as conda.plugins.manager #99DDFF { } package "conda.plugins.post_solves" as conda.plugins.post_solves #44BB99 { } package "conda.plugins.post_solves.signature_verification" as conda.plugins.post_solves.signature_verification #44BB99 { } package "conda.plugins.solvers" as conda.plugins.solvers #99DDFF { } package "conda.plugins.subcommands" as conda.plugins.subcommands #BBCC33 { } package "conda.plugins.subcommands.doctor" as conda.plugins.subcommands.doctor #AAAA00 { } package "conda.plugins.subcommands.doctor.health_checks" as conda.plugins.subcommands.doctor.health_checks #AAAA00 { } package "conda.plugins.types" as conda.plugins.types #99DDFF { } package "conda.plugins.virtual_packages" as conda.plugins.virtual_packages #EEDD88 { } package "conda.plugins.virtual_packages.archspec" as conda.plugins.virtual_packages.archspec #EEDD88 { } package "conda.plugins.virtual_packages.conda" as conda.plugins.virtual_packages.conda #EEDD88 { } package "conda.plugins.virtual_packages.cuda" as conda.plugins.virtual_packages.cuda #EEDD88 { } package "conda.plugins.virtual_packages.freebsd" as conda.plugins.virtual_packages.freebsd #EEDD88 { } package "conda.plugins.virtual_packages.linux" as conda.plugins.virtual_packages.linux #EEDD88 { } package "conda.plugins.virtual_packages.osx" as conda.plugins.virtual_packages.osx #EEDD88 { } package "conda.plugins.virtual_packages.windows" as conda.plugins.virtual_packages.windows #EEDD88 { } package "conda.resolve" as conda.resolve #77AADD { } package "conda.testing" as conda.testing #EE8866 { } package "conda.testing.cases" as conda.testing.cases #EE8866 { } package "conda.testing.fixtures" as conda.testing.fixtures #EE8866 { } package "conda.testing.gateways" as conda.testing.gateways #FFAABB { } package "conda.testing.gateways.fixtures" as conda.testing.gateways.fixtures #FFAABB { } package "conda.testing.helpers" as conda.testing.helpers #EE8866 { } package "conda.testing.integration" as conda.testing.integration #EE8866 { } package "conda.testing.notices" as conda.testing.notices #DDDDDD { } package "conda.testing.notices.fixtures" as conda.testing.notices.fixtures #DDDDDD { } package "conda.testing.notices.helpers" as conda.testing.notices.helpers #DDDDDD { } package "conda.testing.solver_helpers" as conda.testing.solver_helpers #EE8866 { } package "conda.trust" as conda.trust #77AADD { } package "conda.trust.constants" as conda.trust.constants #77AADD { } package "conda.trust.signature_verification" as conda.trust.signature_verification #77AADD { } conda --> conda._version conda --> conda.exceptions conda.__main__ --> conda.cli conda.__main__ --> conda.cli.main conda.activate --> conda.base.constants conda.activate --> conda.base.context conda.activate --> conda.cli.conda_argparse conda.activate --> conda.cli.find_commands conda.activate --> conda.common.path conda.activate --> conda.deprecations conda.activate --> conda.exceptions conda.auxlib.entity --> conda.auxlib.collection conda.auxlib.entity --> conda.auxlib.exceptions conda.auxlib.entity --> conda.auxlib.ish conda.auxlib.entity --> conda.auxlib.logz conda.auxlib.entity --> conda.auxlib.type_coercion conda.auxlib.type_coercion --> conda.auxlib.decorators conda.auxlib.type_coercion --> conda.auxlib.exceptions conda.base.context --> conda.base.constants conda.base.context --> conda.base.exceptions conda.cli --> conda.cli.main conda.cli.actions --> conda.cli.common conda.cli.conda_argparse --> conda.cli.actions conda.cli.conda_argparse --> conda.cli.common conda.cli.conda_argparse --> conda.cli.find_commands conda.cli.conda_argparse --> conda.cli.helpers conda.cli.conda_argparse --> conda.cli.main_clean conda.cli.conda_argparse --> conda.cli.main_compare conda.cli.conda_argparse --> conda.cli.main_config conda.cli.conda_argparse --> conda.cli.main_create conda.cli.conda_argparse --> conda.cli.main_env conda.cli.conda_argparse --> conda.cli.main_export conda.cli.conda_argparse --> conda.cli.main_info conda.cli.conda_argparse --> conda.cli.main_init conda.cli.conda_argparse --> conda.cli.main_install conda.cli.conda_argparse --> conda.cli.main_list conda.cli.conda_argparse --> conda.cli.main_mock_activate conda.cli.conda_argparse --> conda.cli.main_mock_deactivate conda.cli.conda_argparse --> conda.cli.main_notices conda.cli.conda_argparse --> conda.cli.main_package conda.cli.conda_argparse --> conda.cli.main_remove conda.cli.conda_argparse --> conda.cli.main_rename conda.cli.conda_argparse --> conda.cli.main_run conda.cli.conda_argparse --> conda.cli.main_search conda.cli.conda_argparse --> conda.cli.main_update conda.cli.find_commands --> conda.cli.common conda.cli.helpers --> conda.cli.actions conda.cli.helpers --> conda.cli.common conda.cli.install --> conda.cli.common conda.cli.install --> conda.cli.common conda.cli.install --> conda.cli.python_api conda.cli.main --> conda.cli.common conda.cli.main --> conda.cli.conda_argparse conda.cli.main_clean --> conda.cli.actions conda.cli.main_clean --> conda.cli.common conda.cli.main_clean --> conda.cli.helpers conda.cli.main_compare --> conda.cli.common conda.cli.main_compare --> conda.cli.helpers conda.cli.main_config --> conda.cli.common conda.cli.main_config --> conda.cli.common conda.cli.main_config --> conda.cli.helpers conda.cli.main_create --> conda.cli.actions conda.cli.main_create --> conda.cli.common conda.cli.main_create --> conda.cli.common conda.cli.main_create --> conda.cli.helpers conda.cli.main_create --> conda.cli.install conda.cli.main_env_config --> conda.cli.main_env_vars conda.cli.main_env_create --> conda.cli.helpers conda.cli.main_env_export --> conda.cli.main_export conda.cli.main_env_export --> conda.deprecations conda.cli.main_env_list --> conda.cli.helpers conda.cli.main_env_remove --> conda.cli.helpers conda.cli.main_env_update --> conda.cli.helpers conda.cli.main_env_vars --> conda.cli.helpers conda.cli.main_export --> conda.cli.common conda.cli.main_export --> conda.cli.common conda.cli.main_export --> conda.cli.helpers conda.cli.main_info --> conda.cli.common conda.cli.main_info --> conda.cli.common conda.cli.main_info --> conda.cli.find_commands conda.cli.main_info --> conda.cli.helpers conda.cli.main_init --> conda.cli.common conda.cli.main_init --> conda.cli.helpers conda.cli.main_install --> conda.cli.actions conda.cli.main_install --> conda.cli.common conda.cli.main_install --> conda.cli.helpers conda.cli.main_install --> conda.cli.install conda.cli.main_list --> conda.cli.common conda.cli.main_list --> conda.cli.helpers conda.cli.main_notices --> conda.cli.helpers conda.cli.main_package --> conda.cli.common conda.cli.main_package --> conda.cli.helpers conda.cli.main_pip --> conda.cli.main conda.cli.main_remove --> conda.cli.actions conda.cli.main_remove --> conda.cli.common conda.cli.main_remove --> conda.cli.common conda.cli.main_remove --> conda.cli.helpers conda.cli.main_remove --> conda.cli.install conda.cli.main_rename --> conda.cli.common conda.cli.main_rename --> conda.cli.helpers conda.cli.main_run --> conda.cli.actions conda.cli.main_run --> conda.cli.common conda.cli.main_run --> conda.cli.common conda.cli.main_run --> conda.cli.helpers conda.cli.main_search --> conda.cli.common conda.cli.main_search --> conda.cli.helpers conda.cli.main_update --> conda.cli.common conda.cli.main_update --> conda.cli.helpers conda.cli.main_update --> conda.cli.install conda.cli.python_api --> conda.cli.common conda.cli.python_api --> conda.cli.conda_argparse conda.common._logic --> conda.common.constants conda.common._os --> conda.common._os.windows conda.common.configuration --> conda.common.constants conda.common.configuration --> conda.common.serialize conda.common.io --> conda.common.constants conda.common.io --> conda.common.io conda.common.io --> conda.common.path conda.common.logic --> conda.common._logic conda.common.path --> conda.common.url conda.common.serialize --> conda.common.io conda.common.url --> conda.common.path conda.core.envs_manager --> conda.core.prefix_data conda.core.index --> conda.core.package_cache_data conda.core.index --> conda.core.prefix_data conda.core.index --> conda.core.subdir_data conda.core.initialize --> conda.core.portability conda.core.link --> conda.core.package_cache_data conda.core.link --> conda.core.path_actions conda.core.link --> conda.core.prefix_data conda.core.package_cache --> conda.core.package_cache_data conda.core.package_cache_data --> conda.core.path_actions conda.core.path_actions --> conda.core.envs_manager conda.core.path_actions --> conda.core.package_cache_data conda.core.path_actions --> conda.core.portability conda.core.path_actions --> conda.core.prefix_data conda.core.solve --> conda.core.index conda.core.solve --> conda.core.link conda.core.solve --> conda.core.prefix_data conda.core.solve --> conda.core.subdir_data conda.core.subdir_data --> conda.core.index conda.env.installers.conda --> conda.env.installers.base conda.env.installers.pip --> conda.env.installers.base conda.env.specs --> conda.env.specs.binstar conda.env.specs --> conda.env.specs.requirements conda.env.specs --> conda.env.specs.yaml_file conda.exception_handler --> conda.auxlib.entity conda.exception_handler --> conda.auxlib.type_coercion conda.exception_handler --> conda.base.context conda.exception_handler --> conda.cli.common conda.exception_handler --> conda.cli.main conda.exception_handler --> conda.cli.main_info conda.exception_handler --> conda.common.io conda.exception_handler --> conda.exceptions conda.exceptions --> conda.auxlib.entity conda.exceptions --> conda.auxlib.ish conda.exceptions --> conda.auxlib.logz conda.exceptions --> conda.base.constants conda.exceptions --> conda.base.context conda.exceptions --> conda.cli.find_commands conda.exceptions --> conda.cli.main conda.exceptions --> conda.common.io conda.exceptions --> conda.common.iterators conda.exceptions --> conda.common.signals conda.exceptions --> conda.common.url conda.exceptions --> conda.deprecations conda.exceptions --> conda.exception_handler conda.exceptions --> conda.models.channel conda.exceptions --> conda.models.match_spec conda.exceptions --> conda.models.records conda.gateways.anaconda_client --> conda.gateways.disk.delete conda.gateways.anaconda_client --> conda.gateways.logging conda.gateways.connection.download --> conda.gateways.connection.session conda.gateways.connection.session --> conda.gateways.connection.adapters.ftp conda.gateways.connection.session --> conda.gateways.connection.adapters.http conda.gateways.connection.session --> conda.gateways.connection.adapters.localfs conda.gateways.connection.session --> conda.gateways.connection.adapters.s3 conda.gateways.disk --> conda.gateways.logging conda.gateways.disk --> conda.gateways.subprocess conda.gateways.disk.create --> conda.gateways.disk.delete conda.gateways.disk.create --> conda.gateways.disk.link conda.gateways.disk.create --> conda.gateways.disk.permissions conda.gateways.disk.create --> conda.gateways.disk.update conda.gateways.disk.delete --> conda.gateways.disk.link conda.gateways.disk.delete --> conda.gateways.disk.permissions conda.gateways.disk.permissions --> conda.gateways.disk.link conda.gateways.disk.read --> conda.gateways.disk.create conda.gateways.disk.read --> conda.gateways.disk.link conda.gateways.disk.test --> conda.gateways.disk.create conda.gateways.disk.test --> conda.gateways.disk.delete conda.gateways.disk.test --> conda.gateways.disk.link conda.gateways.disk.update --> conda.gateways.disk.delete conda.gateways.disk.update --> conda.gateways.disk.link conda.gateways.logging --> conda.gateways.logging conda.gateways.repodata --> conda.gateways.connection conda.gateways.repodata --> conda.gateways.connection.session conda.gateways.repodata --> conda.gateways.disk conda.gateways.repodata --> conda.gateways.disk.lock conda.gateways.repodata --> conda.gateways.repodata.jlap.interface conda.gateways.repodata.jlap.fetch --> conda.common.url conda.gateways.repodata.jlap.fetch --> conda.gateways.repodata.jlap.core conda.gateways.subprocess --> conda.gateways.logging conda.gateways.subprocess --> conda.gateways.subprocess conda.history --> conda.auxlib.ish conda.history --> conda.base.constants conda.history --> conda.base.context conda.history --> conda.common.iterators conda.history --> conda.common.path conda.history --> conda.core.prefix_data conda.history --> conda.exceptions conda.history --> conda.gateways.disk.update conda.history --> conda.models.dist conda.history --> conda.models.match_spec conda.history --> conda.models.version conda.instructions --> conda.core.link conda.instructions --> conda.core.package_cache_data conda.instructions --> conda.deprecations conda.instructions --> conda.exceptions conda.instructions --> conda.gateways.disk.link conda.models.dist --> conda.models.channel conda.models.dist --> conda.models.match_spec conda.models.dist --> conda.models.package_info conda.models.dist --> conda.models.records conda.models.leased_path_entry --> conda.models.enums conda.models.match_spec --> conda.models.channel conda.models.match_spec --> conda.models.records conda.models.match_spec --> conda.models.version conda.models.package_info --> conda.models.channel conda.models.package_info --> conda.models.enums conda.models.package_info --> conda.models.records conda.models.prefix_graph --> conda.models.enums conda.models.prefix_graph --> conda.models.match_spec conda.models.records --> conda.models.channel conda.models.records --> conda.models.enums conda.models.records --> conda.models.match_spec conda.notices --> conda.core conda.notices.cache --> conda.notices.types conda.notices.core --> conda.notices.types conda.notices.fetch --> conda.notices.cache conda.notices.fetch --> conda.notices.types conda.notices.views --> conda.notices.types conda.plan --> conda.base.constants conda.plan --> conda.base.context conda.plan --> conda.common.constants conda.plan --> conda.common.io conda.plan --> conda.common.iterators conda.plan --> conda.core.index conda.plan --> conda.core.link conda.plan --> conda.core.package_cache_data conda.plan --> conda.core.prefix_data conda.plan --> conda.core.solve conda.plan --> conda.exceptions conda.plan --> conda.history conda.plan --> conda.instructions conda.plan --> conda.models.channel conda.plan --> conda.models.dist conda.plan --> conda.models.enums conda.plan --> conda.models.match_spec conda.plan --> conda.models.prefix_graph conda.plan --> conda.models.records conda.plan --> conda.models.version conda.plan --> conda.resolve conda.plugins --> conda.plugins.hookspec conda.plugins --> conda.plugins.types conda.plugins.manager --> conda.plugins.hookspec conda.plugins.manager --> conda.plugins.subcommands.doctor conda.plugins.manager --> conda.plugins.subcommands.doctor.health_checks conda.resolve --> conda.auxlib.decorators conda.resolve --> conda.base.constants conda.resolve --> conda.base.context conda.resolve --> conda.common.io conda.resolve --> conda.common.iterators conda.resolve --> conda.common.logic conda.resolve --> conda.common.toposort conda.resolve --> conda.core.subdir_data conda.resolve --> conda.exceptions conda.resolve --> conda.models.channel conda.resolve --> conda.models.enums conda.resolve --> conda.models.match_spec conda.resolve --> conda.models.records conda.resolve --> conda.models.version conda.testing --> conda.activate conda.testing --> conda.auxlib.entity conda.testing --> conda.base.constants conda.testing --> conda.base.context conda.testing --> conda.cli.main conda.testing --> conda.common.url conda.testing --> conda.core.package_cache_data conda.testing --> conda.deprecations conda.testing --> conda.exceptions conda.testing --> conda.models.records conda.testing.integration --> conda.testing.gateways conda.trust.signature_verification --> conda.trust.constants conda.plugins.hookspec ..> conda.plugins.types conda.plugins.manager ..> conda.plugins.types @enduml]

More information about how to interpret this diagram can be found in
the C4 model [https://c4model.com/] documentation about the Component diagram [https://c4model.com/#ComponentDiagram].

Level 4: Code

This part is auto-generated based on the current code and shows
how the code is structured and how it interacts. For brevity this
ignores a number of subsystems like the public API and exports modules,
utility and vendor packages.

More information about how to interpret this diagram can be found in
the C4 model [https://c4model.com/] documentation about the Code diagram [https://c4model.com/#CodeDiagram].

[image: @startuml classes_conda set namespaceSeparator none left to right direction skinparam nodesep 5 skinparam ranksep 5 class "ActionGroup" as conda.core.link.ActionGroup #FFAABB { actions : Iterable[_Action] pkg_data : PackageInfo | None target_prefix : str type : str } class "<color:red>ActivateHelp</color>" as conda.exceptions.ActivateHelp #77AADD { } class "AggregateCompileMultiPycAction" as conda.core.path_actions.AggregateCompileMultiPycAction #FFAABB { } class "Arch" as conda.models.enums.Arch #DDDDDD { name from_sys() } class "ArgParseRawParameter" as conda.common.configuration.ArgParseRawParameter #AAAA00 { source : str keyflag() make_raw_parameters(args_from_argparse) value(parameter_obj) valueflags(parameter_obj) } class "<color:red>ArgumentError</color>" as conda.exceptions.ArgumentError #77AADD { return_code : int } class "ArgumentParser" as conda.cli.conda_argparse.ArgumentParser #BBCC33 { parse_args() } class "<color:red>AssignmentError</color>" as conda.auxlib.exceptions.AssignmentError #99DDFF { } class "AttrDict" as conda.auxlib.collection.AttrDict #99DDFF { } class "AuthBase" as requests.auth.AuthBase #99DDFF { } class "<color:red>AuthenticationError</color>" as conda.exceptions.AuthenticationError #77AADD { } class "<color:red>AuthenticationError</color>" as conda.auxlib.exceptions.AuthenticationError #99DDFF { } class "AuxlibError" as conda.auxlib.exceptions.AuxlibError #99DDFF { } class "BaseAdapter" as requests.adapters.BaseAdapter #99DDFF { {abstract}close() {abstract}send(request, stream, timeout, verify, cert, proxies) } class "BaseSpec" as conda.models.version.BaseSpec #DDDDDD { exact_value match raw_value spec spec_str all_match(spec_str) always_true_match(spec_str) any_match(spec_str) exact_match(spec_str) is_exact() {abstract}merge(other) operator_match(spec_str) regex_match(spec_str) } class "BaseTestCase" as conda.testing.cases.BaseTestCase #EE8866 { fixture_names : tuple auto_injector_fixture(request) } class "<color:red>BasicClobberError</color>" as conda.exceptions.BasicClobberError #77AADD { } class "<color:red>BinaryPrefixReplacementError</color>" as conda.exceptions.BinaryPrefixReplacementError #77AADD { } class "BinstarSpec" as conda.env.specs.binstar.BinstarSpec #99DDFF { binstar environment file_data msg : NoneType name : NoneType package packagename username can_handle() -> bool valid_name() -> bool valid_package() -> bool } class "BooleanField" as conda.auxlib.entity.BooleanField #99DDFF { box(instance, instance_type, val) } class "BuildNumberMatch" as conda.models.version.BuildNumberMatch #DDDDDD { exact_value matcher_vo operator_func regex get_matcher(vspec) merge(other) union(other) } class "CacheUrlAction" as conda.core.path_actions.CacheUrlAction #FFAABB { hold_path md5 : NoneType sha256 : NoneType size : NoneType target_full_path target_package_basename target_pkgs_dir url cleanup() execute(progress_update_callback) reverse() verify() } class "<color:red>CancelOperation</color>" as conda.gateways.disk.update.CancelOperation #EEDD88 { } class "CaptureTarget" as conda.common.io.CaptureTarget #AAAA00 { name } class "CapturedText" as conda.common.io.captured.CapturedText #44BB99 { stderr : NoneType, StringIO stdout : StringIO } class "CaseInsensitiveDict" as requests.structures.CaseInsensitiveDict #99DDFF { copy() lower_items() } class "CaseInsensitiveStrMatch" as conda.models.match_spec.CaseInsensitiveStrMatch #DDDDDD { match(other) } class "ChangeReport" as conda.core.link.ChangeReport #FFAABB { downgraded_precs : Iterable[PackageRecord] fetch_precs : Iterable[PackageRecord] new_precs : Iterable[PackageRecord] prefix : str removed_precs : Iterable[PackageRecord] specs_to_add : Iterable[MatchSpec] specs_to_remove : Iterable[MatchSpec] superseded_precs : Iterable[PackageRecord] updated_precs : Iterable[PackageRecord] } class "Channel" as conda.models.channel.Channel #DDDDDD { auth : NoneType base_url base_urls canonical_name channel_location channel_name location : NoneType name : str package_filename : NoneType platform : NoneType scheme : NoneType subdir subdir_url token : NoneType url_channel_wtf dump() from_channel_name(channel_name) from_url(url) from_value(value) make_simple_channel(channel_alias, channel_url, name) url(with_credentials) urls(with_credentials, subdirs) } class "ChannelAuthBase" as conda.plugins.types.ChannelAuthBase #99DDFF { } class "<color:red>ChannelError</color>" as conda.exceptions.ChannelError #77AADD { } class "ChannelField" as conda.models.records.ChannelField #DDDDDD { dump(instance, instance_type, val) } class "ChannelMatch" as conda.models.match_spec.ChannelMatch #DDDDDD { match(other) } class "ChannelNameMixin" as conda.plugins.types.ChannelNameMixin #99DDFF { channel_name : str } class "<color:red>ChannelNotAllowed</color>" as conda.exceptions.ChannelNotAllowed #77AADD { } class "ChannelNotice" as conda.notices.types.ChannelNotice #77AADD { channel_name : str | None created_at : datetime | None expired_at : datetime | None id : str interval : int | None level message : str | None to_dict() } class "ChannelNoticeResponse" as conda.notices.types.ChannelNoticeResponse #77AADD { json_data : dict | None name : str notices url : str get_cache_key(url: str, cache_dir: Path) -> Path } class "ChannelNoticeResultSet" as conda.notices.types.ChannelNoticeResultSet #77AADD { channel_notices : Sequence[ChannelNotice] total_number_channel_notices : int viewed_channel_notices : int } class "ChannelPriority" as conda.base.constants.ChannelPriority #44BB99 { DISABLED : str FLEXIBLE : str STRICT : str } class "ChannelPriorityMeta" as conda.base.constants.ChannelPriorityMeta #44BB99 { } class "ChannelType" as conda.models.channel.ChannelType #DDDDDD { } class "<color:red>ChecksumMismatchError</color>" as conda.exceptions.ChecksumMismatchError #77AADD { } class "Clauses" as conda.common._logic.Clauses #AAAA00 { add_clause add_clauses m : int unsat : bool All(iter, polarity) And(f, g, polarity, add_new_clauses) Any(iter, polarity) AtMostOne_BDD(vals, polarity) AtMostOne_NSQ(vals, polarity) BDD(lits, coeffs, nterms, lo, hi, polarity) Combine(args, polarity) Eval(func, args, polarity) ExactlyOne_BDD(vals, polarity) ExactlyOne_NSQ(vals, polarity) ITE(c, t, f, polarity, add_new_clauses) LB_Preprocess(lits, coeffs) LinearBound(lits, coeffs, lo, hi, preprocess, polarity) Not(x, polarity, add_new_clauses) Or(f, g, polarity, add_new_clauses) Prevent(func) Require(func) Xor(f, g, polarity, add_new_clauses) as_list() assign(vals) get_clause_count() minimize(lits, coeffs, bestsol, trymax) new_var() sat(additional, includeIf, limit) } class "Clauses" as conda.common.logic.Clauses #AAAA00 { indices : dict m names : dict unsat All(iter, polarity, name) And(f, g, polarity, name) Any(vals, polarity, name) AtMostOne(vals, polarity, name) AtMostOne_BDD(vals, polarity, name) AtMostOne_NSQ(vals, polarity, name) ExactlyOne(vals, polarity, name) ExactlyOne_BDD(vals, polarity, name) ExactlyOne_NSQ(vals, polarity, name) ITE(c, t, f, polarity, name) LinearBound(equation, lo, hi, preprocess, polarity, name) Not(x, polarity, name) Or(f, g, polarity, name) Prevent(what) Require(what) Xor(f, g, polarity, name) add_clause(clause) add_clauses(clauses) as_list() from_index(m) from_name(name) get_clause_count() itersolve(constraints, m) minimize(objective, bestsol, trymax) name_var(m, name) new_var(name) sat(additional, includeIf, names, limit) } class "<color:red>ClobberError</color>" as conda.exceptions.ClobberError #77AADD { path_conflict } class "CmdExeActivator" as conda.activate.CmdExeActivator #77AADD { command_join : str export_var_tmpl : str hook_source_path : NoneType path_conversion : staticmethod pathsep_join run_script_tmpl : str script_extension : str sep : str set_var_tmpl : str tempfile_extension : str unset_var_tmpl : str } class "<color:red>CommandNotFoundError</color>" as conda.exceptions.CommandNotFoundError #77AADD { } class "Commands" as conda.cli.python_api.Commands #BBCC33 { CLEAN : str CONFIG : str CREATE : str INFO : str INSTALL : str LIST : str NOTICES : str REMOVE : str RUN : str SEARCH : str UPDATE : str } class "Commands" as conda.testing.integration.Commands #EE8866 { CLEAN : str COMPARE : str CONFIG : str CREATE : str INFO : str INSTALL : str LIST : str REMOVE : str RUN : str SEARCH : str UPDATE : str } class "Comparable" as tqdm.utils.Comparable #BBCC33 { } class "CompileMultiPycAction" as conda.core.path_actions.CompileMultiPycAction #FFAABB { package_info prefix_path_data : NoneType prefix_paths_data source_full_paths source_short_paths target_full_paths target_prefix target_short_paths transaction_context {abstract}cleanup() create_actions(transaction_context, package_info, target_prefix, requested_link_type, file_link_actions) execute() reverse() verify() } class "ComposableField" as conda.auxlib.entity.ComposableField #99DDFF { box(instance, instance_type, val) dump(instance, instance_type, val) } class "CondaAuthHandler" as conda.plugins.types.CondaAuthHandler #99DDFF { handler : type[ChannelAuthBase] name : str } class "CondaCLIFixture" as conda.testing.CondaCLIFixture #77AADD { capsys } class "<color:red>CondaDependencyError</color>" as conda.exceptions.CondaDependencyError #77AADD { } class "<color:red>CondaEnvException</color>" as conda.exceptions.CondaEnvException #77AADD { } class "<color:red>CondaEnvironmentError</color>" as conda.exceptions.CondaEnvironmentError #77AADD { } class "<color:red>CondaError</color>" as conda.CondaError #77AADD { message reportable : bool
return_code : int dump_map() } class "<color:red>CondaExitZero</color>" as conda.CondaExitZero #77AADD { return_code : int } class "<color:red>CondaFileIOError</color>" as conda.exceptions.CondaFileIOError #77AADD { filepath } class "<color:red>CondaHTTPError</color>" as conda.exceptions.CondaHTTPError #77AADD { } class "CondaHealthCheck" as conda.plugins.types.CondaHealthCheck #99DDFF { action : Callable[[str, bool], None] name : str } class "<color:red>CondaHistoryError</color>" as conda.exceptions.CondaHistoryError #77AADD { } class "<color:red>CondaHistoryWarning</color>" as conda.history.CondaHistoryWarning #77AADD { } class "CondaHttpAuth" as conda.gateways.connection.session.CondaHttpAuth #BBCC33 { add_binstar_token(url) handle_407(response) } class "<color:red>CondaIOError</color>" as conda.exceptions.CondaIOError #77AADD { } class "<color:red>CondaImportError</color>" as conda.exceptions.CondaImportError #77AADD { } class "<color:red>CondaIndexError</color>" as conda.exceptions.CondaIndexError #77AADD { } class "<color:red>CondaKeyError</color>" as conda.exceptions.CondaKeyError #77AADD { key msg } class "<color:red>CondaMemoryError</color>" as conda.exceptions.CondaMemoryError #77AADD { } class "<color:red>CondaMultiError</color>" as conda.CondaMultiError #77AADD { errors contains(exception_class) dump_map() } class "<color:red>CondaOSError</color>" as conda.exceptions.CondaOSError #77AADD { } class "CondaPluginManager" as conda.plugins.manager.CondaPluginManager #99DDFF { get_cached_solver_backend : NoneType disable_external_plugins() -> None get_auth_handler(name: str) -> type[AuthBase] | None get_canonical_name(plugin: object) -> str get_hook_results(name: Literal['subcommands']) -> list[CondaSubcommand] get_settings() -> dict[str, ParameterLoader] get_solver_backend(name: str | None) -> type[Solver] get_solvers() -> dict[str, CondaSolver] get_subcommands() -> dict[str, CondaSubcommand] get_virtual_packages() -> tuple[CondaVirtualPackage, ...] invoke_health_checks(prefix: str, verbose: bool) -> None invoke_post_commands(command: str) -> None invoke_post_solves(repodata_fn: str, unlink_precs: tuple[PackageRecord, ...], link_precs: tuple[PackageRecord, ...]) -> None invoke_pre_commands(command: str) -> None invoke_pre_solves(specs_to_add: frozenset[MatchSpec], specs_to_remove: frozenset[MatchSpec]) -> None load_entrypoints(group: str, name: str | None) -> int load_plugins() -> int load_settings() -> None register(plugin, name: str | None) -> str | None } class "CondaPostCommand" as conda.plugins.types.CondaPostCommand #99DDFF { action : Callable[[str], None] name : str run_for : set[str] } class "CondaPostSolve" as conda.plugins.types.CondaPostSolve #99DDFF { action : Callable[[str, tuple[PackageRecord, ...], tuple[PackageRecord, ...]], None] name : str } class "CondaPreCommand" as conda.plugins.types.CondaPreCommand #99DDFF { action : Callable[[str], None] name : str run_for : set[str] } class "CondaPreSolve" as conda.plugins.types.CondaPreSolve #99DDFF { action : Callable[[frozenset[MatchSpec], frozenset[MatchSpec]], None] name : str } class "CondaRepoInterface" as conda.gateways.repodata.CondaRepoInterface #44BB99 { repodata(state: RepodataState) -> str | None } class "<color:red>CondaSSLError</color>" as conda.exceptions.CondaSSLError #77AADD { } class "CondaSession" as conda.gateways.connection.session.CondaSession #BBCC33 { auth cert : tuple verify : bool cache_clear() } class "CondaSessionType" as conda.gateways.connection.session.CondaSessionType #BBCC33 { } class "CondaSetting" as conda.plugins.types.CondaSetting #99DDFF { aliases : tuple[str, ...] description : str name : str parameter } class "<color:red>CondaSignalInterrupt</color>" as conda.exceptions.CondaSignalInterrupt #77AADD { } class "CondaSolver" as conda.plugins.types.CondaSolver #99DDFF { backend : type[Solver] name : str } class "CondaSpecs" as conda.plugins.hookspec.CondaSpecs #99DDFF { {abstract}conda_auth_handlers() -> Iterable[CondaAuthHandler] {abstract}conda_health_checks() -> Iterable[CondaHealthCheck] {abstract}conda_post_commands() -> Iterable[CondaPostCommand] {abstract}conda_post_solves() -> Iterable[CondaPostSolve] {abstract}conda_pre_commands() -> Iterable[CondaPreCommand] {abstract}conda_pre_solves() -> Iterable[CondaPreSolve] {abstract}conda_settings() -> Iterable[CondaSetting] {abstract}conda_solvers() -> Iterable[CondaSolver] {abstract}conda_subcommands() -> Iterable[CondaSubcommand] {abstract}conda_virtual_packages() -> Iterable[CondaVirtualPackage] } class "CondaSubcommand" as conda.plugins.types.CondaSubcommand #99DDFF { action : Callable[[Namespace | tuple[str]], int | None] configure_parser : Callable[[ArgumentParser], None] | None name : str summary : str } class "<color:red>CondaSystemExit</color>" as conda.exceptions.CondaSystemExit #77AADD { } class "<color:red>CondaUpgradeError</color>" as conda.exceptions.CondaUpgradeError #77AADD { } class "<color:red>CondaValueError</color>" as conda.exceptions.CondaValueError #77AADD { } class "<color:red>CondaVerificationError</color>" as conda.exceptions.CondaVerificationError #77AADD { } class "CondaVirtualPackage" as conda.plugins.types.CondaVirtualPackage #99DDFF { build : str | None name : str version : str | None } class "Configuration" as conda.common.configuration.Configuration #AAAA00 { raw_data : dict check_source(source) collect_all() describe_parameter(parameter_name) {abstract}get_descriptions() list_parameters() post_build_validation() register_reset_callaback(callback) typify_parameter(parameter_name, value, source) validate_all() validate_configuration() } class "<color:red>ConfigurationError</color>" as conda.common.configuration.ConfigurationError #AAAA00 { } class "<color:red>ConfigurationLoadError</color>" as conda.common.configuration.ConfigurationLoadError #AAAA00 { } class "ConfigurationObject" as conda.common.configuration.ConfigurationObject #AAAA00 { } class "ConfigurationType" as conda.common.configuration.ConfigurationType #AAAA00 { } class "Context" as conda.base.context.Context #44BB99 { active_prefix add_anaconda_token add_pip_as_python_dependency aggressive_update_packages allow_conda_downgrades allow_cycles allow_non_channel_urls allow_softlinks allowlist_channels always_copy always_softlink always_yes anaconda_upload arch_name auto_activate_base auto_stack auto_update_conda av_data_dir binstar_upload bits bld_path category_map changeps1 channel_priority channel_settings channels client_ssl_cert client_ssl_cert_key clobber conda_build conda_build_local_paths conda_build_local_urls conda_exe conda_exe_vars_dict conda_prefix config_files cpu_flags create_default_packages croot debug default_prefix default_python default_threads deps_modifier dev disallowed_packages download_only dry_run enable_private_envs env_prompt envs_dirs error_upload_url execute_threads experimental extra_safety_checks fetch_threads force force_32bit force_reinstall force_remove ignore_pinned info json local_build_root local_repodata_ttl log_level migrated_channel_aliases migrated_custom_channels no_lock no_plugins non_admin_enabled notify_outdated_conda number_channel_notices offline override_channels_enabled path_conflict pinned_packages pip_interop_enabled pkgs_dirs platform plugin_manager plugins prefix_specified proxy_servers quiet register_envs remote_backoff_factor remote_connect_timeout_secs remote_max_retries remote_read_timeout_secs repodata_fns repodata_threads repodata_use_zst report_errors restore_free_channel rollback_enabled root_dir root_writable safety_checks sat_solver separate_format_cache shlvl shortcuts shortcuts_only show_channel_urls signing_metadata_url_base solver solver_ignore_timestamps ssl_verify subdir subdirs target_prefix target_prefix_override trace track_features unsatisfiable_hints unsatisfiable_hints_check_depth update_modifier use_index_cache use_local use_only_tar_bz2 verbose verbosity verify_threads channel_alias() custom_channels() custom_multichannels() default_channels() description_map() get_descriptions() known_subdirs() libc_family_version() os_distribution_name_version() platform_system_release() post_build_validation() python_implementation_name_version() requests_version() root_prefix() solver_user_agent() trash_dir() user_agent() } class "ContextDecorator" as conda.common.io.ContextDecorator #AAAA00 { } class "ContextStack" as conda.base.context.ContextStack #44BB99 { apply() pop() push(search_path, argparse_args) replace(search_path, argparse_args) } class "ContextStackObject" as conda.base.context.ContextStackObject #44BB99 { argparse_args : NoneType search_path : tuple apply() set_value(search_path, argparse_args) } class "<color:red>CorruptedEnvironmentError</color>" as conda.exceptions.CorruptedEnvironmentError #77AADD { } class "<color:red>CouldntParseError</color>" as conda.exceptions.CouldntParseError #77AADD { reason } class "CreateInPrefixPathAction" as conda.core.path_actions.CreateInPrefixPathAction #FFAABB { package_info source_full_path source_prefix source_short_path {abstract}cleanup() verify() } class "CreateNonadminAction" as conda.core.path_actions.CreateNonadminAction #FFAABB { create_actions(transaction_context, package_info, target_prefix, requested_link_type) execute() reverse() } class "CreatePrefixRecordAction" as conda.core.path_actions.CreatePrefixRecordAction #FFAABB { all_link_path_actions : list prefix_record requested_link_type requested_spec create_actions(transaction_context, package_info,
target_prefix, requested_link_type, requested_spec, all_link_path_actions) execute() reverse() } class "CreatePythonEntryPointAction" as conda.core.path_actions.CreatePythonEntryPointAction #FFAABB { func module prefix_path_data create_actions(transaction_context, package_info, target_prefix, requested_link_type) execute() reverse() } class "CshActivator" as conda.activate.CshActivator #77AADD { command_join : str export_var_tmpl : str hook_source_path : Path path_conversion : staticmethod pathsep_join run_script_tmpl : str script_extension : str sep : str set_var_tmpl : str tempfile_extension : NoneType unset_var_tmpl : str } class "<color:red>CustomValidationError</color>" as conda.common.configuration.CustomValidationError #AAAA00 { } class "<color:red>CyclicalDependencyError</color>" as conda.exceptions.CyclicalDependencyError #77AADD { } class "DateField" as conda.auxlib.entity.DateField #99DDFF { box(instance, instance_type, val) dump(instance, instance_type, val) } class "<color:red>DeactivateHelp</color>" as conda.exceptions.DeactivateHelp #77AADD { } class "DefaultValueRawParameter" as conda.common.configuration.DefaultValueRawParameter #AAAA00 { keyflag() value(parameter_obj) valueflags(parameter_obj) } class "DeltaSecondsFormatter" as conda.common.io.DeltaSecondsFormatter #AAAA00 { prev_time format(record) } class "Dependencies" as conda.env.env.Dependencies #DDDDDD { raw add(package_name) parse() } class "<color:red>DeprecatedError</color>" as conda.deprecations.DeprecatedError #77AADD { } class "DeprecationHandler" as conda.deprecations.DeprecationHandler #77AADD { action(deprecate_in: str, remove_in: str, action: ActionType) -> ActionType argument(deprecate_in: str, remove_in: str, argument: str) -> Callable[[Callable[P, T]], Callable[P, T]] constant(deprecate_in: str, remove_in: str, constant: str, value: Any) -> None module(deprecate_in: str, remove_in: str) -> None topic(deprecate_in: str, remove_in: str) -> None } class "DeprecationMixin" as conda.deprecations.DeprecationHandler.action.DeprecationMixin #AAAA00 { category : type[Warning] help : str } class "DepsModifier" as conda.base.constants.DepsModifier #44BB99 { name } class "DictSafeMixin" as conda.auxlib.entity.DictSafeMixin #99DDFF { copy() get(item, default) items() setdefault(key, default_value) update(E) } class "<color:red>DirectoryNotACondaEnvironmentError</color>" as conda.exceptions.DirectoryNotACondaEnvironmentError #77AADD { } class "<color:red>DirectoryNotFoundError</color>" as conda.exceptions.DirectoryNotFoundError #77AADD { } class "DisableOnWriteError" as tqdm.utils.DisableOnWriteError #BBCC33 { disable_on_exception(tqdm_instance, func) } class "<color:red>DisallowedPackageError</color>" as conda.exceptions.DisallowedPackageError #77AADD { } class "Dist" as conda.models.dist.Dist #DDDDDD { base_url build build_number build_string channel dist_name fmt fn full_name is_channel is_feature_package name pair platform quad subdir version from_string(string, channel_override) from_url(url) parse_dist_name(string) rsplit(sep, maxsplit) split(sep, maxsplit) startswith(match) to_filename(extension) to_match_spec() to_matchspec() to_package_ref() to_url() } class "DistDetails" as conda.models.dist.DistDetails #DDDDDD { build_number : str build_string : str dist_name : str fmt : str name : str version : str } class "DistType" as conda.models.dist.DistType #DDDDDD { } class "<color:red>DryRunExit</color>" as conda.exceptions.DryRunExit #77AADD { } class "DummyArgs" as conda.testing.notices.helpers.DummyArgs #DDDDDD { no_ansi_colors : bool } class "DummyExecutor" as conda.common.io.DummyExecutor #AAAA00 { map(func) shutdown(wait) submit(fn) } class "DumpEncoder" as conda.auxlib.logz.DumpEncoder #99DDFF { default(obj) } class "EMA" as tqdm.std.EMA #BBCC33 { alpha : float calls : int last : int } class "ERROR" as conda.common._os.windows.ERROR #EEDD88 { name } class "<color:red>EncodingError</color>" as conda.exceptions.EncodingError #77AADD { } class "EnforceUnusedAdapter" as conda.gateways.connection.session.EnforceUnusedAdapter #BBCC33 { {abstract}close() send(request) } class "Entity" as conda.auxlib.entity.Entity #99DDFF { dump() from_json(json_str) from_objects() json(indent, separators) load(data_dict) pretty_json(indent, separators) validate() } class "EntityEncoder" as conda.auxlib.entity.EntityEncoder #99DDFF { default(obj) } class "EntityType" as conda.auxlib.entity.EntityType #99DDFF { fields } class "EnumField" as conda.auxlib.entity.EnumField #99DDFF { box(instance, instance_type, val) dump(instance, instance_type, val) } class "EnvAppDirs" as conda.gateways.anaconda_client.EnvAppDirs #44BB99 { appauthor appname root_path site_data_dir user_cache_dir user_data_dir user_log_dir } class "EnvRawParameter" as conda.common.configuration.EnvRawParameter #AAAA00 { source : str keyflag() make_raw_parameters(appname) value(parameter_obj) valueflags(parameter_obj) } class "Environment" as conda.env.env.Environment #DDDDDD { channels : NoneType, list dependencies filename : NoneType name : NoneType prefix : NoneType variables : NoneType add_channels(channels) remove_channels() save() to_dict(stream) to_yaml(stream) } class "<color:red>EnvironmentFileEmpty</color>" as conda.exceptions.EnvironmentFileEmpty #77AADD { filename } class "<color:red>EnvironmentFileExtensionNotValid</color>" as conda.exceptions.EnvironmentFileExtensionNotValid #77AADD { filename } class "<color:red>EnvironmentFileNotDownloaded</color>" as conda.exceptions.EnvironmentFileNotDownloaded #77AADD { packagename username } class "<color:red>EnvironmentFileNotFound</color>" as conda.exceptions.EnvironmentFileNotFound #77AADD { filename } class "<color:red>EnvironmentLocationNotFound</color>" as conda.exceptions.EnvironmentLocationNotFound #77AADD { } class "<color:red>EnvironmentNameNotFound</color>" as conda.exceptions.EnvironmentNameNotFound #77AADD { } class "<color:red>EnvironmentNotWritableError</color>" as conda.exceptions.EnvironmentNotWritableError #77AADD { } class "Evaluator" as conda.common.pkg_formats.python.Evaluator #EE8866 { operations : dict evaluate(expr, context) } class "ExactLowerStrMatch" as conda.models.match_spec.ExactLowerStrMatch #DDDDDD { match(other) } class "ExactStrMatch" as conda.models.match_spec.ExactStrMatch #DDDDDD { match(other) } class "ExceptionHandler" as conda.exception_handler.ExceptionHandler #77AADD { error_upload_url http_timeout user_agent get_error_report(exc_val, exc_tb) handle_application_exception(exc_val, exc_tb) handle_exception(exc_val, exc_tb) handle_reportable_application_exception(exc_val, exc_tb) handle_unexpected_exception(exc_val, exc_tb) print_expected_error_report(error_report) print_unexpected_error_report(error_report) write_out() } class "ExtendConstAction" as conda.cli.actions.ExtendConstAction #BBCC33 { } class "ExtractPackageAction" as conda.core.path_actions.ExtractPackageAction #FFAABB { hold_path md5 record_or_spec sha256 size source_full_path target_extracted_dirname target_full_path target_pkgs_dir cleanup() execute(progress_update_callback) reverse() verify() } class "FTPAdapter" as conda.gateways.connection.adapters.ftp.FTPAdapter #AAAA00 { conn : FTP func_table : dict {abstract}close() get_host_and_path_from_url(request) get_username_password_from_header(request) list(path, request) nlst(path, request) retr(path, request) send(request) stor(path, request) } class "FeatureMatch" as conda.models.match_spec.FeatureMatch #DDDDDD { exact_value match(other) } class "Field" as conda.auxlib.entity.Field #99DDFF { default default_in_dump immutable in_dump is_nullable name nullable required type box(instance, instance_type, val) dump(instance, instance_type, val) set_name(name) unbox(instance, instance_type, val) validate(instance, val) } class "FileMode" as conda.models.enums.FileMode #DDDDDD { name } class "FilenameField" as conda.models.records.FilenameField #DDDDDD { } class "FishActivator" as conda.activate.FishActivator #77AADD { command_join : str export_var_tmpl : str hook_source_path : Path path_conversion : staticmethod pathsep_join run_script_tmpl : str script_extension : str sep : str set_var_tmpl : str tempfile_extension : NoneType unset_var_tmpl : str } class "GeneralGraph" as conda.models.prefix_graph.GeneralGraph #DDDDDD { graph_by_name : dict specs_by_name : defaultdict breadth_first_search_by_name(root_spec, target_spec) } class "<color:red>GenericHelp</color>" as conda.exceptions.GenericHelp #77AADD { } class "GlobLowerStrMatch" as conda.models.match_spec.GlobLowerStrMatch #DDDDDD { } class "GlobStrMatch" as conda.models.match_spec.GlobStrMatch #DDDDDD { exact_value matches_all match(other) } class "HTTPAdapter" as conda.gateways.connection.adapters.http.HTTPAdapter #AAAA00 { } class "HTTPAdapter" as requests.adapters.HTTPAdapter #99DDFF { config : dict max_retries : NoneType, int poolmanager proxy_manager : dict {abstract}add_headers(request) build_response(req, resp) cert_verify(conn, url, verify, cert) close() get_connection(url, proxies) init_poolmanager(connections, maxsize, block) proxy_headers(proxy) proxy_manager_for(proxy) request_url(request, proxies) send(request, stream, timeout, verify, cert, proxies) } class "HashWriter" as conda.gateways.repodata.jlap.fetch.HashWriter #FFAABB { backing hasher close() write(b: bytes) } class "<color:red>Help</color>" as conda.exceptions.Help #77AADD { } class "History" as conda.history.History #77AADD { com_pat conda_v_pat meta_dir path prefix spec_pat construct_states() file_is_empty()
get_requested_specs_map() get_state(rev) get_user_requests() init_log_file() object_log() parse() -> list[tuple[str, set[str], list[str]]] print_log() update() -> None write_changes(last_state, current_state) write_specs(remove_specs, update_specs, neutered_specs) } class "ImmutableEntity" as conda.auxlib.entity.ImmutableEntity #99DDFF { } class "IndexedSet" as boltons.setutils.IndexedSet #EEDD88 { dead_indices : list item_index_map : dict item_list : list add(item) clear() count(val) difference() difference_update() discard(item) from_iterable(it) index(val) intersection() intersection_update() isdisjoint(other) issubset(other) issuperset(other) iter_difference() iter_intersection() iter_slice(start, stop, step) pop(index) remove(item) reverse() sort() symmetric_difference() symmetric_difference_update(other) union() update() } class "<color:red>InitializationError</color>" as conda.auxlib.exceptions.InitializationError #99DDFF { } class "IntegerField" as conda.auxlib.entity.IntegerField #99DDFF { } class "<color:red>InvalidInstaller</color>" as conda.exceptions.InvalidInstaller #77AADD { } class "<color:red>InvalidMatchSpec</color>" as conda.exceptions.InvalidMatchSpec #77AADD { } class "<color:red>InvalidSpec</color>" as conda.exceptions.InvalidSpec #77AADD { } class "<color:red>InvalidTypeError</color>" as conda.common.configuration.InvalidTypeError #AAAA00 { valid_types wrong_type } class "<color:red>InvalidVersionSpec</color>" as conda.exceptions.InvalidVersionSpec #77AADD { } class "JLAP" as conda.gateways.repodata.jlap.core.JLAP #FFAABB { body last penultimate add(line: str) from_lines(lines: Iterable[bytes], iv: bytes, pos, verify) from_path(path: Path | str, verify) terminate() write(path: Path) } class "JSONFormatMixin" as conda.activate.JSONFormatMixin #77AADD { command_join : list pathsep_join : list tempfile_extension : NoneType get_scripts_export_unset_vars() } class "<color:red>Jlap304NotModified</color>" as conda.gateways.repodata.jlap.fetch.Jlap304NotModified #FFAABB { } class "<color:red>JlapPatchNotFound</color>" as conda.gateways.repodata.jlap.fetch.JlapPatchNotFound #FFAABB { } class "JlapRepoInterface" as conda.gateways.repodata.jlap.interface.JlapRepoInterface #FFAABB { repodata(state: dict | RepodataState) -> str | None repodata_parsed(state: dict | RepodataState) -> dict | None } class "<color:red>JlapSkipZst</color>" as conda.gateways.repodata.jlap.fetch.JlapSkipZst #FFAABB { } class "<color:red>KnownPackageClobberError</color>" as conda.exceptions.KnownPackageClobberError #77AADD { } class "LeasedPathEntry" as conda.models.leased_path_entry.LeasedPathEntry #DDDDDD { leased_path leased_path_type package_name target_path target_prefix } class "LeasedPathType" as conda.models.enums.LeasedPathType #DDDDDD { name } class "Link" as conda.models.records.Link #DDDDDD { source type } class "<color:red>LinkError</color>" as conda.exceptions.LinkError #77AADD { } class "LinkPathAction" as conda.core.path_actions.LinkPathAction #FFAABB { link_type prefix_path_data : NoneType source_path_data create_directory_actions(transaction_context, package_info, target_prefix, requested_link_type, file_link_actions) create_file_link_actions(transaction_context, package_info, target_prefix, requested_link_type) create_python_entry_point_windows_exe_action(transaction_context, package_info, target_prefix, requested_link_type, entry_point_def) execute() reverse() verify() } class "LinkType" as conda.models.enums.LinkType #DDDDDD { name } class "LinkTypeField" as conda.models.records.LinkTypeField #DDDDDD { box(instance, instance_type, val) } class "ListField" as conda.auxlib.entity.ListField #99DDFF { box(instance, instance_type, val) dump(instance, instance_type, val) unbox(instance, instance_type, val) validate(instance, val) } class "LoadedParameter" as conda.common.configuration.LoadedParameter #AAAA00 { key_flag value value_flags collect_errors(instance, typed_value, source) expand() {abstract}merge(matches) typify(source) } class "LocalFSAdapter" as conda.gateways.connection.adapters.localfs.LocalFSAdapter #AAAA00 { {abstract}close() send(request, stream, timeout, verify, cert, proxies) } class "<color:red>LockError</color>" as conda.exceptions.LockError #77AADD { } class "MakeMenuAction" as conda.core.path_actions.MakeMenuAction #FFAABB { create_actions(transaction_context, package_info, target_prefix, requested_link_type) execute() reverse() } class "MapField" as conda.auxlib.entity.MapField #99DDFF { box(instance, instance_type, val) } class "MapLoadedParameter" as conda.common.configuration.MapLoadedParameter #AAAA00 { collect_errors(instance, typed_value, source) merge(parameters: Sequence[MapLoadedParameter]) -> MapLoadedParameter } class "MapParameter" as conda.common.configuration.MapParameter #AAAA00 { get_all_matches(name, names, instance) load(name, match) } class "MatchInterface" as conda.models.match_spec.MatchInterface #DDDDDD { exact_value raw_value {abstract}match(other) matches(value) merge(other) union(other) } class "MatchSpec" as conda.models.match_spec.MatchSpec #DDDDDD { FIELD_NAMES : tuple FIELD_NAMES_SET : frozenset fn is_name_only_spec name optional original_spec_str spec strictness target version conda_build_form() dist_str() from_dist_str(dist_str) get(field_name, default) get_exact_value(field_name) get_raw_value(field_name) match(rec) merge(match_specs, union) union(match_specs) } class "MatchSpecType" as conda.models.match_spec.MatchSpecType #DDDDDD { } class "Md5Field" as conda.models.records.Md5Field #DDDDDD { } class "<color:red>MetadataWarning</color>" as conda.common.pkg_formats.python.MetadataWarning #EE8866 { } class "Minio" as conda.testing.gateways.fixtures.minio_s3_server.Minio #EE8866 { endpoint name : str port : int server_url populate_bucket(endpoint, bucket_name, channel_dir) } class "MockResponse" as conda.testing.notices.helpers.MockResponse #DDDDDD { json_data raise_exc : bool status_code json() } class "MultiChannel" as conda.models.channel.MultiChannel #DDDDDD { auth : NoneType base_url base_urls canonical_name channel_location location : NoneType name package_filename : NoneType platform : NoneType scheme : NoneType token : NoneType dump() url(with_credentials) urls(with_credentials, subdirs) } class "MultiPathAction" as conda.core.path_actions.MultiPathAction #FFAABB { target_full_paths } class "<color:red>MultiValidationError</color>" as conda.common.configuration.MultiValidationError #AAAA00 { } class "<color:red>MultipleKeysError</color>" as conda.common.configuration.MultipleKeysError #AAAA00 { keys source } class "MutableListField" as conda.auxlib.entity.MutableListField #99DDFF { } class "<color:red>NoBaseEnvironmentError</color>" as conda.exceptions.NoBaseEnvironmentError #77AADD { } class "<color:red>NoSpaceLeftError</color>" as conda.exceptions.NoSpaceLeftError #77AADD { } class "<color:red>NoWritableEnvsDirError</color>" as conda.exceptions.NoWritableEnvsDirError #77AADD { } class "<color:red>NoWritablePkgsDirError</color>" as conda.exceptions.NoWritablePkgsDirError #77AADD { } class "Noarch" as conda.models.package_info.Noarch #DDDDDD { entry_points type } class "NoarchField" as conda.models.records.NoarchField #DDDDDD { box(instance, instance_type, val) } class "NoarchField" as conda.models.package_info.NoarchField #DDDDDD { box(instance, instance_type, val) } class "NoarchType" as conda.models.enums.NoarchType #DDDDDD { name coerce(val) } class "<color:red>NotFoundError</color>" as conda.auxlib.exceptions.NotFoundError #99DDFF { } class "<color:red>NotWritableError</color>" as conda.exceptions.NotWritableError #77AADD { errno } class "NoticeLevel" as conda.base.constants.NoticeLevel #44BB99 { name } class "NullCountAction" as conda.cli.actions.NullCountAction #BBCC33 { } class "NullHandler" as conda.auxlib.NullHandler #77AADD { {abstract}emit(record) } class "NumberField" as conda.auxlib.entity.NumberField #99DDFF { } class "ObjectLoadedParameter" as conda.common.configuration.ObjectLoadedParameter #AAAA00 { collect_errors(instance, typed_value, source) merge(parameters: Sequence[ObjectLoadedParameter]) -> ObjectLoadedParameter } class "ObjectParameter" as conda.common.configuration.ObjectParameter #AAAA00 { get_all_matches(name, names, instance) load(name, match) } class "ObjectWrapper" as tqdm.utils.ObjectWrapper #BBCC33 { wrapper_getattr(name) wrapper_setattr(name, value) } class "<color:red>OperationNotAllowed</color>" as conda.exceptions.OperationNotAllowed #77AADD { } class "PackageCacheData" as conda.core.package_cache_data.PackageCacheData #FFAABB { is_writable pkgs_dir all_caches_writable_first(pkgs_dirs) clear() first_writable(pkgs_dirs) get(package_ref, default) get_all_extracted_entries() get_entry_to_link(package_ref) insert(package_cache_record) iter_records() itervalues() load() query(package_ref_or_match_spec) query_all(package_ref_or_match_spec, pkgs_dirs) read_only_caches(pkgs_dirs) reload() remove(package_ref, default) tarball_file_in_cache(tarball_path, md5sum, exclude_caches) tarball_file_in_this_cache(tarball_path, md5sum) values() writable_caches(pkgs_dirs) } class "PackageCacheRecord" as conda.models.records.PackageCacheRecord #DDDDDD { extracted_package_dir is_extracted is_fetched md5 package_tarball_full_path tarball_basename } class "PackageCacheType" as conda.core.package_cache_data.PackageCacheType #FFAABB { } class "PackageInfo" as conda.models.package_info.PackageInfo #DDDDDD { build build_number channel extracted_package_dir icondata name package_metadata package_tarball_full_path paths_data repodata_record url version
 dist_str() } class "PackageMetadata" as conda.models.package_info.PackageMetadata #DDDDDD { noarch package_metadata_version preferred_env } class "<color:red>PackageNotInstalledError</color>" as conda.exceptions.PackageNotInstalledError #77AADD { } class "PackageRecord" as conda.models.records.PackageRecord #DDDDDD { arch build build_number channel combined_depends constrains date depends features fn is_unmanageable legacy_bz2_md5 legacy_bz2_size license license_family md5 metadata : set[str] name namekey noarch package_type platform preferred_env schannel sha256 size subdir timestamp track_features url version dist_fields_dump() dist_str() record_id() to_match_spec() to_simple_match_spec() } class "PackageRecordList" as conda.core.subdir_data.PackageRecordList #FFAABB { } class "PackageType" as conda.models.enums.PackageType #DDDDDD { name conda_package_types() unmanageable_package_types() } class "PackageTypeField" as conda.models.records.PackageTypeField #DDDDDD { } class "<color:red>PackagesNotFoundError</color>" as conda.exceptions.PackagesNotFoundError #77AADD { } class "<color:red>PaddingError</color>" as conda.exceptions.PaddingError #77AADD { } class "Parameter" as conda.common.configuration.Parameter #AAAA00 { default get_all_matches(name, names, instance) {abstract}load(name, match) typify(name, source, value) } class "ParameterFlag" as conda.common.configuration.ParameterFlag #AAAA00 { name from_name(name) from_string(string) from_value(value) } class "ParameterLoader" as conda.common.configuration.ParameterLoader #AAAA00 { aliases : tuple name names type raw_parameters_from_single_source(name, names, raw_parameters) } class "<color:red>ParseError</color>" as conda.exceptions.ParseError #77AADD { } class "PathAction" as conda.core.path_actions.PathAction #FFAABB { target_full_path } class "PathConflict" as conda.base.constants.PathConflict #44BB99 { name } class "PathData" as conda.models.records.PathData #DDDDDD { file_mode no_link path path_type prefix_placeholder } class "PathDataV1" as conda.models.records.PathDataV1 #DDDDDD { inode_paths sha256 sha256_in_prefix size_in_bytes } class "PathFactoryFixture" as conda.testing.PathFactoryFixture #77AADD { tmp_path : Path } class "<color:red>PathNotFoundError</color>" as conda.exceptions.PathNotFoundError #77AADD { } class "PathType" as conda.models.enums.PathType #DDDDDD { name basic_types() } class "PathsData" as conda.models.records.PathsData #DDDDDD { paths paths_version } class "Platform" as conda.models.enums.Platform #DDDDDD { name from_sys() } class "PluginConfig" as conda.base.context.PluginConfig #44BB99 { raw_data : defaultdict } class "<color:red>PluginError</color>" as conda.exceptions.PluginError #77AADD { } class "PluginManager" as pluggy._manager.PluginManager #FFAABB { hook project_name trace : Final[_tracing.TagTracerSub] add_hookcall_monitoring(before: _BeforeTrace, after: _AfterTrace) -> Callable[[], None] add_hookspecs(module_or_class: _Namespace) -> None check_pending() -> None enable_tracing() -> Callable[[], None] get_canonical_name(plugin: _Plugin) -> str get_hookcallers(plugin: _Plugin) -> list[HookCaller] | None get_name(plugin: _Plugin) -> str | None get_plugin(name: str) -> Any | None get_plugins() -> set[Any] has_plugin(name: str) -> bool is_blocked(name: str) -> bool is_registered(plugin: _Plugin) -> bool list_name_plugin() -> list[tuple[str, _Plugin]] list_plugin_distinfo() -> list[tuple[_Plugin, DistFacade]] load_setuptools_entrypoints(group: str, name: str | None) -> int parse_hookimpl_opts(plugin: _Plugin, name: str) -> HookimplOpts | None parse_hookspec_opts(module_or_class: _Namespace, name: str) -> HookspecOpts | None register(plugin: _Plugin, name: str | None) -> str | None set_blocked(name: str) -> None subset_hook_caller(name: str, remove_plugins: Iterable[_Plugin]) -> HookCaller unregister(plugin: _Plugin | None, name: str | None) -> Any | None } class "PoolManager" as urllib3.poolmanager.PoolManager #DDDDDD { connection_pool_kw : dict key_fn_by_scheme : dict pool_classes_by_scheme : dict pools : RecentlyUsedContainer[PoolKey, HTTPConnectionPool] proxy : Url | None proxy_config : ProxyConfig | None clear() -> None connection_from_context(request_context: dict[str, typing.Any]) -> HTTPConnectionPool connection_from_host(host: str | None, port: int | None, scheme: str | None, pool_kwargs: dict[str, typing.Any] | None) -> HTTPConnectionPool connection_from_pool_key(pool_key: PoolKey, request_context: dict[str, typing.Any]) -> HTTPConnectionPool connection_from_url(url: str, pool_kwargs: dict[str, typing.Any] | None) -> HTTPConnectionPool urlopen(method: str, url: str, redirect: bool) -> BaseHTTPResponse } class "PosixActivator" as conda.activate.PosixActivator #77AADD { command_join : str export_var_tmpl : str hook_source_path : Path path_conversion : staticmethod pathsep_join run_script_tmpl : str script_extension : str sep : str set_var_tmpl : str tempfile_extension : NoneType unset_var_tmpl : str } class "PowerShellActivator" as conda.activate.PowerShellActivator #77AADD { command_join : str export_var_tmpl : str hook_source_path : Path path_conversion : staticmethod pathsep_join run_script_tmpl : str script_extension : str sep : str set_var_tmpl : str tempfile_extension : NoneType unset_var_tmpl : str } class "PreferredEnv" as conda.models.package_info.PreferredEnv #DDDDDD { executable_paths name softlink_paths } class "PrefixActionGroup" as conda.core.link.PrefixActionGroup #FFAABB { compile_action_groups : Iterable[ActionGroup] entry_point_action_groups : Iterable[ActionGroup] link_action_groups : Iterable[ActionGroup] make_menu_action_groups : Iterable[ActionGroup] prefix_record_groups : Iterable[ActionGroup] register_action_groups : Iterable[ActionGroup] remove_menu_action_groups : Iterable[ActionGroup] unlink_action_groups : Iterable[ActionGroup] unregister_action_groups : Iterable[ActionGroup] } class "PrefixData" as conda.core.prefix_data.PrefixData #FFAABB { is_writable prefix_path : Path all_subdir_urls() get(package_name, default) get_environment_env_vars() insert(prefix_record) iter_records() iter_records_sorted() load() query(package_ref_or_match_spec) reload() remove(package_name) set_environment_env_vars(env_vars) unset_environment_env_vars(env_vars) } class "PrefixDataType" as conda.core.prefix_data.PrefixDataType #FFAABB { } class "PrefixGraph" as conda.models.prefix_graph.PrefixGraph #DDDDDD { graph : dict records spec_matches : dict all_ancestors(node) all_descendants(node) get_node_by_name(name) prune() remove_spec(spec) remove_youngest_descendant_nodes_with_specs() } class "PrefixPathAction" as conda.core.path_actions.PrefixPathAction #FFAABB { target_full_path target_prefix target_short_path target_short_paths transaction_context } class "PrefixRecord" as conda.models.records.PrefixRecord #DDDDDD { auth extracted_package_dir files link package_tarball_full_path paths_data requested_spec } class "PrefixReplaceLinkAction" as conda.core.path_actions.PrefixReplaceLinkAction #FFAABB { file_mode intermediate_path : NoneType prefix_path_data prefix_placeholder execute() verify() } class "PrefixSetup" as conda.core.link.PrefixSetup #FFAABB { link_precs : tuple[PackageRecord, ...] neutered_specs : tuple[MatchSpec, ...] remove_specs : tuple[MatchSpec, ...] target_prefix : str unlink_precs : tuple[PackageRecord, ...] update_specs : tuple[MatchSpec, ...] } class "PrimitiveLoadedParameter" as conda.common.configuration.PrimitiveLoadedParameter #AAAA00 { merge(matches) } class "PrimitiveParameter" as conda.common.configuration.PrimitiveParameter #AAAA00 { load(name, match) } class "ProgressBar" as conda.common.io.ProgressBar #AAAA00 { description enabled : bool json : bool pbar : NoneType close() finish() get_lock() refresh() update_to(fraction) } class "ProgressFileWrapper" as conda.gateways.disk.create.ProgressFileWrapper #EEDD88 { progress_file progress_file_size progress_max_pos : int progress_update_callback progress_update() read(size) } class "ProgressiveFetchExtract" as conda.core.package_cache_data.ProgressiveFetchExtract #FFAABB { cache_actions extract_actions link_precs paired_actions : dict execute() make_actions_for_record(pref_or_spec) prepare() } class "<color:red>ProxyError</color>" as conda.exceptions.ProxyError #77AADD { } class "PythonDistribution" as conda.common.pkg_formats.python.PythonDistribution #EE8866 { ENTRY_POINTS_FILES : tuple MANDATORY_FILES : tuple MANIFEST_FILES : tuple REQUIRES_FILES : tuple anchor_full_path conda_name name norm_name python_version version get_conda_dependencies() get_dist_requirements() get_entry_points() get_external_requirements() get_extra_provides() {abstract}get_optional_dependencies() get_paths() get_python_requirements() init(prefix_path, anchor_file, python_version) manifest_full_path() } class "PythonDistributionMetadata" as conda.common.pkg_formats.python.PythonDistributionMetadata #EE8866 { FILE_NAMES : tuple MULTIPLE_USE_KEYS SINGLE_USE_KEYS name version get_classifiers() get_dist_obsolete() get_dist_provides() get_dist_requirements() get_external_requirements() get_extra_provides() get_python_requirements() } class "PythonEggInfoDistribution" as conda.common.pkg_formats.python.PythonEggInfoDistribution #EE8866 { ENTRY_POINTS_FILES : tuple MANDATORY_FILES : tuple MANIFEST_FILES : tuple REQUIRES_FILES : tuple is_manageable sp_reference } class "PythonEggLinkDistribution" as conda.common.pkg_formats.python.PythonEggLinkDistribution #EE8866 {
 is_manageable : bool } class "PythonInstalledDistribution" as conda.common.pkg_formats.python.PythonInstalledDistribution #EE8866 { ENTRY_POINTS_FILES : tuple MANDATORY_FILES : tuple MANIFEST_FILES : tuple REQUIRES_FILES : tuple is_manageable : bool sp_reference } class "REPARSE_DATA_BUFFER" as conda.gateways.disk.link.REPARSE_DATA_BUFFER #EEDD88 { get_print_name() get_substitute_name() } class "RawParameter" as conda.common.configuration.RawParameter #AAAA00 { key source {abstract}keyflag() make_raw_parameters(source, from_map) {abstract}value(parameter_obj) {abstract}valueflags(parameter_obj) } class "RecentlyUsedContainer" as urllib3._collections.RecentlyUsedContainer #DDDDDD { dispose_func : typing.Callable[[_VT], None] | None lock clear() -> None keys() -> set[_KT] } class "RegisterEnvironmentLocationAction" as conda.core.path_actions.RegisterEnvironmentLocationAction #FFAABB { target_full_path target_prefix transaction_context {abstract}cleanup() execute() {abstract}reverse() verify() } class "<color:red>RemoveError</color>" as conda.exceptions.RemoveError #77AADD { } class "RemoveFromPrefixPathAction" as conda.core.path_actions.RemoveFromPrefixPathAction #FFAABB { linked_package_data verify() } class "RemoveLinkedPackageRecordAction" as conda.core.path_actions.RemoveLinkedPackageRecordAction #FFAABB { execute() reverse() } class "RemoveMenuAction" as conda.core.path_actions.RemoveMenuAction #FFAABB { {abstract}cleanup() create_actions(transaction_context, linked_package_data, target_prefix) execute() reverse() } class "RepoInterface" as conda.gateways.repodata.RepoInterface #44BB99 { repodata(state: dict) -> str } class "RepodataCache" as conda.gateways.repodata.RepodataCache #44BB99 { cache_dir : Path cache_path_json cache_path_state name : str repodata_fn state load() -> str load_state() lock(mode) refresh(refresh_ns) replace(temp_path: Path) save(data: str) stale() timeout() } class "RepodataFetch" as conda.gateways.repodata.RepodataFetch #44BB99 { cache_path_base : Path cache_path_json cache_path_state channel repo_cache repo_interface_cls repodata_fn : str url_w_credentials : str url_w_repodata_fn url_w_subdir : str fetch_latest() -> tuple[dict | str, RepodataState] fetch_latest_parsed() -> tuple[dict, RepodataState] fetch_latest_path() -> tuple[Path, RepodataState] read_cache() -> tuple[str, RepodataState] } class "<color:red>RepodataIsEmpty</color>" as conda.gateways.repodata.RepodataIsEmpty #44BB99 { } class "<color:red>RepodataOnDisk</color>" as conda.gateways.repodata.RepodataOnDisk #44BB99 { } class "RepodataState" as conda.gateways.repodata.RepodataState #44BB99 { cache_control cache_path_json : Path cache_path_state : Path etag mod repodata_fn : str clear_has_format(format: str) has_format(format: str) -> tuple[bool, datetime.datetime | None] set_has_format(format: str, value: bool) should_check_format(format: str) -> bool } class "RepodataStateSkipFormat" as conda.gateways.repodata.jlap.interface.RepodataStateSkipFormat #FFAABB { skip_formats : set[str] should_check_format(format) } class "RequestMethods" as urllib3._request_methods.RequestMethods #DDDDDD { headers : dict request(method: str, url: str, body: _TYPE_BODY | None, fields: _TYPE_FIELDS | None, headers: typing.Mapping[str, str] | None, json: typing.Any | None) -> BaseHTTPResponse request_encode_body(method: str, url: str, fields: _TYPE_FIELDS | None, headers: typing.Mapping[str, str] | None, encode_multipart: bool, multipart_boundary: str | None) -> BaseHTTPResponse request_encode_url(method: str, url: str, fields: _TYPE_ENCODE_URL_FIELDS | None, headers: typing.Mapping[str, str] | None) -> BaseHTTPResponse {abstract}urlopen(method: str, url: str, body: _TYPE_BODY | None, headers: typing.Mapping[str, str] | None, encode_multipart: bool, multipart_boundary: str | None) -> BaseHTTPResponse } class "RequestsCookieJar" as requests.cookies.RequestsCookieJar #99DDFF { copy() get(name, default, domain, path) get_dict(domain, path) get_policy() items() iteritems() iterkeys() itervalues() keys() list_domains() list_paths() multiple_domains() set(name, value) set_cookie(cookie) update(other) values() } class "RequirementsSpec" as conda.env.specs.requirements.RequirementsSpec #99DDFF { environment extensions : set filename : NoneType msg : NoneType name : NoneType can_handle() } class "Resolve" as conda.resolve.Resolve #77AADD { channels : tuple groups : dict index ms_depends_ : dict trackers : defaultdict bad_installed(installed, new_specs) breadth_first_search_for_dep_graph(root_spec, target_name, dep_graph, num_targets) build_conflict_map(specs, specs_to_add, history_specs) build_graph_of_deps(spec) default_filter(features, filter) dependency_sort(must_have: dict[str, PackageRecord]) -> list[PackageRecord] environment_is_consistent(installed) find_conflicts(specs, specs_to_add, history_specs) find_matches(spec: MatchSpec) -> tuple[PackageRecord] find_matches_with_strict(ms, strict_channel_priority) gen_clauses() generate_feature_count(C) generate_feature_metric(C) generate_install_count(C, specs) generate_package_count(C, missing) generate_removal_count(C, specs) generate_spec_constraints(C, specs) generate_update_count(C, specs) generate_version_metrics(C, specs, include0) get_conflicting_specs(specs, explicit_specs) get_pkgs(ms, emptyok) get_reduced_index(explicit_specs, sort_by_exactness, exit_on_conflict) install(specs, installed, update_deps, returnall) install_specs(specs, installed, update_deps) invalid_chains(spec, filter, optional) match_any(mss, prec) ms_depends(prec: PackageRecord) -> list[MatchSpec] push_MatchSpec(C, spec) remove(specs, installed) remove_specs(specs, installed) restore_bad(pkgs, preserve) solve(specs: list, returnall: bool, _remove, specs_to_add, history_specs, should_retry_solve) -> list[PackageRecord] to_feature_metric_id(prec_dist_str, feat) to_sat_name(val) valid(spec_or_prec, filter, optional) valid2(spec_or_prec, filter_out, optional) verify_specs(specs) version_key(prec, vtype) } class "<color:red>ResolvePackageNotFound</color>" as conda.exceptions.ResolvePackageNotFound #77AADD { bad_deps : tuple } class "<color:red>Response304ContentUnchanged</color>" as conda.gateways.repodata.Response304ContentUnchanged #44BB99 { } class "Result" as conda.core.initialize.Result #FFAABB { MODIFIED : str NEEDS_SUDO : str NO_CHANGE : str } class "Retry" as urllib3.util.retry.Retry #77AADD { DEFAULT : typing.ClassVar[Retry] DEFAULT_ALLOWED_METHODS : frozenset DEFAULT_BACKOFF_MAX : int DEFAULT_REMOVE_HEADERS_ON_REDIRECT : frozenset RETRY_AFTER_STATUS_CODES : frozenset allowed_methods : typing.Collection[str] | None backoff_factor : float backoff_jitter : float backoff_max : float connect : int | None history : tuple other : int | None raise_on_redirect : bool raise_on_status : bool read : int | None redirect : bool | int | None remove_headers_on_redirect : frozenset respect_retry_after_header : bool status : int | None status_forcelist : set total : bool | int | None from_int(retries: Retry | bool | int | None, redirect: bool | int | None, default: Retry | bool | int | None) -> Retry get_backoff_time() -> float get_retry_after(response: BaseHTTPResponse) -> float | None increment(method: str | None, url: str | None, response: BaseHTTPResponse | None, error: Exception | None, _pool: ConnectionPool | None, _stacktrace: TracebackType | None) -> Retry is_exhausted() -> bool is_retry(method: str, status_code: int, has_retry_after: bool) -> bool new() -> Retry parse_retry_after(retry_after: str) -> float sleep(response: BaseHTTPResponse | None) -> None sleep_for_retry(response: BaseHTTPResponse) -> bool } class "S3Adapter" as conda.gateways.connection.adapters.s3.S3Adapter #AAAA00 { {abstract}close() send(request: PreparedRequest, stream: bool, timeout: None | float | tuple[float, float] | tuple[float, None], verify: bool | str, cert: None | bytes | str | tuple[bytes | str, bytes | str], proxies: dict[str, str] | None) -> Response } class "SECURITY_ATTRIBUTES" as conda.gateways.disk.link.SECURITY_ATTRIBUTES #EEDD88 { } class "STRING" as conda.common.io.CaptureTarget.STRING #44BB99 { name value } class "SW" as conda.common._os.windows.SW #EEDD88 { name } class "SafetyChecks" as conda.base.constants.SafetyChecks #44BB99 { name } class "<color:red>SafetyError</color>" as conda.exceptions.SafetyError #77AADD { } class "SatSolverChoice" as conda.base.constants.SatSolverChoice #44BB99 { name } class "<color:red>SenderError</color>" as conda.auxlib.exceptions.SenderError #99DDFF { } class "SequenceLoadedParameter" as conda.common.configuration.SequenceLoadedParameter #AAAA00 { collect_errors(instance, typed_value, source) merge(matches) } class "SequenceParameter" as conda.common.configuration.SequenceParameter #AAAA00 { string_delimiter : str get_all_matches(name, names, instance) load(name, match) } class "Session" as requests.sessions.Session #99DDFF { adapters : OrderedDict auth : NoneType cert : NoneType cookies : NoneType headers hooks max_redirects : int params : dict proxies : dict stream : bool trust_env : bool verify : bool close() delete(url) get(url) get_adapter(url) head(url) merge_environment_settings(url, proxies, stream, verify, cert) mount(prefix, adapter) options(url) patch(url, data) post(url, data, json) prepare_request(request) put(url, data) request(method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json) send(request) } class "SessionRedirectMixin" as requests.sessions.SessionRedirectMixin #99DDFF {
get_redirect_target(resp) rebuild_auth(prepared_request, response) rebuild_method(prepared_request, response) rebuild_proxies(prepared_request, proxies) resolve_redirects(resp, req, stream, timeout, verify, cert, proxies, yield_requests) should_strip_auth(old_url, new_url) } class "<color:red>SharedLinkPathClobberError</color>" as conda.exceptions.SharedLinkPathClobberError #77AADD { } class "ShellExecuteInfo" as conda.common._os.windows.ShellExecuteInfo #EEDD88 { cbSize } class "SimpleEnvironment" as conda.testing.solver_helpers.SimpleEnvironment #EE8866 { REPO_DATA_KEYS : tuple installed_packages : list repo_packages : list[str] | dict[str, list[str]] subdirs install() remove() solver(add, remove) solver_transaction(add, remove, as_specs) } class "SingleStrArgCachingType" as conda.models.version.SingleStrArgCachingType #DDDDDD { } class "Solver" as conda.core.solve.Solver #FFAABB { channels neutered_specs : tuple prefix : str specs_to_add : frozenset, tuple specs_to_add_names : frozenset specs_to_remove : frozenset ssc subdirs : tuple determine_constricting_specs(spec, solution_precs) get_constrained_packages(pre_packages, post_packages, index_keys) get_request_package_in_solution(solution_precs, specs_map) solve_final_state(update_modifier, deps_modifier, prune, ignore_pinned, force_remove, should_retry_solve) solve_for_diff(update_modifier, deps_modifier, prune, ignore_pinned, force_remove, force_reinstall, should_retry_solve) -> tuple[tuple[PackageRecord, ...], tuple[PackageRecord, ...]] solve_for_transaction(update_modifier, deps_modifier, prune, ignore_pinned, force_remove, force_reinstall, should_retry_solve) } class "SolverStateContainer" as conda.core.solve.SolverStateContainer #FFAABB { add_back_map : dict deps_modifier final_environment_specs : NoneType force_remove ignore_pinned index : NoneType prefix prune r : NoneType should_retry_solve : bool solution_precs : NoneType, tuple specs_map : dict update_modifier pinned_specs() prefix_data() set_repository_metadata(index, r) specs_from_history_map() track_features_specs() working_state_reset() } class "SolverTests" as conda.testing.solver_helpers.SolverTests #EE8866 { env : NoneType solver_class tests_to_skip assert_unsatisfiable(exc_info, entries) env() find_package() find_package_in_list(packages) skip_tests(request) test_accelerate(env) test_anaconda_nomkl(env) test_arch_preferred_over_noarch_when_otherwise_equal(env) test_channel_priority_1(monkeypatch, env) test_circular_dependencies(env) test_empty(env) test_get_dists(env) test_get_reduced_index_broadening_preferred_solution(env) test_get_reduced_index_broadening_with_unsatisfiable_early_dep(env) test_install_package_with_feature(env) test_iopro_mkl(env) test_iopro_nomkl(env) test_irrational_version(env) test_mkl(env) test_no_features(env) test_noarch_preferred_over_arch_when_build_greater(env) test_noarch_preferred_over_arch_when_build_greater_dep(env) test_noarch_preferred_over_arch_when_version_greater(env) test_noarch_preferred_over_arch_when_version_greater_dep(env) test_nonexistent(env) test_nonexistent_deps(env) test_pseudo_boolean(env) test_remove(env) test_scipy_mkl(env) test_surplus_features_1(env) test_surplus_features_2(env) test_timestamps_and_deps(env) test_unintentional_feature_downgrade(env) test_unsat_any_two_not_three(env) test_unsat_chain(env) test_unsat_channel_priority(monkeypatch, env) test_unsat_expand_single(env) test_unsat_from_r1(env) test_unsat_missing_dep(env) test_unsat_shortest_chain_1(env) test_unsat_shortest_chain_2(env) test_unsat_shortest_chain_3(env) test_unsat_shortest_chain_4(env) test_unsat_simple(env) } class "<color:red>SpecNotFound</color>" as conda.exceptions.SpecNotFound #77AADD { } class "<color:red>SpecsConfigurationConflictError</color>" as conda.exceptions.SpecsConfigurationConflictError #77AADD { } class "Spinner" as conda.common.io.Spinner #AAAA00 { enabled : bool fail_message : str fh : StringIO, TextIOWrapper json : bool message show_spin : bool spinner_cycle : cycle start() stop() } class "SplitStrMatch" as conda.models.match_spec.SplitStrMatch #DDDDDD { exact_value match(other) } class "Starter" as conda.testing.gateways.fixtures.minio_s3_server.Starter #EE8866 { args : list pattern : str terminate_on_interrupt : bool timeout : int startup_check(port) } class "StdStreamHandler" as conda.gateways.logging.StdStreamHandler #44BB99 { sys_stream terminator : str emit(record) } class "StringField" as conda.auxlib.entity.StringField #99DDFF { box(instance, instance_type, val) } class "SubdirData" as conda.core.subdir_data.SubdirData #FFAABB { RepoInterface cache_path_base cache_path_json cache_path_pickle cache_path_state channel repo_cache repo_fetch repodata_fn : str url_w_credentials : str url_w_repodata_fn url_w_subdir clear_cached_local_channel_data(exclude_file) iter_records() load() query(package_ref_or_match_spec) query_all(package_ref_or_match_spec, channels, subdirs, repodata_fn) reload() } class "SubdirDataType" as conda.core.subdir_data.SubdirDataType #FFAABB { } class "SubdirField" as conda.models.records.SubdirField #DDDDDD { } class "SwallowBrokenPipe" as conda.common.io.SwallowBrokenPipe #AAAA00 { } class "TemporaryDirectory" as conda.gateways.disk.create.TemporaryDirectory #EEDD88 { name : NoneType cleanup(_warn, _warnings) } class "<color:red>ThisShouldNeverHappenError</color>" as conda.auxlib.exceptions.ThisShouldNeverHappenError #99DDFF { } class "ThreadLimitedThreadPoolExecutor" as conda.common.io.ThreadLimitedThreadPoolExecutor #AAAA00 { submit(fn) } class "<color:red>TimeoutException</color>" as conda.common.io.timeout.TimeoutException #44BB99 { } class "TimestampField" as conda.models.records.TimestampField #DDDDDD { box(instance, instance_type, val) dump(instance, instance_type, val) } class "TmpChannelFixture" as conda.testing.TmpChannelFixture #77AADD { conda_cli path_factory } class "TmpDownload" as conda.gateways.connection.download.TmpDownload #BBCC33 { tmp_dir : NoneType url verbose : bool } class "TmpEnvFixture" as conda.testing.TmpEnvFixture #77AADD { conda_cli path_factory } class "TokenURLFilter" as conda.gateways.logging.TokenURLFilter #44BB99 { TOKEN_REPLACE : partial TOKEN_URL_PATTERN filter(record) } class "<color:red>TooManyArgumentsError</color>" as conda.exceptions.TooManyArgumentsError #77AADD { expected offending_arguments optional_message : str received } class "TqdmHBox" as tqdm.notebook.TqdmHBox #BBCC33 { pbar } class "<color:red>TypeCoercionError</color>" as conda.auxlib.type_coercion.TypeCoercionError #99DDFF { value } class "<color:red>UnavailableInvalidChannel</color>" as conda.exceptions.UnavailableInvalidChannel #77AADD { status_code : str | int } class "<color:red>UnknownPackageClobberError</color>" as conda.exceptions.UnknownPackageClobberError #77AADD { } class "UnlinkLinkTransaction" as conda.core.link.UnlinkLinkTransaction #FFAABB { execute_executor nothing_to_do prefix_action_groups : dict prefix_setups transaction_context : dict verify_executor download_and_extract() execute() prepare() print_transaction_summary() verify() } class "UnlinkPathAction" as conda.core.path_actions.UnlinkPathAction #FFAABB { holding_full_path holding_short_path link_type cleanup() execute() reverse() } class "UnregisterEnvironmentLocationAction" as conda.core.path_actions.UnregisterEnvironmentLocationAction #FFAABB { target_full_path target_prefix transaction_context {abstract}cleanup() execute() {abstract}reverse() verify() } class "<color:red>UnsatisfiableError</color>" as conda.exceptions.UnsatisfiableError #77AADD { unsatisfiable : list } class "UpdateHistoryAction" as conda.core.path_actions.UpdateHistoryAction #FFAABB { hold_path neutered_specs remove_specs update_specs cleanup() create_actions(transaction_context, target_prefix, remove_specs, update_specs, neutered_specs) execute() reverse() } class "UpdateModifier" as conda.base.constants.UpdateModifier #44BB99 { name } class "Url" as conda.common.url.Url #AAAA00 { auth netloc as_dict() -> dict from_parse_result(parse_result: ParseResult) -> 'Url' replace() -> 'Url' } class "Url" as conda.common.url.Url.Url #99DDFF { fragment hostname password path port query scheme username } class "UrlsData" as conda.core.package_cache_data.UrlsData #FFAABB { pkgs_dir urls_txt_path add_url(url) get_url(package_path) } class "<color:red>ValidationError</color>" as conda.auxlib.exceptions.ValidationError #99DDFF { } class "<color:red>ValidationError</color>" as conda.common.configuration.ValidationError #AAAA00 { parameter_name parameter_value source } class "ValueEnum" as conda.base.constants.ValueEnum #44BB99 { name } class "Version" as packaging.version.Version #44BB99 { base_version dev epoch is_devrelease is_postrelease is_prerelease local major micro minor post pre public release } class "VersionOrder" as conda.models.version.VersionOrder #DDDDDD { fillvalue : int local : list norm_version version startswith(other: object) -> bool } class "VersionSpec" as conda.models.version.VersionSpec #DDDDDD { matcher_vo : str operator_func regex tup : tuple get_matcher(vspec) merge(other) union(other) } class "WIN32_FIND_DATA" as conda.gateways.disk.link.WIN32_FIND_DATA #EEDD88 { file_size } class "WindowsError" as conda.gateways.disk.link.WindowsError #EEDD88 { code message } class "XonshActivator" as conda.activate.XonshActivator #77AADD { command_join : str export_var_tmpl : str hook_source_path : Path path_conversion : staticmethod pathsep_join run_script_tmpl : str script_extension : str
sep : str set_var_tmpl : str tempfile_extension : NoneType unset_var_tmpl : str } class "YamlFileSpec" as conda.env.specs.yaml_file.YamlFileSpec #99DDFF { environment extensions : set filename : NoneType msg : NoneType, str can_handle() } class "YamlRawParameter" as conda.common.configuration.YamlRawParameter #AAAA00 { keyflag() make_raw_parameters(source, from_map) make_raw_parameters_from_file(filepath) value(parameter_obj) valueflags(parameter_obj) } class "ZstdRepoInterface" as conda.gateways.repodata.jlap.interface.ZstdRepoInterface #FFAABB { } class "_Action" as conda.core.path_actions._Action #FFAABB { verified {abstract}cleanup() {abstract}execute() {abstract}reverse() {abstract}verify() } class "_Activator" as conda.activate._Activator #77AADD { command command_join : str env_name_or_prefix export_var_tmpl : str hook_source_path : Path | None path_conversion : Callable[[str | Iterable[str] | None], str | tuple[str, ...] | None] pathsep_join : str run_script_tmpl : str script_extension : str sep : str set_var_tmpl : str stack : bool tempfile_extension : str | None unset_var_tmpl : str activate() add_export_unset_vars(export_vars, unset_vars) build_activate(env_name_or_prefix) build_deactivate() build_reactivate() build_stack(env_name_or_prefix) commands() deactivate() execute() get_export_unset_vars(export_metavars) get_scripts_export_unset_vars() -> tuple[str, str] hook(auto_activate_base: bool | None) -> str reactivate() } class "_BaseVersion" as packaging.version._BaseVersion #44BB99 { } class "_ClauseArray" as conda.common._logic._ClauseArray #AAAA00 { append(clause) as_array() as_list() extend(clauses) get_clause_count() restore_state(saved_state) save_state() } class "_ClauseList" as conda.common._logic._ClauseList #AAAA00 { append extend as_array() as_list() get_clause_count() restore_state(saved_state) save_state() } class "_FeaturesField" as conda.models.records._FeaturesField #DDDDDD { box(instance, instance_type, val) dump(instance, instance_type, val) } class "_GreedySubParsersAction" as conda.cli.conda_argparse._GreedySubParsersAction #BBCC33 { } class "_Null" as conda.auxlib._Null #77AADD { to_json } class "<color:red>_PaddingError</color>" as conda.core.portability._PaddingError #FFAABB { } class "_PyCryptoSatSolver" as conda.common._logic._PyCryptoSatSolver #AAAA00 { invoke(solver) process_solution(solution) setup(m, threads) } class "_PySatSolver" as conda.common._logic._PySatSolver #AAAA00 { invoke(solver) process_solution(sat_solution) setup(m) } class "_PycoSatSolver" as conda.common._logic._PycoSatSolver #AAAA00 { invoke(iter_sol) process_solution(sat_solution) setup(m, limit) } class "_Regex" as conda.auxlib.type_coercion._Regex #99DDFF { boolean none numbers BIN() BOOLEAN_FALSE() BOOLEAN_TRUE() COMPLEX() FLOAT() HEX() INT() NONE() OCT() convert(value_string) convert_number(value_string) } class "_SSLContextAdapterMixin" as conda.gateways.connection.adapters.http._SSLContextAdapterMixin #AAAA00 { init_poolmanager(connections: int, maxsize: int, block: bool) -> 'PoolManager' } class "_SatSolver" as conda.common._logic._SatSolver #AAAA00 { add_clause add_clauses as_list() get_clause_count() {abstract}invoke(solver) {abstract}process_solution(sat_solution) restore_state(saved_state) run(m) save_state() {abstract}setup(m) } class "_SignatureVerification" as conda.trust.signature_verification._SignatureVerification #77AADD { enabled key_mgr trusted_root cache_clear() -> None verify(repodata_fn: str, record: PackageRecord) } class "_StrMatchMixin" as conda.models.match_spec._StrMatchMixin #DDDDDD { exact_value } class "_Version" as ._Version #BBCC33 { dev epoch local post pre release } class "classproperty" as conda.auxlib.decorators.classproperty #99DDFF { setter(setter) } class "frozendict" as conda._vendor.frozendict.frozendict #AAAA00 { dict_cls : dict copy() to_json() } class "hardlink" as conda.models.enums.LinkType.hardlink #EEDD88 { name value } class "temporary_class" as conda.common.compat.six_with_metaclass.temporary_class #EE8866 { } class "time_recorder" as conda.common.io.time_recorder #AAAA00 { entry_name : NoneType, str module_name : NoneType record_file : bytes, str start_time : NoneType total_call_num : defaultdict total_run_time : defaultdict log_totals() } class "tqdm" as tqdm.auto.tqdm #BBCC33 { } class "tqdm" as tqdm.std.tqdm #BBCC33 { ascii : NoneType, bool bar_format : NoneType, str colour : NoneType delay : float desc : str disable : bool dynamic_miniters : bool dynamic_ncols : NoneType, bool format_dict fp gui : bool initial : int iterable : NoneType, reversed last_print_n : int last_print_t leave : bool lock_args : NoneType maxinterval : float, int mininterval : float, int miniters : NoneType, int monitor : NoneType monitor_interval : int n : int ncols : NoneType nrows : NoneType pos postfix : NoneType, str smoothing : float, int sp start_t total : NoneType unit : str unit_divisor : int unit_scale : bool clear(nolock) close() display(msg, pos) external_write_mode(file, nolock) format_interval(t) format_meter(n, total, elapsed, ncols, prefix, ascii, unit, unit_scale, rate, bar_format, postfix, unit_divisor, initial, colour) format_num(n) format_sizeof(num, suffix, divisor) get_lock() moveto(n) pandas() refresh(nolock, lock_args) reset(total) set_description(desc, refresh) set_description_str(desc, refresh) set_lock(lock) set_postfix(ordered_dict, refresh) set_postfix_str(s, refresh) status_printer(file) unpause() update(n) wrapattr(stream, method, total, bytes) write(s, file, end, nolock) } class "tqdm_asyncio" as tqdm.asyncio.tqdm_asyncio #BBCC33 { iterable_awaitable : bool iterable_iterator iterable_next as_completed(fs) gather() send() } class "tqdm_notebook" as tqdm.notebook.tqdm_notebook #BBCC33 { colour container disp displayed : bool ncols {abstract}clear() close() display(msg, pos, close, bar_style, check_delay) reset(total) status_printer(_, total, desc, ncols) update(n) } conda.CondaExitZero --|> conda.CondaError conda.CondaMultiError --|> conda.CondaError conda.activate.CmdExeActivator --|> conda.activate._Activator conda.activate.CshActivator --|> conda.activate._Activator conda.activate.FishActivator --|> conda.activate._Activator conda.activate.JSONFormatMixin --|> conda.activate._Activator conda.activate.PosixActivator --|> conda.activate._Activator conda.activate.PowerShellActivator --|> conda.activate._Activator conda.activate.XonshActivator --|> conda.activate._Activator conda.auxlib.entity.BooleanField --|> conda.auxlib.entity.Field conda.auxlib.entity.ComposableField --|> conda.auxlib.entity.Field conda.auxlib.entity.DateField --|> conda.auxlib.entity.Field conda.auxlib.entity.EnumField --|> conda.auxlib.entity.Field conda.auxlib.entity.ImmutableEntity --|> conda.auxlib.entity.Entity conda.auxlib.entity.IntegerField --|> conda.auxlib.entity.Field conda.auxlib.entity.ListField --|> conda.auxlib.entity.Field conda.auxlib.entity.MapField --|> conda.auxlib.entity.Field conda.auxlib.entity.MutableListField --|> conda.auxlib.entity.ListField conda.auxlib.entity.NumberField --|> conda.auxlib.entity.Field conda.auxlib.entity.StringField --|> conda.auxlib.entity.Field conda.auxlib.exceptions.AssignmentError --|> conda.auxlib.exceptions.AuxlibError conda.auxlib.exceptions.AuthenticationError --|> conda.auxlib.exceptions.AuxlibError conda.auxlib.exceptions.InitializationError --|> conda.auxlib.exceptions.AuxlibError conda.auxlib.exceptions.NotFoundError --|> conda.auxlib.exceptions.AuxlibError conda.auxlib.exceptions.SenderError --|> conda.auxlib.exceptions.AuxlibError conda.auxlib.exceptions.ThisShouldNeverHappenError --|> conda.auxlib.exceptions.AuxlibError conda.auxlib.exceptions.ValidationError --|> conda.auxlib.exceptions.AuxlibError conda.auxlib.type_coercion.TypeCoercionError --|> conda.auxlib.exceptions.AuxlibError conda.base.constants.NoticeLevel --|> conda.base.constants.ValueEnum conda.base.constants.SatSolverChoice --|> conda.base.constants.ValueEnum conda.base.context.Context --|> conda.common.configuration.Configuration conda.common._logic._PyCryptoSatSolver --|> conda.common._logic._SatSolver conda.common._logic._PySatSolver --|> conda.common._logic._SatSolver conda.common._logic._PycoSatSolver --|> conda.common._logic._SatSolver conda.common.configuration.ArgParseRawParameter --|> conda.common.configuration.RawParameter conda.common.configuration.ConfigurationError --|> conda.CondaError conda.common.configuration.ConfigurationLoadError --|> conda.common.configuration.ConfigurationError conda.common.configuration.CustomValidationError --|> conda.common.configuration.ValidationError conda.common.configuration.DefaultValueRawParameter --|> conda.common.configuration.RawParameter conda.common.configuration.EnvRawParameter --|> conda.common.configuration.RawParameter conda.common.configuration.InvalidTypeError --|> conda.common.configuration.ValidationError conda.common.configuration.MapLoadedParameter --|> conda.common.configuration.LoadedParameter conda.common.configuration.MapParameter --|> conda.common.configuration.Parameter conda.common.configuration.MultiValidationError --|> conda.CondaMultiError conda.common.configuration.MultiValidationError --|> conda.common.configuration.ConfigurationError conda.common.configuration.MultipleKeysError --|> conda.common.configuration.ValidationError conda.common.configuration.ObjectLoadedParameter --|> conda.common.configuration.LoadedParameter conda.common.configuration.ObjectParameter --|> conda.common.configuration.Parameter conda.common.configuration.PrimitiveLoadedParameter --|>
conda.common.configuration.LoadedParameter conda.common.configuration.PrimitiveParameter --|> conda.common.configuration.Parameter conda.common.configuration.SequenceLoadedParameter --|> conda.common.configuration.LoadedParameter conda.common.configuration.SequenceParameter --|> conda.common.configuration.Parameter conda.common.configuration.ValidationError --|> conda.common.configuration.ConfigurationError conda.common.configuration.YamlRawParameter --|> conda.common.configuration.RawParameter conda.common.io.SwallowBrokenPipe --|> conda.common.io.ContextDecorator conda.common.io.time_recorder --|> conda.common.io.ContextDecorator conda.common.pkg_formats.python.PythonEggInfoDistribution --|> conda.common.pkg_formats.python.PythonDistribution conda.common.pkg_formats.python.PythonEggLinkDistribution --|> conda.common.pkg_formats.python.PythonEggInfoDistribution conda.common.pkg_formats.python.PythonInstalledDistribution --|> conda.common.pkg_formats.python.PythonDistribution conda.core.path_actions.AggregateCompileMultiPycAction --|> conda.core.path_actions.CompileMultiPycAction conda.core.path_actions.CacheUrlAction --|> conda.core.path_actions.PathAction conda.core.path_actions.CompileMultiPycAction --|> conda.core.path_actions.MultiPathAction conda.core.path_actions.CreateInPrefixPathAction --|> conda.core.path_actions.PrefixPathAction conda.core.path_actions.CreateNonadminAction --|> conda.core.path_actions.CreateInPrefixPathAction conda.core.path_actions.CreatePrefixRecordAction --|> conda.core.path_actions.CreateInPrefixPathAction conda.core.path_actions.CreatePythonEntryPointAction --|> conda.core.path_actions.CreateInPrefixPathAction conda.core.path_actions.ExtractPackageAction --|> conda.core.path_actions.PathAction conda.core.path_actions.LinkPathAction --|> conda.core.path_actions.CreateInPrefixPathAction conda.core.path_actions.MakeMenuAction --|> conda.core.path_actions.CreateInPrefixPathAction conda.core.path_actions.MultiPathAction --|> conda.core.path_actions._Action conda.core.path_actions.PathAction --|> conda.core.path_actions._Action conda.core.path_actions.PrefixPathAction --|> conda.core.path_actions.PathAction conda.core.path_actions.PrefixReplaceLinkAction --|> conda.core.path_actions.LinkPathAction conda.core.path_actions.RegisterEnvironmentLocationAction --|> conda.core.path_actions.PathAction conda.core.path_actions.RemoveFromPrefixPathAction --|> conda.core.path_actions.PrefixPathAction conda.core.path_actions.RemoveLinkedPackageRecordAction --|> conda.core.path_actions.UnlinkPathAction conda.core.path_actions.RemoveMenuAction --|> conda.core.path_actions.RemoveFromPrefixPathAction conda.core.path_actions.UnlinkPathAction --|> conda.core.path_actions.RemoveFromPrefixPathAction conda.core.path_actions.UnregisterEnvironmentLocationAction --|> conda.core.path_actions.PathAction conda.core.path_actions.UpdateHistoryAction --|> conda.core.path_actions.CreateInPrefixPathAction conda.exceptions.ActivateHelp --|> conda.exceptions.Help conda.exceptions.ArgumentError --|> conda.CondaError conda.exceptions.AuthenticationError --|> conda.CondaError conda.exceptions.BasicClobberError --|> conda.exceptions.ClobberError conda.exceptions.BinaryPrefixReplacementError --|> conda.CondaError conda.exceptions.ChannelError --|> conda.CondaError conda.exceptions.ChannelNotAllowed --|> conda.exceptions.ChannelError conda.exceptions.ChecksumMismatchError --|> conda.CondaError conda.exceptions.ClobberError --|> conda.CondaError conda.exceptions.CommandNotFoundError --|> conda.CondaError conda.exceptions.CondaDependencyError --|> conda.CondaError conda.exceptions.CondaEnvException --|> conda.CondaError conda.exceptions.CondaEnvironmentError --|> conda.CondaError conda.exceptions.CondaFileIOError --|> conda.exceptions.CondaIOError conda.exceptions.CondaHTTPError --|> conda.CondaError conda.exceptions.CondaHistoryError --|> conda.CondaError conda.exceptions.CondaIOError --|> conda.CondaError conda.exceptions.CondaImportError --|> conda.CondaError conda.exceptions.CondaIndexError --|> conda.CondaError conda.exceptions.CondaKeyError --|> conda.CondaError conda.exceptions.CondaMemoryError --|> conda.CondaError conda.exceptions.CondaOSError --|> conda.CondaError conda.exceptions.CondaSSLError --|> conda.CondaError conda.exceptions.CondaSignalInterrupt --|> conda.CondaError conda.exceptions.CondaSystemExit --|> conda.CondaExitZero conda.exceptions.CondaUpgradeError --|> conda.CondaError conda.exceptions.CondaValueError --|> conda.CondaError conda.exceptions.CondaVerificationError --|> conda.CondaError conda.exceptions.CorruptedEnvironmentError --|> conda.CondaError conda.exceptions.CouldntParseError --|> conda.exceptions.ParseError conda.exceptions.CyclicalDependencyError --|> conda.CondaError conda.exceptions.DeactivateHelp --|> conda.exceptions.Help conda.exceptions.DirectoryNotACondaEnvironmentError --|> conda.CondaError conda.exceptions.DirectoryNotFoundError --|> conda.CondaError conda.exceptions.DisallowedPackageError --|> conda.CondaError conda.exceptions.DryRunExit --|> conda.CondaExitZero conda.exceptions.EncodingError --|> conda.CondaError conda.exceptions.EnvironmentFileEmpty --|> conda.exceptions.CondaEnvException conda.exceptions.EnvironmentFileExtensionNotValid --|> conda.exceptions.CondaEnvException conda.exceptions.EnvironmentFileNotDownloaded --|> conda.CondaError conda.exceptions.EnvironmentFileNotFound --|> conda.exceptions.CondaEnvException conda.exceptions.EnvironmentLocationNotFound --|> conda.CondaError conda.exceptions.EnvironmentNameNotFound --|> conda.CondaError conda.exceptions.EnvironmentNotWritableError --|> conda.CondaError conda.exceptions.GenericHelp --|> conda.exceptions.Help conda.exceptions.Help --|> conda.CondaError conda.exceptions.InvalidMatchSpec --|> conda.exceptions.InvalidSpec conda.exceptions.InvalidSpec --|> conda.CondaError conda.exceptions.InvalidVersionSpec --|> conda.exceptions.InvalidSpec conda.exceptions.KnownPackageClobberError --|> conda.exceptions.ClobberError conda.exceptions.LinkError --|> conda.CondaError conda.exceptions.LockError --|> conda.CondaError conda.exceptions.NoBaseEnvironmentError --|> conda.CondaError conda.exceptions.NoSpaceLeftError --|> conda.CondaError conda.exceptions.NoWritableEnvsDirError --|> conda.CondaError conda.exceptions.NoWritablePkgsDirError --|> conda.CondaError conda.exceptions.NotWritableError --|> conda.CondaError conda.exceptions.OperationNotAllowed --|> conda.CondaError conda.exceptions.PackageNotInstalledError --|> conda.CondaError conda.exceptions.PackagesNotFoundError --|> conda.CondaError conda.exceptions.PaddingError --|> conda.CondaError conda.exceptions.ParseError --|> conda.CondaError conda.exceptions.PathNotFoundError --|> conda.CondaError conda.exceptions.PluginError --|> conda.CondaError conda.exceptions.ProxyError --|> conda.CondaError conda.exceptions.RemoveError --|> conda.CondaError conda.exceptions.ResolvePackageNotFound --|> conda.CondaError conda.exceptions.SafetyError --|> conda.CondaError conda.exceptions.SharedLinkPathClobberError --|> conda.exceptions.ClobberError conda.exceptions.SpecNotFound --|> conda.CondaError conda.exceptions.SpecsConfigurationConflictError --|> conda.CondaError conda.exceptions.TooManyArgumentsError --|> conda.exceptions.ArgumentError conda.exceptions.UnavailableInvalidChannel --|> conda.exceptions.ChannelError conda.exceptions.UnknownPackageClobberError --|> conda.exceptions.ClobberError conda.exceptions.UnsatisfiableError --|> conda.CondaError conda.gateways.connection.adapters.ftp.FTPAdapter --|> requests.adapters.BaseAdapter conda.gateways.connection.adapters.http.HTTPAdapter --|> conda.gateways.connection.adapters.http._SSLContextAdapterMixin conda.gateways.connection.adapters.http.HTTPAdapter --|> requests.adapters.HTTPAdapter conda.gateways.connection.adapters.localfs.LocalFSAdapter --|> requests.adapters.BaseAdapter conda.gateways.connection.adapters.s3.S3Adapter --|> requests.adapters.BaseAdapter conda.gateways.connection.session.CondaHttpAuth --|> requests.auth.AuthBase conda.gateways.connection.session.CondaSession --|> requests.sessions.Session conda.gateways.connection.session.EnforceUnusedAdapter --|> requests.adapters.BaseAdapter conda.gateways.repodata.CondaRepoInterface --|> conda.gateways.repodata.RepoInterface conda.gateways.repodata.RepodataIsEmpty --|> conda.exceptions.UnavailableInvalidChannel conda.gateways.repodata.jlap.interface.JlapRepoInterface --|> conda.gateways.repodata.RepoInterface conda.gateways.repodata.jlap.interface.RepodataStateSkipFormat --|> conda.gateways.repodata.RepodataState conda.gateways.repodata.jlap.interface.ZstdRepoInterface --|> conda.gateways.repodata.jlap.interface.JlapRepoInterface conda.models.channel.MultiChannel --|> conda.models.channel.Channel conda.models.dist.Dist --|> conda.auxlib.entity.Entity conda.models.dist.DistType --|> conda.auxlib.entity.EntityType conda.models.leased_path_entry.LeasedPathEntry --|> conda.auxlib.entity.Entity conda.models.match_spec.CaseInsensitiveStrMatch --|> conda.models.match_spec.GlobLowerStrMatch conda.models.match_spec.ChannelMatch --|> conda.models.match_spec.GlobStrMatch conda.models.match_spec.ExactLowerStrMatch --|> conda.models.match_spec.ExactStrMatch conda.models.match_spec.ExactStrMatch --|> conda.models.match_spec.MatchInterface conda.models.match_spec.ExactStrMatch --|> conda.models.match_spec._StrMatchMixin conda.models.match_spec.FeatureMatch --|> conda.models.match_spec.MatchInterface conda.models.match_spec.GlobLowerStrMatch --|> conda.models.match_spec.GlobStrMatch conda.models.match_spec.GlobStrMatch --|> conda.models.match_spec.MatchInterface conda.models.match_spec.GlobStrMatch --|> conda.models.match_spec._StrMatchMixin conda.models.match_spec.SplitStrMatch --|> conda.models.match_spec.MatchInterface conda.models.package_info.Noarch --|> conda.auxlib.entity.Entity conda.models.package_info.NoarchField --|> conda.auxlib.entity.EnumField
conda.models.package_info.PackageInfo --|> conda.auxlib.entity.ImmutableEntity conda.models.package_info.PackageMetadata --|> conda.auxlib.entity.Entity conda.models.package_info.PreferredEnv --|> conda.auxlib.entity.Entity conda.models.prefix_graph.GeneralGraph --|> conda.models.prefix_graph.PrefixGraph conda.models.records.ChannelField --|> conda.auxlib.entity.ComposableField conda.models.records.FilenameField --|> conda.auxlib.entity.StringField conda.models.records.Link --|> conda.auxlib.entity.DictSafeMixin conda.models.records.Link --|> conda.auxlib.entity.Entity conda.models.records.LinkTypeField --|> conda.auxlib.entity.EnumField conda.models.records.Md5Field --|> conda.auxlib.entity.StringField conda.models.records.NoarchField --|> conda.auxlib.entity.EnumField conda.models.records.PackageCacheRecord --|> conda.models.records.PackageRecord conda.models.records.PackageRecord --|> conda.auxlib.entity.DictSafeMixin conda.models.records.PackageRecord --|> conda.auxlib.entity.Entity conda.models.records.PackageTypeField --|> conda.auxlib.entity.EnumField conda.models.records.PathData --|> conda.auxlib.entity.Entity conda.models.records.PathDataV1 --|> conda.models.records.PathData conda.models.records.PathsData --|> conda.auxlib.entity.Entity conda.models.records.PrefixRecord --|> conda.models.records.PackageRecord conda.models.records.SubdirField --|> conda.auxlib.entity.StringField conda.models.records.TimestampField --|> conda.auxlib.entity.NumberField conda.models.records._FeaturesField --|> conda.auxlib.entity.ListField conda.models.version.BuildNumberMatch --|> conda.models.version.BaseSpec conda.models.version.VersionSpec --|> conda.models.version.BaseSpec conda.plugins.manager.CondaPluginManager --|> pluggy._manager.PluginManager conda.plugins.types.ChannelAuthBase --|> conda.plugins.types.ChannelNameMixin conda.plugins.types.ChannelAuthBase --|> requests.auth.AuthBase packaging.version.Version --|> packaging.version._BaseVersion requests.adapters.HTTPAdapter --|> requests.adapters.BaseAdapter requests.sessions.Session --|> requests.sessions.SessionRedirectMixin tqdm.asyncio.tqdm_asyncio --|> tqdm.std.tqdm tqdm.auto.tqdm --|> tqdm.asyncio.tqdm_asyncio tqdm.auto.tqdm --|> tqdm.notebook.tqdm_notebook tqdm.auto.tqdm --|> tqdm.std.tqdm tqdm.notebook.tqdm_notebook --|> tqdm.std.tqdm tqdm.std.tqdm --|> tqdm.utils.Comparable tqdm.utils.DisableOnWriteError --|> tqdm.utils.ObjectWrapper urllib3.poolmanager.PoolManager --|> urllib3._request_methods.RequestMethods ._Version --* packaging.version.Version : _version boltons.setutils.IndexedSet --* conda.common.configuration.Configuration : _reset_callbacks boltons.setutils.IndexedSet --* conda.common.configuration.Configuration : _search_path boltons.setutils.IndexedSet --* conda.core.solve.Solver : channels boltons.setutils.IndexedSet --* conda.core.solve.SolverStateContainer : solution_precs conda._vendor.frozendict.frozendict --* conda.auxlib.entity.MapField : _type conda._vendor.frozendict.frozendict --* conda.common.configuration.DefaultValueRawParameter : _value conda._vendor.frozendict.frozendict --* conda.common.configuration.MapLoadedParameter : _type conda._vendor.frozendict.frozendict --* conda.common.configuration.MapParameter : _type conda._vendor.frozendict.frozendict --* conda.common.configuration.YamlRawParameter : _value conda._vendor.frozendict.frozendict --* conda.common.pkg_formats.python.PythonDistributionMetadata : SINGLE_USE_KEYS conda._vendor.frozendict.frozendict --* conda.common.pkg_formats.python.PythonDistributionMetadata : MULTIPLE_USE_KEYS conda._vendor.frozendict.frozendict --* conda.models.match_spec.MatchSpec : _match_components conda.auxlib._Null --* conda.auxlib.entity.Field : _default conda.auxlib.collection.AttrDict --* conda.common.configuration.Configuration : _argparse_args conda.auxlib.entity.BooleanField --* conda.models.records.PathData : no_link conda.auxlib.entity.ComposableField --* conda.models.package_info.PackageInfo : channel conda.auxlib.entity.ComposableField --* conda.models.package_info.PackageInfo : repodata_record conda.auxlib.entity.ComposableField --* conda.models.package_info.PackageInfo : package_metadata conda.auxlib.entity.ComposableField --* conda.models.package_info.PackageInfo : paths_data conda.auxlib.entity.ComposableField --* conda.models.package_info.PackageMetadata : noarch conda.auxlib.entity.ComposableField --* conda.models.package_info.PackageMetadata : preferred_env conda.auxlib.entity.ComposableField --* conda.models.records.PrefixRecord : paths_data conda.auxlib.entity.ComposableField --* conda.models.records.PrefixRecord : link conda.auxlib.entity.EnumField --* conda.models.leased_path_entry.LeasedPathEntry : leased_path_type conda.auxlib.entity.EnumField --* conda.models.records.PackageRecord : platform conda.auxlib.entity.EnumField --* conda.models.records.PathData : file_mode conda.auxlib.entity.EnumField --* conda.models.records.PathData : path_type conda.auxlib.entity.IntegerField --* conda.models.dist.Dist : build_number conda.auxlib.entity.IntegerField --* conda.models.package_info.PackageMetadata : package_metadata_version conda.auxlib.entity.IntegerField --* conda.models.records.PackageRecord : build_number conda.auxlib.entity.IntegerField --* conda.models.records.PackageRecord : legacy_bz2_size conda.auxlib.entity.IntegerField --* conda.models.records.PackageRecord : size conda.auxlib.entity.IntegerField --* conda.models.records.PathDataV1 : size_in_bytes conda.auxlib.entity.IntegerField --* conda.models.records.PathsData : paths_version conda.auxlib.entity.ListField --* conda.models.package_info.Noarch : entry_points conda.auxlib.entity.ListField --* conda.models.package_info.PreferredEnv : executable_paths conda.auxlib.entity.ListField --* conda.models.package_info.PreferredEnv : softlink_paths conda.auxlib.entity.ListField --* conda.models.records.PackageRecord : depends conda.auxlib.entity.ListField --* conda.models.records.PackageRecord : constrains conda.auxlib.entity.ListField --* conda.models.records.PathDataV1 : inode_paths conda.auxlib.entity.ListField --* conda.models.records.PathsData : paths conda.auxlib.entity.ListField --* conda.models.records.PrefixRecord : files conda.auxlib.entity.StringField --* conda.models.dist.Dist : channel conda.auxlib.entity.StringField --* conda.models.dist.Dist : dist_name conda.auxlib.entity.StringField --* conda.models.dist.Dist : name conda.auxlib.entity.StringField --* conda.models.dist.Dist : fmt conda.auxlib.entity.StringField --* conda.models.dist.Dist : version conda.auxlib.entity.StringField --* conda.models.dist.Dist : build_string conda.auxlib.entity.StringField --* conda.models.dist.Dist : base_url conda.auxlib.entity.StringField --* conda.models.dist.Dist : platform conda.auxlib.entity.StringField --* conda.models.leased_path_entry.LeasedPathEntry : _path conda.auxlib.entity.StringField --* conda.models.leased_path_entry.LeasedPathEntry : target_path conda.auxlib.entity.StringField --* conda.models.leased_path_entry.LeasedPathEntry : target_prefix conda.auxlib.entity.StringField --* conda.models.leased_path_entry.LeasedPathEntry : leased_path conda.auxlib.entity.StringField --* conda.models.leased_path_entry.LeasedPathEntry : package_name conda.auxlib.entity.StringField --* conda.models.package_info.PackageInfo : extracted_package_dir conda.auxlib.entity.StringField --* conda.models.package_info.PackageInfo : package_tarball_full_path conda.auxlib.entity.StringField --* conda.models.package_info.PackageInfo : url conda.auxlib.entity.StringField --* conda.models.package_info.PackageInfo : icondata conda.auxlib.entity.StringField --* conda.models.package_info.PreferredEnv : name conda.auxlib.entity.StringField --* conda.models.records.Link : source conda.auxlib.entity.StringField --* conda.models.records.PackageCacheRecord : package_tarball_full_path conda.auxlib.entity.StringField --* conda.models.records.PackageCacheRecord : extracted_package_dir conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : name conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : version conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : build conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : md5 conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : legacy_bz2_md5 conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : url conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : sha256 conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : arch conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : preferred_env conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : license conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : license_family conda.auxlib.entity.StringField --* conda.models.records.PackageRecord : date conda.auxlib.entity.StringField --* conda.models.records.PathData : _path conda.auxlib.entity.StringField --* conda.models.records.PathData : prefix_placeholder conda.auxlib.entity.StringField --* conda.models.records.PathDataV1 : sha256 conda.auxlib.entity.StringField --* conda.models.records.PathDataV1 : sha256_in_prefix conda.auxlib.entity.StringField --* conda.models.records.PrefixRecord : package_tarball_full_path conda.auxlib.entity.StringField --* conda.models.records.PrefixRecord : extracted_package_dir conda.auxlib.entity.StringField --* conda.models.records.PrefixRecord : requested_spec conda.auxlib.entity.StringField --* conda.models.records.PrefixRecord : auth conda.base.constants.NoticeLevel --* conda.notices.types.ChannelNotice : level conda.common._logic.Clauses --* conda.common.logic.Clauses : _clauses conda.common._logic._ClauseList --* conda.common._logic._SatSolver : _clauses conda.common.configuration.Parameter --* conda.plugins.types.CondaSetting : parameter conda.common.configuration.ParameterLoader
--* conda.base.context.Context : add_pip_as_python_dependency conda.common.configuration.ParameterLoader --* conda.base.context.Context : allow_conda_downgrades conda.common.configuration.ParameterLoader --* conda.base.context.Context : allow_cycles conda.common.configuration.ParameterLoader --* conda.base.context.Context : allow_softlinks conda.common.configuration.ParameterLoader --* conda.base.context.Context : auto_update_conda conda.common.configuration.ParameterLoader --* conda.base.context.Context : auto_activate_base conda.common.configuration.ParameterLoader --* conda.base.context.Context : auto_stack conda.common.configuration.ParameterLoader --* conda.base.context.Context : notify_outdated_conda conda.common.configuration.ParameterLoader --* conda.base.context.Context : clobber conda.common.configuration.ParameterLoader --* conda.base.context.Context : changeps1 conda.common.configuration.ParameterLoader --* conda.base.context.Context : env_prompt conda.common.configuration.ParameterLoader --* conda.base.context.Context : create_default_packages conda.common.configuration.ParameterLoader --* conda.base.context.Context : register_envs conda.common.configuration.ParameterLoader --* conda.base.context.Context : default_python conda.common.configuration.ParameterLoader --* conda.base.context.Context : download_only conda.common.configuration.ParameterLoader --* conda.base.context.Context : enable_private_envs conda.common.configuration.ParameterLoader --* conda.base.context.Context : force_32bit conda.common.configuration.ParameterLoader --* conda.base.context.Context : non_admin_enabled conda.common.configuration.ParameterLoader --* conda.base.context.Context : pip_interop_enabled conda.common.configuration.ParameterLoader --* conda.base.context.Context : _default_threads conda.common.configuration.ParameterLoader --* conda.base.context.Context : _repodata_threads conda.common.configuration.ParameterLoader --* conda.base.context.Context : _fetch_threads conda.common.configuration.ParameterLoader --* conda.base.context.Context : _verify_threads conda.common.configuration.ParameterLoader --* conda.base.context.Context : _execute_threads conda.common.configuration.ParameterLoader --* conda.base.context.Context : _aggressive_update_packages conda.common.configuration.ParameterLoader --* conda.base.context.Context : safety_checks conda.common.configuration.ParameterLoader --* conda.base.context.Context : extra_safety_checks conda.common.configuration.ParameterLoader --* conda.base.context.Context : _signing_metadata_url_base conda.common.configuration.ParameterLoader --* conda.base.context.Context : path_conflict conda.common.configuration.ParameterLoader --* conda.base.context.Context : pinned_packages conda.common.configuration.ParameterLoader --* conda.base.context.Context : disallowed_packages conda.common.configuration.ParameterLoader --* conda.base.context.Context : rollback_enabled conda.common.configuration.ParameterLoader --* conda.base.context.Context : track_features conda.common.configuration.ParameterLoader --* conda.base.context.Context : use_index_cache conda.common.configuration.ParameterLoader --* conda.base.context.Context : separate_format_cache conda.common.configuration.ParameterLoader --* conda.base.context.Context : _root_prefix conda.common.configuration.ParameterLoader --* conda.base.context.Context : _envs_dirs conda.common.configuration.ParameterLoader --* conda.base.context.Context : _pkgs_dirs conda.common.configuration.ParameterLoader --* conda.base.context.Context : _subdir conda.common.configuration.ParameterLoader --* conda.base.context.Context : _subdirs conda.common.configuration.ParameterLoader --* conda.base.context.Context : local_repodata_ttl conda.common.configuration.ParameterLoader --* conda.base.context.Context : ssl_verify conda.common.configuration.ParameterLoader --* conda.base.context.Context : client_ssl_cert conda.common.configuration.ParameterLoader --* conda.base.context.Context : client_ssl_cert_key conda.common.configuration.ParameterLoader --* conda.base.context.Context : proxy_servers conda.common.configuration.ParameterLoader --* conda.base.context.Context : remote_connect_timeout_secs conda.common.configuration.ParameterLoader --* conda.base.context.Context : remote_read_timeout_secs conda.common.configuration.ParameterLoader --* conda.base.context.Context : remote_max_retries conda.common.configuration.ParameterLoader --* conda.base.context.Context : remote_backoff_factor conda.common.configuration.ParameterLoader --* conda.base.context.Context : allow_non_channel_urls conda.common.configuration.ParameterLoader --* conda.base.context.Context : _channel_alias conda.common.configuration.ParameterLoader --* conda.base.context.Context : channel_priority conda.common.configuration.ParameterLoader --* conda.base.context.Context : _channels conda.common.configuration.ParameterLoader --* conda.base.context.Context : channel_settings conda.common.configuration.ParameterLoader --* conda.base.context.Context : _custom_channels conda.common.configuration.ParameterLoader --* conda.base.context.Context : _custom_multichannels conda.common.configuration.ParameterLoader --* conda.base.context.Context : _default_channels conda.common.configuration.ParameterLoader --* conda.base.context.Context : _migrated_channel_aliases conda.common.configuration.ParameterLoader --* conda.base.context.Context : migrated_custom_channels conda.common.configuration.ParameterLoader --* conda.base.context.Context : override_channels_enabled conda.common.configuration.ParameterLoader --* conda.base.context.Context : show_channel_urls conda.common.configuration.ParameterLoader --* conda.base.context.Context : use_local conda.common.configuration.ParameterLoader --* conda.base.context.Context : allowlist_channels conda.common.configuration.ParameterLoader --* conda.base.context.Context : restore_free_channel conda.common.configuration.ParameterLoader --* conda.base.context.Context : repodata_fns conda.common.configuration.ParameterLoader --* conda.base.context.Context : _use_only_tar_bz2 conda.common.configuration.ParameterLoader --* conda.base.context.Context : always_softlink conda.common.configuration.ParameterLoader --* conda.base.context.Context : always_copy conda.common.configuration.ParameterLoader --* conda.base.context.Context : always_yes conda.common.configuration.ParameterLoader --* conda.base.context.Context : _debug conda.common.configuration.ParameterLoader --* conda.base.context.Context : _trace conda.common.configuration.ParameterLoader --* conda.base.context.Context : dry_run conda.common.configuration.ParameterLoader --* conda.base.context.Context : error_upload_url conda.common.configuration.ParameterLoader --* conda.base.context.Context : force conda.common.configuration.ParameterLoader --* conda.base.context.Context : json conda.common.configuration.ParameterLoader --* conda.base.context.Context : offline conda.common.configuration.ParameterLoader --* conda.base.context.Context : quiet conda.common.configuration.ParameterLoader --* conda.base.context.Context : ignore_pinned conda.common.configuration.ParameterLoader --* conda.base.context.Context : report_errors conda.common.configuration.ParameterLoader --* conda.base.context.Context : shortcuts conda.common.configuration.ParameterLoader --* conda.base.context.Context : number_channel_notices conda.common.configuration.ParameterLoader --* conda.base.context.Context : shortcuts_only conda.common.configuration.ParameterLoader --* conda.base.context.Context : _verbosity conda.common.configuration.ParameterLoader --* conda.base.context.Context : experimental conda.common.configuration.ParameterLoader --* conda.base.context.Context : no_lock conda.common.configuration.ParameterLoader --* conda.base.context.Context : repodata_use_zst conda.common.configuration.ParameterLoader --* conda.base.context.Context : deps_modifier conda.common.configuration.ParameterLoader --* conda.base.context.Context : update_modifier conda.common.configuration.ParameterLoader --* conda.base.context.Context : sat_solver conda.common.configuration.ParameterLoader --* conda.base.context.Context : solver_ignore_timestamps conda.common.configuration.ParameterLoader --* conda.base.context.Context : solver conda.common.configuration.ParameterLoader --* conda.base.context.Context : force_remove conda.common.configuration.ParameterLoader --* conda.base.context.Context : force_reinstall conda.common.configuration.ParameterLoader --* conda.base.context.Context : target_prefix_override conda.common.configuration.ParameterLoader --* conda.base.context.Context : unsatisfiable_hints conda.common.configuration.ParameterLoader --* conda.base.context.Context : unsatisfiable_hints_check_depth conda.common.configuration.ParameterLoader --* conda.base.context.Context : bld_path conda.common.configuration.ParameterLoader --* conda.base.context.Context : anaconda_upload conda.common.configuration.ParameterLoader --* conda.base.context.Context : _croot conda.common.configuration.ParameterLoader --* conda.base.context.Context : _conda_build conda.common.configuration.ParameterLoader --* conda.base.context.Context : no_plugins conda.common.io.CaptureTarget.STRING --* conda.common.io.Spinner : fh conda.common.io.CaptureTarget.STRING --* conda.common.io.captured.CapturedText : stderr conda.common.io.DummyExecutor --* conda.core.link.UnlinkLinkTransaction : verify_executor conda.common.io.DummyExecutor --* conda.core.link.UnlinkLinkTransaction : execute_executor conda.common.io.ThreadLimitedThreadPoolExecutor --* conda.core.link.UnlinkLinkTransaction : verify_executor conda.common.io.ThreadLimitedThreadPoolExecutor --* conda.core.link.UnlinkLinkTransaction : execute_executor conda.common.pkg_formats.python.PythonDistributionMetadata --* conda.common.pkg_formats.python.PythonDistribution : _metadata conda.core.package_cache_data.ProgressiveFetchExtract --*
conda.core.link.UnlinkLinkTransaction : _pfe conda.core.package_cache_data.ProgressiveFetchExtract --* conda.core.link.UnlinkLinkTransaction : _pfe conda.core.package_cache_data.UrlsData --* conda.core.package_cache_data.PackageCacheData : _urls_data conda.core.subdir_data.PackageRecordList --* conda.core.subdir_data.SubdirData : _package_records conda.env.env.Dependencies --* conda.env.env.Environment : dependencies conda.env.env.Environment --* conda.env.specs.yaml_file.YamlFileSpec : _environment conda.gateways.connection.session.CondaHttpAuth --* conda.gateways.connection.session.CondaSession : auth conda.gateways.repodata.RepodataState --* conda.gateways.repodata.RepodataCache : state conda.models.channel.Channel --* conda.gateways.repodata.RepodataFetch : channel conda.models.package_info.NoarchField --* conda.models.package_info.Noarch : type conda.models.records.ChannelField --* conda.models.records.PackageRecord : channel conda.models.records.FilenameField --* conda.models.records.PackageRecord : fn conda.models.records.LinkTypeField --* conda.models.records.Link : type conda.models.records.Md5Field --* conda.models.records.PackageCacheRecord : md5 conda.models.records.NoarchField --* conda.models.records.PackageRecord : noarch conda.models.records.PackageTypeField --* conda.models.records.PackageRecord : package_type conda.models.records.SubdirField --* conda.models.records.PackageRecord : subdir conda.models.records.TimestampField --* conda.models.records.PackageRecord : timestamp conda.models.records._FeaturesField --* conda.models.records.PackageRecord : track_features conda.models.records._FeaturesField --* conda.models.records.PackageRecord : features conda.resolve.Resolve --* conda.core.solve.Solver : _r conda.resolve.Resolve --* conda.core.solve.Solver : _r conda.testing.CondaCLIFixture --* conda.testing.TmpChannelFixture : conda_cli conda.testing.CondaCLIFixture --* conda.testing.TmpEnvFixture : conda_cli conda.testing.PathFactoryFixture --* conda.testing.TmpChannelFixture : path_factory conda.testing.PathFactoryFixture --* conda.testing.TmpEnvFixture : path_factory conda.testing.solver_helpers.SimpleEnvironment --* conda.testing.solver_helpers.SolverTests : env packaging.version.Version --* conda.deprecations.DeprecationHandler : _version_object packaging.version.Version --* conda.deprecations.DeprecationHandler : _version_object requests.cookies.RequestsCookieJar --* requests.sessions.Session : cookies requests.structures.CaseInsensitiveDict --* requests.sessions.Session : headers tqdm.asyncio.tqdm_asyncio --* conda.common.io.ProgressBar : pbar tqdm.auto.tqdm --* conda.common.io.ProgressBar : pbar tqdm.notebook.TqdmHBox --* tqdm.notebook.tqdm_notebook : container tqdm.std.EMA --* tqdm.std.tqdm : _ema_dn tqdm.std.EMA --* tqdm.std.tqdm : _ema_dn tqdm.std.EMA --* tqdm.std.tqdm : _ema_dt tqdm.std.EMA --* tqdm.std.tqdm : _ema_dt tqdm.std.EMA --* tqdm.std.tqdm : _ema_miniters tqdm.std.EMA --* tqdm.std.tqdm : _ema_miniters urllib3._collections.RecentlyUsedContainer --* urllib3.poolmanager.PoolManager : pools urllib3.poolmanager.PoolManager --* requests.adapters.HTTPAdapter : poolmanager urllib3.util.retry.Retry --* requests.adapters.HTTPAdapter : max_retries urllib3.util.retry.Retry --* requests.adapters.HTTPAdapter : max_retries conda.auxlib._Null --o conda.core.package_cache_data.PackageCacheData : __is_writable conda.auxlib._Null --o conda.core.prefix_data.PrefixData : __is_writable conda.auxlib._Null --o conda.core.solve.Solver : _command conda.auxlib._Null --o conda.core.solve.SolverStateContainer : update_modifier conda.auxlib._Null --o conda.core.solve.SolverStateContainer : deps_modifier conda.auxlib.collection.AttrDict --o conda.auxlib.collection.AttrDict : __dict__ conda.base.constants.DepsModifier --o conda.core.solve.SolverStateContainer : deps_modifier conda.base.constants.UpdateModifier --o conda.core.solve.SolverStateContainer : update_modifier conda.core.solve.SolverStateContainer --o conda.core.solve.Solver : ssc conda.gateways.repodata.CondaRepoInterface --o conda.core.subdir_data.SubdirData : RepoInterface conda.models.channel.Channel --o conda.core.subdir_data.SubdirData : channel conda.models.enums.LinkType.hardlink --o conda.core.path_actions.UnlinkPathAction : link_type tqdm.utils.DisableOnWriteError --o tqdm.std.tqdm : fp @enduml]

 Contributing to conda

Contributing to conda

Thank you for your interest in improving conda! Below, we describe how our
development process works and how you can be a part of it.

Already know how to contribute and need help setting up your development environment?
Read the development environment guide here

Hosted on GitHub

All development currently takes place on GitHub [https://github.com/]. This means we make extensive
use of the project management tools they provide such as issues [https://github.com/conda/conda/issues]
and projects [https://github.com/orgs/conda/projects].

Code of Conduct

When you decide to contribute to this project, it is important to adhere to our
code of conduct, which is currently the NumFOCUS Code of Conduct [https://www.numfocus.org/code-of-conduct].
Please read it carefully.

Conda Contributor License Agreement

To begin contributing to this repository, you need to sign the Conda
Contributor License Agreement (CLA). In case you’re new to CLAs, this
is a rather standard procedure for larger projects.
Django [https://www.djangoproject.com/foundation/cla/] and
Python [https://www.python.org/psf/contrib/contrib-form/] for example
both use similar agreements.

Click here to sign the Conda Contributor License Agreement [https://conda.io/en/latest/contributing.html#conda-contributor-license-agreement].

A record of prior signatories is kept in a separate repo in conda’s GitHub [https://github.com/conda/infra/blob/main/.clabot] organization.

Ways to contribute

Below are all the ways you can get involved in with conda.

Bug reports and feature requests

Bug reports and feature requests are always welcome. To file a new issue,
head to the issue form [https://github.com/conda/conda/issues/new/choose].

It should be noted that conda-build issues need to be filed separately at
its issue tracker [https://github.com/conda/conda-build/issues].

For all other types of issues, please head to Anaconda.org’s “Report a Bug” page [https://anaconda.org/contact/report].
For even more information and documentation on everything related to Anaconda, head to the
Support Center at Anaconda Nucleus [https://anaconda.cloud/support-center].

Before submitting an issue via any of these channels, make sure to document it
as well as possible and follow the submission guidelines (this makes everyone’s job a lot easier!).

Contributing your changes to conda

Here are the steps you need to take to contribute to conda:

	Signup for a GitHub account [https://github.com/signup] (if you haven’t already) and
install Git on your system [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git].

	Sign the Conda Contributor License Agreement [https://conda.io/en/latest/contributing.html#conda-contributor-license-agreement].

	Fork the conda repository to your personal GitHub account by clicking the
“Fork” button on https://github.com/conda/conda and follow GitHub’s
instructions.

	Work on your proposed solution. Visit this page if you need help getting your development environment setup

	When you are ready to submit a change, create a new pull request so that we can merge your changes to our repository.

Issue sorting

Issue sorting is how we filter incoming issues and get them ready for active development.
To see how this process works for this project, read “The Issue Sorting Process at conda [https://github.com/conda/infra/blob/main/HOW_WE_USE_GITHUB.md]”.

The project maintainers are currently not seeking help with issue sorting, but this may change in the future

Conda capitalization standards

	Conda should be written in lowercase, whether in reference to the tool, ecosystem, packages, or organization.

	References to the conda command should use code formatting (i.e. conda).

	If the use of conda is not a command and if conda is at the beginning of a sentence, conda should be uppercase.

Examples

In sentences

Beginning a sentence:

	Conda is an open-source package and environment management system.

	conda install can be used to install packages.

Conda in the middle of a sentence:

	If a newer version of conda is available, you can use conda update conda to update to that version.

	You can find conda packages within conda channels. The conda command can search these channels.

In titles and headers

Titles and headers should use the same capitalization and formatting standards as sentences.

In links

Links should use the same capitalization conventions as sentences. Because the conda docs currently use reStructuredText (RST) as a markup language, and RST does not support nested inline markup [https://docutils.sourceforge.io/FAQ.html#is-nested-inline-markup-possible], documentation writers should avoid using code backtick formatting inside links.

 Development Environment

Development Environment

	Clone the repo you just forked on GitHub to your local machine. Configure
your repo to point to both “upstream” (the main conda repo) and your fork
(“origin”). For detailed directions, see below:

Bash (macOS, Linux, Windows)

choose the repository location
warning: not the location of an existing conda installation!
$ CONDA_PROJECT_ROOT="$HOME/conda"

clone the project
replace `your-username` with your actual GitHub username
$ git clone git@github.com:your-username/conda "$CONDA_PROJECT_ROOT"
$ cd "$CONDA_PROJECT_ROOT"

set the `upstream` as the the main repository
$ git remote add upstream git@github.com:conda/conda

cmd.exe (Windows)

choose the repository location
warning: not the location of an existing conda installation!
> set "CONDA_PROJECT_ROOT=%HOMEPATH%\conda"

clone the project
replace `your-username` with your actual GitHub username
> git clone git@github.com:your-username/conda "%CONDA_PROJECT_ROOT%"
> cd "%CONDA_PROJECT_ROOT%"

set the `upstream` as the main repository
> git remote add upstream git@github.com:conda/conda

	One option is to create a local development environment and activate that environment

Bash (macOS, Linux, Windows)

$ source ./dev/start

cmd.exe (Windows)

> .\dev\start.bat

This command will create a project-specific base environment (see devenv
in your repo directory after running this command). If the base environment
already exists this command will simply activate the already-created
devenv environment.

To be sure that the conda code being interpreted is the code in the project
directory, look at the value of conda location: in the output of
conda info --all.

	Alternatively, for Linux development only, you can use the same Docker
image the CI pipelines use. Note that you can run this from all three
operating systems! We are using docker compose, which provides three
actions for you:

	unit-tests: Run all unit tests.

	integration-tests: Run all integration tests.

	interactive: You are dropped in a pre-initialized Bash session,
where you can run all your pytest commands as required.

Use them with docker compose run <action>. For example:

Any shell (macOS, Linux, Windows)

$ docker compose run unit-tests

This builds the same Docker image as used in continuous
integration from the Github Container Registry [https://github.com/conda/conda/pkgs/container/conda-ci]
and starts bash with the conda development mode already enabled.

By default, it will use Miniconda-based, Python 3.9 installation configured for
the defaults channel. You can customize this with two environment variables:

	CONDA_DOCKER_PYTHON: major.minor value; e.g. 3.11.

	CONDA_DOCKER_DEFAULT_CHANNEL: either defaults or conda-forge

For example, if you need a conda-forge based 3.12 image:

Bash (macOS, Linux, Windows)

$ CONDA_DOCKER_PYTHON=3.12 CONDA_DOCKER_DEFAULT_CHANNEL=conda-forge docker compose build --no-cache
--- in some systems you might also need to re-supply the same values as CLI flags:
CONDA_DOCKER_PYTHON=3.12 CONDA_DOCKER_DEFAULT_CHANNEL=conda-forge docker compose build --no-cache --build-arg python_version=3.12 --build-arg default_channel=conda-forge
$ CONDA_DOCKER_PYTHON=3.12 CONDA_DOCKER_DEFAULT_CHANNEL=conda-forge docker compose run interactive

cmd.exe (Windows)

> set CONDA_DOCKER_PYTHON=3.12
> set CONDA_DOCKER_DEFAULT_CHANNEL=conda-forge
> docker compose build --no-cache
> docker compose run interactive
> set "CONDA_DOCKER_PYTHON="
> set "CONDA_DOCKER_DEFAULT_CHANNEL="

The conda repository will be mounted to /opt/conda-src, so all changes
done in your editor will be reflected live while the Docker container is
running.

Static Code Analysis

This project is configured with pre-commit [https://pre-commit.com/] to
automatically run linting and other static code analysis on every commit.
Running these tools prior to the PR/code review process helps in two ways:

	it helps you by automating the nitpicky process of identifying and
correcting code style/quality issues

	it helps us where during code review we can focus on the substance of
your contribution

Feel free to read up on everything pre-commit related in their
docs [https://pre-commit.com/#quick-start] but we’ve included the gist of
what you need to get started below:

Bash (macOS, Linux, Windows)

reuse the development environment created above
$ source ./dev/start
or start the Docker image in interactive mode
$ docker compose run interactive

install pre-commit hooks for conda
$ cd "$CONDA_PROJECT_ROOT"
$ pre-commit install

manually running pre-commit on current changes
note: by default pre-commit only runs on staged files
$ pre-commit run

automatically running pre-commit during commit
$ git commit

cmd.exe (Windows)

:: reuse the development environment created above
> .\dev\start.bat
:: or start the Docker image in interactive mode
:: > docker compose run interactive

:: install pre-commit hooks for conda
> cd "%CONDA_PROJECT_ROOT%"
> pre-commit install

:: manually running pre-commit on current changes
:: note: by default pre-commit only runs on staged files
> pre-commit run

:: automatically running pre-commit during commit
> git commit

Beware that some of the tools run by pre-commit can potentially modify the
code (see black [https://github.com/psf/black],
blacken-docs [https://github.com/asottile/blacken-docs], and
darker [https://github.com/akaihola/darker]). If pre-commit detects that any
files were modified it will terminate the commit giving you the opportunity to
review the code before committing again.

Strictly speaking using pre-commit on your local machine for commits is
optional (if you don’t install pre-commit you will still be able to commit
normally). But once you open a PR to contribue your changes, pre-commit will
be automatically run at which point any errors that occur will need to be
addressed prior to proceeding.

Testing

We use pytest to run our test suite. Please consult pytest’s
docs [https://docs.pytest.org/en/6.2.x/usage.html] for detailed instructions
but generally speaking all you need is the following:

Bash (macOS, Linux, Windows)

reuse the development environment created above
$ source ./dev/start
or start the Docker image in interactive mode
$ docker compose run interactive

run conda's unit tests using GNU make
$ make unit

or alternately with pytest
$ pytest --cov -m "not integration" conda tests

or you can use pytest to focus on one specific test
$ pytest --cov tests/test_create.py -k create_install_update_remove_smoketest

cmd.exe (Windows)

:: reuse the development environment created above
> .\dev\start.bat
:: or start the Docker image in interactive mode
:: > docker compose run interactive

:: run conda's unit tests with pytest
> pytest --cov -m "not integration" conda tests

:: or you can use pytest to focus on one specific test
> pytest --cov tests\test_create.py -k create_install_update_remove_smoketest

If you are not measuring code coverage, pytest can be run without the --cov
option. The docker compose tests pass --cov.

Note: Some integration tests require you build a package with conda-build beforehand.
This is taking care of if you run docker compose run integration-tests, but you need
to do it manually in other modes:

Bash (macOS, Linux, Windows)

$ conda install conda-build
$ conda-build tests/test-recipes/activate_deactivate_package tests/test-recipes/pre_link_messages_package

Check dev/linux/integration.sh and dev\windows\integration.bat for more details.

 Deep dives

Deep dives

This section contains a series of deep dives into particularly complex parts
of conda.

	conda install

	conda init and conda activate

	conda config and context

	Solvers

 conda install

conda install

In this document we will explore what happens in Conda from the moment a user types their
installation command until the process is finished successfully. For the sake of completeness,
we will consider the following situation:

	The user is running commands on a Linux x64 machine with a working installation of Miniconda.

	This means we have a base environment with conda, python, and their dependencies.

	The base environment is already preactivated for Bash. For more details on activation, check
conda init and conda activate.

Ok, so… what happens when you run conda install numpy? Roughly, these steps:

	Command line interface

	argparse parsers

	Environment variables

	Configuration files

	Context initialization

	Delegation of the task

	Fetching the index

	Retrieving all the channels and platforms

	A note on channel priorities

	Solving the install request

	Requested packages + prefix state = list of specs

	Index reduction (sometimes)

	Running the solver

	Post-processing the list of packages

	Generating the transaction and the corresponding actions

	Download and extraction

	Integrity verification

	Linking and unlinking files

	Post-linking and post-activation tasks

[image: ../../_images/conda-install-deep-dive.png]

This figure shows the different processes and objects involved in handling a simple conda install
command.

Command line interface

First, a quick note on an implementation detail that might be not obvious.

When you type conda install numpy in your terminal, Bash takes those three words and looks for a
conda command to pass a list of arguments ['conda', 'install', 'numpy']. Before finding the
conda executable located at CONDA_HOME/condabin, it probably finds the shell function
defined here [https://github.com/conda/conda/blob/4.11.0/conda/shell/etc/profile.d/conda.sh#L62-L76]. This shell function runs the activation/deactivation
logic on the shell if requested, or delegates over to the actual Python entry-points otherwise.
This part of the logic can be found in conda.shell [https://github.com/conda/conda/tree/4.11.0/conda/shell].

Once we are running the Python entry-point, we are in the conda.cli [https://github.com/conda/conda/tree/4.11.0/conda/cli]
realm. The function called by the entry point is conda.cli.main:main() [https://github.com/conda/conda/blob/4.11.0/conda/cli/main.py#L121].
Here, another check is done for shell.* subcommands, which generate the shell initializers you see
in ~/.bashrc and others. If you are curious where this happens, it’s
conda.activate [https://github.com/conda/conda/blob/4.11.0/conda/activate.py].

Since our command is conda install ..., we still need to arrive somewhere else. You will notice
that the rest of the logic is delegated to conda.cli.main:_main(), which will invoke the parser
generators, initialize the context and loggers, and, eventually, pass the argument list over to
the corresponding command function. These four steps are implemented in four functions/classes:

	conda.cli.conda_argparse:generate_parser() [https://github.com/conda/conda/blob/4.11.0/conda/cli/conda_argparse.py#L28]:
This uses argparse to generate the CLI. Each subcommand is initialized in separate functions.
Note that the command line options are not generated dynamically from the Context object, but
annotated manually. If this is needed (e.g. --repodata-fn is exposed in Context.repodata_fn),
the dest variable of each CLI option should
match the target attribute in the context object [https://github.com/conda/conda/blob/4.11.0/conda/cli/conda_argparse.py#L1484].

	conda.base.context.Context [https://github.com/conda/conda/blob/4.11.0/conda/cli/main.py#L75]: This object stores the configuration options
in conda and will be initialized taking into account, among other things, the arguments
parsed in the step above. This is covered in more detail in a separate deep dive:
conda config and context.

	conda.gateways.logging:initialize_logging() [https://github.com/conda/conda/blob/4.11.0/conda/gateways/logging.py#L162]:
Not too exciting and easy to follow. This part of the code base is more or less self-explanatory.

	conda.cli.conda_argparse:do_call() [https://github.com/conda/conda/blob/4.11.0/conda/cli/conda_argparse.py#L77]: The argument parsing
will populate a func value that contains the import path to the function responsible for that
subcommand. For example, conda install is taken care of [https://github.com/conda/conda/blob/4.11.0/conda/cli/conda_argparse.py#L775] by
conda.cli.main_install [https://github.com/conda/conda/blob/4.11.0/conda/cli/main_install.py]. By design, all the modules reported by func
must contain an execute() function that implements the command logic. execute() takes the
parsed arguments and the parser itself as arguments. For example, in the case of conda install,
execute() only redirects [https://github.com/conda/conda/blob/4.11.0/conda/cli/main_install.py#L12] to a certain mode in
conda.cli.install:install() [https://github.com/conda/conda/blob/4.11.0/conda/cli/install.py#L107].

Let’s go take a look at that module now. conda.cli.install:install() [https://github.com/conda/conda/blob/4.11.0/conda/cli/install.py#L107]
implements the logic behind conda create, conda install, conda update and conda remove.
In essence, they all deal with the same task: changing which packages are present in an environment.
If you go and read that function, you will see there are several lines of code handling diverse
situations (new environments, clones, etc.) before we arrive to the next section. We will not discuss
them here, but feel free to explore that section [https://github.com/conda/conda/blob/4.11.0/conda/cli/install.py#L107].
It’s mostly ensuring that the destination prefix exists, whether we are creating a new environment
and massaging some command line flags that would allow us to skip the solver (e.g. --clone).

More information on environments

Check the concepts for Environments.

Fetching the index

At this point, we are ready to start doing some work! All of the previous code was telling us what to
do, and now we know. We want conda to install numpy on our base environment. The first thing
we need to know is where we can find packages with the name numpy. The answer is… the channels!

Users download packages from conda channels. These are normally hosted at anaconda.org. A
channel is essentially a directory structure with these elements:

<channel>
├── channeldata.json
├── index.html
├── <platform> (e.g. linux-64)
│ ├── current_repodata.json
│ ├── current_repodata.json.bz2
│ ├── index.html
│ ├── repodata.json
│ ├── repodata.json.bz2
│ ├── repodata_from_packages.json
│ └── repodata_from_packages.json.bz2
└── noarch
 ├── current_repodata.json
 ├── current_repodata.json.bz2
 ├── index.html
 ├── repodata.json
 ├── repodata.json.bz2
 ├── repodata_from_packages.json
 └── repodata_from_packages.json.bz2

More info on Channels

You can find some more user-oriented notes on Channels at What is a "channel"? and
Repository structure and index. If you are interested in more technical details, check the corresponding
documentation pages at conda-build [https://docs.conda.io/projects/conda-build/en/latest/concepts/generating-index.html].

The important bits are:

	A channel contains one or more platform-specific directories (linux-64, osx-64, etc.),
plus a platform-agnostic directory called noarch. In conda jargon, these are also
referred to as channel subdirs. Officially, the noarch subdirectory is enough to make it
a conda channel; e.g. no platform subdirectory is necessary.

	Each subdir contains at least a repodata.json file: a gigantic dictionary with all the
metadata for each package available on that platform.

	In most cases, the same subdirs also contain the *.tar.bz2 files for each of the published
packages. This is what conda downloads and extracts once solving is complete. The anatomy
of these files is well defined, both in content and naming structure. See
What is a package?, Package metadata and/or Package naming
conventions [https://docs.conda.io/projects/conda-build/en/latest/concepts/package-naming-conv.html] for more details.

Additionally, the channel’s main directory might contain a channeldata.json file, with channel-wide
metadata (this is not specific per platform). Not all channels include this, and in general
it is not currently something that is commonly utilized.

Since conda’s philosophy is to keep all packages ever published around for reproducibility,
repodata.json is always growing, which presents a problem both for the download itself and the
solver engine. To reduce download times and bandwidth usage, repodata.json is also served as a
BZIP2 compressed file, repodata.json.bz2. This is what most conda clients end up downloading.

Note on ‘current_repodata.json’

More repodatas variations can be found in some channels, but they are always reduced versions
of the main one for the sake of performance. For example, current_repodata.json only contains
the most recent version of each package, plus their dependencies. The rationale behind this
optimization trick can be found here [https://docs.conda.io/projects/conda-build/en/latest/concepts/generating-index.html#trimming-to-current-repodata].

So, in essence, fetching the channel information means it can be expressed in pseudo-code like this:

platform = {}
noarch = {}
for channel in reversed(context.channels):
 platform_repodata = fetch_extract_and_read(
 channel.full_url / context.subdir / "repodata.json.bz2"
)
 platform.update(platform_repodata)
 noarch_repodata = fetch_extract_and_read(
 channel.full_url / "noarch" / "repodata.json.bz2"
)
 noarch.update(noarch_repodata)

Note that these dictionaries are keyed by filename, so higher priority channels will overwrite
entries with the exact same filename (e.g. numpy-1.19-py36h87ha43_0.tar.bz2). If they don’t have
the same filename (e.g., same version and build number but different hash), this ambiguity will
be resolved later in the solver, taking into account the channel priority mode.

In this example, context.channels has been populated through different, cascading mechanisms:

	The default settings as found in ~/.condarc or equivalent.

	The CONDA_CHANNELS environment variable (rare usage).

	The command-line flags, such as -c <channel>, --use-local or --override-channels.

	The channels present in a command-line spec. Remember that users can
say channel::numpy instead of simply numpy to require that numpy comes from that specific
channel. That means that the repodata for such channel needs to be fetched, too!

The items in context.channels are supposed to be conda.models.channels.Channel objects, but
the Solver API also allows strings that refer to their name, alias or full URL. In that case,
you can use Channel objects to parse and retrieve the full URL for each subdir using the
Channel.urls() method. Several helper functions can be found in conda.core.index, if
needed.

Sadly, fetch_extract_and_read() does not exist as such, but as a combination of objects. The
main driving function is actually get_index() [https://github.com/conda/conda/blob/4.11.0/conda/core/index.py#L45], which passes the
channel URLs to fetch_index, a wrapper that delegates directly to
conda.core.subdir_data.SubdirData objects. This object implements caching, authentication,
proxies and other things that complicate the simple idea of “just download the file, please”.
Most of the logic is in SubdirData._load(), which ends up calling
conda.core.subdir_data.fetch_repodata_remote_request() to process the request. Finally,
SubdirData._process_raw_repodata_str() does the parsing and loading.

Internally, the SubdirData stores all the package metadata as a list of PackageRecord
objects. Its main usage is via .query() (one result at a time) or .query_all() (all
possible matches). These .query* methods accept spec strings (e.g. numpy =1.14),
MatchSpec and PackageRecord instances. Alternatively, if you want all records with no
queries, use SubdirData.iter_records().

Tricks to reduce the size of the index

conda supports the notion of trying with different versions of the index in an effort to minimize
the solution space. A smaller index means a faster search, after all! The default logic starts with
current_repodata.json files in the channel, which contain only the latest versions of each package
plus their dependencies. If that fails, then the full repodata.json is used. This happens before
the Solver is even invoked.

The second trick is done within the classic solver logic (pycosat): an informed index reduction. In essence, the
index (whether it’s current_repodata.json or full repodata.json) is pruned by the solver,
trying to keep only the parts that it anticipates will be needed. More details can be found on
the get_reduced_index function [https://github.com/conda/conda/blob/4.11.0/conda/core/index.py#L246]. Interestingly, this
optimization step also takes longer the bigger the index gets.

Channel priorities

context.channels returns an IndexedSet of Channel objects; essentially a list of unique
items. The different channels in this list can have overlapping or even conflicting information
for the same package name. For example, defaults and conda-forge will for sure contain
packages that fullfil the conda install numpy request. Which one is chosen by conda in this
case? It depends on the context.channel_priority setting: From the help message:

Accepts values of ‘strict’, ‘flexible’, and ‘disabled’. The default value is ‘flexible’. With
strict channel priority, packages in lower priority channels are not considered if a package
with the same name appears in a higher priority channel. With flexible channel priority, the
solver may reach into lower priority channels to fulfill dependencies, rather than raising an
unsatisfiable error. With channel priority disabled, package version takes precedence, and
the configured priority of channels is used only to break ties.

In practice, channel_priority=strict is often the recommended setting for most users. It’s faster
to solve and causes fewer problems down the line. Check more details
here.

Solving the install request

At this point, we can start asking the solver things. After all, we have loaded the
channels into our index, building the catalog of available packages and versions we can
install. We also have the command line instructions and configurations needed to customize the
solver request. So, let’s just do it: “Solver, please install numpy on this prefix using these
channels as package sources”.

The details are complicated, but in essence, the Solver will:

	Express the requested packages, command line options and prefix state as MatchSpec objects

	Query the index for the best possible match that satisfy those constraints

	Return a list of PackageRecord objects

The full details are covered in Solvers if you are curious. Just keep in mind that
point (1) is conda-specific, while (2) can be tackled, in principle, by any SAT solver.

Generating the transaction and the corresponding actions

The Solver API defines three public methods:

	.solve_final_state(): this is the core function, described in the section above. Given some
input state, it returns an IndexedSet of PackageRecord objects that reflect what the final
state of the environment should look like. This is the largest method, and its details are
fully covered here.

	.solve_for_diff(): this method takes the final state and diffs it with the current state of the
environment, discovering which old records need to be removed, and which ones need to be added.

	.solve_for_transaction(): this method takes the diff and creates a Transaction object for this
operation. This is what the main CLI logic expects back from the solver.

So what is a Transaction object and why is it needed? Transactional actions [https://github.com/conda/conda/pull/3833]
were introduced in conda 4.3. They seem to be the last iteration of a set of changes designed to
check whether conda would be able to download and link the needed packages (e.g. check that
there is enough space on disk, whether the user has enough permissions for the target paths, etc.).
For more info, refer to PRs #3571 [https://github.com/conda/conda/pull/3571], #3301 [https://github.com/conda/conda/pull/3301], and #3034 [https://github.com/conda/conda/pull/3034].

The transaction is essentially a set of action objects. Each action is allowed to run some
checks to determine whether it can be executed successfully. If that’s not the case, the failed
checks will signal the parent transaction that the whole operation needs to be aborted and
rolled back to leave things in the state they were before running that conda command. It is also
responsible for some of the messages you will see in the CLI output, like the reports of what will
be installed, updated or removed.

Transactions and parallelism

Since the transaction object knows about all the actions that need to happen, it also enables
parallelism for verifying, downloading and (un)linking tasks. The level of parallelism
can be changed through the following context settings:

	default_threads

	verify_threads

	execute_threads

	repodata_threads

	fetch_threads

There’s only one class of transaction in conda:
LinkUnlinkTransaction [https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L156]. It only accepts one input parameter:
a list of PrefixSetup objects, which are just namedtuple objects with the followiing fields.
These are populated by Solver.solve_for_transaction after running Solver.solve_for_diff:

	target_prefix: the environment path the command is running on.

	unlink_precs: PackageRecord objects that need to be unlinked (removed).

	link_precs: PackageRecord objects that need to be linked (added).

	remove_specs: MatchSpec objects that need to be marked as removed in the history (the user
asked for these packages to be uninstalled).

	update_specs: MatchSpec objects that need to be marked as added in the history (the user
asked for these packages to be installed or updated).

	neutered_specs: MatchSpec objects that were already in history but had to be relaxed in order
to avoid solving conflicts.

Whatever happens after instantiation depends on the content of these PrefixSetup objects.
Sometimes, the transaction results in no actions (see the nothing_to_do [https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L184]
property) because the request asked by the user is already fulfilled by the current state
of the environment.

However, most of the time the transaction will involve a number of actions. This is done via two
public methods:

	download_and_extract(): essentially a forwarder to instantiate and call
ProgressiveFetchExtract, responsible for deciding which PackageRecords need to be
downloaded and extracted to the packages cache.

	execute(): the core logic is layed out here. It involves preparing, verifying and
performing the rest of the actions. Among others:

	Unlinking packages (removing a package from the environment)

	Linking (adding a package to the environment)

	Compiling bytecode (generating the pyc counterpart for each py module)

	Adding entry points (generate command line executables for the configured functions)

	Adding the JSON records (for each package, a JSON file is added to conda-meta/)

	Make menu items (create shortcuts for packages featuring a JSON file under Menu/)

	Remove menu items (remove the shortcuts created by that package)

It’s important to notice that download and extraction happen separately from all the other actions.
This separation is important and core to the idea of what a conda environment is. Essentially,
when you create a new conda environment, you are not necessarily copying files over to the target
prefix location. Instead, conda maintains a cache of every package ever downloaded to disk (both
the tarball and the extracted contents). To save space and speed up environment creation and
deletion, files are not copied over, but instead they are linked (usually via a hardlink). That’s
why these two tasks are separated in the transaction logic: you don’t need to download and extract
packages that are already in the cache; you only need to link them!

Transactions also drive reports

The type and number of actions can also be calculated by _make_legacy_action_groups(), which
returns a list of action groups (one per PrefixSetup). Each action group is a just a dictionary
following this specification:

{
 "FETCH": Iterable[PackageRecord], # estimated by `ProgressiveFetchExtract`
 "PREFIX": str,
 "UNLINK": Iterable[PackageRecord],
 "LINK: Iterable[PackageRecord],
}

These simpler action groups are only used for reporting, either via a processed text report
(via print_transaction_summary) or just the raw JSON (via stdout_json_success). As you can see,
they do not know anything about other types of tasks.

Download and extraction

conda maintains a cache of downloaded tarballs and their extracted contents to save disk space
and improve the performance of environment modifications. This requires some code to check whether
a given PackageRecord is already present in the cache, and, if it’s not, how to download the
tarball and extract its contents in a performant way. This is all handled by the
ProgressiveFetchExtract class, which can instantiate up to two Action objects for each
passed PackageRecord:

	CacheUrlAction: downloads (if remote) or copies (if local) a tarball to the cache location.

	ExtractPackageAction: extracts the contents of the tarball.

These two actions only take place if the package is not in cache yet and if it has already been
extracted, respectively. They can also revert the changes if the transaction is aborted (either
due to an error or because the user pressed Ctrl+C).

Populating the prefix

When all the necessary packages have been downloaded and extracted to the cache, it is time to
start populating the prefix with the needed files. This means we need to:

	For each package that needs to be unlinked, run the pre-unlink logic (deactivate and
pre-unlink scripts, as well as shortcut removal, if needed) and then unlink the package files.

	For each package that needs to be linked, create the links and run the post-link logic
(post-link and activate scripts, as well as creating the shortcuts, if needed).

Note that when you are updating a package version, you are actually removing the installed version
entirely and then adding the new one. In other words, an update is just unlink+link.

How is this implemented? For each PrefixSetup object passed to UnlinkLinkTransaction, a
number of ActionGroup namedtuples (one per task category) will be instantiated and grouped
together in a PrefixActionGroup namedtuple. These are then passed to .verify(). This method
will take each action, run its checks and, if all of them passed, will allow us to perform the
actual execution in .execute(). If one of them fails, the transaction can be aborted and
rolled back.

For all this to work, each action object follows the
PathAction API contract [https://github.com/conda/conda/blob/4.11.0/conda/core/path_actions.py#L61]:

class PathAction:
 _verified = False

 def verify(self):
 "Run checks to assess if the action can proceed"

 def execute(self):
 "Perform the action"

 def reverse(self):
 "Undo execute"

 def cleanup(self):
 "Remove artifacts from verification, execution or reversal"

 @property
 def verified(self):
 "True if verification was run and successful"

Additional PathAction subclasses will add more methods and properties, but this is what the
transaction execution logic expects. To support all the different actions involved in populating
the prefix, the PathAction class tree holds quite the graph:

PathAction
 PrefixPathAction
 CreateInPrefixPathAction
 LinkPathAction
 PrefixReplaceLinkAction
 MakeMenuAction
 CreateNonadminAction
 CreatePythonEntryPointAction
 CreatePrefixRecordAction
 UpdateHistoryAction
 RemoveFromPrefixPathAction
 UnlinkPathAction
 RemoveLinkedPackageRecordAction
 RemoveMenuAction
 RegisterEnvironmentLocationAction
 UnregisterEnvironmentLocationAction
 CacheUrlAction
 ExtractPackageAction

MultiPathAction
 CompileMultiPycAction
 AggregateCompileMultiPycAction

You are welcome to read on the docstring for each of those classes to understand which each one
is doing; all of them are listed under conda.core.path_actions. In the following sections, we will
only comment on the most important ones.

Linking the files in the environment

When conda links a file from the cache location to the prefix location, it can actually mean
three different actions:

	Creating a soft link

	Creating a hard link

	Copying the file

The difference between soft links and hard links is subtle, but important. You can find more info on
the differences elsewhere (e.g. here [https://askubuntu.com/questions/108771/what-is-the-difference-between-a-hard-link-and-a-symbolic-link]), but for our purposes it means that:

	Hard links are cheaper to resolve, behave like a real file, but can only link files in the same
mount point.

	Soft links can link files across mount points, but they don’t behave exactly like files (more like
forwarders), so it’s possible that they break assumptions made in certain pieces of code.

Most of the time, conda will try to hard link files and, if that fails, it will copy them over.
Copying a file is an expensive disk operation, both in terms of time and space, so it should be
the last option. However, sometimes it’s the only way. Especially, when the file needs to be
modified to be used in the target prefix.

Ummm… what? Why would conda modify a file to install it? This has to do with relocatability.
When a conda package is created, conda-build creates up to three temporary environments:

	Build environment: where compilers and other build tools are installed, separate from the
host environment to support cross-compilation.

	Host environment: where build-time dependencies are installed, together with the package you
are building.

	Test environment: where run-time dependencies are installed, together with the package you just
built. It simulates what will happen when a user installs the package so you can run arbitrary
checks on your package.

When you are building a package, references to the build-time paths can leak into the content of
some files, both text and binary. This is not a problem for users who build their own packages
from source, since they can choose this path and leave the files there. However, this is almost
never true for conda packages. They are created in one machine and installed in another. To avoid
“path not found” issues and other problems, conda-build marks those packages that hold references
to the build-time paths by replacing them with placeholders. At install-time, conda will replace
those placeholders with the target prefix and everything works!

But there’s a problem: we can’t modify the files on the cache location because they might be used
across environments (with obviously different paths). In these cases, files are not linked, but
copied; the path replacement only happens on the target copy, of course!

How does conda know how to link a given package or, more precisely, its extracted files? All
of this is determined in the preparation routines contained in
UnlinkLinkTransaction._prepare() [https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L266] (more specifically, through
determine_link_type() [https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L50]), as well as
LinkPathAction.create_file_link_actions() [https://github.com/conda/conda/blob/4.11.0/conda/core/path_actions.py#L190].

Note that the (un)linking actions also include the execution of pre-(un)link and post-(un)link
scripts, if listed.

Action groups and actions, in detail

Once the old packages have been removed and the new ones have been linked through the appropriate
means, we are done, right? Not yet! There’s one step left: the post-linking logic.

It turns out that there’s a number of smaller tasks that need to happen to make conda as
convenient as it is. You can find all of them listed a few paragraphs above, but we’ll cover
them here, too. The execution order is determined in
UnlinLinkTransaction._execute [https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L602].
All the possible groups are listed under PrefixActionGroup [https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L123].
Their order is roughly how they happen in practice:

	remove_menu_action_groups, composed of RemoveMenuAction actions.

	unlink_action_groups, includes UnlinkPathAction, RemoveLinkedPackageRecordAction, as well
as the logic to run the pre- and post-unlink scripts.

	unregister_action_groups, basically a single UnregisterEnvironmentLocationAction action.

	link_action_groups, includes LinkPathAction, PrefixReplaceLinkAction, as well as the logic
to run pre- and post-link scripts.

	entry_point_action_groups, a collection of CreatePythonEntryPointAction actions.

	register_action_groups, a single RegisterEnvironmentLocationAction action.

	compile_action_groups, several CompileMultiPycAction that end up aggregated as a
AggregateCompileMultiPycAction for performance.

	make_menu_action_groups, composed of MakeMenuAction actions.

	prefix_record_groups, records installed packages in the environment via
CreatePrefixRecordAction actions.

Let’s discuss these actions groups for the command we are describing in this guide: conda install numpy. The solution given by the solver says we need to:

	unlink Python 3.9.6

	link Python 3.9.9

	link numpy 1.19

This is what would happen:

	No menu items are removed because Python 3.9.6 didn’t create any.

	Pre-unlink scripts for Python 3.9.6 would run, but in this case there are none.

	Python 3.9.6 files are removed from the environment. This can be parallelized.

	Post-unlink scripts are run, if any.

	Pre-link scripts are run for Python 3.9.9 and numpy 1.19, if any.

	Files in the Python 3.9.9 and numpy 1.19 packages are linked and/or copied to the prefix. This
can be parallelized.

	Entry points are created for the new packages, if any.

	Post-link scripts are run.

	pyc files are generated for the new packages.

	The new packages are registered under conda-meta/.

	The menu shortcuts are created for the new packages, if any.

Any of these steps can fail with a given exception. If that’s the case, the first of those
exceptions is printed to STDOUT. Additionally, if rollback_enabled is properly configured in
the context, the transaction will be rolled back by calling the .reverse() method in each
action, from last to first.

If no exceptions are reported, then the actions can run their cleanup routines.

And that’s it! If this command had resulted in a new environment being created, you would get a
message telling you how to activate the newly created environment.

Conclusion

This is what happens when you type conda install. It might be a bit more involved than you
initially thought, but it all boils down to only some steps. TL;DR:

	Parse arguments and initialize the context

	Download and build the index

	Tell the solver what we want

	Convert the solution into a transaction

	Verify and run each action contained in the transaction

 conda init and conda activate

conda init and conda activate

conda ships virtual environments by design. When you install Anaconda or Miniconda, you obtain
a base environment that is essentially a regular environment with some extra checks. These checks
have to do with what the conda command really is and how it is installed in your system.

Base prefix vs target prefix

Originally, the base installation for conda was called the root environment. Every other
environment lived under envs/ in that root environment. The root environment was later renamed to
base, but the code still distinguishes between base and target using the old terminology:

	context.root_prefix: the path where the base conda installation is located.

	context.target_prefix: the environment conda is running a command on. Usually defaults to the
activated environment, unless -n (name) or -p (prefix) is specified in the command line. Note
that if you are operating on the base environment, the target prefix will have the same value
as the root prefix.

When you type conda in your terminal, your shell will try to find either:

	a shell function named conda

	an executable file named conda in your PATH directories

If your conda installation has been properly initialized, it will find the shell function. If not,
it might find the conda executable if it happens to be in PATH, but this is most often not the
case. That’s why initialization is there to begin with!

Conda initialization

Why is initialization needed at all to begin with? There are several reasons:

	Activation requires interacting with the shell context very closely

	It does not pollute PATH unnecessarily

	Improves performance in certain operations

The main idea behind initialization is to provide a conda shell function that allows the Python
code to interact with the shell context more intimately. It also allows a cleaner PATH
manipulation and snappier responses in some conda commands.

The conda shell function is mainly a forwarder function [https://github.com/conda/conda/blob/4.11.0/conda/shell/etc/profile.d/conda.sh#L62-L76]. It will
delegate most of the commands to the real conda executable driven by the Python library.
However, it will intercept two very specific subcommands:

	conda activate

	conda deactivate

This interception is needed because activation/deactivation requires exporting (or unsetting)
environment variables back to the shell session (and not just temporarily in the Python
process). This will be discussed in the next section.

So how is initialization performed? This is the job of the conda init subcommand, driven by
the conda.cli.main_init module, which depends direcly on the conda.core.initialize module. Let’s
see how this is implemented.

conda init will initialize a shell permanently by writing some shell code in the relevant
startup scripts of your shell (e.g. ~/.bashrc). This is done through different functions defined
in conda.core.initialize, namely:

	init_sh_user: initializes a Posix shell (like Bash) for the current user.

	init_sh_system: initializes a Posix shell (like Bash) globally, for all users.

	init_fish_user: initializes the Fish shell for the current user.

	init_xonsh_user: initializes the Xonsh shell for the current user.

	init_cmd_exe_registry: initializes Cmd.exe through the Windows Registry.

	init_powershell_user: initializes Powershell for the current user.

	init_long_path: configures Windows to support longer paths.

What each function does depends on the nature of each shell. In the case of Bash shells, the
underlying Activator subclass (more below) can generate the hook code dynamically. In other Posix
shells and Powershell, a script is sourced from its location in the base environment. With Cmd,
the changes are introduced through the Windows Registry. The end result is the same: they will
end up defining a conda shell function with the behavior described above.

Conda activate

All Activator classes can be found under conda.activate. Their job is essentially to write
shell-native code programmatically. As of conda 4.11, these are the supported shells and their
corresponding activators

	posix, ash, bash, dash, zsh: all driven by PosixActivator.

	csh, tcsh: CshActivator.

	xonsh: XonshActivator.

	cmd.exe: CmdExeActivator.

	fish: FishActivator.

	powershell: PowerShellActivator.

You can add all these classes through the conda shell.<key> command, where key is
any of the names in the list above. These CLI interface offers several subcommands, connected
directly to methods of the same name:

	activate: writes the shell code to activate a given environment.

	deactivate: writes the shell code to deactivate a given environment.

	hook: writes the shell code to register the initialization code for the conda shell code.

	commands: writes the shell code needed for autocompletion engines.

	reactivate: writes the shell code for deactivation followed by activation.

To be clear, we are saying these functions only write shell code. They do not execute it! This
needs to be done by the shell itself! That’s why we need a conda shell function, so these shell
strings can be eval’d or source’d in-session.

Let’s see what happens when you run conda shell.bash activate:

$ conda shell.bash activate
export PATH='/Users/username/.local/anaconda/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Users/username/.local/anaconda/condabin:/opt/homebrew/bin:/opt/homebrew/sbin'
unset CONDA_PREFIX_1
PS1='(base) '
export CONDA_PREFIX='/Users/username/.local/anaconda'
export CONDA_SHLVL='1'
export CONDA_DEFAULT_ENV='base'
export CONDA_PROMPT_MODIFIER='(base) '
export CONDA_EXE='/Users/username/.local/anaconda/bin/conda'
export _CE_M=''
export _CE_CONDA=''
export CONDA_PYTHON_EXE='/Users/username/.local/anaconda/bin/python'

See? It only wrote some shell code to stdout, but it wasn’t executed. We would need to do this to
actually run it:

$ eval "$(conda shell.bash activate)"

And this is essentially what conda activate does: it calls the registered shell activator to
obtain the required shell code and then it evals it. In some shells with no eval equivalent,
a temporary script is written and sourced or called. The final effect is the same.

Ok, but what is that shell code doing? Mainly setting your PATH correctly so the executables of
your base environment can be found (like python). It also sets some extra variables to keep
a reference to the path of the currently active environment, the shell prompt modifiers and
other information for conda internals.

This command can also generate the code for any other environment you want, not just base. Just
pass the name or path:

$ conda shell.bash activate mamba-poc
PS1='(mamba-poc) '
export PATH='/Users/username/.local/anaconda/envs/mamba-poc/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Users/username/.local/anaconda/condabin:/opt/homebrew/bin:/opt/homebrew/sbin'
export CONDA_PREFIX='/Users/username/.local/anaconda/envs/mamba-poc'
export CONDA_SHLVL='2'
export CONDA_DEFAULT_ENV='mamba-poc'
export CONDA_PROMPT_MODIFIER='(mamba-poc) '
export CONDA_EXE='/Users/username/.local/anaconda/bin/conda'
export _CE_M=''
export _CE_CONDA=''
export CONDA_PYTHON_EXE='/Users/username/.local/anaconda/bin/python'
export CONDA_PREFIX_1='/Users/username/.local/anaconda'

Now the paths are different, as well as some numbers (e.g. CONDA_SHLVL). This is used by conda to
keep track of what was activated before, so when you deactivate the last one, you can get back to
the previous one seamlessly.

Activation/deactivation scripts

The activation/deactivation code can also include calls to activation/deactivation scripts. If
present in the appropriate directories for your shell (e.g.
CONDA_PREFIX/etc/conda/activate.d/), they will be called before deactivation or after
activation, respectively. For example, compilers usually set up some environment variables to
help configure the default flags. This is what happens when you activate an environment that
contains Clang and Gfortran:

$ conda shell.bash activate compilers
PS1='(compilers) '
export PATH='/Users/username/.local/anaconda/envs/compilers/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Users/username/.local/anaconda/condabin:/opt/homebrew/bin:/opt/homebrew/sbin'
export CONDA_PREFIX='/Users/username/.local/anaconda/envs/compilers'
export CONDA_SHLVL='2'
export CONDA_DEFAULT_ENV='compilers'
export CONDA_PROMPT_MODIFIER='(compilers) '
export CONDA_EXE='/Users/username/.local/anaconda/bin/conda'
export _CE_M=''
export _CE_CONDA=''
export CONDA_PYTHON_EXE='/Users/username/.local/anaconda/bin/python'
export CONDA_PREFIX_1='/Users/username/.local/anaconda'
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/activate.d/activate-gfortran_osx-arm64.sh"
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/activate.d/activate_clang_osx-arm64.sh"
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/activate.d/activate_clangxx_osx-arm64.sh"

Those three lines are sourcing the relevant scripts. Similarly, for deactivation, notice how the
deactivation scripts are executed first this time:

$ conda shell.bash deactivate
export PATH='/Users/username/.local/anaconda/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Users/username/.local/anaconda/condabin:/opt/homebrew/bin:/opt/homebrew/sbin'
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/deactivate.d/deactivate_clangxx_osx-arm64.sh"
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/deactivate.d/deactivate_clang_osx-arm64.sh"
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/deactivate.d/deactivate-gfortran_osx-arm64.sh"
unset CONDA_PREFIX_1
PS1='(base) '
export CONDA_PREFIX='/Users/username/.local/anaconda'
export CONDA_SHLVL='1'
export CONDA_DEFAULT_ENV='base'
export CONDA_PROMPT_MODIFIER='(base) '
export CONDA_EXE='/Users/username/.local/anaconda/bin/conda'
export _CE_M=''
export _CE_CONDA=''
export CONDA_PYTHON_EXE='/Users/username/.local/anaconda/bin/python'

 conda config and context

conda config and context

The context object is central to many parts of the conda codebase. It serves as a centralized
repository of settings. You normally import the singleton and access its (many) attributes directly:

from conda.base.context import context

context.quiet
False

This singleton is initialized from a cascade of different possible sources. From lower to higher
precedence:

	Default values hardcoded in the Context class. These are defined via class attributes.

	Values defined in the configuration files (.condarc), which have their own
precedence.

	Values set by the corresponding command line arguments, if any.

	Values defined by their corresponding CONDA_* environment variables, if present.

The mechanism implementing this behavior is an elaborate object with several types of objects
involved.

Anatomy of the Context class

conda.base.context.Context is an conda-specific subclass of the application-agnostic
conda.common.configuration.Configuration class. This class implements the precedence order
for the instantiation of each defined attribute, as well as the overall validation logic and help
message reporting. But that’s it, it’s merely a storage of ParameterLoader objects which, in
turn, instantiate the relevant Parameter subclasses in each attribute. Roughly:

class MyConfiguration(Configuration):
 string_field = ParameterLoader(PrimitiveParameter("default", str))
 list_of_int_field = ParameterLoader(SequenceParameter([1, 2, 3], int))
 map_of_foat_values_field = ParameterLoader(MapParameter({"key": 1.0}, float))

When MyConfiguration is instantiated, those class attributes are populated by the .raw_data
dicionary that has been filled in with the values coming from the precedence chain stated
above. The raw_data dictionary contains RawParameter objects, subclassed to deal with the
specifics of their origin (YAML file, environment variable, command line flag). Each
ParameterLoader object will pass the RawParameter object to the .load() method of its relevant
Parameter subclass, which are designed to return their corresponding LoadedParameter object
counterpart.

It’s a bit confusing, but the delegation happens like this:

	The Configuration subclass parses the raw values of the possible origins and stores them as
the relevant RawParameter objects, which can be:

	EnvRawParameter: for those coming from an environment variable

	ArgParseRawParameter: for those coming from a command line flag

	YamlRawParameter: for those coming from a configuration file

	DefaultValueRawParameter: for those coming from the default value given to ParameterLoader

	Each Configuration attribute is a ParameterLoader, which implements the property protocol
via __get__. This means that, upon attribute access (e.g. MyConfiguration.string_field),
the ParameterLoader can execute the loading logic. This means finding potential type matches
in the raw data, loading them as LoadedParameter objects and merging them with the adequate
precedence order.

The merging policy depends on the (Loaded)Parameter subtype. Below is a list of available
subtypes:

	PrimitiveParameter: holds a single scalar value of type str, int, float, complex, bool
or NoneType.

	SequenceParameter: holds an iterable (list) of other Parameter objects.

	MapParameter: holds a mapping (dict) of other Parameter objects.

	ObjectParameter: holds an object with attributes set to Parameter objects.

The main goal of the Parameter objects is to implement how to typify and turn the raw values into
their Loaded counterparts. These implement the validation routines and define how parameters for
the same key should be merged:

	PrimitiveLoadedParameter: value with highest precedence replaces the existing one.

	SequenceLoadedParameter: extends with no duplication, keeping precedence.

	MapLoadedParameter: cascading updates, highest precedence kept.

	ObjectLoadedParameter: same as Map.

After all of this, the LoadedParameter objects are typified: this is when type validation is
performed. If everything goes well, you obtain your values just fine. If not, the validation errors
are raised.

Take into account that the result is cached for faster subsequent access. This means that even
if you change the value of the environment variables responsible for a given setting, this won’t be
reflected in the context object until you refresh it with conda.base.context.reset_context().

Do not modify the Context object!

ParameterLoader does not implement the __set__ method of the property protocol, so you
can freely override an attribute defined in a Configuration subclass. You might think that
this will redefine the value after passing through the validation machinery, but that’s not true.
You will simply overwrite it entirely with the raw value and that’s probably not what you want.

Instead, consider the context object immutable. If you need to change a setting at runtime, it is
probably A Bad Idea. The only situation where this is acceptable is during testing.

Setting values in the different origins

There’s some magic behind the possible origins for the settings values. How these are tied to the
final Configuration object might not be obvious at first. This is different for each
RawParameter subclass:

	DefaultValueRawParameter: Users will never see this one. It only wraps the default value passed
to the ParameterLoader class. Safe to ignore.

	YamlRawParameter: This one takes a YAML file and parses it as a dictionary. The keys in this
file must match the attribute names in the Configuration class exactly (or one of their
aliases). Matching happens automatically once this is properly set up. How the values are parsed
depends on the YAML Loader, set internally by conda.

	EnvRawParameter: Values coming from certain environment variables can make it to the
Configuration instance, provided they are formatted as <APP_NAME>_<PARAMETER_NAME>, all
uppercase. The app name is defined by the Configuration subclass. The parameter name is
defined by the attribute name in the class, transformed to upper case. For example,
context.ignore_pinned can be set with CONDA_IGNORE_PINNED. The value of the variable is parsed
in different ways depending on the type:

	PrimitiveParameter is the easy one. The environment variable string is parsed as the
expected type. Booleans are a bit different since several strings are recognized as such, and
in a case-insensitive way:

	True can be set with true, yes, on and y.

	False can be set with false, off, n, no, non, none and "" (empty string).

	SequenceParameter can specify their own delimiter (e.g. ,), so the environment variable
string is processed into a list.

	MapParameter and ObjectParameter do not support being set with environment variables.

	ArgParseRawParameter: These are a bit different because there is no automated mechanism that
ties a given command line flag to the context object. This means that if you add a new setting
to the Context class and you want that available in the CLI as a command line flag, you have
to add it yourself. If that’s the case, refer to conda.cli.conda_argparse and make sure that
the dest value of your argparse.Argument matches the attribute name in Context. This way,
Configuration.__init__ can take the argparse.Namespace object, turn it into a dictionary,
and make it pass through the loading machinery.

 Solvers

Solvers

The guide conda install didn’t go into details of the solver black box. It did mention
the high-level Solver API and how conda expects a transaction out of it, but we never got to
learn what happens inside the solver itself. We only covered these three steps:

The details are complicated, but in essence, the solver will:

	Express the requested packages, command line options and prefix state as MatchSpec objects

	Query the index for the best possible match that satisfy those constraints

	Return a list of PackageRecord objects.

How do we transform the prefix state and configurations into a list of MatchSpec objects? How
are those turned into a list of PackageRecord objects? Where are those PackageRecord
objects coming from? We are going to cover these aspects in detail here.

MatchSpec vs PackageRecord

First, let’s define what each object does:

	PackageRecord [https://github.com/conda/conda/blob/4.11.0/conda/models/records.py#L242] objects represent a concrete package
tarball and its contents. They follow specific naming conventions [https://docs.conda.io/projects/conda-build/en/latest/concepts/package-naming-conv.html] and
expose several fields. Inspect them directly in the
class code [https://github.com/conda/conda/blob/4.11.0/conda/models/records.py#L242].

	MatchSpec [https://github.com/conda/conda/blob/4.11.0/conda/models/match_spec.py#L73] objects are essentially a query language to
find PackageRecord objects. Internally, conda will translate your command line requests,
like numpy>=1.19, python=3.* or pytorch=1.8.*=*cuda*, into instances of this class.
This query language has its own syntax and rules, detailed here [https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/pkg-specs.html#package-match-specifications]. The
most important fields of a MatchSpec object are:

	name: the name of the package (e.g. pytorch); always expected.

	version: the version constraints (e.g. 1.8.*); can be empty but if build is set, set it to
* to avoid issues with the .conda_build_form() method.

	build: the build string constraints (e.g. *cuda*); can be empty.

Create a MatchSpec object from a PackageRecord instance

You can create a MatchSpec object from a PackageRecord instance using the .to_match_spec()
method. This will create a MatchSpec object with its fields set to exactly match the originating
PackageRecord.

Note that there are two PackageRecord subclasses with extra fields, so we need to distinguish
between three types, all of them useful:

	PackageRecord: A record as present in the index (channel).

	PackageCacheRecord: A record already extracted in the cache. Contains extra fields for the
tarball path in disk and its extracted directory.

	PrefixRecord: A record installed in a prefix. Same as above, plus fields for the files that
make the package and how they were linked in the prefix. It can also host information about which
MatchSpec string resulted in this record being installed.

Remote state: the index

So the solver takes MatchSpec objects, queries the index for the best match and returns
PackageRecord objects. Perfect. What’s the index? It’s the result of aggregating the
requested conda channels in a single entity. For more information, check
Fetching the index.

Local state: the prefix and context

When you do conda install numpy, do you think the solver will just see something like
specs=[MatchSpec("numpy")]? Well, not that quick. The explicit instructions given by the user
are only one part of the request we will send to the solver. Other pieces of implicit state are
taken into account to build the final request. Namely, the state of your prefix. In total,
these are the ingredients of the solver request:

	Packages already present in your environment, if you are not creating a new one. This is
exposed through the conda.core.prefix_data.PrefixData class, which provides an iterator method
via .iter_records(). As we saw before, this yields conda.models.records.PrefixRecord
objects, a PackageRecord subclass for installed records.

	Past actions you have performed in that environment; the History. This is a journal of all the
conda install|update|remove commands you have run in the past. In other words, the specs
matched by those previous actions will receive extra protections in the solver.

	Packages included in the aggressive updates list. These packages are always included in any
requests to make sure they stay up-to-date under all circumstances.

	Packages pinned to a specific version, either via pinned_packages in your .condarc or defined
in a $PREFIX/conda-meta/pinned file.

	In new environments, packages included in the create_default_packages list. These specs are
injected in each conda create command, so the solver will see them as explicitly requested
by the user.

	And, finally, the specs the user is asking for. Sometimes this is explicit (e.g.
conda install numpy) and sometimes a bit implicit (e.g. conda update --all is telling the
solver to add all installed packages to the update list).

All of those sources of information produce a number a of MatchSpec objects, which are then
combined and modified in very specific ways depending on the command line flags and their origin
(e.g. specs coming from the pinned packages won’t be modified, unless the user asks for it
explicitly). This logic is intricate and will be covered in the next sections. A more technical
description is also available in Technical specification: solver state.

[image: ../../_images/solver-deep-dive-1.png]

Local variables affect the solving process explicitly and implicitly. As seen in
in the conda install deep dive, the main actor is the
conda.core.solve.Solver class. Before invoking the SAT solver, we can describe nine steps:

	Instantiate the Solver class with the user-requested packages and the active environment
(target prefix)

	Call the solve_for_transaction() method on the instance, which calls solve_for_diff().

	Call solve_final_state(), which takes some more arguments from the CLI.

	Under some circumstances, we can return early (e.g. the packages are already installed).

	If we didn’t return early, we collect all the local variables into a list of MatchSpec
objects.

For steps six to nine, see this figure.

[image: ../../_images/solver-deep-dive-2.png]

The remote variables in a solve refer to, essentially, the package index (channels). This figure
describes nine steps, focusing on 6-9. For steps 1-5, see
the previous figure.

	All the channels need to be fetched by now, but they have to be aggregated and reduced so the
solver only handles the relevant bits. This step transforms “channels” into a list of available
PackageRecord objects.

	This is where the SAT solver will act. It will use the list of MatchSpec objects to pick
a number of PackageRecord entries from the index, thus building the “final state of the
solved environment”. This is detailed later in this deep dive guide, if you need more info.

	solve_for_diff takes the final state and compares it to the initial state, generating the
differences between them (e.g. package A was updated to version 1.2, package B was removed).

	solve_for_transaction takes the diff and some more metadata in the instance to generate the
Transaction object.

The high-level logic in conda.cli.install

The full solver logic does not start at the conda.core.solve.Solver API, but before that, all the
way up in the conda.cli.install module. Here, some important decisions are already made:

	Whether the solver is not needed at all because:

	The operation is an explicit package install

	The user requested to roll back to a history checkpoint

	We are just creating a copy of an existing environment (cloning)

	Which repodata source to use (see here). It not only depends on
the current configuration (via .condarc or command line flags), but also on the value
of use_only_tar_bz2.

	Whether the solver should start by freezing all installed packages (default for
conda install and conda remove in existing environments).

	If the solver does not find a solution, whether we need to retry again without freezing the
installed packages for the current repodata variant or if we should try with the next one.

So, roughly, the global logic there follows this pseudocode:

if operation in (explicit, rollback, clone):
 transaction = handle_without_solver()
else:
 repodatas = from_config or ("current_repodata.json", "repodata.json")
 freeze = (is_install or is_remove) and env_exists and update_modifier not in argv
 for repodata in repodatas:
 try:
 transaction = solve_for_transaction(...)
 except:
 if repodata is last:
 raise
 elif freeze:
 transaction = solve_for_transaction(freeze_installed=False)
 else:
 continue # try next repodata

handle_txn(transaction)

Check this other figure for a schematic representation of this pseudocode.

We have, then, two reasons to re-run the full solver logic:

	Freezing the installed packages didn’t work, so we try without freezing again.

	Using current_repodata did not work, so we try with full repodata.

These two strategies are stacked so in the end, before eventually failing, we will have tried four
things:

	Solve with current_repodata.json and freeze_installed=True

	Solve with current_repodata.json and freeze_installed=False

	Solve with repodata.json and freeze_installed=True

	Solve with repodata.json and freeze_installed=False

Interestingly, those strategies are designed to improve conda’s average performance, but they
should be seen as a risky bet. Those attempts can get expensive!

How to ask for a simpler approach

If you want to try the full thing without checking whether the optimized solves work, you can
override the default behaviour with these flags in your conda install commands:

	--repodata-fn=repodata.json: do not use current_repodata.json

	--update-specs: do not try to freeze installed

Then, the Solver class has its own internal logic, which also features some retry loops. This
will be discussed later and summarized.

Early exit tasks

Some tasks do not involve the solver at all. Let’s enumerate them:

	Explicit package installs: no index or prefix state needed.

	Cloning an environment: the index might be needed if the cache has been cleared.

	History rollback: currently broken.

	Forced removal: prefix state needed. This happens in the Solver class.

	Skip solve if already satisfied: prefix state needed. This happens in the Solver class.

Explicit package installs

These commands do not need a solver because the requested packages are expressed with a direct
URL or path to a specific tarball. Instead of a MatchSpec, we already have a
PackageRecord-like entity! For this to work, all the requested packages neeed to be URLs or paths.
They can be typed in the command line or in a text file including a @EXPLICIT line.

Since the solver is not involved, the dependencies of the explicit package(s) are not processed
at all. This can leave the environment in an inconsistent state, which can be fixed by
running conda update --all, for example.

Explicit installs are taken care of by the explicit [https://github.com/conda/conda/blob/4.11.0/conda/misc.py#L52] function.

Cloning an environment

conda create has a --clone flag that allows you to create a fully-working copy of an
existing environment. This is needed because you cannot relocate an environment using cp,
mv, or your favorite file manager without unintended consequences. Some files in a conda
environment might contain hardcoded paths to existing files in the original location, and
those references will break if cp or mv is utilized (conda environments can be renamed
via the conda rename command, however; see the following section for more information).

The clone_env [https://github.com/conda/conda/blob/4.11.0/conda/misc.py#L187] function implements this functionality. It essentially
takes the source environment, generates the URLs for each installed packages (filtering
conda, conda-env and their dependencies) and passes the list of URLs to explicit(). If
the source tarballs are not in the cache anymore, it will query the index for the best possible
match for the current channels. As such, there’s a slim chance that the copy is not exactly a clone
of the original environment.

[bookmark: rename]Renaming an environment

When the conda rename command is used to rename an already-existing environment, please keep in
mind that the solver is not invoked at all, since the command essentially does a conda create --clone
and conda remove --all of the environment.

History rollback

conda install has a --revision flag, which allows you to revert the state of the environment
to a previous one. This is done through the History file, but its
current implementation [https://github.com/conda/conda/blob/4.11.0/conda/plan.py#L279] can be considered broken. Once fixed,
we will cover it in detail.

 Writing Tests

Writing Tests

This section contains a series of guides and guidelines for writing tests
in the conda repository.

Guides

Integration Tests
This guide gives an overview of how to write integration tests using full
command invocation. It also covers creating fixtures to use with these types
of tests.

General Guidelines

	Preferred test style (pytest)

	Organizing tests

	The "conda.testing" module

	Adding new fixtures

	The context object

Note

It should be noted that existing tests may deviate
from these guidelines, and that is okay. These guidelines are here to inform how we
would like all new tests to look and function.

Preferred test style (pytest)

Although our codebase includes class-based unittest tests, our preferred
format for all new tests are pytest style tests. These tests are written using
functions and handle the setup and teardown of context for tests using fixtures.
We recommend familiarizing yourself with pytest first before attempting to
write tests for conda. Head over to their Getting Started Guide [https://docs.pytest.org/en/stable/getting-started.html]
to learn more.

Organizing tests

Tests should be organized in a way that mirrors the main conda module.
For example, if you were writing a test for a function in
conda/base/context.py, you would place this test in tests/base/test_context.py.

The "conda.testing" module

This is a module that contains anything that could possibly help with
writing tests, including fixtures, functions, and classes. Feel free to
make additions to this module as you see fit, but be mindful of organization.
For example, if your testing utilities are primarily only for the base module
considering storing these in conda.testing.base.

Adding new fixtures

For fixtures that have a very limited scope or purpose, it is okay to define these
alongside the tests themselves. However, if these fixtures could be used across multiple
tests, then they should be saved in a separate fixtures.py file. The conda.testing
module already contains several of these files.

If you want to add new fixtures within a new file, be sure to add a reference to this module in
tests/conftest.py::pytest_plugins. This is our preferred way of making
fixtures available to our tests. Because of the way these are included in the
environment, you should be mindful of naming schemes and choose ones that likely will not
collide with each other. Consider using a prefix to achieve this.

The context object

The context object in conda is used as a singleton. This means that everytime the conda
command runs, only a single object is instantiated. This makes sense as it holds all the configuration
for the program and re-instantiating it or making multiple copies would be inefficient.

Where this causes problems is during tests where you may want to run conda commands potentially
hundreds of times within the same process. Therefore, it is important to always reset this object
to a fresh state when writing tests.

This can be accomplished by using the reset_context function, which also lives in the
conda.base.context module. The following example shows how you would modify the context
object and then reset it using the reset_conda_context pytest fixture:

import os
import tempfile

from conda.base.context import reset_context, context
from conda.testing.fixtures import reset_conda_context

TEST_CONDARC = """
channels:
 - test-channel
"""

def test_that_uses_context(reset_conda_context):
 # We first created a temporary file to hold our test configuration
 with tempfile.TemporaryDirectory() as tempdir:
 condarc_file = os.path.join(tempdir, "condarc")

 with open(condarc_file, "w") as tmp_file:
 tmp_file.write(TEST_CONDARC)

 # We use the reset_context function to load our new configuration
 reset_context(search_path=(condarc_file,))

 # Run various test assertions, below is an example
 assert "test-channel" in context.channels

Using this testing fixture ensures that your context object is returned to the way it was
before the test. For this specific test, it means that the channels setting will be returned to its
default configuration. If you ever need to manually reset the context during a test, you can do so by manually
invoking the reset_context command like in the following example:

from conda.base.context import reset_context

def test_updating_context_manually():
 # Load some custom variables into context here like above...

 reset_context()

 # Continue testing with a fresh context...

 Integration Tests

Integration Tests

Integration tests in conda test the application from a high level where each test can
potentially cover large portions of the code. These tests may also use the local
file system and/or perform network calls. In the following sections, we cover
several examples of exactly how these tests look. When writing your own integration tests,
these should serve as a good starting point.

conda_cli Fixture: Running CLI level tests

CLI level tests are the highest level integration tests you can write. This means that the
code in the test is executed as if you were running it from the command line. For example,
you may want to write a test to confirm that an environment is created after successfully
running conda create. A test like this would look like the following:

Integration test for conda create

 1import json
 2from pathlib import Path
 3
 4from conda.testing import CondaCLIFixture
 5
 6
 7def test_conda_create(conda_cli: CondaCLIFixture, tmp_path: Path):
 8 # setup, create environment
 9 out, err, code = conda_cli("create", "--prefix", tmp_path, "--yes")
10
11 assert f"conda activate {tmp_path}" in out
12 assert not err # no errors
13 assert not code # success!
14
15 # verify everything worked using the `conda env list` command
16 out, err, code = conda_cli("env", "list", "--json")
17
18 assert any(
19 tmp_path.samefile(path)
20 for path in json.loads(out).get("envs", [])
21)
22 assert not err # no errors
23 assert not code # success!
24
25 # cleanup, remove environment
26 out, err, code = conda_cli("remove", "--all", "--prefix", tmp_path)
27
28 assert out
29 assert not err # no errors
30 assert not code # success!

Let’s break down exactly what is going on in the code snippet above:

First, we rely on a fixture (conda_cli) that allows us to run a command using the
current running process. This is much more efficient and quicker than running CLI tests
via subprocesses.

In the test itself, we first create a new environment by effectively running
conda create. This function returns the standard out, standard error, and the exit
code of the command. This allows us to perform our inspections in order to determine
whether the command ran successfully.

The second part of the test again uses the conda_cli fixture to call conda env list.
This time, we pass the --json flag, which allows capturing JSON that we can better
parse and more easily inspect. We then assert whether the environment we just created is
actually in the list of environments available.

Finally, we destroy the environment we just created and ensure the standard error and
the exit code are what we expect them to be.

Warning

It is preferred to use temporary directories (e.g., tmp_path) whenever possible for
automatic cleanup after tests are run. Otherwise, remember to remove anything created
during the test since it will be present when other tests are run and may result in
unexpected race conditions.

tmp_env Fixture: Creating a temporary environment

The tmp_env fixture is a convenient way to create a temporary environment for use in
tests:

Integration test for creating an environment with numpy

 1from conda.testing import CondaCLIFixture, TmpEnvFixture
 2
 3
 4def test_environment_with_numpy(
 5 tmp_env: TmpEnvFixture,
 6 conda_cli: CondaCLIFixture,
 7):
 8 with tmp_env("numpy") as prefix:
 9 out, err, code = conda_cli("list", "--prefix", prefix)
10
11 assert out
12 assert not err # no error
13 assert not code # success!

path_factory Fixture: Creating a unique (non-existing) path

The path_factory fixture extends pytest’s tmp_path fixture to provide unique, unused
paths. This makes it easier to generate new paths in tests:

Integration test for renaming an environment

 1from conda.testing import (
 2 CondaCLIFixture,
 3 PathFactoryFixture,
 4 TmpEnvFixture,
 5)
 6
 7
 8def test_conda_rename(
 9 path_factory: PathFactoryFixture,
10 tmp_env: TmpEnvFixture,
11 conda_cli: CondaCLIFixture,
12 tmp_path: Path,
13):
14 # each call to `path_factory` returns a unique path
15 assert path_factory() != path_factory()
16
17 # each call to `path_factory` returns a path that is a child of `tmp_path`
18 assert path_factory().parent == path_factory().parent == tmp_path
19
20 with tmp_env() as prefix:
21 out, err, code = conda_cli("rename", "--prefix", prefix, path_factory())
22
23 assert out
24 assert not err # no error
25 assert not code # success!

Tests with fixtures

Sometimes in integration tests, you may want to re-use the same type of environment more
than once. Copying and pasting this setup and teardown code into each individual test
can make these tests more difficult to read and harder to maintain.

To overcome this, conda tests make extensive use of pytest fixtures. Below is an
example of the previously-shown test, except that we now make the focus of the test the
conda env list command and move the creation and removal of the environment into a
fixture:

Integration test for conda create

 1import json
 2from pathlib import Path
 3
 4from conda.testing import CondaCLIFixture
 5
 6
 7@pytest.fixture
 8def env_one(tmp_env: TmpEnvFixture) -> Path:
 9 with tmp_env() as prefix:
10 yield prefix
11
12
13def test_conda_create(env_one: Path, conda_cli: CondaCLIFixture):
14 # verify everything worked using the `conda env list` command
15 out, err, code = conda_cli("env", "list", "--json")
16
17 assert any(
18 env_one.samefile(path)
19 for path in json.loads(out).get("envs", [])
20)
21 assert not err # no errors
22 assert not code # success!

In the fixture named env_one, we create a new environment using the tmp_env fixture.
We yield to mark the end of the setup. Since the tmp_env fixture extends tmp_path no
additional teardown is needed.

This fixture will be run using the default scope in pytest, which is function. This
means that the setup and teardown will occur before and after each test that requests this
fixture. If you need to share an environment or other pieces of data between tests, just
remember to set the fixture scope appropriately. Read here [https://docs.pytest.org/en/stable/how-to/fixtures.html#scope-sharing-fixtures-across-classes-modules-packages-or-session] for more
information on pytest fixture scopes.

 Deprecations

Deprecations

Conda abides by the Deprecation Schedule defined in CEP-9 [https://github.com/conda-incubator/ceps/blob/main/cep-9.md]. To help make deprecations as much of a no-brainer as possible we provide several helper decorators and functions to facilitate the correct deprecation process.

Functions, Methods, Properties, and Classes

Warning

To deprecate Enums treat them like constants (see Constants and Enums).

The simplest use case is for deprecating any function, method, or property:

Example file, foo.py.

from conda.deprecations import deprecated

@deprecated("23.9", "24.3")
def bar():
 ...

Example invocation.

>>> import foo
>>> foo.bar()
<stdin>:1: PendingDeprecationWarning: foo.bar is pending deprecation and will be removed in 24.3.

As a minimum we must always specify two versions:

	the future deprecation release in which the function, method, or property will be marked as deprecated; prior to that the feature will show up as pending deprecation (which we treat as a commenting period), and

	the subsequent deprecation release in which the function, method, or property will be removed from the code base.

Additionally, you may provide an addendum to inform the user what they should do instead:

Example file, foo.py.

from conda.deprecations import deprecated

@deprecated("23.9", "24.3", addendum="Use `qux` instead.")
def bar():
 ...

Example invocation.

>>> import foo
>>> foo.bar()
<stdin>:1: PendingDeprecationWarning: foo.bar is pending deprecation and will be removed in 24.3. Use `qux` instead.

Keyword Arguments

Warning

Deprecating or renaming a positional argument is unnecessarily complicated and is not supported. Instead, it is recommended to either (1) devise a custom way of detecting usage of a deprecated positional argument (e.g., type checking) and use the conda.deprecations.deprecated.topic function (see Topics) or (2) deprecate the function/method itself and define a new function/method without the deprecated argument.

Similarly to deprecating a function or method it is common to deprecate a keyword argument:

Example file, foo.py.

from conda.deprecations import deprecated

prior implementation
def bar(is_true=True):
...

@deprecated.argument("23.9", "24.3", "is_true")
def bar():
 ...

Example invocation.

>>> import foo
>>> foo.bar(is_true=True)
<stdin>:1: PendingDeprecationWarning: foo.bar(is_true) is pending deprecation and will be removed in 24.3.

Or to rename the keyword argument:

Example file, foo.py.

from conda.deprecations import deprecated

prior implementation
def bar(is_true=True):
...

@deprecated.argument("23.9", "24.3", "is_true", rename="enabled")
def bar(enabled=True):
 ...

Example invocation.

>>> import foo
>>> foo.bar(is_true=True)
<stdin>:1: PendingDeprecationWarning: foo.bar(is_true) is pending deprecation and will be removed in 24.3. Use 'enabled' instead.

argparse.Action

Occasionally, there is a need to deprecate CLI arguments. For this, we provide a helper function to monkeypatch any argparse.Action:

Example file, foo.py.

import argparse
from conda.deprecations import deprecated

parser = argparse.ArgumentParser()
parser.add_argument(
 "--force",
 dest="yes",
 action=deprecated.action(
 "23.9",
 "24.3",
 argparse._StoreTrueAction,
 addendum="Use `--yes` instead.",
),
 default=False,
)
parser.parse_args()

python foo.py --force
foo.py:16: PendingDeprecationWarning: `--force` is pending deprecation and will be removed in 24.3. Use `--yes` instead.

Constants and Enums

We also offer a way to deprecate global variables or constants:

Example file, foo.py.

from conda.deprecations import deprecated

deprecated.constant("23.9", "24.3", "ULTIMATE_CONSTANT", 42)

Example invocation.

>>> import foo
>>> foo.ULTIMATE_CONSTANT
<stdin>:1: PendingDeprecationWarning: foo.ULTIMATE_CONSTANT is pending deprecation and will be removed in 24.3.

Enums work similarly:

Example file, foo.py.

from enum import Enum
from conda.deprecations import deprecated

class Bar(Enum):
 ULTIMATE_CONSTANT = 42

deprecated.constant("23.9", "24.3", "Bar", Bar)
del Bar

Example invocation.

>>> from foo import Bar
<stdin>:1: PendingDeprecationWarning: foo.Bar is pending deprecation and will be removed in 24.3.

Note

Constants deprecation relies on the module’s __getattr__ introduced in PEP-562 [https://peps.python.org/pep-0562/].

Modules

Entire modules can be also be deprecated:

Example file, foo.py.

from conda.deprecations import deprecated

deprecated.module("23.9", "24.3")

Example invocation.

>>> import foo
<stdin>:1: PendingDeprecationWarning: foo is pending deprecation and will be removed in 24.3.

Topics

Finally, there are a multitude of other ways in which code may be run that also needs to be deprecated. To this end we offer a general purpose deprecation function:

Example file, foo.py.

from conda.deprecations import deprecated

def bar(...):
 # some logic

 if ...:
 deprecated.topic("23.9", "24.3", topic="The <TOPIC>")

 # some more logic

Example invocation.

>>> import foo
>>> foo.bar(...)
<stdin>:1: PendingDeprecationWarning: The <TOPIC> is pending deprecation and will be removed in 24.3.

 Releasing

Releasing

Conda’s releases may be performed via the rever command [https://regro.github.io/rever-docs/].
Rever is configured to perform the activities for a typical conda release.
To cut a release, simply run rever <X.Y.Z> where <X.Y.Z> is the
release number that you want bump to. For example, rever 1.2.3.

However, it is always good idea to make sure that the you have permissions
everywhere to actually perform the release. So it is customary to run
rever check before the release, just to make sure.

The standard workflow is thus:

$ rever check
$ rever 1.2.3

If for some reason a release fails partway through, or you want to claw back a
release that you have made, rever allows you to undo activities. If you find yourself
in this pickle, you can pass the --undo option a comma-separated list of
activities you’d like to undo. For example:

$ rever --undo tag,changelog,authors 1.2.3

Happy releasing!

 Plugins

Plugins

As of version 22.11.0, conda has support for user plugins, enabling extension and/or
alterations to some of its functionality.

Quick start

This is an example of a minimal working conda plugin that defines a new subcommand:

example_plugin.py

import conda.plugins
from conda.base.context import context

def command(arguments: list[str]):
 print("Conda subcommand!")

@conda.plugins.hookimpl
def conda_subcommands():
 yield conda.plugins.CondaSubcommand(
 name="example",
 action=command,
 summary="Example of a conda subcommand",
)

Let's break down what's going on here step-by-step:

	First, we create the function command that serves as our subcommand. This function is passed a list of
arguments which equal to sys.argv[2:].

	Next, we register this subcommand by using the conda_subcommands plugin hook. We do this by creating a function
called conda_subcommands and then decorating it with conda.plugins.hookimpl.

	The object we return from this function is conda.plugins.CondaSubcommand, which does several things:

	name is what we use to call this subcommand via the command line (i.e. "conda example")

	action is the function that will be called when we invoke "conda example"

	summary is the description of the of the subcommand that appears when users call "conda --help"

In order to actually use conda plugins, they must be packaged as Python packages. Furthermore, we also need to take
advantage of a feature known as Python package entrypoints [https://packaging.python.org/en/latest/specifications/entry-points/]. We can define our Python package and the entry points
by either using a pyproject.toml file (preferred) or a setup.py (legacy) for our project:

pyproject.toml

[build-system]
requires = ["setuptools", "setuptools-scm"]
build-backend = "setuptools.build_meta"

[project]
name = "conda-example-plugin"
version = "1.0.0"
description = "Example conda plugin"
requires-python = ">=3.8"
dependencies = ["conda"]

[project.entry-points."conda"]
conda-example-plugin = "example_plugin"

setup.py

from setuptools import setup

setup(
 name="conda-example-plugin",
 install_requires="conda",
 entry_points={"conda": ["conda-example-plugin = example_plugin"]},
 py_modules=["example_plugin"],
)

In both examples shown above, we define an entry point for conda. It's important to make sure
that the entry point is for "conda" and that it points to the correct module in your plugin package.
Our package only consists a single Python module called example_plugin. If you have a large project,
be sure to always point the entry point to the module containing the plugin hook declarations (i.e.
where conda.plugins.hookimpl is used). We recommend using the plugin submodule
in these cases, e.g. large_project.plugin (in large_project/plugin.py).

More examples

To see more examples of conda plugins, please visit the following resources:

	conda-plugins-template [https://github.com/conda/conda-plugin-template]: This is a repository with full examples that could be used a starting point for your plugin

Using other plugin hooks

For examples of how to use other plugin hooks, please read their respective documentation pages:

	Auth Handlers

	Health Checks

	Post-commands

	Pre-commands

	Settings

	Solvers

	Subcommands

	Virtual Packages

More information about how plugins work

Plugins in conda are implemented with the use of Pluggy [https://pluggy.readthedocs.io/en/stable/], a Python framework used by
other projects, such as pytest, tox, and devpi. pluggy provides the ability to
extend and modify the behavior of conda via function hooking, which results in plugin
systems that are discoverable with the use of Python package entrypoints [https://packaging.python.org/en/latest/specifications/entry-points/].

For more information about how it
works, we suggest heading over to their documentation [https://pluggy.readthedocs.io/en/stable/].

API

For even more detailed information about our plugin system, please the see the
Plugin API section.

A note on licensing

For more information on which license to use for your custom plugin, please reference
the "Choose an Open Source License" [https://choosealicense.com/] site. If you need help figuring out exactly
which one to use, we advise communicating with a qualified legal professional.

 Auth Handlers

Auth Handlers

The auth handlers plugin hook allows plugin authors to enable new modes
of authentication within conda. Registered auth handlers will be
available to configure on a per channel basis via the channel_settings
configuration option in the .condarc file.

Auth handlers are subclasses of the ChannelAuthBase class,
which is itself a subclass of requests.auth.AuthBase [https://docs.python-requests.org/en/latest/api/#requests.auth.AuthBase].
The ChannelAuthBase class adds an additional channel_name
property to the requests.auth.AuthBase [https://docs.python-requests.org/en/latest/api/#requests.auth.AuthBase] class. This is necessary for appropriate handling of
channel based authentication in conda.

For more information on how to implement your own auth handlers, please read the requests
documentation on Custom Authentication [https://docs.python-requests.org/en/latest/user/advanced/#custom-authentication].

	
class CondaAuthHandler

	Return type to use when the defining the conda auth handlers hook.

	Parameters:

	
	name -- Name (e.g., basic-auth). This name should be unique
and only one may be registered at a time.

	handler -- Type that will be used as the authentication handler
during network requests.

	
handler

	

	
name

	

	
conda_auth_handlers()

	Register a conda auth handler derived from the requests API.

This plugin hook allows attaching requests auth handler subclasses,
e.g. when authenticating requests against individual channels hosted
at HTTP/HTTPS services.

Example:

import os
from conda import plugins
from requests.auth import AuthBase

class EnvironmentHeaderAuth(AuthBase):
 def __init__(self, *args, **kwargs):
 self.username = os.environ["EXAMPLE_CONDA_AUTH_USERNAME"]
 self.password = os.environ["EXAMPLE_CONDA_AUTH_PASSWORD"]

 def __call__(self, request):
 request.headers["X-Username"] = self.username
 request.headers["X-Password"] = self.password
 return request

@plugins.hookimpl
def conda_auth_handlers():
 yield plugins.CondaAuthHandler(
 name="environment-header-auth",
 auth_handler=EnvironmentHeaderAuth,
)

 Health Checks

Health Checks

Conda doctor can be extended with the health_checks plugin hook.
Write new health checks using the health_checks plugin hook, install the plugins you wrote and they will run every time conda doctor command is run.
The action function is where you specify the code you want to be executed with conda doctor.

	
class CondaHealthCheck

	Return type to use when defining conda health checks plugin hook.

	
action

	

	
name

	

	
conda_health_checks()

	Register health checks for conda doctor.

This plugin hook allows you to add more "health checks" to conda doctor
that you can write to diagnose problems in your conda environment.
Check out the health checks already shipped with conda for inspiration.

Example:

from conda import plugins

def example_health_check(prefix: str, verbose: bool):
 print("This is an example health check!")

@plugins.hookimpl
def conda_health_checks():
 yield plugins.CondaHealthCheck(
 name="example-health-check",
 action=example_health_check,
)

 Post-commands

Post-commands

Conda commands can be extended with the conda_post_commands plugin hook.
By specifying the set of commands you would like to use in the run_for configuration
option, you can execute code via the action option after these commands are run.
The functions are provided a command argument representing the name
of the command currently running. If the command fails for any reason, this plugin hook will not
be run.

If you would like to target conda env commands, prefix the command name with env_.
For example, conda env list would be passed to run_for as env_list.

	
class CondaPostCommand

	Return type to use when defining a conda post-command plugin hook.

For details on how this is used, see
conda_post_commands().

	Parameters:

	
	name -- Post-command name (e.g., custom_plugin_post_commands).

	action -- Callable which contains the code to be run.

	run_for -- Represents the command(s) this will be run on (e.g. install or create).

	
action

	

	
name

	

	
run_for

	

	
conda_post_commands()

	Register post-command functions in conda.

Example:

from conda import plugins

def example_post_command(command):
 print("post-command action")

@plugins.hookimpl
def conda_post_commands():
 yield plugins.CondaPostCommand(
 name="example-post-command",
 action=example_post_command,
 run_for={"install", "create"},
)

 Pre-commands

Pre-commands

Conda commands can be extended with the conda_pre_commands plugin hook.
By specifying the set of commands you would like to use in the run_for configuration
option, you can execute code via the action option before these commands are run.
The functions are provided a command argument representing the name
of the command currently running.

If you would like to target conda env commands, prefix the command name with env_.
For example, conda env list would be passed to run_for as env_list.

	
class CondaPreCommand

	Return type to use when defining a conda pre-command plugin hook.

For details on how this is used, see
conda_pre_commands().

	Parameters:

	
	name -- Pre-command name (e.g., custom_plugin_pre_commands).

	action -- Callable which contains the code to be run.

	run_for -- Represents the command(s) this will be run on (e.g. install or create).

	
action

	

	
name

	

	
run_for

	

	
conda_pre_commands()

	Register pre-command functions in conda.

Example:

from conda import plugins

def example_pre_command(command):
 print("pre-command action")

@plugins.hookimpl
def conda_pre_commands():
 yield plugins.CondaPreCommand(
 name="example-pre-command",
 action=example_pre_command,
 run_for={"install", "create"},
)

 Settings

Settings

The settings plugin hook allows plugin authors to add new settings to conda.
Users will be able to use these new parameters either in .condarc files
or define them as environment variables. For more information on configuration
in conda, see Configuration.

The plugin hooks relies on using the various conda.common.configuration.Parameter
sub-classes (e.g. conda.common.configuration.PrimitiveParameter or
conda.common.configuration.SequenceParameter). For more examples of how these parameter
classes are used, please see the conda.base.context.Context class.

	
class CondaSetting

	Return type to use when defining a conda setting plugin hook.

For details on how this is used, see
conda_settings().

	Parameters:

	
	name -- name of the setting (e.g., config_param)

	description -- description of the setting that should be targeted
towards users of the plugin

	parameter -- Parameter instance containing the setting definition

	aliases -- alternative names of the setting

	
aliases

	

	
description

	

	
name

	

	
parameter

	

	
conda_settings()

	Register new setting

The example below defines a simple string type parameter

Example:

from conda import plugins
from conda.common.configuration import PrimitiveParameter, SequenceParameter

@plugins.hookimpl
def conda_settings():
 yield plugins.CondaSetting(
 name="example_option",
 description="This is an example option",
 parameter=PrimitiveParameter("default_value", element_type=str),
 aliases=("example_option_alias",),
)

 Solvers

Solvers

The conda solvers can be extended with additional backends with the
conda_solvers plugin hook. Registered solvers will be available
for configuration with the solver configuration and --solver
command line option.

	
class CondaSolver

	Return type to use when defining a conda solver plugin hook.

For details on how this is used, see
conda_solvers().

	Parameters:

	
	name -- Solver name (e.g., custom-solver).

	backend -- Type that will be instantiated as the solver backend.

	
backend

	

	
name

	

	
conda_solvers()

	Register solvers in conda.

Example:

import logging

from conda import plugins
from conda.core import solve

log = logging.getLogger(__name__)

class VerboseSolver(solve.Solver):
 def solve_final_state(self, *args, **kwargs):
 log.info("My verbose solver!")
 return super().solve_final_state(*args, **kwargs)

@plugins.hookimpl
def conda_solvers():
 yield plugins.CondaSolver(
 name="verbose-classic",
 backend=VerboseSolver,
)

	Returns:

	An iterable of solver entries.

 Subcommands

Subcommands

The conda CLI can be extended with the conda_subcommands plugin hook.
Registered subcommands will be available under the conda <subcommand>
command.

	
class CondaSubcommand

	Return type to use when defining a conda subcommand plugin hook.

For details on how this is used, see
conda_subcommands().

	Parameters:

	
	name -- Subcommand name (e.g., conda my-subcommand-name).

	summary -- Subcommand summary, will be shown in conda --help.

	action -- Callable that will be run when the subcommand is invoked.

	configure_parser -- Callable that will be run when the subcommand parser is initialized.

	
action

	

	
configure_parser

	

	
name

	

	
summary

	

	
conda_subcommands()

	Register external subcommands in conda.

Example:

from conda import plugins

def example_command(args):
 print("This is an example command!")

@plugins.hookimpl
def conda_subcommands():
 yield plugins.CondaSubcommand(
 name="example",
 summary="example command",
 action=example_command,
)

	Returns:

	An iterable of subcommand entries.

 Virtual Packages

Virtual Packages

Conda allows for the registering of virtual packages in the index data via
the plugin system. This mechanism lets users write plugins that provide
version identification for properties only known at runtime (e.g., OS
information).

	
class CondaVirtualPackage

	Return type to use when defining a conda virtual package plugin hook.

For details on how this is used, see
conda_virtual_packages().

	Parameters:

	
	name -- Virtual package name (e.g., my_custom_os).

	version -- Virtual package version (e.g., 1.2.3).

	build -- Virtual package build string (e.g., x86_64).

	
build

	

	
name

	

	
version

	

	
conda_virtual_packages()

	Register virtual packages in Conda.

Example:

from conda import plugins

@plugins.hookimpl
def conda_virtual_packages():
 yield plugins.CondaVirtualPackage(
 name="my_custom_os",
 version="1.2.3",
 build="x86_64",
)

	Returns:

	An iterable of virtual package entries.

 Specifications

Specifications

This section contains an incomplete list of conda specifications that
may or may not be related to Conda Enhancement Proposals [https://github.com/conda-incubator/ceps].

	Technical specification: solver state

	Common initialization

	Processing specs for conda install

	Processing specs for conda remove

 Technical specification: solver state

Work in progress

This page of the documentation is not yet finished and only contains a draft of the content.

Technical specification: solver state

Note

This document is a technical specification, which might not be the best way to learn about
how the solver works. For that, refer to conda install and
Solvers.

The Solver API will pass a collection of MatchSpec objects (from now on, we will refer to
them as specs) to the underlying SAT solver. How this list is built from the prefix state
and context options is not a straightforward process, but an elaborate logic. This is better
understood if we examine the ingredients that participate in the construction of specs. We
will label them like this:

These groups below will not change during the solver attempts:

	requested: MatchSpec objects the user is explicitly asking for.

	installed: Installed packages, expressed as PrefixRecord objects. Empty if the
environment did not exist.

	history: Specs asked in the past: the History. Empty if the environment did not exist.

	aggressive_updates: Packages included in the aggressive updates list. These packages are
always included in any requests to make sure they stay up-to-date under all circumstances.

	pinned: Packages pinned to a specific version, either via pinned_packages in your
.condarc or defined in a $PREFIX/conda-meta/pinned file.

	virtual: System properties exposed as virtual packages (e.g. __glibc=2.17). They can’t
really be installed or uninstalled, but they do participate in the solver by adding runtime
constraints.

	do_not_remove: A fixed list of packages that receive special treatment by the solver due
to poor metadata in the early days of conda packaging. A legacy leftover.

This one group does change during the solver lifetime:

	conflicting: Specs that are suspected to be a conflict for the solver.

Also, two more sources that are not obvious at first. These are not labeled as a source, but they
do participate in the specs collection:

	In new environments, packages included in the contex.create_default_packages list. These
MatchSpec objects are injected in each conda create command, so the solver will see them
as explicitly requested by the user (requested).

	Specs added by command line modifiers. The specs here present aren’t new (they are already in
other categories), but they might end up in the specs list only when a flag is added. For
example, update --all will add all the installed packages to the specs list, with no
version constraint. Without this flag, the installed packages will still end up in the specs
list, but with full constraints (--freeze-installed defaults for the first attempt) unless:

	Frozen attempt failed.

	--update-specs (or any other UpdateModifier) was passed, overriding --freeze-installed.

See? It gets involved. We will also use this vocabulary to help narrow down the type of change
being done:

Types of spec objects:

	specs: map of package name to its currently corresponding MatchSpec instance.

	spec: specific instance of a MatchSpec object.

	Exact or frozen spec: a spec where both the version and build fields are constrained
with == operators (exact match).

	Fully constrained or tight spec: a spec where both version and build are populated,
but not necessarily with equality operators. It can also be inequalities (>, <, etc.) and
fuzzy matches (*something*).

	Version-only spec: a spec where only the version field is populated. The build
is not.

	Name-only, bare, or unconstrained spec: a spec with no version or build fields. Just
the name of the package.

	Targeted spec: a spec with the target field populated. Extracted from the comments in
the solver logic:

target is a reference to the package currently existing in the environment. Setting
target instructs the solver to not disturb that package if it’s not necessary. If the
spec.name [http://spec.name] is being modified by inclusion in specs_to_add, we don’t set target, since we
want the solver to modify/update that package.

TL;DR: when working with MatchSpec objects,

	to minimize the version change, set MatchSpec(name=name, target=prec.dist_str())

	to freeze the package, set all the components of MatchSpec individually

	if the spec object does not have an adjective, it should be assumed it’s being added to the
specs map unmodified, as it came from its origin.

Pools (collections of PackageRecord objects):

	Installed pool: The installed packages, grouped by name. Each group should only contain one record!

	Explicit pool: The full index, but reduced for the specs in requested.

The following sections will get dry and to the point. They will state what output to expect from
a given set of initial conditions. At least we’ll try. Take into account that the specs list
is kept around across attempts! In other words, the specs list is only really empty in the first
attempt; if this fails, the subsequent attempts will only overwrite (update) the existing one. In
practice, this should only affect how constrained packages are. The names should be the same.

It will also depend on whether we are adding (conda install|create|update) or removing
(conda remove) packages. There’s a common initialization part for both, but after that the
logic is separate.

Common initialization

Note: This happens in Solver._collect_all_metadata()

This happens regardless of the type of command we are using (install, update, create or
remove).

	Add specs from history, if any.

	Add specs from do_not_remove, but only if:

	There’s no spec for that name in specs already, and

	A package with that name is not installed.

	Add virtual packages as unconstrained specs.

	Add all those installed packages, as unconstrained specs, that satisfy any of these conditions:

	The history is empty (in that case, all installed packages are added)

	The package name is part of aggresive_updates

	The package was not installed by conda, but by pip or other PyPI tools instead.

Preparing the index

At this point, the populated specs and the requested specs are merged together. This temporary
collection is used to determine how to reduce the index.

Processing specs for conda install

Preparation

	Generate the explicit pool for the requested specs (via Resolve._get_package_pool()).

	Detect potential conflicts (via (Resolve.get_conflicting_specs()).

Refine specs that match installed records

	Check that each of specs match a single installed package or none! If there are two or more
matches, it means that the environment is in bad shape and is basically broken. If the spec
matches one installed package (let’s call it installed match), we will modify the original
spec.

	We will turn the spec into an exact (frozen) spec if:

	The installed match is unmanageable (installed by pip, virtual, etc.)

	There’s no history, we are not in --freeze-installed mode, and:

	The spec is not a potential conflict, and

	The package name cannot be found in the explicit pool index or, if it is, the
installed match can be found in that explicit pool (to guarantee it will be found
instead of creating one more conflict just because).

	We relax the spec to a name-only spec if it’s part of the aggressive updates list.

	We turn it into a targeted spec if:

	The spec is in history. In that case, we take its historic spec counterpart and set the
target to the installed match version and build.

	None of the above conditions were met. In other words, we’ll try our best to match the
installed package if none of the above applies, but if we fail we’ll stick to whatever was
already present in the specs.

Handle pinned specs

Processing specs for conda remove

 API

API

As of conda 4.4, conda can be installed in any environment, not just environments with names starting with _ (underscore). That change was made, in part, so that conda can be used as a Python library.

As of conda 4.5, we do not support pip install conda. However, we are considering that as a supported bootstrap method in the future.

 conda

conda

OS-agnostic, system-level binary package manager.

Functions

	conda_signal_handler(signum, frame)

	

Attributes

	__version__

	

	__name__

	

	__author__

	

	__email__

	

	__license__

	

	__copyright__

	

	__summary__

	

	__url__

	

	CONDA_PACKAGE_ROOT

	

	
__version__

	

	
__name__ = 'conda'

	

	
__author__ = 'Anaconda, Inc.'

	

	
__email__ = 'conda@continuum.io'

	

	
__license__ = 'BSD-3-Clause'

	

	
__copyright__ = 'Copyright (c) 2012, Anaconda, Inc.'

	

	
__summary__

	

	
__url__ = 'https://github.com/conda/conda'

	

	
CONDA_PACKAGE_ROOT

	

	
exception CondaError(message, caused_by=None, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
return_code = 1

	

	
reportable = False

	

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
dump_map()

	

	
exception CondaMultiError(errors)

	Bases: CondaError

Common base class for all non-exit exceptions.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
dump_map()

	

	
contains(exception_class)

	

	
exception CondaExitZero(message, caused_by=None, **kwargs)

	Bases: CondaError

Common base class for all non-exit exceptions.

	
return_code = 0

	

	
conda_signal_handler(signum, frame)

	

 __main__

__main__ [https://docs.python.org/3/library/__main__.html#module-__main__]

Conda as a module entry point.

 _vendor

_vendor

Conda's pure-python dependencies will be
vendored [http://stackoverflow.com/questions/26217488/what-is-vendoring]
until conda 5.0 when conda will be isolated in its own private environment.

Introduction of dependencies for the 4.x series is discussed in
https://github.com/conda/conda/issues/2825.

 appdirs

appdirs

Utilities for determining application-specific dirs.

See <http://github.com/ActiveState/appdirs> for details and usage.

Classes

	AppDirs

	Convenience wrapper for getting application dirs.

Functions

	user_data_dir(appname[, appauthor, version, roaming])

	Return full path to the user-specific data dir for this application.

	site_data_dir(appname[, appauthor, version])

	Return full path to the user-shared data dir for this application.

	user_cache_dir(appname[, appauthor, version, opinion])

	Return full path to the user-specific cache dir for this application.

	user_log_dir(appname[, appauthor, version, opinion])

	Return full path to the user-specific log dir for this application.

	_get_win_folder_from_registry(csidl_name)

	This is a fallback technique at best. I'm not sure if using the

	_get_win_folder_with_pywin32(csidl_name)

	

	_get_win_folder_with_ctypes(csidl_name)

	

Attributes

	__version_info__

	

	__version__

	

	PY3

	

	unicode

	

	_get_win_folder

	

	appname

	

	
__version_info__ = (1, 2, 0)

	

	
__version__

	

	
PY3

	

	
unicode

	

	
exception AppDirsError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
user_data_dir(appname, appauthor=None, version=None, roaming=False)

	Return full path to the user-specific data dir for this application.

"appname" is the name of application.
"appauthor" (only required and used on Windows) is the name of the

appauthor or distributing body for this application. Typically
it is the owning company name.

	"version" is an optional version path element to append to the
	path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".

	"roaming" (boolean, default False) can be set True to use the Windows
	roaming appdata directory. That means that for users on a Windows
network setup for roaming profiles, this user data will be
sync'd on login. See
<http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
for a discussion of issues.

	Typical user data directories are:
	Mac OS X: ~/Library/Application Support/<AppName>
Unix: ~/.config/<appname> # or in $XDG_CONFIG_HOME if defined
Win XP (not roaming): C:Documents and Settings<username>Application Data<AppAuthor><AppName>
Win XP (roaming): C:Documents and Settings<username>Local SettingsApplication Data<AppAuthor><AppName>
Win 7 (not roaming): C:Users<username>AppDataLocal<AppAuthor><AppName>
Win 7 (roaming): C:Users<username>AppDataRoaming<AppAuthor><AppName>

For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME. We don't
use $XDG_DATA_HOME as that data dir is mostly used at the time of
installation, instead of the application adding data during runtime.
Also, in practice, Linux apps tend to store their data in
"~/.config/<appname>" instead of "~/.local/share/<appname>".

	
site_data_dir(appname, appauthor=None, version=None)

	Return full path to the user-shared data dir for this application.

"appname" is the name of application.
"appauthor" (only required and used on Windows) is the name of the

appauthor or distributing body for this application. Typically
it is the owning company name.

	"version" is an optional version path element to append to the
	path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".

	Typical user data directories are:
	Mac OS X: /Library/Application Support/<AppName>
Unix: /etc/xdg/<appname>
Win XP: C:Documents and SettingsAll UsersApplication Data<AppAuthor><AppName>
Vista: (Fail! "C:ProgramData" is a hidden system directory on Vista.)
Win 7: C:ProgramData<AppAuthor><AppName> # Hidden, but writeable on Win 7.

For Unix, this is using the $XDG_CONFIG_DIRS[0] default.

WARNING: Do not use this on Windows. See the Vista-Fail note above for why.

	
user_cache_dir(appname, appauthor=None, version=None, opinion=True)

	Return full path to the user-specific cache dir for this application.

"appname" is the name of application.
"appauthor" (only required and used on Windows) is the name of the

appauthor or distributing body for this application. Typically
it is the owning company name.

	"version" is an optional version path element to append to the
	path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".

	"opinion" (boolean) can be False to disable the appending of
	"Cache" to the base app data dir for Windows. See
discussion below.

	Typical user cache directories are:
	Mac OS X: ~/Library/Caches/<AppName>
Unix: ~/.cache/<appname> (XDG default)
Win XP: C:Documents and Settings<username>Local SettingsApplication Data<AppAuthor><AppName>Cache
Vista: C:Users<username>AppDataLocal<AppAuthor><AppName>Cache

On Windows the only suggestion in the MSDN docs is that local settings go in
the CSIDL_LOCAL_APPDATA directory. This is identical to the non-roaming
app data dir (the default returned by user_data_dir above). Apps typically
put cache data somewhere under the given dir here. Some examples:

...MozillaFirefoxProfiles<ProfileName>Cache
...AcmeSuperAppCache1.0

OPINION: This function appends "Cache" to the CSIDL_LOCAL_APPDATA value.
This can be disabled with the opinion=False option.

	
user_log_dir(appname, appauthor=None, version=None, opinion=True)

	Return full path to the user-specific log dir for this application.

"appname" is the name of application.
"appauthor" (only required and used on Windows) is the name of the

appauthor or distributing body for this application. Typically
it is the owning company name.

	"version" is an optional version path element to append to the
	path. You might want to use this if you want multiple versions
of your app to be able to run independently. If used, this
would typically be "<major>.<minor>".

	"opinion" (boolean) can be False to disable the appending of
	"Logs" to the base app data dir for Windows, and "log" to the
base cache dir for Unix. See discussion below.

	Typical user cache directories are:
	Mac OS X: ~/Library/Logs/<AppName>
Unix: ~/.cache/<appname>/log # or under $XDG_CACHE_HOME if defined
Win XP: C:Documents and Settings<username>Local SettingsApplication Data<AppAuthor><AppName>Logs
Vista: C:Users<username>AppDataLocal<AppAuthor><AppName>Logs

On Windows the only suggestion in the MSDN docs is that local settings
go in the CSIDL_LOCAL_APPDATA directory. (Note: I'm interested in
examples of what some windows apps use for a logs dir.)

OPINION: This function appends "Logs" to the CSIDL_LOCAL_APPDATA
value for Windows and appends "log" to the user cache dir for Unix.
This can be disabled with the opinion=False option.

	
class AppDirs(appname, appauthor, version=None, roaming=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Convenience wrapper for getting application dirs.

	
property user_data_dir

	

	
property site_data_dir

	

	
property user_cache_dir

	

	
property user_log_dir

	

	
_get_win_folder_from_registry(csidl_name)

	This is a fallback technique at best. I'm not sure if using the
registry for this guarantees us the correct answer for all CSIDL_*
names.

	
_get_win_folder_with_pywin32(csidl_name)

	

	
_get_win_folder_with_ctypes(csidl_name)

	

	
_get_win_folder

	

	
appname = 'MyApp'

	

 cpuinfo

cpuinfo

Classes

	Trace

	

	DataSource

	

	ASM

	

	CPUID

	

Functions

	_program_paths(program_name)

	

	_run_and_get_stdout(command[, pipe_command])

	

	_read_windows_registry_key(key_name, field_name)

	

	_check_arch()

	

	_obj_to_b64(thing)

	

	_b64_to_obj(thing)

	

	_utf_to_str(input)

	

	_copy_new_fields(info, new_info)

	

	_get_field_actual(cant_be_number, raw_string, field_names)

	

	_get_field(cant_be_number, raw_string, convert_to, ...)

	

	_to_decimal_string(ticks)

	

	_hz_short_to_full(ticks, scale)

	

	_hz_friendly_to_full(hz_string)

	

	_hz_short_to_friendly(ticks, scale)

	

	_to_friendly_bytes(input)

	

	_friendly_bytes_to_int(friendly_bytes)

	

	_parse_cpu_brand_string(cpu_string)

	

	_parse_cpu_brand_string_dx(cpu_string)

	

	_parse_dmesg_output(output)

	

	_parse_arch(arch_string_raw)

	

	_is_bit_set(reg, bit)

	

	_is_selinux_enforcing(trace)

	

	_filter_dict_keys_with_empty_values(info[, ...])

	

	_get_cpu_info_from_cpuid_actual()

	Warning! This function has the potential to crash the Python runtime.

	_get_cpu_info_from_cpuid_subprocess_wrapper(queue)

	

	_get_cpu_info_from_cpuid()

	Returns the CPU info gathered by querying the X86 cpuid register in a new process.

	_get_cpu_info_from_proc_cpuinfo()

	Returns the CPU info gathered from /proc/cpuinfo.

	_get_cpu_info_from_cpufreq_info()

	Returns the CPU info gathered from cpufreq-info.

	_get_cpu_info_from_lscpu()

	Returns the CPU info gathered from lscpu.

	_get_cpu_info_from_dmesg()

	Returns the CPU info gathered from dmesg.

	_get_cpu_info_from_ibm_pa_features()

	Returns the CPU info gathered from lsprop /proc/device-tree/cpus/*/ibm,pa-features

	_get_cpu_info_from_cat_var_run_dmesg_boot()

	Returns the CPU info gathered from /var/run/dmesg.boot.

	_get_cpu_info_from_sysctl()

	Returns the CPU info gathered from sysctl.

	_get_cpu_info_from_sysinfo()

	Returns the CPU info gathered from sysinfo.

	_get_cpu_info_from_sysinfo_v1()

	Returns the CPU info gathered from sysinfo.

	_get_cpu_info_from_sysinfo_v2()

	Returns the CPU info gathered from sysinfo.

	_get_cpu_info_from_wmic()

	Returns the CPU info gathered from WMI.

	_get_cpu_info_from_registry()

	Returns the CPU info gathered from the Windows Registry.

	_get_cpu_info_from_kstat()

	Returns the CPU info gathered from isainfo and kstat.

	_get_cpu_info_from_platform_uname()

	

	_get_cpu_info_internal()

	Returns the CPU info by using the best sources of information for your OS.

	get_cpu_info_json()

	Returns the CPU info by using the best sources of information for your OS.

	get_cpu_info()

	Returns the CPU info by using the best sources of information for your OS.

	main()

	

Attributes

	CPUINFO_VERSION

	

	CPUINFO_VERSION_STRING

	

	CAN_CALL_CPUID_IN_SUBPROCESS

	

	g_trace

	

	deprecated

	

	
CPUINFO_VERSION = (9, 0, 0)

	

	
CPUINFO_VERSION_STRING

	

	
CAN_CALL_CPUID_IN_SUBPROCESS = True

	

	
g_trace

	

	
class Trace(is_active, is_stored_in_string)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
header(msg)

	

	
success()

	

	
fail(msg)

	

	
command_header(msg)

	

	
command_output(msg, output)

	

	
keys(keys, info, new_info)

	

	
write(msg)

	

	
to_dict(info, is_fail)

	

	
class DataSource

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
bits

	

	
cpu_count

	

	
is_windows

	

	
arch_string_raw

	

	
uname_string_raw

	

	
can_cpuid = True

	

	
static has_proc_cpuinfo()

	

	
static has_dmesg()

	

	
static has_var_run_dmesg_boot()

	

	
static has_cpufreq_info()

	

	
static has_sestatus()

	

	
static has_sysctl()

	

	
static has_isainfo()

	

	
static has_kstat()

	

	
static has_sysinfo()

	

	
static has_lscpu()

	

	
static has_ibm_pa_features()

	

	
static has_wmic()

	

	
static cat_proc_cpuinfo()

	

	
static cpufreq_info()

	

	
static sestatus_b()

	

	
static dmesg_a()

	

	
static cat_var_run_dmesg_boot()

	

	
static sysctl_machdep_cpu_hw_cpufrequency()

	

	
static isainfo_vb()

	

	
static kstat_m_cpu_info()

	

	
static sysinfo_cpu()

	

	
static lscpu()

	

	
static ibm_pa_features()

	

	
static wmic_cpu()

	

	
static winreg_processor_brand()

	

	
static winreg_vendor_id_raw()

	

	
static winreg_arch_string_raw()

	

	
static winreg_hz_actual()

	

	
static winreg_feature_bits()

	

	
_program_paths(program_name)

	

	
_run_and_get_stdout(command, pipe_command=None)

	

	
_read_windows_registry_key(key_name, field_name)

	

	
_check_arch()

	

	
_obj_to_b64(thing)

	

	
_b64_to_obj(thing)

	

	
_utf_to_str(input)

	

	
_copy_new_fields(info, new_info)

	

	
_get_field_actual(cant_be_number, raw_string, field_names)

	

	
_get_field(cant_be_number, raw_string, convert_to, default_value, *field_names)

	

	
_to_decimal_string(ticks)

	

	
_hz_short_to_full(ticks, scale)

	

	
_hz_friendly_to_full(hz_string)

	

	
_hz_short_to_friendly(ticks, scale)

	

	
_to_friendly_bytes(input)

	

	
_friendly_bytes_to_int(friendly_bytes)

	

	
_parse_cpu_brand_string(cpu_string)

	

	
_parse_cpu_brand_string_dx(cpu_string)

	

	
_parse_dmesg_output(output)

	

	
_parse_arch(arch_string_raw)

	

	
_is_bit_set(reg, bit)

	

	
_is_selinux_enforcing(trace)

	

	
_filter_dict_keys_with_empty_values(info, acceptable_values={})

	

	
class ASM(restype=None, argtypes=(), machine_code=[])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
compile()

	

	
run()

	

	
free()

	

	
class CPUID(trace=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
_asm_func(restype=None, argtypes=(), machine_code=[])

	

	
_run_asm(*machine_code)

	

	
get_vendor_id()

	

	
get_info()

	

	
get_max_extension_support()

	

	
get_flags(max_extension_support)

	

	
get_processor_brand(max_extension_support)

	

	
get_cache(max_extension_support)

	

	
get_ticks_func()

	

	
get_raw_hz()

	

	
_get_cpu_info_from_cpuid_actual()

	Warning! This function has the potential to crash the Python runtime.
Do not call it directly. Use the _get_cpu_info_from_cpuid function instead.
It will safely call this function in another process.

	
_get_cpu_info_from_cpuid_subprocess_wrapper(queue)

	

	
_get_cpu_info_from_cpuid()

	Returns the CPU info gathered by querying the X86 cpuid register in a new process.
Returns {} on non X86 cpus.
Returns {} if SELinux is in enforcing mode.

	
_get_cpu_info_from_proc_cpuinfo()

	Returns the CPU info gathered from /proc/cpuinfo.
Returns {} if /proc/cpuinfo is not found.

	
_get_cpu_info_from_cpufreq_info()

	Returns the CPU info gathered from cpufreq-info.
Returns {} if cpufreq-info is not found.

	
_get_cpu_info_from_lscpu()

	Returns the CPU info gathered from lscpu.
Returns {} if lscpu is not found.

	
_get_cpu_info_from_dmesg()

	Returns the CPU info gathered from dmesg.
Returns {} if dmesg is not found or does not have the desired info.

	
_get_cpu_info_from_ibm_pa_features()

	Returns the CPU info gathered from lsprop /proc/device-tree/cpus/*/ibm,pa-features
Returns {} if lsprop is not found or ibm,pa-features does not have the desired info.

	
_get_cpu_info_from_cat_var_run_dmesg_boot()

	Returns the CPU info gathered from /var/run/dmesg.boot.
Returns {} if dmesg is not found or does not have the desired info.

	
_get_cpu_info_from_sysctl()

	Returns the CPU info gathered from sysctl.
Returns {} if sysctl is not found.

	
_get_cpu_info_from_sysinfo()

	Returns the CPU info gathered from sysinfo.
Returns {} if sysinfo is not found.

	
_get_cpu_info_from_sysinfo_v1()

	Returns the CPU info gathered from sysinfo.
Returns {} if sysinfo is not found.

	
_get_cpu_info_from_sysinfo_v2()

	Returns the CPU info gathered from sysinfo.
Returns {} if sysinfo is not found.

	
_get_cpu_info_from_wmic()

	Returns the CPU info gathered from WMI.
Returns {} if not on Windows, or wmic is not installed.

	
_get_cpu_info_from_registry()

	Returns the CPU info gathered from the Windows Registry.
Returns {} if not on Windows.

	
_get_cpu_info_from_kstat()

	Returns the CPU info gathered from isainfo and kstat.
Returns {} if isainfo or kstat are not found.

	
_get_cpu_info_from_platform_uname()

	

	
_get_cpu_info_internal()

	Returns the CPU info by using the best sources of information for your OS.
Returns {} if nothing is found.

	
get_cpu_info_json()

	Returns the CPU info by using the best sources of information for your OS.
Returns the result in a json string

	
get_cpu_info()

	Returns the CPU info by using the best sources of information for your OS.
Returns the result in a dict

	
main()

	

	
deprecated

	

 cpuinfo

cpuinfo

Classes

	Trace

	

	DataSource

	

	ASM

	

	CPUID

	

Functions

	_program_paths(program_name)

	

	_run_and_get_stdout(command[, pipe_command])

	

	_read_windows_registry_key(key_name, field_name)

	

	_check_arch()

	

	_obj_to_b64(thing)

	

	_b64_to_obj(thing)

	

	_utf_to_str(input)

	

	_copy_new_fields(info, new_info)

	

	_get_field_actual(cant_be_number, raw_string, field_names)

	

	_get_field(cant_be_number, raw_string, convert_to, ...)

	

	_to_decimal_string(ticks)

	

	_hz_short_to_full(ticks, scale)

	

	_hz_friendly_to_full(hz_string)

	

	_hz_short_to_friendly(ticks, scale)

	

	_to_friendly_bytes(input)

	

	_friendly_bytes_to_int(friendly_bytes)

	

	_parse_cpu_brand_string(cpu_string)

	

	_parse_cpu_brand_string_dx(cpu_string)

	

	_parse_dmesg_output(output)

	

	_parse_arch(arch_string_raw)

	

	_is_bit_set(reg, bit)

	

	_is_selinux_enforcing(trace)

	

	_filter_dict_keys_with_empty_values(info[, ...])

	

	_get_cpu_info_from_cpuid_actual()

	Warning! This function has the potential to crash the Python runtime.

	_get_cpu_info_from_cpuid_subprocess_wrapper(queue)

	

	_get_cpu_info_from_cpuid()

	Returns the CPU info gathered by querying the X86 cpuid register in a new process.

	_get_cpu_info_from_proc_cpuinfo()

	Returns the CPU info gathered from /proc/cpuinfo.

	_get_cpu_info_from_cpufreq_info()

	Returns the CPU info gathered from cpufreq-info.

	_get_cpu_info_from_lscpu()

	Returns the CPU info gathered from lscpu.

	_get_cpu_info_from_dmesg()

	Returns the CPU info gathered from dmesg.

	_get_cpu_info_from_ibm_pa_features()

	Returns the CPU info gathered from lsprop /proc/device-tree/cpus/*/ibm,pa-features

	_get_cpu_info_from_cat_var_run_dmesg_boot()

	Returns the CPU info gathered from /var/run/dmesg.boot.

	_get_cpu_info_from_sysctl()

	Returns the CPU info gathered from sysctl.

	_get_cpu_info_from_sysinfo()

	Returns the CPU info gathered from sysinfo.

	_get_cpu_info_from_sysinfo_v1()

	Returns the CPU info gathered from sysinfo.

	_get_cpu_info_from_sysinfo_v2()

	Returns the CPU info gathered from sysinfo.

	_get_cpu_info_from_wmic()

	Returns the CPU info gathered from WMI.

	_get_cpu_info_from_registry()

	Returns the CPU info gathered from the Windows Registry.

	_get_cpu_info_from_kstat()

	Returns the CPU info gathered from isainfo and kstat.

	_get_cpu_info_from_platform_uname()

	

	_get_cpu_info_internal()

	Returns the CPU info by using the best sources of information for your OS.

	get_cpu_info_json()

	Returns the CPU info by using the best sources of information for your OS.

	get_cpu_info()

	Returns the CPU info by using the best sources of information for your OS.

	main()

	

Attributes

	CPUINFO_VERSION

	

	CPUINFO_VERSION_STRING

	

	CAN_CALL_CPUID_IN_SUBPROCESS

	

	g_trace

	

	g_trace

	

	
CPUINFO_VERSION = (9, 0, 0)

	

	
CPUINFO_VERSION_STRING

	

	
CAN_CALL_CPUID_IN_SUBPROCESS = True

	

	
g_trace

	

	
class Trace(is_active, is_stored_in_string)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
header(msg)

	

	
success()

	

	
fail(msg)

	

	
command_header(msg)

	

	
command_output(msg, output)

	

	
keys(keys, info, new_info)

	

	
write(msg)

	

	
to_dict(info, is_fail)

	

	
class DataSource

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
bits

	

	
cpu_count

	

	
is_windows

	

	
arch_string_raw

	

	
uname_string_raw

	

	
can_cpuid = True

	

	
static has_proc_cpuinfo()

	

	
static has_dmesg()

	

	
static has_var_run_dmesg_boot()

	

	
static has_cpufreq_info()

	

	
static has_sestatus()

	

	
static has_sysctl()

	

	
static has_isainfo()

	

	
static has_kstat()

	

	
static has_sysinfo()

	

	
static has_lscpu()

	

	
static has_ibm_pa_features()

	

	
static has_wmic()

	

	
static cat_proc_cpuinfo()

	

	
static cpufreq_info()

	

	
static sestatus_b()

	

	
static dmesg_a()

	

	
static cat_var_run_dmesg_boot()

	

	
static sysctl_machdep_cpu_hw_cpufrequency()

	

	
static isainfo_vb()

	

	
static kstat_m_cpu_info()

	

	
static sysinfo_cpu()

	

	
static lscpu()

	

	
static ibm_pa_features()

	

	
static wmic_cpu()

	

	
static winreg_processor_brand()

	

	
static winreg_vendor_id_raw()

	

	
static winreg_arch_string_raw()

	

	
static winreg_hz_actual()

	

	
static winreg_feature_bits()

	

	
_program_paths(program_name)

	

	
_run_and_get_stdout(command, pipe_command=None)

	

	
_read_windows_registry_key(key_name, field_name)

	

	
_check_arch()

	

	
_obj_to_b64(thing)

	

	
_b64_to_obj(thing)

	

	
_utf_to_str(input)

	

	
_copy_new_fields(info, new_info)

	

	
_get_field_actual(cant_be_number, raw_string, field_names)

	

	
_get_field(cant_be_number, raw_string, convert_to, default_value, *field_names)

	

	
_to_decimal_string(ticks)

	

	
_hz_short_to_full(ticks, scale)

	

	
_hz_friendly_to_full(hz_string)

	

	
_hz_short_to_friendly(ticks, scale)

	

	
_to_friendly_bytes(input)

	

	
_friendly_bytes_to_int(friendly_bytes)

	

	
_parse_cpu_brand_string(cpu_string)

	

	
_parse_cpu_brand_string_dx(cpu_string)

	

	
_parse_dmesg_output(output)

	

	
_parse_arch(arch_string_raw)

	

	
_is_bit_set(reg, bit)

	

	
_is_selinux_enforcing(trace)

	

	
_filter_dict_keys_with_empty_values(info, acceptable_values={})

	

	
class ASM(restype=None, argtypes=(), machine_code=[])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
compile()

	

	
run()

	

	
free()

	

	
class CPUID(trace=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
_asm_func(restype=None, argtypes=(), machine_code=[])

	

	
_run_asm(*machine_code)

	

	
get_vendor_id()

	

	
get_info()

	

	
get_max_extension_support()

	

	
get_flags(max_extension_support)

	

	
get_processor_brand(max_extension_support)

	

	
get_cache(max_extension_support)

	

	
get_ticks_func()

	

	
get_raw_hz()

	

	
_get_cpu_info_from_cpuid_actual()

	Warning! This function has the potential to crash the Python runtime.
Do not call it directly. Use the _get_cpu_info_from_cpuid function instead.
It will safely call this function in another process.

	
_get_cpu_info_from_cpuid_subprocess_wrapper(queue)

	

	
_get_cpu_info_from_cpuid()

	Returns the CPU info gathered by querying the X86 cpuid register in a new process.
Returns {} on non X86 cpus.
Returns {} if SELinux is in enforcing mode.

	
_get_cpu_info_from_proc_cpuinfo()

	Returns the CPU info gathered from /proc/cpuinfo.
Returns {} if /proc/cpuinfo is not found.

	
_get_cpu_info_from_cpufreq_info()

	Returns the CPU info gathered from cpufreq-info.
Returns {} if cpufreq-info is not found.

	
_get_cpu_info_from_lscpu()

	Returns the CPU info gathered from lscpu.
Returns {} if lscpu is not found.

	
_get_cpu_info_from_dmesg()

	Returns the CPU info gathered from dmesg.
Returns {} if dmesg is not found or does not have the desired info.

	
_get_cpu_info_from_ibm_pa_features()

	Returns the CPU info gathered from lsprop /proc/device-tree/cpus/*/ibm,pa-features
Returns {} if lsprop is not found or ibm,pa-features does not have the desired info.

	
_get_cpu_info_from_cat_var_run_dmesg_boot()

	Returns the CPU info gathered from /var/run/dmesg.boot.
Returns {} if dmesg is not found or does not have the desired info.

	
_get_cpu_info_from_sysctl()

	Returns the CPU info gathered from sysctl.
Returns {} if sysctl is not found.

	
_get_cpu_info_from_sysinfo()

	Returns the CPU info gathered from sysinfo.
Returns {} if sysinfo is not found.

	
_get_cpu_info_from_sysinfo_v1()

	Returns the CPU info gathered from sysinfo.
Returns {} if sysinfo is not found.

	
_get_cpu_info_from_sysinfo_v2()

	Returns the CPU info gathered from sysinfo.
Returns {} if sysinfo is not found.

	
_get_cpu_info_from_wmic()

	Returns the CPU info gathered from WMI.
Returns {} if not on Windows, or wmic is not installed.

	
_get_cpu_info_from_registry()

	Returns the CPU info gathered from the Windows Registry.
Returns {} if not on Windows.

	
_get_cpu_info_from_kstat()

	Returns the CPU info gathered from isainfo and kstat.
Returns {} if isainfo or kstat are not found.

	
_get_cpu_info_from_platform_uname()

	

	
_get_cpu_info_internal()

	Returns the CPU info by using the best sources of information for your OS.
Returns {} if nothing is found.

	
get_cpu_info_json()

	Returns the CPU info by using the best sources of information for your OS.
Returns the result in a json string

	
get_cpu_info()

	Returns the CPU info by using the best sources of information for your OS.
Returns the result in a dict

	
main()

	

	
g_trace

	

 distro

distro

The distro package (distro stands for Linux Distribution) provides
information about the Linux distribution it runs on, such as a reliable
machine-readable distro ID, or version information.

It is a renewed alternative implementation for Python's original
platform.linux_distribution() function, but it provides much more
functionality. An alternative implementation became necessary because Python
3.5 deprecated this function, and Python 3.7 is expected to remove it
altogether. Its predecessor function platform.dist() was already
deprecated since Python 2.6 and is also expected to be removed in Python 3.7.
Still, there are many cases in which access to Linux distribution information
is needed. See Python issue 1322 [https://bugs.python.org/issue1322] for
more information.

Classes

	LinuxDistribution

	Provides information about a Linux distribution.

Functions

	linux_distribution([full_distribution_name])

	Return information about the current Linux distribution as a tuple

	id()

	Return the distro ID of the current Linux distribution, as a

	name([pretty])

	Return the name of the current Linux distribution, as a human-readable

	version([pretty, best])

	Return the version of the current Linux distribution, as a human-readable

	version_parts([best])

	Return the version of the current Linux distribution as a tuple

	major_version([best])

	Return the major version of the current Linux distribution, as a string,

	minor_version([best])

	Return the minor version of the current Linux distribution, as a string,

	build_number([best])

	Return the build number of the current Linux distribution, as a string,

	like()

	Return a space-separated list of distro IDs of distributions that are

	codename()

	Return the codename for the release of the current Linux distribution,

	info([pretty, best])

	Return certain machine-readable information items about the current Linux

	os_release_info()

	Return a dictionary containing key-value pairs for the information items

	lsb_release_info()

	Return a dictionary containing key-value pairs for the information items

	distro_release_info()

	Return a dictionary containing key-value pairs for the information items

	os_release_attr(attribute)

	Return a single named information item from the os-release file data source

	lsb_release_attr(attribute)

	Return a single named information item from the lsb_release command output

	distro_release_attr(attribute)

	Return a single named information item from the distro release file

	main()

	

Attributes

	_UNIXCONFDIR

	

	_OS_RELEASE_BASENAME

	

	NORMALIZED_OS_ID

	

	NORMALIZED_LSB_ID

	

	NORMALIZED_DISTRO_ID

	

	_DISTRO_RELEASE_CONTENT_REVERSED_PATTERN

	

	_DISTRO_RELEASE_BASENAME_PATTERN

	

	_DISTRO_RELEASE_IGNORE_BASENAMES

	

	_distro

	

	
_UNIXCONFDIR

	

	
_OS_RELEASE_BASENAME = 'os-release'

	

	
NORMALIZED_OS_ID

	

	
NORMALIZED_LSB_ID

	

	
NORMALIZED_DISTRO_ID

	

	
_DISTRO_RELEASE_CONTENT_REVERSED_PATTERN

	

	
_DISTRO_RELEASE_BASENAME_PATTERN

	

	
_DISTRO_RELEASE_IGNORE_BASENAMES = ('debian_version', 'lsb-release', 'oem-release')

	

	
linux_distribution(full_distribution_name=True)

	Return information about the current Linux distribution as a tuple
(id_name, version, codename) with items as follows:

	id_name: If full_distribution_name is false, the result of
distro.id(). Otherwise, the result of distro.name().

	version: The result of distro.version().

	codename: The result of distro.codename().

The interface of this function is compatible with the original
platform.linux_distribution() function, supporting a subset of
its parameters.

The data it returns may not exactly be the same, because it uses more data
sources than the original function, and that may lead to different data if
the Linux distribution is not consistent across multiple data sources it
provides (there are indeed such distributions ...).

Another reason for differences is the fact that the distro.id()
method normalizes the distro ID string to a reliable machine-readable value
for a number of popular Linux distributions.

	
id()

	Return the distro ID of the current Linux distribution, as a
machine-readable string.

For a number of Linux distributions, the returned distro ID value is
reliable, in the sense that it is documented and that it does not change
across releases of the distribution.

This package maintains the following reliable distro ID values:

	Distro ID

	Distribution

	"ubuntu"

	Ubuntu

	"debian"

	Debian

	"rhel"

	RedHat Enterprise Linux

	"centos"

	CentOS

	"fedora"

	Fedora

	"sles"

	SUSE Linux Enterprise Server

	"opensuse"

	openSUSE

	"amazon"

	Amazon Linux

	"arch"

	Arch Linux

	"cloudlinux"

	CloudLinux OS

	"exherbo"

	Exherbo Linux

	"gentoo"

	GenToo Linux

	"ibm_powerkvm"

	IBM PowerKVM

	"kvmibm"

	KVM for IBM z Systems

	"linuxmint"

	Linux Mint

	"mageia"

	Mageia

	"mandriva"

	Mandriva Linux

	"parallels"

	Parallels

	"pidora"

	Pidora

	"raspbian"

	Raspbian

	"oracle"

	Oracle Linux (and Oracle Enterprise Linux)

	"scientific"

	Scientific Linux

	"slackware"

	Slackware

	"xenserver"

	XenServer

If you have a need to get distros for reliable IDs added into this set,
or if you find that the distro.id() function returns a different
distro ID for one of the listed distros, please create an issue in the
`distro issue tracker`_.

Lookup hierarchy and transformations:

First, the ID is obtained from the following sources, in the specified
order. The first available and non-empty value is used:

	the value of the "ID" attribute of the os-release file,

	the value of the "Distributor ID" attribute returned by the lsb_release
command,

	the first part of the file name of the distro release file,

The so determined ID value then passes the following transformations,
before it is returned by this method:

	it is translated to lower case,

	blanks (which should not be there anyway) are translated to underscores,

	a normalization of the ID is performed, based upon
`normalization tables`_. The purpose of this normalization is to ensure
that the ID is as reliable as possible, even across incompatible changes
in the Linux distributions. A common reason for an incompatible change is
the addition of an os-release file, or the addition of the lsb_release
command, with ID values that differ from what was previously determined
from the distro release file name.

	
name(pretty=False)

	Return the name of the current Linux distribution, as a human-readable
string.

If pretty is false, the name is returned without version or codename.
(e.g. "CentOS Linux")

If pretty is true, the version and codename are appended.
(e.g. "CentOS Linux 7.1.1503 (Core)")

Lookup hierarchy:

The name is obtained from the following sources, in the specified order.
The first available and non-empty value is used:

	If pretty is false:

	the value of the "NAME" attribute of the os-release file,

	the value of the "Distributor ID" attribute returned by the lsb_release
command,

	the value of the "<name>" field of the distro release file.

	If pretty is true:

	the value of the "PRETTY_NAME" attribute of the os-release file,

	the value of the "Description" attribute returned by the lsb_release
command,

	the value of the "<name>" field of the distro release file, appended
with the value of the pretty version ("<version_id>" and "<codename>"
fields) of the distro release file, if available.

	
version(pretty=False, best=False)

	Return the version of the current Linux distribution, as a human-readable
string.

If pretty is false, the version is returned without codename (e.g.
"7.0").

If pretty is true, the codename in parenthesis is appended, if the
codename is non-empty (e.g. "7.0 (Maipo)").

Some distributions provide version numbers with different precisions in
the different sources of distribution information. Examining the different
sources in a fixed priority order does not always yield the most precise
version (e.g. for Debian 8.2, or CentOS 7.1).

The best parameter can be used to control the approach for the returned
version:

If best is false, the first non-empty version number in priority order of
the examined sources is returned.

If best is true, the most precise version number out of all examined
sources is returned.

Lookup hierarchy:

In all cases, the version number is obtained from the following sources.
If best is false, this order represents the priority order:

	the value of the "VERSION_ID" attribute of the os-release file,

	the value of the "Release" attribute returned by the lsb_release
command,

	the version number parsed from the "<version_id>" field of the first line
of the distro release file,

	the version number parsed from the "PRETTY_NAME" attribute of the
os-release file, if it follows the format of the distro release files.

	the version number parsed from the "Description" attribute returned by
the lsb_release command, if it follows the format of the distro release
files.

	
version_parts(best=False)

	Return the version of the current Linux distribution as a tuple
(major, minor, build_number) with items as follows:

	major: The result of distro.major_version().

	minor: The result of distro.minor_version().

	build_number: The result of distro.build_number().

For a description of the best parameter, see the distro.version()
method.

	
major_version(best=False)

	Return the major version of the current Linux distribution, as a string,
if provided.
Otherwise, the empty string is returned. The major version is the first
part of the dot-separated version string.

For a description of the best parameter, see the distro.version()
method.

	
minor_version(best=False)

	Return the minor version of the current Linux distribution, as a string,
if provided.
Otherwise, the empty string is returned. The minor version is the second
part of the dot-separated version string.

For a description of the best parameter, see the distro.version()
method.

	
build_number(best=False)

	Return the build number of the current Linux distribution, as a string,
if provided.
Otherwise, the empty string is returned. The build number is the third part
of the dot-separated version string.

For a description of the best parameter, see the distro.version()
method.

	
like()

	Return a space-separated list of distro IDs of distributions that are
closely related to the current Linux distribution in regards to packaging
and programming interfaces, for example distributions the current
distribution is a derivative from.

Lookup hierarchy:

This information item is only provided by the os-release file.
For details, see the description of the "ID_LIKE" attribute in the
os-release man page [http://www.freedesktop.org/software/systemd/man/os-release.html].

	
codename()

	Return the codename for the release of the current Linux distribution,
as a string.

If the distribution does not have a codename, an empty string is returned.

Note that the returned codename is not always really a codename. For
example, openSUSE returns "x86_64". This function does not handle such
cases in any special way and just returns the string it finds, if any.

Lookup hierarchy:

	the codename within the "VERSION" attribute of the os-release file, if
provided,

	the value of the "Codename" attribute returned by the lsb_release
command,

	the value of the "<codename>" field of the distro release file.

	
info(pretty=False, best=False)

	Return certain machine-readable information items about the current Linux
distribution in a dictionary, as shown in the following example:

{
 'id': 'rhel',
 'version': '7.0',
 'version_parts': {
 'major': '7',
 'minor': '0',
 'build_number': ''
 },
 'like': 'fedora',
 'codename': 'Maipo'
}

The dictionary structure and keys are always the same, regardless of which
information items are available in the underlying data sources. The values
for the various keys are as follows:

	id: The result of distro.id().

	version: The result of distro.version().

	version_parts -> major: The result of distro.major_version().

	version_parts -> minor: The result of distro.minor_version().

	version_parts -> build_number: The result of
distro.build_number().

	like: The result of distro.like().

	codename: The result of distro.codename().

For a description of the pretty and best parameters, see the
distro.version() method.

	
os_release_info()

	Return a dictionary containing key-value pairs for the information items
from the os-release file data source of the current Linux distribution.

See `os-release file`_ for details about these information items.

	
lsb_release_info()

	Return a dictionary containing key-value pairs for the information items
from the lsb_release command data source of the current Linux distribution.

See `lsb_release command output`_ for details about these information
items.

	
distro_release_info()

	Return a dictionary containing key-value pairs for the information items
from the distro release file data source of the current Linux distribution.

See `distro release file`_ for details about these information items.

	
os_release_attr(attribute)

	Return a single named information item from the os-release file data source
of the current Linux distribution.

Parameters:

	attribute (string): Key of the information item.

Returns:

	(string): Value of the information item, if the item exists.
The empty string, if the item does not exist.

See `os-release file`_ for details about these information items.

	
lsb_release_attr(attribute)

	Return a single named information item from the lsb_release command output
data source of the current Linux distribution.

Parameters:

	attribute (string): Key of the information item.

Returns:

	(string): Value of the information item, if the item exists.
The empty string, if the item does not exist.

See `lsb_release command output`_ for details about these information
items.

	
distro_release_attr(attribute)

	Return a single named information item from the distro release file
data source of the current Linux distribution.

Parameters:

	attribute (string): Key of the information item.

Returns:

	(string): Value of the information item, if the item exists.
The empty string, if the item does not exist.

See `distro release file`_ for details about these information items.

	
class LinuxDistribution(include_lsb=True, os_release_file='', distro_release_file='')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides information about a Linux distribution.

This package creates a private module-global instance of this class with
default initialization arguments, that is used by the
`consolidated accessor functions`_ and `single source accessor functions`_.
By using default initialization arguments, that module-global instance
returns data about the current Linux distribution (i.e. the distro this
package runs on).

Normally, it is not necessary to create additional instances of this class.
However, in situations where control is needed over the exact data sources
that are used, instances of this class can be created with a specific
distro release file, or a specific os-release file, or without invoking the
lsb_release command.

	
__repr__()

	Return repr of all info

	
linux_distribution(full_distribution_name=True)

	Return information about the Linux distribution that is compatible
with Python's platform.linux_distribution(), supporting a subset
of its parameters.

For details, see distro.linux_distribution().

	
id()

	Return the distro ID of the Linux distribution, as a string.

For details, see distro.id().

	
name(pretty=False)

	Return the name of the Linux distribution, as a string.

For details, see distro.name().

	
version(pretty=False, best=False)

	Return the version of the Linux distribution, as a string.

For details, see distro.version().

	
version_parts(best=False)

	Return the version of the Linux distribution, as a tuple of version
numbers.

For details, see distro.version_parts().

	
major_version(best=False)

	Return the major version number of the current distribution.

For details, see distro.major_version().

	
minor_version(best=False)

	Return the minor version number of the Linux distribution.

For details, see distro.minor_version().

	
build_number(best=False)

	Return the build number of the Linux distribution.

For details, see distro.build_number().

	
like()

	Return the IDs of distributions that are like the Linux distribution.

For details, see distro.like().

	
codename()

	Return the codename of the Linux distribution.

For details, see distro.codename().

	
info(pretty=False, best=False)

	Return certain machine-readable information about the Linux
distribution.

For details, see distro.info().

	
os_release_info()

	Return a dictionary containing key-value pairs for the information
items from the os-release file data source of the Linux distribution.

For details, see distro.os_release_info().

	
lsb_release_info()

	Return a dictionary containing key-value pairs for the information
items from the lsb_release command data source of the Linux
distribution.

For details, see distro.lsb_release_info().

	
distro_release_info()

	Return a dictionary containing key-value pairs for the information
items from the distro release file data source of the Linux
distribution.

For details, see distro.distro_release_info().

	
os_release_attr(attribute)

	Return a single named information item from the os-release file data
source of the Linux distribution.

For details, see distro.os_release_attr().

	
lsb_release_attr(attribute)

	Return a single named information item from the lsb_release command
output data source of the Linux distribution.

For details, see distro.lsb_release_attr().

	
distro_release_attr(attribute)

	Return a single named information item from the distro release file
data source of the Linux distribution.

For details, see distro.distro_release_attr().

	
_get_os_release_info()

	Get the information items from the specified os-release file.

	Returns:

	A dictionary containing all information items.

	
static _parse_os_release_content(lines)

	Parse the lines of an os-release file.

Parameters:

	
	lines: Iterable through the lines in the os-release file.
	Each line must be a unicode string or a UTF-8 encoded byte
string.

	Returns:

	A dictionary containing all information items.

	
_get_lsb_release_info()

	Get the information items from the lsb_release command output.

	Returns:

	A dictionary containing all information items.

	
static _parse_lsb_release_content(lines)

	Parse the output of the lsb_release command.

Parameters:

	
	lines: Iterable through the lines of the lsb_release output.
	Each line must be a unicode string or a UTF-8 encoded byte
string.

	Returns:

	A dictionary containing all information items.

	
_get_distro_release_info()

	Get the information items from the specified distro release file.

	Returns:

	A dictionary containing all information items.

	
_parse_distro_release_file(filepath)

	Parse a distro release file.

Parameters:

	filepath: Path name of the distro release file.

	Returns:

	A dictionary containing all information items.

	
static _parse_distro_release_content(line)

	Parse a line from a distro release file.

Parameters:
* line: Line from the distro release file. Must be a unicode string

or a UTF-8 encoded byte string.

	Returns:

	A dictionary containing all information items.

	
_distro

	

	
main()

	

 frozendict

frozendict

Classes

	frozendict

	An immutable wrapper around dictionaries that implements the complete collections.Mapping

	FrozenOrderedDict

	A frozendict subclass that maintains key order

Attributes

	deprecated

	

	OrderedDict

	

	iteritems

	

	
deprecated

	

	
OrderedDict

	

	
iteritems

	

	
class frozendict(*args, **kwargs)

	Bases: collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]

An immutable wrapper around dictionaries that implements the complete collections.Mapping
interface. It can be used as a drop-in replacement for dictionaries where immutability is desired.

	
dict_cls

	

	
__getitem__(key)

	

	
__contains__(key)

	

	
copy(**add_or_replace)

	

	
__iter__()

	

	
__len__()

	

	
__repr__()

	Return repr(self).

	
__hash__()

	Return hash(self).

	
__json__()

	

	
to_json()

	

	
class FrozenOrderedDict(*args, **kwargs)

	Bases: frozendict

A frozendict subclass that maintains key order

	
dict_cls

	

 _version

_version

	
TYPE_CHECKING = False

	

	
VERSION_TUPLE

	

	
version: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
__version__: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
__version_tuple__: VERSION_TUPLE

	

	
version_tuple: VERSION_TUPLE

	

 activate

activate

Conda activate and deactivate logic.

Implementation for all shell interface logic exposed via
conda shell.* [activate|deactivate|reactivate|hook|commands]. This includes a custom argument
parser, an abstract shell class, and special path handling for Windows.

See conda.cli.main.main_sourced for the entry point into this module.

Classes

	_Activator

	

	PosixActivator

	

	CshActivator

	

	XonshActivator

	

	CmdExeActivator

	

	FishActivator

	

	PowerShellActivator

	

	JSONFormatMixin

	Returns the necessary values for activation as JSON, so that tools can use them.

Functions

	expand(path)

	

	ensure_binary(value)

	

	ensure_fs_path_encoding(value)

	

	native_path_to_unix(→ str | tuple[str, Ellipsis] | None)

	

	path_identity(→ str | tuple[str, Ellipsis] | None)

	

	backslash_to_forwardslash(→ str | tuple[str, ...)

	

	_build_activator_cls(shell)

	Dynamically construct the activator class.

Attributes

	activator_map

	

	formatter_map

	

	
class _Activator(arguments=None)

	
	
pathsep_join: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
sep: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
path_conversion: collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str] | collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None]], str [https://docs.python.org/3/library/stdtypes.html#str] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Ellipsis] | None [https://docs.python.org/3/library/constants.html#None]]

	

	
script_extension: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
tempfile_extension: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

	
command_join: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
unset_var_tmpl: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
export_var_tmpl: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
set_var_tmpl: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
run_script_tmpl: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
hook_source_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | None [https://docs.python.org/3/library/constants.html#None]

	

	
get_export_unset_vars(export_metavars=True, **kwargs)

	
	Parameters:

	
	export_metavars -- whether to export conda_exe_vars meta variables.

	kwargs -- environment variables to export.
.. if you pass and set any other variable to None, then it
emits it to the dict with a value of None.

	Returns:

	A dict of env vars to export ordered the same way as kwargs.
And a list of env vars to unset.

	
add_export_unset_vars(export_vars, unset_vars, **kwargs)

	

	
get_scripts_export_unset_vars(**kwargs) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
_finalize(commands, ext)

	

	
activate()

	

	
deactivate()

	

	
reactivate()

	

	
hook(auto_activate_base: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
execute()

	

	
commands()

	Returns a list of possible subcommands that are valid
immediately following conda at the command line.
This method is generally only used by tab-completion.

	
abstract _hook_preamble() → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

	
_hook_postamble() → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

	
_parse_and_set_args(arguments)

	

	
_yield_commands(cmds_dict)

	

	
build_activate(env_name_or_prefix)

	

	
build_stack(env_name_or_prefix)

	

	
_build_activate_stack(env_name_or_prefix, stack)

	

	
build_deactivate()

	

	
build_reactivate()

	

	
_get_starting_path_list()

	

	
_get_path_dirs(prefix)

	

	
_add_prefix_to_path(prefix, starting_path_dirs=None)

	

	
_remove_prefix_from_path(prefix, starting_path_dirs=None)

	

	
_replace_prefix_in_path(old_prefix, new_prefix, starting_path_dirs=None)

	

	
_update_prompt(set_vars, conda_prompt_modifier)

	

	
_default_env(prefix)

	

	
_prompt_modifier(prefix, conda_default_env)

	

	
_get_activate_scripts(prefix)

	

	
_get_deactivate_scripts(prefix)

	

	
_get_environment_env_vars(prefix)

	

	
expand(path)

	

	
ensure_binary(value)

	

	
ensure_fs_path_encoding(value)

	

	
native_path_to_unix(paths: str [https://docs.python.org/3/library/stdtypes.html#str] | collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None]) → str [https://docs.python.org/3/library/stdtypes.html#str] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Ellipsis] | None [https://docs.python.org/3/library/constants.html#None]

	

	
path_identity(paths: str [https://docs.python.org/3/library/stdtypes.html#str] | collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None]) → str [https://docs.python.org/3/library/stdtypes.html#str] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Ellipsis] | None [https://docs.python.org/3/library/constants.html#None]

	

	
backslash_to_forwardslash(paths: str [https://docs.python.org/3/library/stdtypes.html#str] | collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None]) → str [https://docs.python.org/3/library/stdtypes.html#str] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Ellipsis] | None [https://docs.python.org/3/library/constants.html#None]

	

	
class PosixActivator(arguments=None)

	Bases: _Activator

	
pathsep_join

	

	
sep = '/'

	

	
path_conversion

	

	
script_extension = '.sh'

	

	
tempfile_extension

	

	
command_join = '\n'

	

	
unset_var_tmpl = 'unset %s'

	

	
export_var_tmpl = "export %s='%s'"

	

	
set_var_tmpl = "%s='%s'"

	

	
run_script_tmpl = '. "%s"'

	

	
hook_source_path

	

	
_update_prompt(set_vars, conda_prompt_modifier)

	

	
_hook_preamble() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class CshActivator(arguments=None)

	Bases: _Activator

	
pathsep_join

	

	
sep = '/'

	

	
path_conversion

	

	
script_extension = '.csh'

	

	
tempfile_extension

	

	
command_join = ';\n'

	

	
unset_var_tmpl = 'unsetenv %s'

	

	
export_var_tmpl = 'setenv %s "%s"'

	

	
set_var_tmpl = "set %s='%s'"

	

	
run_script_tmpl = 'source "%s"'

	

	
hook_source_path

	

	
_update_prompt(set_vars, conda_prompt_modifier)

	

	
_hook_preamble() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class XonshActivator(arguments=None)

	Bases: _Activator

	
pathsep_join

	

	
sep = '/'

	

	
path_conversion

	

	
script_extension

	

	
tempfile_extension

	

	
command_join = '\n'

	

	
unset_var_tmpl = 'del $%s'

	

	
export_var_tmpl = "$%s = '%s'"

	

	
set_var_tmpl = "$%s = '%s'"

	

	
run_script_tmpl

	

	
hook_source_path

	

	
_hook_preamble() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class CmdExeActivator(arguments=None)

	Bases: _Activator

	
pathsep_join

	

	
sep = '\\'

	

	
path_conversion

	

	
script_extension = '.bat'

	

	
tempfile_extension = '.bat'

	

	
command_join = '\n'

	

	
unset_var_tmpl = '@SET %s='

	

	
export_var_tmpl = '@SET "%s=%s"'

	

	
set_var_tmpl = '@SET "%s=%s"'

	

	
run_script_tmpl = '@CALL "%s"'

	

	
hook_source_path

	

	
_hook_preamble() → None [https://docs.python.org/3/library/constants.html#None]

	

	
class FishActivator(arguments=None)

	Bases: _Activator

	
pathsep_join

	

	
sep = '/'

	

	
path_conversion

	

	
script_extension = '.fish'

	

	
tempfile_extension

	

	
command_join = ';\n'

	

	
unset_var_tmpl = 'set -e %s'

	

	
export_var_tmpl = 'set -gx %s "%s"'

	

	
set_var_tmpl = 'set -g %s "%s"'

	

	
run_script_tmpl = 'source "%s"'

	

	
hook_source_path

	

	
_hook_preamble() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class PowerShellActivator(arguments=None)

	Bases: _Activator

	
pathsep_join

	

	
sep

	

	
path_conversion

	

	
script_extension = '.ps1'

	

	
tempfile_extension

	

	
command_join = '\n'

	

	
unset_var_tmpl = '$Env:%s = ""'

	

	
export_var_tmpl = '$Env:%s = "%s"'

	

	
set_var_tmpl = '$Env:%s = "%s"'

	

	
run_script_tmpl = '. "%s"'

	

	
hook_source_path

	

	
_hook_preamble() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
_hook_postamble() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class JSONFormatMixin(arguments=None)

	Bases: _Activator

Returns the necessary values for activation as JSON, so that tools can use them.

	
pathsep_join

	

	
tempfile_extension

	

	
command_join

	

	
_hook_preamble()

	

	
get_scripts_export_unset_vars(**kwargs)

	

	
_finalize(commands, ext)

	

	
_yield_commands(cmds_dict)

	

	
activator_map: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type][_Activator]]

	

	
formatter_map

	

	
_build_activator_cls(shell)

	Dynamically construct the activator class.

Detect the base activator and any number of formatters (appended using '+' to the base name).
For example, posix+json (as in conda shell.posix+json activate) would use the
PosixActivator base class and add the JSONFormatMixin.

 api

api

Collection of conda's high-level APIs.

Classes

	Solver

	Beta While in beta, expect both major and minor changes across minor releases.

	SubdirData

	Beta While in beta, expect both major and minor changes across minor releases.

	PackageCacheData

	Beta While in beta, expect both major and minor changes across minor releases.

	PrefixData

	Beta While in beta, expect both major and minor changes across minor releases.

Attributes

	DepsModifier

	

	UpdateModifier

	

	
DepsModifier

	

	
UpdateModifier

	

	
class Solver(prefix, channels, subdirs=(), specs_to_add=(), specs_to_remove=())

	Beta While in beta, expect both major and minor changes across minor releases.

A high-level API to conda's solving logic. Three public methods are provided to access a
solution in various forms.

	solve_final_state()

	solve_for_diff()

	solve_for_transaction()

	
solve_final_state(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL, force_remove=NULL)

	Beta While in beta, expect both major and minor changes across minor releases.

Gives the final, solved state of the environment.

	Parameters:

	
	deps_modifier (DepsModifier) -- An optional flag indicating special solver handling for dependencies. The
default solver behavior is to be as conservative as possible with dependency
updates (in the case the dependency already exists in the environment), while
still ensuring all dependencies are satisfied. Options include
* NO_DEPS
* ONLY_DEPS
* UPDATE_DEPS
* UPDATE_DEPS_ONLY_DEPS
* FREEZE_INSTALLED

	prune (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, the solution will not contain packages that were
previously brought into the environment as dependencies but are no longer
required as dependencies and are not user-requested.

	ignore_pinned (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, the solution will ignore pinned package configuration
for the prefix.

	force_remove (bool [https://docs.python.org/3/library/functions.html#bool]) -- Forces removal of a package without removing packages that depend on it.

	Returns:

	In sorted dependency order from roots to leaves, the package references for
the solved state of the environment.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][PackageRef]

	
solve_for_diff(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL, force_remove=NULL, force_reinstall=False)

	Beta While in beta, expect both major and minor changes across minor releases.

Gives the package references to remove from an environment, followed by
the package references to add to an environment.

	Parameters:

	
	deps_modifier (DepsModifier) -- See solve_final_state().

	prune (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	ignore_pinned (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	force_remove (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	force_reinstall (bool [https://docs.python.org/3/library/functions.html#bool]) -- For requested specs_to_add that are already satisfied in the environment,
instructs the solver to remove the package and spec from the environment,
and then add it back--possibly with the exact package instance modified,
depending on the spec exactness.

	Returns:

	A two-tuple of PackageRef sequences. The first is the group of packages to
remove from the environment, in sorted dependency order from leaves to roots.
The second is the group of packages to add to the environment, in sorted
dependency order from roots to leaves.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][PackageRef], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][PackageRef]

	
solve_for_transaction(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL, force_remove=NULL, force_reinstall=False)

	Beta While in beta, expect both major and minor changes across minor releases.

Gives an UnlinkLinkTransaction instance that can be used to execute the solution
on an environment.

	Parameters:

	
	deps_modifier (DepsModifier) -- See solve_final_state().

	prune (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	ignore_pinned (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	force_remove (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	force_reinstall (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_for_diff().

	Return type:

	UnlinkLinkTransaction

	
class SubdirData(channel)

	Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of repodata.json for subdirs.

	
query(package_ref_or_match_spec)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific instance of repodata.

	Parameters:

	package_ref_or_match_spec (PackageRef or MatchSpec or str [https://docs.python.org/3/library/stdtypes.html#str]) -- Either an exact PackageRef to match against, or a MatchSpec
query object. A str [https://docs.python.org/3/library/stdtypes.html#str] will be turned into a MatchSpec automatically.

	Returns:

	tuple[PackageRecord]

	
static query_all(package_ref_or_match_spec, channels=None, subdirs=None)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against all repodata instances in channel/subdir matrix.

	Parameters:

	
	package_ref_or_match_spec (PackageRef or MatchSpec or str [https://docs.python.org/3/library/stdtypes.html#str]) -- Either an exact PackageRef to match against, or a MatchSpec
query object. A str [https://docs.python.org/3/library/stdtypes.html#str] will be turned into a MatchSpec automatically.

	channels (Iterable[Channel or str [https://docs.python.org/3/library/stdtypes.html#str]] or None) -- An iterable of urls for channels or Channel objects. If None, will fall
back to context.channels.

	subdirs (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]] or None) -- If None, will fall back to context.subdirs.

	Returns:

	tuple[PackageRecord]

	
iter_records()

	Beta While in beta, expect both major and minor changes across minor releases.

	Returns:

	
	A generator over all records contained in the repodata.json
	instance. Warning: this is a generator that is exhausted on first use.

	Return type:

	Iterable[PackageRecord]

	
reload()

	Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. repodata.json)
is lazily downloaded/loaded on first use by the other methods of this class. You
should only use this method if you are sure you have outdated data.

	Returns:

	SubdirData

	
class PackageCacheData(pkgs_dir)

	Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of package caches.

	
property is_writable

	Beta While in beta, expect both major and minor changes across minor releases.

Indicates if the package cache location is writable or read-only.

	Returns:

	bool

	
get(package_ref, default=NULL)

	Beta While in beta, expect both major and minor changes across minor releases.

	Parameters:

	
	package_ref (PackageRef) -- A PackageRef instance representing the key for the
PackageCacheRecord being sought.

	default -- The default value to return if the record does not exist. If not
specified and no record exists, KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] is raised.

	Returns:

	PackageCacheRecord

	
query(package_ref_or_match_spec)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific package cache instance.

	Parameters:

	package_ref_or_match_spec (PackageRef or MatchSpec or str [https://docs.python.org/3/library/stdtypes.html#str]) -- Either an exact PackageRef to match against, or a MatchSpec
query object. A str [https://docs.python.org/3/library/stdtypes.html#str] will be turned into a MatchSpec automatically.

	Returns:

	tuple[PackageCacheRecord]

	
static query_all(package_ref_or_match_spec, pkgs_dirs=None)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against all package caches.

	Parameters:

	
	package_ref_or_match_spec (PackageRef or MatchSpec or str [https://docs.python.org/3/library/stdtypes.html#str]) -- Either an exact PackageRef to match against, or a MatchSpec
query object. A str [https://docs.python.org/3/library/stdtypes.html#str] will be turned into a MatchSpec automatically.

	pkgs_dirs (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]] or None) -- If None, will fall back to context.pkgs_dirs.

	Returns:

	tuple[PackageCacheRecord]

	
iter_records()

	Beta While in beta, expect both major and minor changes across minor releases.

	Returns:

	
	A generator over all records contained in the package
	cache instance. Warning: this is a generator that is exhausted on first use.

	Return type:

	Iterable[PackageCacheRecord]

	
static first_writable(pkgs_dirs=None)

	Beta While in beta, expect both major and minor changes across minor releases.

Get an instance object for the first writable package cache.

	Parameters:

	pkgs_dirs (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- If None, will fall back to context.pkgs_dirs.

	Returns:

	An instance for the first writable package cache.

	Return type:

	PackageCacheData

	
reload()

	Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. contents of
the pkgs_dir) is lazily loaded on first use by the other methods of this class. You
should only use this method if you are sure you have outdated data.

	Returns:

	PackageCacheData

	
class PrefixData(prefix_path)

	Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of conda environment prefixes.

	
property is_writable

	Beta While in beta, expect both major and minor changes across minor releases.

Indicates if the prefix is writable or read-only.

	Returns:

	True if the prefix is writable. False if read-only. None if the prefix
does not exist as a conda environment.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool] or None

	
get(package_ref, default=NULL)

	Beta While in beta, expect both major and minor changes across minor releases.

	Parameters:

	
	package_ref (PackageRef) -- A PackageRef instance representing the key for the
PrefixRecord being sought.

	default -- The default value to return if the record does not exist. If not
specified and no record exists, KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] is raised.

	Returns:

	PrefixRecord

	
query(package_ref_or_match_spec)

	Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific prefix instance.

	Parameters:

	package_ref_or_match_spec (PackageRef or MatchSpec or str [https://docs.python.org/3/library/stdtypes.html#str]) -- Either an exact PackageRef to match against, or a MatchSpec
query object. A str [https://docs.python.org/3/library/stdtypes.html#str] will be turned into a MatchSpec automatically.

	Returns:

	tuple[PrefixRecord]

	
iter_records()

	Beta While in beta, expect both major and minor changes across minor releases.

	Returns:

	
	A generator over all records contained in the prefix.
	Warning: this is a generator that is exhausted on first use.

	Return type:

	Iterable[PrefixRecord]

	
reload()

	Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. contents of
the conda-meta directory) is lazily loaded on first use by the other methods of this
class. You should only use this method if you are sure you have outdated data.

	Returns:

	PrefixData

 auxlib

auxlib

Auxlib is an auxiliary library to the python standard library.

The aim is to provide core generic features for app development in python. Auxlib fills in some
python stdlib gaps much like pytoolz [https://github.com/pytoolz/] has for functional
programming, pyrsistent [https://github.com/tobgu/pyrsistent/] has for data structures, or
boltons [https://github.com/mahmoud/boltons/] has generally.

	Major areas addressed include:
	
	packaging: package versioning, with a clean and less invasive alternative to
versioneer

	entity: robust base class for type-enforced data models and transfer objects

	type_coercion: intelligent type coercion utilities

	Configuration: a map implementation designed specifically to hold application
configuration and context information

	factory: factory pattern implementation

	path: file path utilities especially helpful when working with various python
package formats

	logz: logging initialization routines to simplify python logging setup

	crypt: simple, but correct, pycrypto wrapper

[2021-11-09] Our version of auxlib has deviated from the upstream project by a significant amount
(especially compared with the other vendored packages). Further, the upstream project has low
popularity and is no longer actively maintained. Consequently it was decided to absorb, refactor,
and replace auxlib. As a first step of this process we moved conda._vendor.auxlib to conda.auxlib.

	
__version__ = '0.0.43'

	

	
__author__ = 'Kale Franz'

	

	
__email__ = 'kale@franz.io'

	

	
__url__ = 'https://github.com/kalefranz/auxlib'

	

	
__license__ = 'ISC'

	

	
__copyright__ = '(c) 2015 Kale Franz. All rights reserved.'

	

	
__summary__ = 'auxiliary library to the python standard library'

	

 collection

collection

Common collection classes.

Classes

	AttrDict

	Sub-classes dict, and further allows attribute-like access to dictionary items.

Functions

	make_immutable(value)

	

	first(seq[, key, default, apply])

	Give the first value that satisfies the key test.

	firstitem(map[, key, default, apply])

	

	last(seq[, key, default, apply])

	

	call_each(seq)

	Calls each element of sequence to invoke the side effect.

	
make_immutable(value)

	

	
class AttrDict(*args, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Sub-classes dict, and further allows attribute-like access to dictionary items.

Examples

>>> d = AttrDict({'a': 1})
>>> d.a, d['a'], d.get('a')
(1, 1, 1)
>>> d.b = 2
>>> d.b, d['b']
(2, 2)

	
first(seq, key=bool, default=None, apply=lambda x: ...)

	Give the first value that satisfies the key test.

	Parameters:

	
	seq (iterable) --

	key (callable) -- test for each element of iterable

	default -- returned when all elements fail test

	apply (callable) -- applied to element before return, but not to default value

Returns: first element in seq that passes key, mutated with optional apply

Examples

>>> first([0, False, None, [], (), 42])
42
>>> first([0, False, None, [], ()]) is None
True
>>> first([0, False, None, [], ()], default='ohai')
'ohai'
>>> import re
>>> m = first(re.match(regex, 'abc') for regex in ['b.*', 'a(.*)'])
>>> m.group(1)
'bc'

The optional key argument specifies a one-argument predicate function
like that used for filter(). The key argument, if supplied, must be
in keyword form. For example:
>>> first([1, 1, 3, 4, 5], key=lambda x: x % 2 == 0)
4

	
firstitem(map, key=lambda k, v: ..., default=None, apply=lambda k, v: ...)

	

	
last(seq, key=bool, default=None, apply=lambda x: ...)

	

	
call_each(seq)

	Calls each element of sequence to invoke the side effect.

	Parameters:

	seq --

Returns: None

 compat

compat

Functions

	isiterable(obj)

	

	shlex_split_unicode(to_split[, posix])

	

	utf8_writer(fp)

	

	Utf8NamedTemporaryFile([mode, buffering, newline, ...])

	

	
isiterable(obj)

	

	
shlex_split_unicode(to_split, posix=True)

	

	
utf8_writer(fp)

	

	
Utf8NamedTemporaryFile(mode='w+b', buffering=-1, newline=None, suffix=None, prefix=None, dir=None, delete=True)

	

 decorators

decorators

Classes

	classproperty

	

Functions

	memoizemethod(method)

	Decorator to cause a method to cache it's results in self for each

	clear_memoized_methods(obj, *method_names)

	Clear the memoized method or @memoizedproperty results for the given

	memoizedproperty(func)

	Decorator to cause a method to cache it's results in self for each

	
memoizemethod(method)

	Decorator to cause a method to cache it's results in self for each
combination of inputs and return the cached result on subsequent calls.
Does not support named arguments or arg values that are not hashable.

>>> class Foo (object):
... @memoizemethod
... def foo(self, x, y=0):
... print('running method with', x, y)
... return x + y + 3
...
>>> foo1 = Foo()
>>> foo2 = Foo()
>>> foo1.foo(10)
running method with 10 0
13
>>> foo1.foo(10)
13
>>> foo2.foo(11, y=7)
running method with 11 7
21
>>> foo2.foo(11)
running method with 11 0
14
>>> foo2.foo(11, y=7)
21
>>> class Foo (object):
... def __init__(self, lower):
... self.lower = lower
... @memoizemethod
... def range_tuple(self, upper):
... print('running function')
... return tuple(i for i in range(self.lower, upper))
... @memoizemethod
... def range_iter(self, upper):
... print('running function')
... return (i for i in range(self.lower, upper))
...
>>> foo = Foo(3)
>>> foo.range_tuple(6)
running function
(3, 4, 5)
>>> foo.range_tuple(7)
running function
(3, 4, 5, 6)
>>> foo.range_tuple(6)
(3, 4, 5)
>>> foo.range_iter(6)
Traceback (most recent call last):
TypeError: Can't memoize a generator or non-hashable object!

	
clear_memoized_methods(obj, *method_names)

	Clear the memoized method or @memoizedproperty results for the given
method names from the given object.

>>> v = [0]
>>> def inc():
... v[0] += 1
... return v[0]
...
>>> class Foo(object):
... @memoizemethod
... def foo(self):
... return inc()
... @memoizedproperty
... def g(self):
... return inc()
...
>>> f = Foo()
>>> f.foo(), f.foo()
(1, 1)
>>> clear_memoized_methods(f, 'foo')
>>> (f.foo(), f.foo(), f.g, f.g)
(2, 2, 3, 3)
>>> (f.foo(), f.foo(), f.g, f.g)
(2, 2, 3, 3)
>>> clear_memoized_methods(f, 'g', 'no_problem_if_undefined')
>>> f.g, f.foo(), f.g
(4, 2, 4)
>>> f.foo()
2

	
memoizedproperty(func)

	Decorator to cause a method to cache it's results in self for each
combination of inputs and return the cached result on subsequent calls.
Does not support named arguments or arg values that are not hashable.

>>> class Foo (object):
... _x = 1
... @memoizedproperty
... def foo(self):
... self._x += 1
... print('updating and returning {0}'.format(self._x))
... return self._x
...
>>> foo1 = Foo()
>>> foo2 = Foo()
>>> foo1.foo
updating and returning 2
2
>>> foo1.foo
2
>>> foo2.foo
updating and returning 2
2
>>> foo1.foo
2

	
class classproperty(getter=None, setter=None)

	
	
__get__(obj, type_=None)

	

	
__set__(obj, value)

	

	
setter(setter)

	

 entity

entity

This module provides serializable, validatable, type-enforcing domain objects and data
transfer objects. It has many of the same motivations as the python
Marshmallow [http://marshmallow.readthedocs.org/en/latest/why.html] package. It is most
similar to Schematics [http://schematics.readthedocs.io/].

Tutorial

Chapter 1: Entity and Field Basics

>>> class Color(Enum):
... blue = 0
... black = 1
... red = 2
>>> class Car(Entity):
... weight = NumberField(required=False)
... wheels = IntField(default=4, validation=lambda x: 3 <= x <= 4)
... color = EnumField(Color)

>>> # create a new car object
>>> car = Car(color=Color.blue, weight=4242.46)
>>> car
Car(weight=4242.46, color=0)

>>> # it has 4 wheels, all by default
>>> car.wheels
4

>>> # but a car can't have 5 wheels!
>>> # the `validation=` field is a simple callable that returns a
>>> # boolean based on validity
>>> car.wheels = 5
Traceback (most recent call last):
ValidationError: Invalid value 5 for wheels

>>> # we can call .dump() on car, and just get back a standard
>>> # python dict actually, it's an ordereddict to match attribute
>>> # declaration order
>>> type(car.dump())
<class '...OrderedDict'>
>>> car.dump()
OrderedDict([('weight', 4242.46), ('wheels', 4), ('color', 0)])

>>> # and json too (note the order!)
>>> car.json()
'{"weight": 4242.46, "wheels": 4, "color": 0}'

>>> # green cars aren't allowed
>>> car.color = "green"
Traceback (most recent call last):
ValidationError: 'green' is not a valid Color

>>> # but black cars are!
>>> car.color = "black"
>>> car.color
<Color.black: 1>

>>> # car.color really is an enum, promise
>>> type(car.color)
<enum 'Color'>

>>> # enum assignment can be with any of (and preferentially)
>>> # (1) an enum literal,
>>> # (2) a valid enum value, or
>>> # (3) a valid enum name
>>> car.color = Color.blue; car.color.value
0
>>> car.color = 1; car.color.name
'black'

>>> # let's do a round-trip marshalling of this thing
>>> same_car = Car.from_json(car.json()) # or equally Car.from_json(json.dumps(car.dump()))
>>> same_car == car
True

>>> # actually, they're two different instances
>>> same_car is not car
True

>>> # this works too
>>> cloned_car = Car(**car.dump())
>>> cloned_car == car
True

>>> # while we're at it, these are all equivalent too
>>> car == Car.from_objects(car)
True
>>> car == Car.from_objects({"weight": 4242.46, "wheels": 4, "color": 1})
True
>>> car == Car.from_json('{"weight": 4242.46, "color": 1}')
True

>>> # .from_objects() even lets you stack and combine objects
>>> class DumbClass:
... color = 0
... wheels = 3
>>> Car.from_objects(DumbClass(), dict(weight=2222, color=1))
Car(weight=2222, wheels=3, color=0)
>>> # and also pass kwargs that override properties pulled
>>> # off any objects
>>> Car.from_objects(DumbClass(), {'weight': 2222, 'color': 1}, color=2, weight=33)
Car(weight=33, wheels=3, color=2)

Chapter 2: Entity and Field Composition

>>> # now let's get fancy
>>> # a ComposableField "nests" another valid Entity
>>> # a ListField's first argument is a "generic" type,
>>> # which can be a valid Entity, any python primitive
>>> # type, or a list of Entities/types
>>> class Fleet(Entity):
... boss_car = ComposableField(Car)
... cars = ListField(Car)

>>> # here's our fleet of company cars
>>> company_fleet = Fleet(boss_car=Car(color='red'), cars=[car, same_car, cloned_car])
>>> company_fleet.pretty_json()
{
 "boss_car": {
 "wheels": 4
 "color": 2,
 },
 "cars": [
 {
 "weight": 4242.46,
 "wheels": 4
 "color": 1,
 },
 {
 "weight": 4242.46,
 "wheels": 4
 "color": 1,
 },
 {
 "weight": 4242.46,
 "wheels": 4
 "color": 1,
 }
]
}

>>> # the boss' car is red of course (and it's still an Enum)
>>> company_fleet.boss_car.color.name
'red'

>>> # and there are three cars left for the employees
>>> len(company_fleet.cars)
3

Chapter 3: Immutability

>>> class ImmutableCar(ImmutableEntity):
... wheels = IntField(default=4, validation=lambda x: 3 <= x <= 4)
... color = EnumField(Color)
>>> icar = ImmutableCar.from_objects({'wheels': 3, 'color': 'blue'})
>>> icar
ImmutableCar(wheels=3, color=0)

>>> icar.wheels = 4
Traceback (most recent call last):
AttributeError: Assignment not allowed. ImmutableCar is immutable.

>>> class FixedWheelCar(Entity):
... wheels = IntField(default=4, immutable=True)
... color = EnumField(Color)
>>> fwcar = FixedWheelCar.from_objects(icar)
>>> fwcar.json()
'{"wheels": 3, "color": 0}'

>>> # repainting the car is easy
>>> fwcar.color = Color.red
>>> fwcar.color.name
'red'

>>> # can't really change the number of wheels though
>>> fwcar.wheels = 18
Traceback (most recent call last):
AttributeError: The wheels field is immutable.

Chapter X: The del and null Weeds

>>> old_date = lambda: isoparse('1982-02-17')
>>> class CarBattery(Entity):
... # NOTE: default value can be a callable!
... first_charge = DateField(required=False) # default=None, nullable=False
... latest_charge = DateField(default=old_date, nullable=True) # required=True
... expiration = DateField(default=old_date, required=False, nullable=False)

>>> # starting point
>>> battery = CarBattery()
>>> battery
CarBattery()
>>> battery.json()
'{"latest_charge": "1982-02-17T00:00:00", "expiration": "1982-02-17T00:00:00"}'

>>> # first_charge is not assigned a default value. Once one is assigned, it can be deleted,
>>> # but it can't be made null.
>>> battery.first_charge = isoparse('2016-03-23')
>>> battery
CarBattery(first_charge=datetime.datetime(2016, 3, 23, 0, 0))
>>> battery.first_charge = None
Traceback (most recent call last):
ValidationError: Value for first_charge not given or invalid.
>>> del battery.first_charge
>>> battery
CarBattery()

>>> # latest_charge can be null, but it can't be deleted. The default value is a callable.
>>> del battery.latest_charge
Traceback (most recent call last):
AttributeError: The latest_charge field is required and cannot be deleted.
>>> battery.latest_charge = None
>>> battery.json()
'{"latest_charge": null, "expiration": "1982-02-17T00:00:00"}'

>>> # expiration is assigned by default, can't be made null, but can be deleted.
>>> battery.expiration
datetime.datetime(1982, 2, 17, 0, 0)
>>> battery.expiration = None
Traceback (most recent call last):
ValidationError: Value for expiration not given or invalid.
>>> del battery.expiration
>>> battery.json()
'{"latest_charge": null}'

Classes

	Field

	Fields are doing something very similar to boxing and unboxing

	BooleanField

	Fields are doing something very similar to boxing and unboxing

	IntegerField

	Fields are doing something very similar to boxing and unboxing

	NumberField

	Fields are doing something very similar to boxing and unboxing

	StringField

	Fields are doing something very similar to boxing and unboxing

	DateField

	Fields are doing something very similar to boxing and unboxing

	EnumField

	Fields are doing something very similar to boxing and unboxing

	ListField

	Fields are doing something very similar to boxing and unboxing

	MapField

	Fields are doing something very similar to boxing and unboxing

	ComposableField

	Fields are doing something very similar to boxing and unboxing

	Entity

	

	ImmutableEntity

	

Attributes

	BoolField

	

	IntField

	

	
class Field(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
property name

	

	
property required

	

	
property type

	

	
property default

	

	
property in_dump

	

	
property default_in_dump

	

	
property nullable

	

	
property is_nullable

	

	
property immutable

	

	
_order_helper = 0

	

	
set_name(name)

	

	
__get__(instance, instance_type)

	

	
__set__(instance, val)

	

	
__delete__(instance)

	

	
box(instance, instance_type, val)

	

	
unbox(instance, instance_type, val)

	

	
dump(instance, instance_type, val)

	

	
validate(instance, val)

	
	Returns:

	if val is valid

	Return type:

	True

	Raises:

	ValidationError --

	
class BooleanField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: Field

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
_type

	

	
box(instance, instance_type, val)

	

	
BoolField

	

	
class IntegerField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: Field

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
_type

	

	
IntField

	

	
class NumberField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: Field

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
_type = ()

	

	
class StringField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: Field

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
_type

	

	
box(instance, instance_type, val)

	

	
class DateField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: Field

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
_type

	

	
box(instance, instance_type, val)

	

	
dump(instance, instance_type, val)

	

	
class EnumField(enum_class, default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: Field

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
box(instance, instance_type, val)

	

	
dump(instance, instance_type, val)

	

	
class ListField(element_type, default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: Field

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
_type

	

	
box(instance, instance_type, val)

	

	
unbox(instance, instance_type, val)

	

	
dump(instance, instance_type, val)

	

	
validate(instance, val)

	
	Returns:

	if val is valid

	Return type:

	True

	Raises:

	ValidationError --

	
class MapField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=True, aliases=())

	Bases: Field

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
_type

	

	
box(instance, instance_type, val)

	

	
class ComposableField(field_class, default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: Field

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
box(instance, instance_type, val)

	

	
dump(instance, instance_type, val)

	

	
class Entity(**kwargs)

	
	
property _initd

	

	
__fields__

	

	
_lazy_validate = False

	

	
classmethod from_objects(*objects, **override_fields)

	

	
classmethod from_json(json_str)

	

	
classmethod load(data_dict)

	

	
validate()

	

	
__repr__()

	Return repr(self).

	
classmethod __register__()

	

	
json(indent=None, separators=None, **kwargs)

	

	
pretty_json(indent=2, separators=(',', ': '), **kwargs)

	

	
dump()

	

	
classmethod __dump_fields()

	

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
class ImmutableEntity(**kwargs)

	Bases: Entity

	
__setattr__(attribute, value)

	Implement setattr(self, name, value).

	
__delattr__(item)

	Implement delattr(self, name).

 exceptions

exceptions

Classes

	AuxlibError

	Mixin to identify exceptions associated with the auxlib package.

Functions

	Raise(exception)

	

	
Raise(exception)

	

	
class AuxlibError

	Mixin to identify exceptions associated with the auxlib package.

	
exception AuthenticationError

	Bases: AuxlibError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Mixin to identify exceptions associated with the auxlib package.

	
exception NotFoundError

	Bases: AuxlibError, KeyError [https://docs.python.org/3/library/exceptions.html#KeyError]

Mixin to identify exceptions associated with the auxlib package.

	
exception InitializationError

	Bases: AuxlibError, OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Mixin to identify exceptions associated with the auxlib package.

	
exception SenderError

	Bases: AuxlibError, OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Mixin to identify exceptions associated with the auxlib package.

	
exception AssignmentError

	Bases: AuxlibError, AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError]

Mixin to identify exceptions associated with the auxlib package.

	
exception ValidationError(key, value=None, valid_types=None, msg=None)

	Bases: AuxlibError, TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]

Mixin to identify exceptions associated with the auxlib package.

	
exception ThisShouldNeverHappenError

	Bases: AuxlibError, AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError]

Mixin to identify exceptions associated with the auxlib package.

 ish

ish

Functions

	dals(string)

	dedent and left-strip

	_get_attr(obj, attr_name[, aliases])

	

	find_or_none(key, search_maps[, aliases, _map_index])

	Return the value of the first key found in the list of search_maps,

	find_or_raise(key, search_maps[, aliases, _map_index])

	

	
dals(string)

	dedent and left-strip

	
_get_attr(obj, attr_name, aliases=())

	

	
find_or_none(key, search_maps, aliases=(), _map_index=0)

	Return the value of the first key found in the list of search_maps,
otherwise return None.

Examples

>>> from .collection import AttrDict
>>> d1 = AttrDict({'a': 1, 'b': 2, 'c': 3, 'e': None})
>>> d2 = AttrDict({'b': 5, 'e': 6, 'f': 7})
>>> find_or_none('c', (d1, d2))
3
>>> find_or_none('f', (d1, d2))
7
>>> find_or_none('b', (d1, d2))
2
>>> print(find_or_none('g', (d1, d2)))
None
>>> find_or_none('e', (d1, d2))
6

	
find_or_raise(key, search_maps, aliases=(), _map_index=0)

	

 logz

logz

Classes

	DumpEncoder

	Extensible JSON <https://json.org> encoder for Python data structures.

Functions

	set_root_level([level])

	

	attach_stderr([level])

	

	detach_stderr()

	

	initialize_logging([level])

	

	jsondumps(obj)

	

	fullname(obj)

	

	request_header_sort_key(item)

	

	response_header_sort_key(item)

	

	stringify(obj[, content_max_len])

	

Attributes

	root_log

	

	NullHandler

	

	DEBUG_FORMATTER

	

	INFO_FORMATTER

	

	_DUMPS

	

	request_header_sort_dict

	

	response_header_sort_dict

	

	
root_log

	

	
NullHandler

	

	
DEBUG_FORMATTER

	

	
INFO_FORMATTER

	

	
set_root_level(level=INFO)

	

	
attach_stderr(level=INFO)

	

	
detach_stderr()

	

	
initialize_logging(level=INFO)

	

	
class DumpEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: json.JSONEncoder [https://docs.python.org/3/library/json.html#json.JSONEncoder]

Extensible JSON <https://json.org> encoder for Python data structures.

Supports the following objects and types by default:

	Python

	JSON

	dict

	object

	list, tuple

	array

	str

	string

	int, float

	number

	True

	true

	False

	false

	None

	null

To extend this to recognize other objects, subclass and implement a
.default() method with another method that returns a serializable
object for o if possible, otherwise it should call the superclass
implementation (to raise TypeError).

	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
_DUMPS

	

	
jsondumps(obj)

	

	
fullname(obj)

	

	
request_header_sort_dict

	

	
request_header_sort_key(item)

	

	
response_header_sort_dict

	

	
response_header_sort_key(item)

	

	
stringify(obj, content_max_len=0)

	

 type_coercion

type_coercion

Collection of functions to coerce conversion of types with an intelligent guess.

Functions

	numberify(value)

	Examples

	boolify(value[, nullable, return_string])

	Convert a number, string, or sequence type into a pure boolean.

	typify(value[, type_hint])

	Take a primitive value, usually a string, and try to make a more relevant type out of it.

	maybecall(value)

	

	listify(val[, return_type])

	Examples

	
numberify(value)

	Examples

>>> [numberify(x) for x in ('1234', 1234, '0755', 0o0755, False, 0, '0', True, 1, '1')]
 [1234, 1234, 755, 493, 0, 0, 0, 1, 1, 1]
>>> [numberify(x) for x in ('12.34', 12.34, 1.2+3.5j, '1.2+3.5j')]
[12.34, 12.34, (1.2+3.5j), (1.2+3.5j)]

	
boolify(value, nullable=False, return_string=False)

	Convert a number, string, or sequence type into a pure boolean.

	Parameters:

	value (number, string, sequence) -- pretty much anything

	Returns:

	boolean representation of the given value

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Examples

>>> [boolify(x) for x in ('yes', 'no')]
[True, False]
>>> [boolify(x) for x in (0.1, 0+0j, True, '0', '0.0', '0.1', '2')]
[True, False, True, False, False, True, True]
>>> [boolify(x) for x in ("true", "yes", "on", "y")]
[True, True, True, True]
>>> [boolify(x) for x in ("no", "non", "none", "off", "")]
[False, False, False, False, False]
>>> [boolify(x) for x in ([], set(), dict(), tuple())]
[False, False, False, False]
>>> [boolify(x) for x in ([1], set([False]), dict({'a': 1}), tuple([2]))]
[True, True, True, True]

	
typify(value, type_hint=None)

	Take a primitive value, usually a string, and try to make a more relevant type out of it.
An optional type_hint will try to coerce the value to that type.

	Parameters:

	
	value (Any) -- Usually a string, not a sequence

	type_hint (type [https://docs.python.org/3/library/functions.html#type] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple][type [https://docs.python.org/3/library/functions.html#type]]) --

Examples

>>> typify('32')
32
>>> typify('32', float)
32.0
>>> typify('32.0')
32.0
>>> typify('32.0.0')
'32.0.0'
>>> [typify(x) for x in ('true', 'yes', 'on')]
[True, True, True]
>>> [typify(x) for x in ('no', 'FALSe', 'off')]
[False, False, False]
>>> [typify(x) for x in ('none', 'None', None)]
[None, None, None]

	
maybecall(value)

	

	
listify(val, return_type=tuple)

	Examples

>>> listify('abc', return_type=list)
['abc']
>>> listify(None)
()
>>> listify(False)
(False,)
>>> listify(('a', 'b', 'c'), return_type=list)
['a', 'b', 'c']

 base

base

Code in conda.base is the lowest level of the application stack. It is loaded and executed
virtually every time the application is executed. Any code within, and any of its imports, must
be highly performant.

Conda modules importable from conda.base are

	conda._vendor

	conda.base

	conda.common

Modules prohibited from importing conda.base are:

	conda._vendor

	conda.common

All other conda modules may import from conda.base.

 constants

constants

This file should hold most string literals and magic numbers used throughout the code base.
The exception is if a literal is specifically meant to be private to and isolated within a module.
Think of this as a "more static" source of configuration information.

Another important source of "static" configuration is conda/models/enums.py.

Classes

	SafetyChecks

	Generic enumeration.

	PathConflict

	Generic enumeration.

	DepsModifier

	Flags to enable alternate handling of dependencies.

	UpdateModifier

	Generic enumeration.

	ChannelPriorityMeta

	Metaclass for Enum

	ValueEnum

	Subclass of enum that returns the value of the enum as its str representation

	ChannelPriority

	

	SatSolverChoice

	Subclass of enum that returns the value of the enum as its str representation

	NoticeLevel

	Subclass of enum that returns the value of the enum as its str representation

Attributes

	PREFIX_PLACEHOLDER

	

	machine_bits

	

	APP_NAME

	

	SEARCH_PATH

	

	DEFAULT_CHANNEL_ALIAS

	

	CONDA_HOMEPAGE_URL

	

	ERROR_UPLOAD_URL

	

	DEFAULTS_CHANNEL_NAME

	

	RECOGNIZED_URL_SCHEMES

	

	DEFAULT_CHANNELS_UNIX

	

	DEFAULT_CHANNELS_WIN

	

	DEFAULT_CUSTOM_CHANNELS

	

	DEFAULT_CHANNELS

	

	ROOT_ENV_NAME

	

	ROOT_NO_RM

	

	DEFAULT_AGGRESSIVE_UPDATE_PACKAGES

	

	COMPATIBLE_SHELLS

	

	MAX_CHANNEL_PRIORITY

	

	CONDA_PACKAGE_EXTENSION_V1

	

	CONDA_PACKAGE_EXTENSION_V2

	

	CONDA_PACKAGE_EXTENSIONS

	

	CONDA_PACKAGE_PARTS

	

	CONDA_TARBALL_EXTENSION

	

	CONDA_TEMP_EXTENSION

	

	CONDA_TEMP_EXTENSIONS

	

	CONDA_LOGS_DIR

	

	UNKNOWN_CHANNEL

	

	REPODATA_FN

	

	NOTICES_FN

	

	NOTICES_CACHE_FN

	

	NOTICES_CACHE_SUBDIR

	

	NOTICES_DECORATOR_DISPLAY_INTERVAL

	

	DRY_RUN_PREFIX

	

	PREFIX_NAME_DISALLOWED_CHARS

	

	DEFAULT_SOLVER

	

	CLASSIC_SOLVER

	

	PACKAGE_CACHE_MAGIC_FILE

	

	PREFIX_MAGIC_FILE

	

	PREFIX_STATE_FILE

	

	PACKAGE_ENV_VARS_DIR

	

	CONDA_ENV_VARS_UNSET_VAR

	

	NAMESPACES_MAP

	

	NAMESPACE_PACKAGE_NAMES

	

	NAMESPACES

	

	NO_PLUGINS

	

	
PREFIX_PLACEHOLDER = '/opt/anaconda1anaconda2anaconda3'

	

	
machine_bits

	

	
APP_NAME = 'conda'

	

	
SEARCH_PATH = ('C:/ProgramData/conda/.condarc', 'C:/ProgramData/conda/condarc', 'C:/ProgramData/conda/condarc.d')

	

	
DEFAULT_CHANNEL_ALIAS = 'https://conda.anaconda.org'

	

	
CONDA_HOMEPAGE_URL = 'https://conda.io'

	

	
ERROR_UPLOAD_URL = 'https://conda.io/conda-post/unexpected-error'

	

	
DEFAULTS_CHANNEL_NAME = 'defaults'

	

	
RECOGNIZED_URL_SCHEMES = ('http', 'https', 'ftp', 's3', 'file')

	

	
DEFAULT_CHANNELS_UNIX = ('https://repo.anaconda.com/pkgs/main', 'https://repo.anaconda.com/pkgs/r')

	

	
DEFAULT_CHANNELS_WIN = ('https://repo.anaconda.com/pkgs/main', 'https://repo.anaconda.com/pkgs/r',...

	

	
DEFAULT_CUSTOM_CHANNELS

	

	
DEFAULT_CHANNELS

	

	
ROOT_ENV_NAME = 'base'

	

	
ROOT_NO_RM = ('python', 'pycosat', 'ruamel.yaml', 'conda', 'openssl', 'requests')

	

	
DEFAULT_AGGRESSIVE_UPDATE_PACKAGES = ('ca-certificates', 'certifi', 'openssl')

	

	
COMPATIBLE_SHELLS = ('bash', 'cmd.exe', 'fish', 'tcsh', 'xonsh', 'zsh', 'powershell')

	

	
MAX_CHANNEL_PRIORITY = 10000

	

	
CONDA_PACKAGE_EXTENSION_V1 = '.tar.bz2'

	

	
CONDA_PACKAGE_EXTENSION_V2 = '.conda'

	

	
CONDA_PACKAGE_EXTENSIONS = ()

	

	
CONDA_PACKAGE_PARTS

	

	
CONDA_TARBALL_EXTENSION

	

	
CONDA_TEMP_EXTENSION = '.c~'

	

	
CONDA_TEMP_EXTENSIONS = ()

	

	
CONDA_LOGS_DIR = '.logs'

	

	
UNKNOWN_CHANNEL = '<unknown>'

	

	
REPODATA_FN = 'repodata.json'

	

	
NOTICES_FN = 'notices.json'

	

	
NOTICES_CACHE_FN = 'notices.cache'

	

	
NOTICES_CACHE_SUBDIR = 'notices'

	

	
NOTICES_DECORATOR_DISPLAY_INTERVAL = 86400

	

	
DRY_RUN_PREFIX = 'Dry run action:'

	

	
PREFIX_NAME_DISALLOWED_CHARS

	

	
class SafetyChecks

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
disabled = 'disabled'

	

	
warn = 'warn'

	

	
enabled = 'enabled'

	

	
__str__()

	Return str(self).

	
class PathConflict

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
clobber = 'clobber'

	

	
warn = 'warn'

	

	
prevent = 'prevent'

	

	
__str__()

	Return str(self).

	
class DepsModifier

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Flags to enable alternate handling of dependencies.

	
NOT_SET = 'not_set'

	

	
NO_DEPS = 'no_deps'

	

	
ONLY_DEPS = 'only_deps'

	

	
__str__()

	Return str(self).

	
class UpdateModifier

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
SPECS_SATISFIED_SKIP_SOLVE = 'specs_satisfied_skip_solve'

	

	
FREEZE_INSTALLED = 'freeze_installed'

	

	
UPDATE_DEPS = 'update_deps'

	

	
UPDATE_SPECS = 'update_specs'

	

	
UPDATE_ALL = 'update_all'

	

	
__str__()

	Return str(self).

	
class ChannelPriorityMeta

	Bases: enum.EnumMeta

Metaclass for Enum

	
__call__(value, *args, **kwargs)

	Either returns an existing member, or creates a new enum class.

This method is used both when an enum class is given a value to match
to an enumeration member (i.e. Color(3)) and for the functional API
(i.e. Color = Enum('Color', names='RED GREEN BLUE')).

When used for the functional API:

value will be the name of the new class.

names should be either a string of white-space/comma delimited names
(values will start at start), or an iterator/mapping of name, value pairs.

module should be set to the module this class is being created in;
if it is not set, an attempt to find that module will be made, but if
it fails the class will not be picklable.

qualname should be set to the actual location this class can be found
at in its module; by default it is set to the global scope. If this is
not correct, unpickling will fail in some circumstances.

type, if set, will be mixed in as the first base class.

	
class ValueEnum

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Subclass of enum that returns the value of the enum as its str representation

	
__str__()

	Return str(self).

	
class ChannelPriority

	Bases: six_with_metaclass(ChannelPriorityMeta, ValueEnum)

	
__name__ = 'ChannelPriority'

	

	
STRICT = 'strict'

	

	
FLEXIBLE = 'flexible'

	

	
DISABLED = 'disabled'

	

	
class SatSolverChoice

	Bases: ValueEnum

Subclass of enum that returns the value of the enum as its str representation

	
PYCOSAT = 'pycosat'

	

	
PYCRYPTOSAT = 'pycryptosat'

	

	
PYSAT = 'pysat'

	

	
DEFAULT_SOLVER = 'libmamba'

	

	
CLASSIC_SOLVER = 'classic'

	

	
class NoticeLevel

	Bases: ValueEnum

Subclass of enum that returns the value of the enum as its str representation

	
CRITICAL = 'critical'

	

	
WARNING = 'warning'

	

	
INFO = 'info'

	

	
PACKAGE_CACHE_MAGIC_FILE = 'urls.txt'

	

	
PREFIX_MAGIC_FILE

	

	
PREFIX_STATE_FILE

	

	
PACKAGE_ENV_VARS_DIR

	

	
CONDA_ENV_VARS_UNSET_VAR = '***unset***'

	

	
NAMESPACES_MAP

	

	
NAMESPACE_PACKAGE_NAMES

	

	
NAMESPACES

	

	
NO_PLUGINS = False

	

 context

context

Conda's global configuration object.

The context aggregates all configuration files, environment variables, and command line arguments
into one global stateful object to be used across all of conda.

Classes

	Context

	

	ContextStackObject

	

	ContextStack

	

	PluginConfig

	Class used to hold settings for conda plugins.

Functions

	user_data_dir([appname, appauthor, version, roaming])

	

	mockable_context_envs_dirs(root_writable, root_prefix, ...)

	

	channel_alias_validation(value)

	

	default_python_default()

	

	default_python_validation(value)

	

	ssl_verify_validation(value)

	

	reset_context([search_path, argparse_args])

	

	fresh_context([env, search_path, argparse_args])

	

	stack_context(pushing[, search_path, argparse_args])

	

	stack_context_default(pushing[, argparse_args])

	

	replace_context([pushing, search_path, argparse_args])

	

	replace_context_default([pushing, argparse_args])

	

	_get_cpu_info()

	

	env_name(prefix)

	

	locate_prefix_by_name(name[, envs_dirs])

	Find the location of a prefix given a conda env name. If the location does not exist, an

	validate_prefix_name(→ str)

	Run various validations to make sure prefix_name is valid

	determine_target_prefix(ctx[, args])

	Get the prefix to operate in. The prefix may not yet exist.

	_first_writable_envs_dir()

	

	get_plugin_config_data(→ dict[pathlib.Path, dict[str, ...)

	This is used to move everything under the key "plugins" from the provided dictionary

	add_plugin_setting(name, parameter[, aliases])

	Adds a setting to the PluginConfig class

	remove_all_plugin_settings(→ None)

	Removes all attached settings from the PluginConfig class

Attributes

	_platform_map

	

	non_x86_machines

	

	_arch_names

	

	user_rc_path

	

	sys_rc_path

	

	context_stack

	

	conda_tests_ctxt_mgmt_def_pol

	

	context

	

	
_platform_map

	

	
non_x86_machines

	

	
_arch_names

	

	
user_rc_path

	

	
sys_rc_path

	

	
user_data_dir(appname: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, appauthor: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] | Literal[False] = None, version: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, roaming: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	

	
mockable_context_envs_dirs(root_writable, root_prefix, _envs_dirs)

	

	
channel_alias_validation(value)

	

	
default_python_default()

	

	
default_python_validation(value)

	

	
ssl_verify_validation(value)

	

	
class Context(search_path=None, argparse_args=None, **kwargs)

	Bases: conda.common.configuration.Configuration

	
property plugin_manager: conda.plugins.manager.CondaPluginManager

	This is the preferred way of accessing the PluginManager object for this application
and is located here to avoid problems with cyclical imports elsewhere in the code.

	
property conda_build_local_paths

	

	
property conda_build_local_urls

	

	
property croot

	This is where source caches and work folders live

	
property local_build_root

	

	
property conda_build

	

	
property arch_name

	

	
property platform

	

	
property default_threads: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	

	
property repodata_threads: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	

	
property fetch_threads: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	If both are not overriden (0), return experimentally-determined value of 5

	
property verify_threads: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	

	
property execute_threads

	

	
property subdir

	

	
property subdirs

	

	
property bits

	

	
property root_dir: os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]

	

	
property root_writable

	

	
property envs_dirs

	

	
property pkgs_dirs

	

	
property default_prefix

	

	
property active_prefix

	

	
property shlvl

	

	
property aggressive_update_packages

	

	
property target_prefix

	

	
property conda_prefix

	

	
property conda_exe

	

	
property av_data_dir

	Where critical artifact verification data (e.g., various public keys) can be found.

	
property signing_metadata_url_base

	Base URL for artifact verification signing metadata (*.root.json, key_mgr.json).

	
property conda_exe_vars_dict

	The vars can refer to each other if necessary since the dict is ordered.
None means unset it.

	
property migrated_channel_aliases

	

	
property prefix_specified

	

	
property channels

	

	
property config_files

	

	
property use_only_tar_bz2

	

	
property binstar_upload

	

	
property trace: bool [https://docs.python.org/3/library/functions.html#bool]

	Alias for context.verbosity >=4.

	
property debug: bool [https://docs.python.org/3/library/functions.html#bool]

	Alias for context.verbosity >=3.

	
property info: bool [https://docs.python.org/3/library/functions.html#bool]

	Alias for context.verbosity >=2.

	
property verbose: bool [https://docs.python.org/3/library/functions.html#bool]

	Alias for context.verbosity >=1.

	
property verbosity: int [https://docs.python.org/3/library/functions.html#int]

	Verbosity level.

	For cleaner and readable code it is preferable to use the following alias properties:
	context.trace
context.debug
context.info
context.verbose
context.log_level

	
property log_level: int [https://docs.python.org/3/library/functions.html#int]

	Map context.verbosity to logging level.

	
property cpu_flags

	

	
property category_map

	

	
add_pip_as_python_dependency

	

	
allow_conda_downgrades

	

	
allow_cycles

	

	
allow_softlinks

	

	
auto_update_conda

	

	
auto_activate_base

	

	
auto_stack

	

	
notify_outdated_conda

	

	
clobber

	

	
changeps1

	

	
env_prompt

	

	
create_default_packages

	

	
register_envs

	

	
default_python

	

	
download_only

	

	
enable_private_envs

	

	
force_32bit

	

	
non_admin_enabled

	

	
pip_interop_enabled

	

	
_default_threads

	

	
_repodata_threads

	

	
_fetch_threads

	

	
_verify_threads

	

	
_execute_threads

	

	
_aggressive_update_packages

	

	
safety_checks

	

	
extra_safety_checks

	

	
_signing_metadata_url_base

	

	
path_conflict

	

	
pinned_packages

	

	
disallowed_packages

	

	
rollback_enabled

	

	
track_features

	

	
use_index_cache

	

	
separate_format_cache

	

	
_root_prefix

	

	
_envs_dirs

	

	
_pkgs_dirs

	

	
_subdir

	

	
_subdirs

	

	
local_repodata_ttl

	

	
ssl_verify

	

	
client_ssl_cert

	

	
client_ssl_cert_key

	

	
proxy_servers

	

	
remote_connect_timeout_secs

	

	
remote_read_timeout_secs

	

	
remote_max_retries

	

	
remote_backoff_factor

	

	
add_anaconda_token

	

	
allow_non_channel_urls

	

	
_channel_alias

	

	
channel_priority

	

	
_channels

	

	
channel_settings

	

	
_custom_channels

	

	
_custom_multichannels

	

	
_default_channels

	

	
_migrated_channel_aliases

	

	
migrated_custom_channels

	

	
override_channels_enabled

	

	
show_channel_urls

	

	
use_local

	

	
allowlist_channels

	

	
restore_free_channel

	

	
repodata_fns

	

	
_use_only_tar_bz2

	

	
always_softlink

	

	
always_copy

	

	
always_yes

	

	
_debug

	

	
_trace

	

	
dev

	

	
dry_run

	

	
error_upload_url

	

	
force

	

	
json

	

	
offline

	

	
quiet

	

	
ignore_pinned

	

	
report_errors

	

	
shortcuts

	

	
number_channel_notices

	

	
shortcuts

	

	
shortcuts_only

	

	
_verbosity

	

	
experimental

	

	
no_lock

	

	
repodata_use_zst

	

	
deps_modifier

	

	
update_modifier

	

	
sat_solver

	

	
solver_ignore_timestamps

	

	
solver

	

	
force_remove

	

	
force_reinstall

	

	
target_prefix_override

	

	
unsatisfiable_hints

	

	
unsatisfiable_hints_check_depth

	

	
bld_path

	

	
anaconda_upload

	

	
_croot

	

	
_conda_build

	

	
no_plugins

	

	
post_build_validation()

	

	
plugins() → PluginConfig

	Preferred way of accessing settings introduced by the settings plugin hook

	
_native_subdir()

	

	
known_subdirs()

	

	
trash_dir()

	

	
root_prefix()

	

	
channel_alias()

	

	
default_channels()

	

	
custom_multichannels()

	

	
custom_channels()

	

	
solver_user_agent()

	

	
user_agent()

	

	
_override(key, value)

	TODO: This might be broken in some ways. Unsure what happens if the old
value is a property and gets set to a new value. Or if the new value
overrides the validation logic on the underlying ParameterLoader instance.

Investigate and implement in a safer way.

	
requests_version()

	

	
python_implementation_name_version()

	

	
platform_system_release()

	

	
os_distribution_name_version()

	

	
libc_family_version()

	

	
get_descriptions()

	

	
description_map()

	

	
reset_context(search_path=SEARCH_PATH, argparse_args=None)

	

	
fresh_context(env=None, search_path=SEARCH_PATH, argparse_args=None, **kwargs)

	

	
class ContextStackObject(search_path=SEARCH_PATH, argparse_args=None)

	
	
set_value(search_path=SEARCH_PATH, argparse_args=None)

	

	
apply()

	

	
class ContextStack

	
	
push(search_path, argparse_args)

	

	
apply()

	

	
pop()

	

	
replace(search_path, argparse_args)

	

	
context_stack

	

	
stack_context(pushing, search_path=SEARCH_PATH, argparse_args=None)

	

	
stack_context_default(pushing, argparse_args=None)

	

	
replace_context(pushing=None, search_path=SEARCH_PATH, argparse_args=None)

	

	
replace_context_default(pushing=None, argparse_args=None)

	

	
conda_tests_ctxt_mgmt_def_pol

	

	
_get_cpu_info()

	

	
env_name(prefix)

	

	
locate_prefix_by_name(name, envs_dirs=None)

	Find the location of a prefix given a conda env name. If the location does not exist, an
error is raised.

	
validate_prefix_name(prefix_name: str [https://docs.python.org/3/library/stdtypes.html#str], ctx: Context, allow_base=True) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Run various validations to make sure prefix_name is valid

	
determine_target_prefix(ctx, args=None)

	Get the prefix to operate in. The prefix may not yet exist.

	Parameters:

	
	ctx -- the context of conda

	args -- the argparse args from the command line

Returns: the prefix
Raises: CondaEnvironmentNotFoundError if the prefix is invalid

	
_first_writable_envs_dir()

	

	
get_plugin_config_data(data: dict [https://docs.python.org/3/library/stdtypes.html#dict][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], conda.common.configuration.RawParameter]]) → dict [https://docs.python.org/3/library/stdtypes.html#dict][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], conda.common.configuration.RawParameter]]

	This is used to move everything under the key "plugins" from the provided dictionary
to the top level of the returned dictionary. The returned dictionary is then passed
to PluginConfig.

	
class PluginConfig(data)

	Class used to hold settings for conda plugins.

The object created by this class should only be accessed via
conda.base.context.Context.plugins.

When this class is updated via the add_plugin_setting() function it adds new setting
properties which can be accessed later via the context object.

We currently call that function in
conda.plugins.manager.CondaPluginManager.load_settings().
because CondaPluginManager has access to all registered plugin settings via the settings
plugin hook.

	
add_plugin_setting(name: str [https://docs.python.org/3/library/stdtypes.html#str], parameter: conda.common.configuration.Parameter, aliases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Ellipsis] = ())

	Adds a setting to the PluginConfig class

	
remove_all_plugin_settings() → None [https://docs.python.org/3/library/constants.html#None]

	Removes all attached settings from the PluginConfig class

	
context

	

 exceptions

exceptions

Base exceptions.

 cli

cli

Functions

	main(*args, **kwargs)

	

	
main(*args, **kwargs)

	

 actions

actions

Collection of custom argparse actions.

Classes

	NullCountAction

	Information about how to convert command line strings to Python objects.

	ExtendConstAction

	A derivative of _AppendConstAction and Python 3.8's _ExtendAction

	
class NullCountAction(option_strings, dest, default=None, required=False, help=None)

	Bases: argparse._CountAction

Information about how to convert command line strings to Python objects.

Action objects are used by an ArgumentParser to represent the information
needed to parse a single argument from one or more strings from the
command line. The keyword arguments to the Action constructor are also
all attributes of Action instances.

	Keyword Arguments:

	
	which (- option_strings -- A list of command-line option strings) -- should be associated with this action.

	object (- dest -- The name of the attribute to hold the created) --

	be (- nargs -- The number of command-line arguments that should) -- consumed. By default, one argument will be consumed and a single
value will be produced. Other values include:

	N (an integer) consumes N arguments (and produces a list)

	'?' consumes zero or one arguments

	'*' consumes zero or more arguments (and produces a list)

	'+' consumes one or more arguments (and produces a list)

Note that the difference between the default and nargs=1 is that
with the default, a single value will be produced, while with
nargs=1, a list containing a single value will be produced.

	the (- metavar -- The name to be used for the option's argument with) -- option uses an action that takes no values.

	specified. (- default -- The value to be produced if the option is not) --

	and (- type -- A callable that accepts a single string argument,) -- returns the converted value. The standard Python types str, int,
float, and complex are useful examples of such callables. If None,
str is used.

	None, (- choices -- A container of values that should be allowed. If not) -- after a command-line argument has been converted to the appropriate
type, an exception will be raised if it is not a member of this
collection.

	the -- command line. This is only meaningful for optional command-line
arguments.

	argument. (- help -- The help string describing the) --

	the -- help string. If None, the 'dest' value will be used as the name.

	
static _ensure_value(namespace, name, value)

	

	
__call__(parser, namespace, values, option_string=None)

	

	
class ExtendConstAction(option_strings, dest, const, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

A derivative of _AppendConstAction and Python 3.8's _ExtendAction

	
__call__(parser, namespace, values, option_string=None)

	

 common

common

Common utilities for conda command line tools.

Functions

	confirm([message, choices, default, dry_run])

	

	confirm_yn([message, default, dry_run])

	

	is_active_prefix(→ bool)

	Determines whether the args we pass in are pointing to the active prefix.

	arg2spec(arg[, json, update])

	

	specs_from_args(args[, json])

	

	strip_comment(line)

	

	spec_from_line(line)

	

	specs_from_url(url[, json])

	

	names_in_specs(names, specs)

	

	disp_features(features)

	

	stdout_json(d)

	

	stdout_json_success([success])

	

	print_envs_list(known_conda_prefixes[, output])

	

	check_non_admin()

	

	validate_prefix(prefix)

	Verifies the prefix is a valid conda environment.

Attributes

	spec_pat

	

	
confirm(message='Proceed', choices=('yes', 'no'), default='yes', dry_run=NULL)

	

	
confirm_yn(message='Proceed', default='yes', dry_run=NULL)

	

	
is_active_prefix(prefix: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Determines whether the args we pass in are pointing to the active prefix.
Can be used a validation step to make sure operations are not being
performed on the active prefix.

	
arg2spec(arg, json=False, update=False)

	

	
specs_from_args(args, json=False)

	

	
spec_pat

	

	
strip_comment(line)

	

	
spec_from_line(line)

	

	
specs_from_url(url, json=False)

	

	
names_in_specs(names, specs)

	

	
disp_features(features)

	

	
stdout_json(d)

	

	
stdout_json_success(success=True, **kwargs)

	

	
print_envs_list(known_conda_prefixes, output=True)

	

	
check_non_admin()

	

	
validate_prefix(prefix)

	Verifies the prefix is a valid conda environment.

	Raises:

	
	EnvironmentLocationNotFound -- Non-existent path or not a directory.

	DirectoryNotACondaEnvironmentError -- Directory is not a conda environment.

	Returns:

	Valid prefix.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

 conda_argparse

conda_argparse

Conda command line interface parsers.

Classes

	ArgumentParser

	Object for parsing command line strings into Python objects.

	_GreedySubParsersAction

	A custom subparser action to conditionally act as a greedy consumer.

Functions

	generate_pre_parser(→ ArgumentParser)

	

	generate_parser(→ ArgumentParser)

	

	do_call(args, parser)

	Serves as the primary entry point for commands referred to in this file and for

	find_builtin_commands(parser)

	

	_exec(executable_args, env_vars)

	

	_exec_win(executable_args, env_vars)

	

	_exec_unix(executable_args, env_vars)

	

	configure_parser_plugins(→ None)

	For each of the provided plugin-based subcommands, we'll create

Attributes

	escaped_user_rc_path

	

	escaped_sys_rc_path

	

	BUILTIN_COMMANDS

	

	
escaped_user_rc_path

	

	
escaped_sys_rc_path

	

	
BUILTIN_COMMANDS

	

	
generate_pre_parser(**kwargs) → ArgumentParser

	

	
generate_parser(**kwargs) → ArgumentParser

	

	
do_call(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: ArgumentParser)

	Serves as the primary entry point for commands referred to in this file and for
all registered plugin subcommands.

	
find_builtin_commands(parser)

	

	
class ArgumentParser(*args, add_help=True, **kwargs)

	Bases: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

Object for parsing command line strings into Python objects.

	Keyword Arguments:

	
	(default (- usage -- A usage message) -- os.path.basename(sys.argv[0]))

	(default -- auto-generated from arguments)

	does (- description -- A description of what the program) --

	descriptions (- epilog -- Text following the argument) --

	one (- parents -- Parsers whose arguments should be copied into this) --

	messages (- formatter_class -- HelpFormatter class for printing help) --

	arguments (- argument_default -- The default value for all) --

	containing (- fromfile_prefix_chars -- Characters that prefix files) -- additional arguments

	arguments --

	conflicts (- conflict_handler -- String indicating how to handle) --

	option (- add_help -- Add a -h/-help) --

	unambiguously (- allow_abbrev -- Allow long options to be abbreviated) --

	with (- exit_on_error -- Determines whether or not ArgumentParser exits) -- error info when an error occurs

	
_check_value(action, value)

	

	
parse_args(*args, override_args=None, **kwargs)

	

	
class _GreedySubParsersAction(option_strings, prog, parser_class, dest=SUPPRESS, required=False, help=None, metavar=None)

	Bases: argparse._SubParsersAction

A custom subparser action to conditionally act as a greedy consumer.

This is a workaround since argparse.REMAINDER does not work as expected,
see https://github.com/python/cpython/issues/61252.

	
__call__(parser, namespace, values, option_string=None)

	

	
_get_subactions()

	Sort actions for subcommands to appear alphabetically in help blurb.

	
_exec(executable_args, env_vars)

	

	
_exec_win(executable_args, env_vars)

	

	
_exec_unix(executable_args, env_vars)

	

	
configure_parser_plugins(sub_parsers) → None [https://docs.python.org/3/library/constants.html#None]

	For each of the provided plugin-based subcommands, we'll create
a new subparser for an improved help printout and calling the
configure_parser()
with the newly created subcommand specific argument parser.

 find_commands

find_commands

Utilities for finding executables and conda-* commands.

Functions

	find_executable(executable[, include_others])

	

	find_commands([include_others])

	

	
find_executable(executable, include_others=True)

	

	
find_commands(include_others=True)

	

 helpers

helpers

Collection of helper functions to standardize reused CLI arguments.

Classes

	BooleanOptionalAction

	Information about how to convert command line strings to Python objects.

Functions

	add_parser_create_install_update(p[, prefix_required])

	

	add_parser_pscheck(→ None)

	

	add_parser_show_channel_urls(→ None)

	

	add_parser_help(→ None)

	So we can use consistent capitalization and periods in the help. You must

	add_parser_prefix(→ argparse._MutuallyExclusiveGroup)

	

	add_parser_json(→ argparse._ArgumentGroup)

	

	add_output_and_prompt_options(→ argparse._ArgumentGroup)

	

	add_parser_channels(→ argparse._ArgumentGroup)

	

	add_parser_solver_mode(→ argparse._ArgumentGroup)

	

	add_parser_update_modifiers(solver_mode_options)

	

	add_parser_prune(→ None)

	

	add_parser_solver(→ None)

	Add a command-line flag for alternative solver backends.

	add_parser_networking(→ argparse._ArgumentGroup)

	

	add_parser_package_install_options(...)

	

	add_parser_known(→ None)

	

	add_parser_default_packages(→ None)

	

	add_parser_platform(parser)

	

	add_parser_verbose(→ None)

	

	
class BooleanOptionalAction(option_strings, dest, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Information about how to convert command line strings to Python objects.

Action objects are used by an ArgumentParser to represent the information
needed to parse a single argument from one or more strings from the
command line. The keyword arguments to the Action constructor are also
all attributes of Action instances.

	Keyword Arguments:

	
	which (- option_strings -- A list of command-line option strings) -- should be associated with this action.

	object (- dest -- The name of the attribute to hold the created) --

	be (- nargs -- The number of command-line arguments that should) -- consumed. By default, one argument will be consumed and a single
value will be produced. Other values include:

	N (an integer) consumes N arguments (and produces a list)

	'?' consumes zero or one arguments

	'*' consumes zero or more arguments (and produces a list)

	'+' consumes one or more arguments (and produces a list)

Note that the difference between the default and nargs=1 is that
with the default, a single value will be produced, while with
nargs=1, a list containing a single value will be produced.

	the (- metavar -- The name to be used for the option's argument with) -- option uses an action that takes no values.

	specified. (- default -- The value to be produced if the option is not) --

	and (- type -- A callable that accepts a single string argument,) -- returns the converted value. The standard Python types str, int,
float, and complex are useful examples of such callables. If None,
str is used.

	None, (- choices -- A container of values that should be allowed. If not) -- after a command-line argument has been converted to the appropriate
type, an exception will be raised if it is not a member of this
collection.

	the -- command line. This is only meaningful for optional command-line
arguments.

	argument. (- help -- The help string describing the) --

	the -- help string. If None, the 'dest' value will be used as the name.

	
__call__(parser, namespace, values, option_string=None)

	

	
format_usage()

	

	
add_parser_create_install_update(p, prefix_required=False)

	

	
add_parser_pscheck(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
add_parser_show_channel_urls(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] | argparse._ArgumentGroup) → None [https://docs.python.org/3/library/constants.html#None]

	

	
add_parser_help(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → None [https://docs.python.org/3/library/constants.html#None]

	So we can use consistent capitalization and periods in the help. You must
use the add_help=False argument to ArgumentParser or add_parser to use
this. Add this first to be consistent with the default argparse output.

	
add_parser_prefix(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], prefix_required: bool [https://docs.python.org/3/library/functions.html#bool] = False) → argparse._MutuallyExclusiveGroup

	

	
add_parser_json(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → argparse._ArgumentGroup

	

	
add_output_and_prompt_options(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → argparse._ArgumentGroup

	

	
add_parser_channels(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → argparse._ArgumentGroup

	

	
add_parser_solver_mode(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → argparse._ArgumentGroup

	

	
add_parser_update_modifiers(solver_mode_options: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser])

	

	
add_parser_prune(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
add_parser_solver(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → None [https://docs.python.org/3/library/constants.html#None]

	Add a command-line flag for alternative solver backends.

See context.solver for more info.

	
add_parser_networking(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → argparse._ArgumentGroup

	

	
add_parser_package_install_options(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → argparse._ArgumentGroup

	

	
add_parser_known(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
add_parser_default_packages(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
add_parser_platform(parser)

	

	
add_parser_verbose(parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] | argparse._ArgumentGroup) → None [https://docs.python.org/3/library/constants.html#None]

	

 install

install

Conda package installation logic.

Core logic for conda [create|install|update|remove] commands.

See conda.cli.main_create, conda.cli.main_install, conda.cli.main_update, and
conda.cli.main_remove for the entry points into this module.

Functions

	check_prefix(prefix[, json])

	

	clone(src_arg, dst_prefix[, json, quiet, index_args])

	

	print_activate(env_name_or_prefix)

	

	get_revision(arg[, json])

	

	install(args, parser[, command])

	Logic for conda install, conda update, and conda create.

	handle_txn(unlink_link_transaction, prefix, args, newenv)

	

Attributes

	stderrlog

	

	
stderrlog

	

	
check_prefix(prefix, json=False)

	

	
clone(src_arg, dst_prefix, json=False, quiet=False, index_args=None)

	

	
print_activate(env_name_or_prefix)

	

	
get_revision(arg, json=False)

	

	
install(args, parser, command='install')

	Logic for conda install, conda update, and conda create.

	
handle_txn(unlink_link_transaction, prefix, args, newenv, remove_op=False)

	

 main

main

Entry point for all conda subcommands.

Functions

	init_loggers()

	

	generate_parser(*args, **kwargs)

	Some code paths import this function directly from this module instead

	main_subshell(*args[, post_parse_hook])

	Entrypoint for the "subshell" invocation of CLI interface. E.g. conda create.

	main_sourced(shell, *args, **kwargs)

	Entrypoint for the "sourced" invocation of CLI interface. E.g. conda activate.

	main(*args, **kwargs)

	

	
init_loggers()

	

	
generate_parser(*args, **kwargs)

	Some code paths import this function directly from this module instead
of from conda_argparse. We add the forwarder for backwards compatibility.

	
main_subshell(*args, post_parse_hook=None, **kwargs)

	Entrypoint for the "subshell" invocation of CLI interface. E.g. conda create.

	
main_sourced(shell, *args, **kwargs)

	Entrypoint for the "sourced" invocation of CLI interface. E.g. conda activate.

	
main(*args, **kwargs)

	

 main_clean

main_clean

CLI implementation for conda clean.

Removes cached package tarballs, index files, package metadata, temporary files, and log files.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	_get_size(→ int)

	

	_get_pkgs_dirs(→ dict[str, tuple[str, Ellipsis]])

	

	_get_total_size(→ int)

	

	_rm_rf(→ None)

	

	find_tarballs(→ dict[str, Any])

	

	find_pkgs(→ dict[str, Any])

	

	rm_pkgs(→ None)

	

	find_index_cache(→ list[str])

	

	find_pkgs_dirs(→ list[str])

	

	find_tempfiles(→ list[str])

	

	find_logfiles(→ list[str])

	

	rm_items(→ None)

	

	_execute(args, parser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
_get_size(*parts: str [https://docs.python.org/3/library/stdtypes.html#str], warnings: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None]) → int [https://docs.python.org/3/library/functions.html#int]

	

	
_get_pkgs_dirs(pkg_sizes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]]) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Ellipsis]]

	

	
_get_total_size(pkg_sizes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]]) → int [https://docs.python.org/3/library/functions.html#int]

	

	
_rm_rf(*parts: str [https://docs.python.org/3/library/stdtypes.html#str], quiet: bool [https://docs.python.org/3/library/functions.html#bool], verbose: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
find_tarballs() → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	

	
find_pkgs() → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	

	
rm_pkgs(pkgs_dirs: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]], warnings: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], total_size: int [https://docs.python.org/3/library/functions.html#int], pkg_sizes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], *, quiet: bool [https://docs.python.org/3/library/functions.html#bool], verbose: bool [https://docs.python.org/3/library/functions.html#bool], dry_run: bool [https://docs.python.org/3/library/functions.html#bool], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
find_index_cache() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
find_pkgs_dirs() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
find_tempfiles(paths: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
find_logfiles() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
rm_items(items: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], *, quiet: bool [https://docs.python.org/3/library/functions.html#bool], verbose: bool [https://docs.python.org/3/library/functions.html#bool], dry_run: bool [https://docs.python.org/3/library/functions.html#bool], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
_execute(args, parser)

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_compare

main_compare

CLI implementation for conda compare.

Compare the packages in an environment with the packages listed in an environment file.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	get_packages(prefix)

	

	compare_packages(→ tuple[int, list[str]])

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
get_packages(prefix)

	

	
compare_packages(active_pkgs, specification_pkgs) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_config

main_config

CLI implementation for conda config.

Allows for programmatically interacting with conda's configuration files (e.g., ~/.condarc).

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	format_dict(d)

	

	parameter_description_builder(name)

	

	describe_all_parameters()

	

	print_config_item(key, value)

	

	execute_config(args, parser)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

	
format_dict(d)

	

	
parameter_description_builder(name)

	

	
describe_all_parameters()

	

	
print_config_item(key, value)

	

	
execute_config(args, parser)

	

 main_create

main_create

CLI implementation for conda create.

Creates new conda environments with the specified packages.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_env

main_env

Entry point for all conda-env subcommands.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction | None [https://docs.python.org/3/library/constants.html#None], **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_env_config

main_env_config

CLI implementation for conda-env config.

Allows for programmatically interacting with conda-env's configuration files (e.g., ~/.condarc).

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_env_create

main_env_create

CLI implementation for conda-env create.

Creates new conda environments with the specified packages.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_env_export

main_env_export

DEPRECATED: Use conda.cli.main_export instead.

CLI implementation for conda-env export.

Dumps specified environment package specifications to the screen.

 main_env_list

main_env_list

CLI implementation for conda-env list.

Lists available conda environments.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(args, parser)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser])

	

 main_env_remove

main_env_remove

CLI implementation for conda-env remove.

Removes the specified conda environment.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_env_update

main_env_update

CLI implementation for conda-env update.

Updates the conda environments with the specified packages.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_env_vars

main_env_vars

CLI implementation for conda-env config vars.

Allows for configuring conda-env's vars.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute_list(→ int)

	

	execute_set(→ int)

	

	execute_unset(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute_list(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

	
execute_set(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

	
execute_unset(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_export

main_export

CLI implementation for conda export.

Dumps specified environment package specifications to the screen.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_info

main_info

CLI implementation for conda info.

Display information about current conda installation.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	get_user_site(→ list[str])

	Method used to populate site_dirs in conda info.

	dump_record(→ dict[str, Any])

	Returns a dictionary of key/value pairs from prec. Keys included in IGNORE_FIELDS are not returned.

	pretty_package(→ None)

	Pretty prints contents of a PackageRecord

	get_info_dict(→ dict[str, Any])

	Returns a dictionary of contextual information.

	get_env_vars_str(→ str)

	Returns a printable string representing environment variables from the dictionary returned by get_info_dict.

	get_main_info_str(→ str)

	Returns a printable string of the contents of info_dict.

	execute(→ int)

	Implements conda info commands.

Attributes

	IGNORE_FIELDS

	

	SKIP_FIELDS

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
get_user_site() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Method used to populate site_dirs in conda info.

	Returns:

	List of directories.

	
IGNORE_FIELDS: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
SKIP_FIELDS: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
dump_record(prec: conda.models.records.PackageRecord) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	Returns a dictionary of key/value pairs from prec. Keys included in IGNORE_FIELDS are not returned.

	Parameters:

	prec -- A PackageRecord object.

	Returns:

	A dictionary of elements dumped from prec

	
pretty_package(prec: conda.models.records.PackageRecord) → None [https://docs.python.org/3/library/constants.html#None]

	Pretty prints contents of a PackageRecord

	Parameters:

	prec -- A PackageRecord

	
get_info_dict() → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	Returns a dictionary of contextual information.

	Returns:

	Dictionary of conda information to be sent to stdout.

	
get_env_vars_str(info_dict: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a printable string representing environment variables from the dictionary returned by get_info_dict.

	Parameters:

	info_dict -- The returned dictionary from get_info_dict().

	Returns:

	String to print.

	
get_main_info_str(info_dict: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a printable string of the contents of info_dict.

	Parameters:

	info_dict -- The output of get_info_dict().

	Returns:

	String to print.

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	Implements conda info commands.

	conda info

	conda info --base

	conda info <package_spec> ... (deprecated) (no --json)

	conda info --unsafe-channels

	conda info --envs (deprecated) (no --json)

	conda info --system (deprecated) (no --json)

 main_init

main_init

CLI implementation for conda init.

Prepares the user's profile for running conda, and sets up the conda shell interface.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_install

main_install

CLI implementation for conda install.

Installs the specified packages into an existing environment.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_list

main_list

CLI implementation for conda list.

Lists all packages installed into an environment.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	print_export_header(subdir)

	

	get_packages(installed, regex)

	

	list_packages(prefix[, regex, format, reverse, ...])

	

	print_packages(prefix[, regex, format, reverse, ...])

	

	print_explicit(prefix[, add_md5])

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
print_export_header(subdir)

	

	
get_packages(installed, regex)

	

	
list_packages(prefix, regex=None, format='human', reverse=False, show_channel_urls=None)

	

	
print_packages(prefix, regex=None, format='human', reverse=False, piplist=False, json=False, show_channel_urls=None)

	

	
print_explicit(prefix, add_md5=False)

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_mock_activate

main_mock_activate

Mock CLI implementation for conda activate.

A mock implementation of the activate shell command for better UX.

Functions

	configure_parser(sub_parsers)

	

	execute(args, parser)

	

	
configure_parser(sub_parsers)

	

	
execute(args, parser)

	

 main_mock_deactivate

main_mock_deactivate

Mock CLI implementation for conda deactivate.

A mock implementation of the deactivate shell command for better UX.

Functions

	configure_parser(sub_parsers)

	

	execute(args, parser)

	

	
configure_parser(sub_parsers)

	

	
execute(args, parser)

	

 main_notices

main_notices

CLI implementation for conda notices.

Manually retrieves channel notifications, caches them and displays them.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	Command that retrieves channel notifications, caches them and displays them.

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	Command that retrieves channel notifications, caches them and displays them.

 main_package

main_package

CLI implementation for conda package.

Provides some low-level tools for creating conda packages.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	remove(prefix, files)

	Remove files for a given prefix.

	execute(→ int)

	

	get_installed_version(prefix, name)

	

	create_info(name, version, build_number, requires_py)

	

	fix_shebang(tmp_dir, path)

	

	_add_info_dir(t, tmp_dir, files, has_prefix, info)

	

	create_conda_pkg(prefix, files, info, tar_path[, ...])

	Create a conda package and return a list of warnings.

	make_tarbz2(prefix[, name, version, build_number, files])

	

	which_package(path)

	Return the package containing the path.

	which_prefix(path)

	Return the prefix for the provided path.

Attributes

	shebang_pat

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
remove(prefix, files)

	Remove files for a given prefix.

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

	
get_installed_version(prefix, name)

	

	
create_info(name, version, build_number, requires_py)

	

	
shebang_pat

	

	
fix_shebang(tmp_dir, path)

	

	
_add_info_dir(t, tmp_dir, files, has_prefix, info)

	

	
create_conda_pkg(prefix, files, info, tar_path, update_info=None)

	Create a conda package and return a list of warnings.

	
make_tarbz2(prefix, name='unknown', version='0.0', build_number=0, files=None)

	

	
which_package(path)

	Return the package containing the path.

Provided the path of a (presumably) conda installed file, iterate over
the conda packages the file came from. Usually the iteration yields
only one package.

	
which_prefix(path)

	Return the prefix for the provided path.

Provided the path of a (presumably) conda installed file, return the
environment prefix in which the file in located.

 main_pip

main_pip

PEP 621 compatible entry point used when conda init has not updated the user shell profile.

Functions

	pip_installed_post_parse_hook(args, p)

	

	main(*args, **kwargs)

	

	
pip_installed_post_parse_hook(args, p)

	

	
main(*args, **kwargs)

	

 main_remove

main_remove

CLI implementation for conda remove.

Removes the specified packages from an existing environment.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_rename

main_rename

CLI implementation for conda rename.

Renames an existing environment by cloning it and then removing the original environment.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	validate_src(→ str)

	Validate that we are receiving at least one valid value for --name or

	validate_destination(→ str)

	Ensure that our destination does not exist

	execute(→ int)

	Executes the command for renaming an existing environment.

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
validate_src() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Validate that we are receiving at least one valid value for --name or
--prefix and ensure that the "base" environment is not being renamed

	
validate_destination(dest: str [https://docs.python.org/3/library/stdtypes.html#str], force: bool [https://docs.python.org/3/library/functions.html#bool] = False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Ensure that our destination does not exist

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	Executes the command for renaming an existing environment.

 main_run

main_run

CLI implementation for conda run.

Runs the provided command within the specified environment.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 main_search

main_search

CLI implementation for conda search.

Query channels for packages matching the provided package spec.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	Implements conda search commands.

	pretty_record(→ None)

	Pretty prints a PackageRecord.

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	Implements conda search commands.

conda search <spec> searches channels for packages.
conda search <spec> --envs searches environments for packages.

	
pretty_record(record: conda.models.records.PackageRecord) → None [https://docs.python.org/3/library/constants.html#None]

	Pretty prints a PackageRecord.

	Parameters:

	record -- The PackageRecord object to print.

 main_update

main_update

CLI implementation for conda update.

Updates the specified packages in an existing environment.

Functions

	configure_parser(→ argparse.ArgumentParser)

	

	execute(→ int)

	

	
configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs) → argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → int [https://docs.python.org/3/library/functions.html#int]

	

 python_api

python_api

Wrapper for running conda CLI commands as a Python API.

Classes

	Commands

	

Functions

	run_command(command, *arguments, **kwargs)

	Runs a conda command in-process with a given set of command-line interface arguments.

Attributes

	STRING

	

	STDOUT

	

	
class Commands

	
	
CLEAN = 'clean'

	

	
CONFIG = 'config'

	

	
CREATE = 'create'

	

	
INFO = 'info'

	

	
INSTALL = 'install'

	

	
LIST = 'list'

	

	
REMOVE = 'remove'

	

	
SEARCH = 'search'

	

	
UPDATE = 'update'

	

	
RUN = 'run'

	

	
NOTICES = 'notices'

	

	
STRING

	

	
STDOUT

	

	
run_command(command, *arguments, **kwargs)

	Runs a conda command in-process with a given set of command-line interface arguments.

	Differences from the command-line interface:
	Always uses --yes flag, thus does not ask for confirmation.

	Parameters:

	
	command -- one of the Commands.

	*arguments -- instructions you would normally pass to the conda command on the command line
see below for examples. Be very careful to delimit arguments exactly as you
want them to be delivered. No 'combine then split at spaces' or other
information destroying processing gets performed on the arguments.

	**kwargs -- special instructions for programmatic overrides

	Keyword Arguments:

	
	use_exception_handler -- defaults to False. False will let the code calling
run_command handle all exceptions. True won't raise when an exception
has occurred, and instead give a non-zero return code

	search_path -- an optional non-standard search path for configuration information
that overrides the default SEARCH_PATH

	stdout -- Define capture behavior for stream sys.stdout. Defaults to STRING.
STRING captures as a string. None leaves stream untouched.
Otherwise redirect to file-like object stdout.

	stderr -- Define capture behavior for stream sys.stderr. Defaults to STRING.
STRING captures as a string. None leaves stream untouched.
STDOUT redirects to stdout target and returns None as stderr value.
Otherwise redirect to file-like object stderr.

	Returns:

	a tuple of stdout, stderr, and return_code.
stdout, stderr are either strings, None or the corresponding file-like function argument.

Examples

>>> run_command(Commands.CREATE, "-n", "newenv", "python=3", "flask", use_exception_handler=True)
>>> run_command(Commands.CREATE, "-n", "newenv", "python=3", "flask")
>>> run_command(Commands.CREATE, ["-n", "newenv", "python=3", "flask"], search_path=())

 common

common

Code in conda.common is not conda-specific. Technically, it sits aside the application
stack and not within the stack. It is able to stand independently on its own.
The only allowed imports of conda code in conda.common modules are imports of other
conda.common modules and imports from conda._vendor.

If objects are needed from other parts of conda, they should be passed directly as arguments to
functions and methods.

 _logic

_logic

Classes

	_ClauseList

	Storage for the CNF clauses, represented as a list of tuples of ints.

	_ClauseArray

	Storage for the CNF clauses, represented as a flat int array.

	_SatSolver

	Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

	_PycoSatSolver

	Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

	_PyCryptoSatSolver

	Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

	_PySatSolver

	Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

	Clauses

	

Attributes

	TRUE

	

	FALSE

	

	_sat_solver_str_to_cls

	

	_sat_solver_cls_to_str

	

	
TRUE

	

	
FALSE

	

	
class _ClauseList

	Storage for the CNF clauses, represented as a list of tuples of ints.

	
get_clause_count()

	Return number of stored clauses.

	
save_state()

	Get state information to be able to revert temporary additions of
supplementary clauses. _ClauseList: state is simply the number of clauses.

	
restore_state(saved_state)

	Restore state saved via save_state.
Removes clauses that were added after the state has been saved.

	
as_list()

	Return clauses as a list of tuples of ints.

	
as_array()

	Return clauses as a flat int array, each clause being terminated by 0.

	
class _ClauseArray

	Storage for the CNF clauses, represented as a flat int array.
Each clause is terminated by int(0).

	
extend(clauses)

	

	
append(clause)

	

	
get_clause_count()

	Return number of stored clauses.
This is an O(n) operation since we don't store the number of clauses
explicitly due to performance reasons (Python interpreter overhead in
self.append).

	
save_state()

	Get state information to be able to revert temporary additions of
supplementary clauses. _ClauseArray: state is the length of the int
array, NOT number of clauses.

	
restore_state(saved_state)

	Restore state saved via save_state.
Removes clauses that were added after the state has been saved.

	
as_list()

	Return clauses as a list of tuples of ints.

	
as_array()

	Return clauses as a flat int array, each clause being terminated by 0.

	
class _SatSolver(**run_kwargs)

	Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

	
get_clause_count()

	

	
as_list()

	

	
save_state()

	

	
restore_state(saved_state)

	

	
run(m, **kwargs)

	

	
abstract setup(m, **kwargs)

	Create a solver instance, add the clauses to it, and return it.

	
abstract invoke(solver)

	Start the actual SAT solving and return the calculated solution.

	
abstract process_solution(sat_solution)

	Process the solution returned by self.invoke.
Returns a list of satisfied variables or None if no solution is found.

	
class _PycoSatSolver(**run_kwargs)

	Bases: _SatSolver

Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

	
setup(m, limit=0, **kwargs)

	Create a solver instance, add the clauses to it, and return it.

	
invoke(iter_sol)

	Start the actual SAT solving and return the calculated solution.

	
process_solution(sat_solution)

	Process the solution returned by self.invoke.
Returns a list of satisfied variables or None if no solution is found.

	
class _PyCryptoSatSolver(**run_kwargs)

	Bases: _SatSolver

Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

	
setup(m, threads=1, **kwargs)

	Create a solver instance, add the clauses to it, and return it.

	
invoke(solver)

	Start the actual SAT solving and return the calculated solution.

	
process_solution(solution)

	Process the solution returned by self.invoke.
Returns a list of satisfied variables or None if no solution is found.

	
class _PySatSolver(**run_kwargs)

	Bases: _SatSolver

Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

	
setup(m, **kwargs)

	Create a solver instance, add the clauses to it, and return it.

	
invoke(solver)

	Start the actual SAT solving and return the calculated solution.

	
process_solution(sat_solution)

	Process the solution returned by self.invoke.
Returns a list of satisfied variables or None if no solution is found.

	
_sat_solver_str_to_cls

	

	
_sat_solver_cls_to_str

	

	
class Clauses(m=0, sat_solver_str=_sat_solver_cls_to_str[_PycoSatSolver])

	
	
get_clause_count()

	

	
as_list()

	

	
new_var()

	

	
assign(vals)

	

	
Combine(args, polarity)

	

	
Eval(func, args, polarity)

	

	
Prevent(func, *args)

	

	
Require(func, *args)

	

	
Not(x, polarity=None, add_new_clauses=False)

	

	
And(f, g, polarity, add_new_clauses=False)

	

	
Or(f, g, polarity, add_new_clauses=False)

	

	
Xor(f, g, polarity, add_new_clauses=False)

	

	
ITE(c, t, f, polarity, add_new_clauses=False)

	

	
All(iter, polarity=None)

	

	
Any(iter, polarity)

	

	
AtMostOne_NSQ(vals, polarity)

	

	
AtMostOne_BDD(vals, polarity=None)

	

	
ExactlyOne_NSQ(vals, polarity)

	

	
ExactlyOne_BDD(vals, polarity)

	

	
LB_Preprocess(lits, coeffs)

	

	
BDD(lits, coeffs, nterms, lo, hi, polarity)

	

	
LinearBound(lits, coeffs, lo, hi, preprocess, polarity)

	

	
_run_sat(m, limit=0)

	

	
sat(additional=None, includeIf=False, limit=0)

	Calculate a SAT solution for the current clause set.

Returned is the list of those solutions. When the clauses are
unsatisfiable, an empty list is returned.

	
minimize(lits, coeffs, bestsol=None, trymax=False)

	Minimize the objective function given by (coeff, integer) pairs in
zip(coeffs, lits).
The actual minimization is multiobjective: first, we minimize the
largest active coefficient value, then we minimize the sum.

 _os

_os

	
on_win

	

 linux

linux

Functions

	linux_get_libc_version(→ tuple[str, str] | tuple[None, ...)

	If on linux, returns (libc_family, version), otherwise (None, None).

	
linux_get_libc_version() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	If on linux, returns (libc_family, version), otherwise (None, None).

 unix

unix

Functions

	get_free_space_on_unix(dir_name)

	

	is_admin_on_unix()

	

	
get_free_space_on_unix(dir_name)

	

	
is_admin_on_unix()

	

 windows

windows

Classes

	SW

	Enum where members are also (and must be) ints

	ERROR

	Enum where members are also (and must be) ints

Functions

	get_free_space_on_windows(dir_name)

	

	is_admin_on_windows()

	

	_wait_and_close_handle(process_handle)

	Waits until spawned process finishes and closes the handle for it.

	run_as_admin(args[, wait])

	Run command line argument list (args) with elevated privileges.

Attributes

	PHANDLE

	

	
PHANDLE

	

	
class SW

	Bases: enum.IntEnum [https://docs.python.org/3/library/enum.html#enum.IntEnum]

Enum where members are also (and must be) ints

	
HIDE = 0

	

	
MAXIMIZE = 3

	

	
MINIMIZE = 6

	

	
RESTORE = 9

	

	
SHOW = 5

	

	
SHOWDEFAULT = 10

	

	
SHOWMAXIMIZED = 3

	

	
SHOWMINIMIZED = 2

	

	
SHOWMINNOACTIVE = 7

	

	
SHOWNA = 8

	

	
SHOWNOACTIVATE = 4

	

	
SHOWNORMAL = 1

	

	
class ERROR

	Bases: enum.IntEnum [https://docs.python.org/3/library/enum.html#enum.IntEnum]

Enum where members are also (and must be) ints

	
ZERO = 0

	

	
FILE_NOT_FOUND = 2

	

	
PATH_NOT_FOUND = 3

	

	
BAD_FORMAT = 11

	

	
ACCESS_DENIED = 5

	

	
ASSOC_INCOMPLETE = 27

	

	
DDE_BUSY = 30

	

	
DDE_FAIL = 29

	

	
DDE_TIMEOUT = 28

	

	
DLL_NOT_FOUND = 32

	

	
NO_ASSOC = 31

	

	
OOM = 8

	

	
SHARE = 26

	

	
get_free_space_on_windows(dir_name)

	

	
is_admin_on_windows()

	

	
_wait_and_close_handle(process_handle)

	Waits until spawned process finishes and closes the handle for it.

	
run_as_admin(args, wait=True)

	Run command line argument list (args) with elevated privileges.

If wait is True, the process will block until completion.

Notes

	no stdin / stdout / stderr pipe support

	does not automatically quote arguments (i.e. for paths that may contain spaces)

See:
- http://stackoverflow.com/a/19719292/1170370 on 20160407 MCS.
- msdn.microsoft.com/en-us/library/windows/desktop/bb762153(v=vs.85).aspx
- https://github.com/ContinuumIO/menuinst/blob/master/menuinst/windows/win_elevate.py
- https://github.com/saltstack/salt-windows-install/blob/master/deps/salt/python/App/Lib/site-packages/win32/Demos/pipes/runproc.py # NOQA
- https://github.com/twonds/twisted/blob/master/twisted/internet/_dumbwin32proc.py
- https://stackoverflow.com/a/19982092/2127762
- https://www.codeproject.com/Articles/19165/Vista-UAC-The-Definitive-Guide
- https://github.com/JustAMan/pyWinClobber/blob/master/win32elevate.py

 compat

compat

Common compatiblity code.

Functions

	encode_for_env_var(→ str)

	Environment names and values need to be string.

	encode_environment(env)

	

	encode_arguments(arguments)

	

	isiterable(obj)

	

	open(file[, mode, buffering, encoding, errors, ...])

	

	six_with_metaclass(meta, *bases)

	Create a base class with a metaclass.

	ensure_binary(value)

	

	ensure_text_type(→ str)

	

	ensure_unicode(value)

	

	ensure_fs_path_encoding(value)

	

	ensure_utf8_encoding(value)

	

Attributes

	on_win

	

	on_mac

	

	on_linux

	

	FILESYSTEM_ENCODING

	

	ENCODE_ENVIRONMENT

	

	NoneType

	

	primitive_types

	

	
on_win

	

	
on_mac

	

	
on_linux

	

	
FILESYSTEM_ENCODING

	

	
ENCODE_ENVIRONMENT = True

	

	
encode_for_env_var(value) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Environment names and values need to be string.

	
encode_environment(env)

	

	
encode_arguments(arguments)

	

	
isiterable(obj)

	

	
open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True)

	

	
six_with_metaclass(meta, *bases)

	Create a base class with a metaclass.

	
NoneType

	

	
primitive_types = ()

	

	
ensure_binary(value)

	

	
ensure_text_type(value) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
ensure_unicode(value)

	

	
ensure_fs_path_encoding(value)

	

	
ensure_utf8_encoding(value)

	

 configuration

configuration

A generalized application configuration utility.

	Features include:
	
	lazy eval

	merges configuration files

	parameter type validation, with custom validation

	parameter aliases

Easily extensible to other source formats, e.g. json and ini

Classes

	ParameterFlag

	Generic enumeration.

	RawParameter

	

	EnvRawParameter

	

	ArgParseRawParameter

	

	YamlRawParameter

	

	DefaultValueRawParameter

	Wraps a default value as a RawParameter, for usage in ParameterLoader.

	LoadedParameter

	

	PrimitiveLoadedParameter

	LoadedParameter type that holds a single python primitive value.

	MapLoadedParameter

	LoadedParameter type that holds a map (i.e. dict) of LoadedParameters.

	SequenceLoadedParameter

	LoadedParameter type that holds a sequence (i.e. list) of LoadedParameters.

	ObjectLoadedParameter

	LoadedParameter type that holds a mapping (i.e. object) of LoadedParameters.

	ConfigurationObject

	Dummy class to mark whether a Python object has config parameters within.

	Parameter

	

	PrimitiveParameter

	Parameter type for a Configuration class that holds a single python primitive value.

	MapParameter

	Parameter type for a Configuration class that holds a map (i.e. dict) of Parameters.

	SequenceParameter

	Parameter type for a Configuration class that holds a sequence (i.e. list) of Parameters.

	ObjectParameter

	Parameter type for a Configuration class that holds an object with Parameter fields.

	ParameterLoader

	ParameterLoader class contains the top level logic needed to load a parameter from start to

	ConfigurationType

	metaclass for Configuration

	Configuration

	

Functions

	pretty_list(iterable[, padding])

	

	pretty_map(dictionary[, padding])

	

	expand_environment_variables(unexpanded)

	

	raise_errors(errors)

	

	load_file_configs(→ dict[pathlib.Path, dict])

	

	custom_expandvars(→ str)

	Expand variables in a string.

Attributes

	EMPTY_MAP

	

	CONDARC_FILENAMES

	

	YAML_EXTENSIONS

	

	_RE_CUSTOM_EXPANDVARS

	

	
EMPTY_MAP

	

	
pretty_list(iterable, padding=' ')

	

	
pretty_map(dictionary, padding=' ')

	

	
expand_environment_variables(unexpanded)

	

	
exception ConfigurationError(message, caused_by=None, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception ConfigurationLoadError(path, message_addition='', **kwargs)

	Bases: ConfigurationError

Common base class for all non-exit exceptions.

	
exception ValidationError(parameter_name, parameter_value, source, msg=None, **kwargs)

	Bases: ConfigurationError

Common base class for all non-exit exceptions.

	
exception MultipleKeysError(source, keys, preferred_key)

	Bases: ValidationError

Common base class for all non-exit exceptions.

	
exception InvalidTypeError(parameter_name, parameter_value, source, wrong_type, valid_types, msg=None)

	Bases: ValidationError

Common base class for all non-exit exceptions.

	
exception CustomValidationError(parameter_name, parameter_value, source, custom_message)

	Bases: ValidationError

Common base class for all non-exit exceptions.

	
exception MultiValidationError(errors, *args, **kwargs)

	Bases: conda.CondaMultiError, ConfigurationError

Common base class for all non-exit exceptions.

	
raise_errors(errors)

	

	
class ParameterFlag

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
final = 'final'

	

	
top = 'top'

	

	
bottom = 'bottom'

	

	
__str__()

	Return str(self).

	
classmethod from_name(name)

	

	
classmethod from_value(value)

	

	
classmethod from_string(string)

	

	
class RawParameter(source, key, raw_value)

	
	
__repr__()

	Return repr(self).

	
abstract value(parameter_obj)

	

	
abstract keyflag()

	

	
abstract valueflags(parameter_obj)

	

	
classmethod make_raw_parameters(source, from_map)

	

	
class EnvRawParameter(source, key, raw_value)

	Bases: RawParameter

	
property __important_split_value

	

	
source = 'envvars'

	

	
value(parameter_obj)

	

	
keyflag()

	

	
valueflags(parameter_obj)

	

	
classmethod make_raw_parameters(appname)

	

	
class ArgParseRawParameter(source, key, raw_value)

	Bases: RawParameter

	
source = 'cmd_line'

	

	
value(parameter_obj)

	

	
keyflag()

	

	
valueflags(parameter_obj)

	

	
classmethod make_raw_parameters(args_from_argparse)

	

	
class YamlRawParameter(source, key, raw_value, key_comment)

	Bases: RawParameter

	
value(parameter_obj)

	

	
keyflag()

	

	
valueflags(parameter_obj)

	

	
static _get_yaml_key_comment(commented_dict, key)

	

	
classmethod _get_yaml_list_comments(value)

	

	
static _get_yaml_list_comment_item(item)

	

	
static _get_yaml_map_comments(value)

	

	
classmethod make_raw_parameters(source, from_map)

	

	
classmethod make_raw_parameters_from_file(filepath)

	

	
class DefaultValueRawParameter(source, key, raw_value)

	Bases: RawParameter

Wraps a default value as a RawParameter, for usage in ParameterLoader.

	
value(parameter_obj)

	

	
keyflag()

	

	
valueflags(parameter_obj)

	

	
load_file_configs(search_path: Iterable[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | str [https://docs.python.org/3/library/stdtypes.html#str]], **kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	

	
class LoadedParameter(name, value, key_flag, value_flags, validation=None)

	
	
_type

	

	
_element_type

	

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
collect_errors(instance, typed_value, source='<<merged>>')

	Validate a LoadedParameter typed value.

	Parameters:

	
	instance (Configuration) -- the instance object used to create the LoadedParameter.

	typed_value (Any) -- typed value to validate.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- string description for the source of the typed_value.

	
expand()

	Recursively expands any environment values in the Loaded Parameter.

Returns: LoadedParameter

	
abstract merge(matches)

	Recursively merges matches into one LoadedParameter.

	Parameters:

	matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

	
typify(source)

	Recursively types a LoadedParameter.

	Parameters:

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- string describing the source of the LoadedParameter.

Returns: a primitive, sequence, or map representing the typed value.

	
static _typify_data_structure(value, source, type_hint=None)

	

	
static _match_key_is_important(loaded_parameter)

	

	
static _first_important_matches(matches)

	

	
class PrimitiveLoadedParameter(name, element_type, value, key_flag, value_flags, validation=None)

	Bases: LoadedParameter

LoadedParameter type that holds a single python primitive value.

The python primitive types are str, int, float, complex, bool, and NoneType. In addition,
python 2 has long and unicode types.

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
merge(matches)

	Recursively merges matches into one LoadedParameter.

	Parameters:

	matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

	
class MapLoadedParameter(name, value, element_type, key_flag, value_flags, validation=None)

	Bases: LoadedParameter

LoadedParameter type that holds a map (i.e. dict) of LoadedParameters.

	
_type

	

	
collect_errors(instance, typed_value, source='<<merged>>')

	Validate a LoadedParameter typed value.

	Parameters:

	
	instance (Configuration) -- the instance object used to create the LoadedParameter.

	typed_value (Any) -- typed value to validate.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- string description for the source of the typed_value.

	
merge(parameters: Sequence[MapLoadedParameter]) → MapLoadedParameter

	Recursively merges matches into one LoadedParameter.

	Parameters:

	matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

	
class SequenceLoadedParameter(name, value, element_type, key_flag, value_flags, validation=None)

	Bases: LoadedParameter

LoadedParameter type that holds a sequence (i.e. list) of LoadedParameters.

	
_type

	

	
collect_errors(instance, typed_value, source='<<merged>>')

	Validate a LoadedParameter typed value.

	Parameters:

	
	instance (Configuration) -- the instance object used to create the LoadedParameter.

	typed_value (Any) -- typed value to validate.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- string description for the source of the typed_value.

	
merge(matches)

	Recursively merges matches into one LoadedParameter.

	Parameters:

	matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

	
class ObjectLoadedParameter(name, value, element_type, key_flag, value_flags, validation=None)

	Bases: LoadedParameter

LoadedParameter type that holds a mapping (i.e. object) of LoadedParameters.

	
_type

	

	
collect_errors(instance, typed_value, source='<<merged>>')

	Validate a LoadedParameter typed value.

	Parameters:

	
	instance (Configuration) -- the instance object used to create the LoadedParameter.

	typed_value (Any) -- typed value to validate.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- string description for the source of the typed_value.

	
merge(parameters: Sequence[ObjectLoadedParameter]) → ObjectLoadedParameter

	Recursively merges matches into one LoadedParameter.

	Parameters:

	matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

	
class ConfigurationObject

	Dummy class to mark whether a Python object has config parameters within.

	
class Parameter(default, validation=None)

	
	
property default

	Returns a DefaultValueRawParameter that wraps the actual default value.

	
_type

	

	
_element_type

	

	
get_all_matches(name, names, instance)

	Finds all matches of a Parameter in a Configuration instance

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- canonical name of the parameter to search for

	names (tuple [https://docs.python.org/3/library/stdtypes.html#tuple](str [https://docs.python.org/3/library/stdtypes.html#str])) -- alternative aliases of the parameter

	instance (Configuration) -- instance of the configuration to search within

Returns (List(RawParameter)): matches of the parameter found in the configuration.

	
abstract load(name, match)

	Loads a Parameter with the value in a RawParameter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- name of the parameter to pass through

	match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

	
typify(name, source, value)

	

	
class PrimitiveParameter(default, element_type=None, validation=None)

	Bases: Parameter

Parameter type for a Configuration class that holds a single python primitive value.

The python primitive types are str, int, float, complex, bool, and NoneType. In addition,
python 2 has long and unicode types.

	
load(name, match)

	Loads a Parameter with the value in a RawParameter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- name of the parameter to pass through

	match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

	
class MapParameter(element_type, default=frozendict(), validation=None)

	Bases: Parameter

Parameter type for a Configuration class that holds a map (i.e. dict) of Parameters.

	
_type

	

	
get_all_matches(name, names, instance)

	Finds all matches of a Parameter in a Configuration instance

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- canonical name of the parameter to search for

	names (tuple [https://docs.python.org/3/library/stdtypes.html#tuple](str [https://docs.python.org/3/library/stdtypes.html#str])) -- alternative aliases of the parameter

	instance (Configuration) -- instance of the configuration to search within

Returns (List(RawParameter)): matches of the parameter found in the configuration.

	
load(name, match)

	Loads a Parameter with the value in a RawParameter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- name of the parameter to pass through

	match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

	
class SequenceParameter(element_type, default=(), validation=None, string_delimiter=',')

	Bases: Parameter

Parameter type for a Configuration class that holds a sequence (i.e. list) of Parameters.

	
_type

	

	
get_all_matches(name, names, instance)

	Finds all matches of a Parameter in a Configuration instance

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- canonical name of the parameter to search for

	names (tuple [https://docs.python.org/3/library/stdtypes.html#tuple](str [https://docs.python.org/3/library/stdtypes.html#str])) -- alternative aliases of the parameter

	instance (Configuration) -- instance of the configuration to search within

Returns (List(RawParameter)): matches of the parameter found in the configuration.

	
load(name, match)

	Loads a Parameter with the value in a RawParameter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- name of the parameter to pass through

	match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

	
class ObjectParameter(element_type, default=ConfigurationObject(), validation=None)

	Bases: Parameter

Parameter type for a Configuration class that holds an object with Parameter fields.

	
_type

	

	
get_all_matches(name, names, instance)

	Finds all matches of a Parameter in a Configuration instance

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- canonical name of the parameter to search for

	names (tuple [https://docs.python.org/3/library/stdtypes.html#tuple](str [https://docs.python.org/3/library/stdtypes.html#str])) -- alternative aliases of the parameter

	instance (Configuration) -- instance of the configuration to search within

Returns (List(RawParameter)): matches of the parameter found in the configuration.

	
load(name, match)

	Loads a Parameter with the value in a RawParameter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- name of the parameter to pass through

	match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

	
class ParameterLoader(parameter_type, aliases=(), expandvars=False)

	ParameterLoader class contains the top level logic needed to load a parameter from start to
finish.

	
property name

	

	
property names

	

	
_set_name(name)

	

	
__get__(instance, instance_type)

	

	
_raw_parameters_from_single_source(raw_parameters)

	

	
static raw_parameters_from_single_source(name, names, raw_parameters)

	

	
class ConfigurationType(name, bases, attr)

	Bases: type [https://docs.python.org/3/library/functions.html#type]

metaclass for Configuration

	
CONDARC_FILENAMES = ('.condarc', 'condarc')

	

	
YAML_EXTENSIONS = ('.yml', '.yaml')

	

	
_RE_CUSTOM_EXPANDVARS

	

	
custom_expandvars(template: str [https://docs.python.org/3/library/stdtypes.html#str], mapping: collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any] = {}, /, **kwargs) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Expand variables in a string.

Inspired by string.Template and modified to mirror os.path.expandvars functionality
allowing custom variables without mutating os.environ.

Expands POSIX and Windows CMD environment variables as follows:

	$VARIABLE → value of VARIABLE

	${VARIABLE} → value of VARIABLE

	%VARIABLE% → value of VARIABLE

Invalid substitutions are left as-is:

	$MISSING → $MISSING

	${MISSING} → ${MISSING}

	%MISSING% → %MISSING%

	$$ → $$

	%% → %%

	$ → $

	% → %

	
class Configuration(search_path=(), app_name=None, argparse_args=None, **kwargs)

	
	
static _expand_search_path(search_path: Iterable[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | str [https://docs.python.org/3/library/stdtypes.html#str]], **kwargs) → Iterable[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	

	
classmethod _load_search_path(search_path: Iterable[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) → Iterable[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], dict [https://docs.python.org/3/library/stdtypes.html#dict]]]

	

	
_set_search_path(search_path: Iterable[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | str [https://docs.python.org/3/library/stdtypes.html#str]], **kwargs)

	

	
_set_env_vars(app_name=None)

	

	
_set_argparse_args(argparse_args)

	

	
_set_raw_data(raw_data: collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping][Hashable, dict [https://docs.python.org/3/library/stdtypes.html#dict]])

	

	
_reset_cache()

	

	
register_reset_callaback(callback)

	

	
check_source(source)

	

	
validate_all()

	

	
static _collect_validation_error(func, *args, **kwargs)

	

	
validate_configuration()

	

	
post_build_validation()

	

	
collect_all()

	

	
describe_parameter(parameter_name)

	

	
list_parameters()

	

	
typify_parameter(parameter_name, value, source)

	

	
abstract get_descriptions()

	

 constants

constants

Common constants.

	
NULL

	

	
TRACE = 5

	

 decorators

decorators

Common decorators.

Functions

	env_override(envvar_name[, convert_empty_to_none])

	Override the return value of the decorated function with an environment variable.

	
env_override(envvar_name, convert_empty_to_none=False)

	Override the return value of the decorated function with an environment variable.

If convert_empty_to_none is true, if the value of the environment variable
is the empty string, a None value will be returned.

 disk

disk

Common disk utilities.

Functions

	temporary_content_in_file(content[, suffix])

	

	
temporary_content_in_file(content, suffix='')

	

 io

io [https://docs.python.org/3/library/io.html#module-io]

Common I/O utilities.

Classes

	DeltaSecondsFormatter

	Logging formatter with additional attributes for run time logging.

	ContextDecorator

	Base class for a context manager class (implementing __enter__() and __exit__()) that also

	SwallowBrokenPipe

	Base class for a context manager class (implementing __enter__() and __exit__()) that also

	CaptureTarget

	Constants used for contextmanager captured.

	Spinner

	
	param message:

	A message to prefix the spinner with. The string ': ' is automatically appended.

	ProgressBar

	

	DummyExecutor

	This is an abstract base class for concrete asynchronous executors.

	ThreadLimitedThreadPoolExecutor

	This is an abstract base class for concrete asynchronous executors.

	time_recorder

	Base class for a context manager class (implementing __enter__() and __exit__()) that also

Functions

	dashlist(iterable[, indent])

	

	env_vars([var_map, callback, stack_callback])

	

	env_var(name, value[, callback, stack_callback])

	

	env_unmodified([callback])

	

	captured([stdout, stderr])

	Capture outputs of sys.stdout and sys.stderr.

	argv(args_list)

	

	_logger_lock()

	

	disable_logger(logger_name)

	

	stderr_log_level(level[, logger_name])

	

	attach_stderr_handler([level, logger_name, propagate, ...])

	

	timeout(timeout_secs, func, *args[, default_return])

	Enforce a maximum time for a callable to complete.

	get_instrumentation_record_file()

	

	print_instrumentation_data()

	

Attributes

	IS_INTERACTIVE

	

	_FORMATTER

	

	swallow_broken_pipe

	

	as_completed

	

	
IS_INTERACTIVE

	

	
class DeltaSecondsFormatter(fmt=None, datefmt=None)

	Bases: logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]

Logging formatter with additional attributes for run time logging.

	
`delta_secs`

	Elapsed seconds since last log/format call (or creation of logger).

	
`relative_created_secs`

	Like relativeCreated, time relative to the initialization of the
logging module but conveniently scaled to seconds as a float value.

	
format(record)

	Format the specified record as text.

The record's attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
_FORMATTER

	

	
dashlist(iterable, indent=2)

	

	
class ContextDecorator

	Base class for a context manager class (implementing __enter__() and __exit__()) that also
makes it a decorator.

	
__call__(f)

	

	
class SwallowBrokenPipe

	Bases: ContextDecorator

Base class for a context manager class (implementing __enter__() and __exit__()) that also
makes it a decorator.

	
__enter__()

	

	
__exit__(exc_type, exc_val, exc_tb)

	

	
swallow_broken_pipe

	

	
class CaptureTarget

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Constants used for contextmanager captured.

Used similarly like the constants PIPE, STDOUT for stdlib's subprocess.Popen.

	
STRING

	

	
STDOUT

	

	
env_vars(var_map=None, callback=None, stack_callback=None)

	

	
env_var(name, value, callback=None, stack_callback=None)

	

	
env_unmodified(callback=None)

	

	
captured(stdout=CaptureTarget.STRING, stderr=CaptureTarget.STRING)

	Capture outputs of sys.stdout and sys.stderr.

If stdout is STRING, capture sys.stdout as a string,
if stdout is None, do not capture sys.stdout, leaving it untouched,
otherwise redirect sys.stdout to the file-like object given by stdout.

Behave correspondingly for stderr with the exception that if stderr is STDOUT,
redirect sys.stderr to stdout target and set stderr attribute of yielded object to None.

>>> from conda.common.io import captured
>>> with captured() as c:
... print("hello world!")
...
>>> c.stdout
'hello world!\n'

	Parameters:

	
	stdout -- capture target for sys.stdout, one of STRING, None, or file-like object

	stderr -- capture target for sys.stderr, one of STRING, STDOUT, None, or file-like object

	Yields:

	CapturedText --

	has attributes stdout, stderr which are either strings, None or the
	corresponding file-like function argument.

	
argv(args_list)

	

	
_logger_lock()

	

	
disable_logger(logger_name)

	

	
stderr_log_level(level, logger_name=None)

	

	
attach_stderr_handler(level=WARN, logger_name=None, propagate=False, formatter=None)

	

	
timeout(timeout_secs, func, *args, default_return=None, **kwargs)

	Enforce a maximum time for a callable to complete.
Not yet implemented on Windows.

	
class Spinner(message, enabled=True, json=False, fail_message='failed\n')

	
	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A message to prefix the spinner with. The string ': ' is automatically appended.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, usage is a no-op.

	json (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, will not output non-json to stdout.

	
spinner_cycle

	

	
start()

	

	
stop()

	

	
_start_spinning()

	

	
__enter__()

	

	
__exit__(exc_type, exc_val, exc_tb)

	

	
class ProgressBar(description, enabled=True, json=False, position=None, leave=True)

	
	
classmethod get_lock()

	

	
update_to(fraction)

	

	
finish()

	

	
refresh()

	Force refresh i.e. once 100% has been reached

	
close()

	

	
static _tqdm(*args, **kwargs)

	Deferred import so it doesn't hit the conda activate paths.

	
class DummyExecutor

	Bases: concurrent.futures.Executor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor]

This is an abstract base class for concrete asynchronous executors.

	
submit(fn, *args, **kwargs)

	Submits a callable to be executed with the given arguments.

Schedules the callable to be executed as fn(*args, **kwargs) and returns
a Future instance representing the execution of the callable.

	Returns:

	A Future representing the given call.

	
map(func, *iterables)

	Returns an iterator equivalent to map(fn, iter).

	Parameters:

	
	fn -- A callable that will take as many arguments as there are
passed iterables.

	timeout -- The maximum number of seconds to wait. If None, then there
is no limit on the wait time.

	chunksize -- The size of the chunks the iterable will be broken into
before being passed to a child process. This argument is only
used by ProcessPoolExecutor; it is ignored by
ThreadPoolExecutor.

	Returns:

	map(func, *iterables) but the calls may
be evaluated out-of-order.

	Return type:

	An iterator equivalent to

	Raises:

	
	TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError] -- If the entire result iterator could not be generated
before the given timeout.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] -- If fn(*args) raises for any values.

	
shutdown(wait=True)

	Clean-up the resources associated with the Executor.

It is safe to call this method several times. Otherwise, no other
methods can be called after this one.

	Parameters:

	
	wait -- If True then shutdown will not return until all running
futures have finished executing and the resources used by the
executor have been reclaimed.

	cancel_futures -- If True then shutdown will cancel all pending
futures. Futures that are completed or running will not be
cancelled.

	
class ThreadLimitedThreadPoolExecutor(max_workers=10)

	Bases: concurrent.futures.ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor]

This is an abstract base class for concrete asynchronous executors.

	
submit(fn, *args, **kwargs)

	This is an exact reimplementation of the submit() method on the parent class, except
with an added try/except around self._adjust_thread_count(). So long as there is at
least one living thread, this thread pool will not throw an exception if threads cannot
be expanded to max_workers.

In the implementation, we use "protected" attributes from concurrent.futures (_base
and _WorkItem). Consider vendoring the whole concurrent.futures library
as an alternative to these protected imports.

https://github.com/agronholm/pythonfutures/blob/3.2.0/concurrent/futures/thread.py#L121-L131 # NOQA
https://github.com/python/cpython/blob/v3.6.4/Lib/concurrent/futures/thread.py#L114-L124

	
as_completed

	

	
get_instrumentation_record_file()

	

	
class time_recorder(entry_name=None, module_name=None)

	Bases: ContextDecorator

Base class for a context manager class (implementing __enter__() and __exit__()) that also
makes it a decorator.

	
record_file

	

	
start_time

	

	
total_call_num

	

	
total_run_time

	

	
_set_entry_name(f)

	

	
__call__(f)

	

	
__enter__()

	

	
__exit__(exc_type, exc_val, exc_tb)

	

	
classmethod log_totals()

	

	
_ensure_dir()

	

	
print_instrumentation_data()

	

 iterators

iterators

Replacements for parts of the toolz library.

Functions

	groupby_to_dict(keyfunc, sequence)

	A toolz-style groupby implementation.

	unique(→ Generator[Any, None, None])

	A toolz inspired unique implementation.

	
groupby_to_dict(keyfunc, sequence)

	A toolz-style groupby implementation.

Returns a dictionary of { key: [group] } instead of iterators.

	
unique(sequence: Sequence[Any]) → Generator[Any, None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	A toolz inspired unique implementation.

Returns a generator of unique elements in the sequence

 logic

logic

The basic idea to nest logical expressions is instead of trying to denest
things via distribution, we add new variables. So if we have some logical
expression expr, we replace it with x and add expr <-> x to the clauses,
where x is a new variable, and expr <-> x is recursively evaluated in the
same way, so that the final clauses are ORs of atoms.

To use this, create a new Clauses object with the max var, for instance, if you
already have [[1, 2, -3]], you would use C = Clause(3). All functions return
a new literal, which represents that function, or True or False if the expression
can be resolved fully. They may also add new clauses to C.clauses, which
will then be delivered to the SAT solver.

All functions take atoms as arguments (an atom is an integer, representing a
literal or a negated literal, or boolean constants True or False; that is,
it is the callers' responsibility to do the conversion of expressions
recursively. This is done because we do not have data structures
representing the various logical classes, only atoms.

The polarity argument can be set to True or False if you know that the literal
being used will only be used in the positive or the negative, respectively
(e.g., you will only use x, not -x). This will generate fewer clauses. It
is probably best if you do not take advantage of this directly, but rather
through the Require and Prevent functions.

Classes

	Clauses

	

Functions

	minimal_unsatisfiable_subset(clauses, sat, explicit_specs)

	Given a set of clauses, find a minimal unsatisfiable subset (an

Attributes

	TRUE

	

	FALSE

	

	PycoSatSolver

	

	PyCryptoSatSolver

	

	PySatSolver

	

	
TRUE

	

	
FALSE

	

	
PycoSatSolver = 'pycosat'

	

	
PyCryptoSatSolver = 'pycryptosat'

	

	
PySatSolver = 'pysat'

	

	
class Clauses(m=0, sat_solver=PycoSatSolver)

	
	
property m

	

	
property unsat

	

	
get_clause_count()

	

	
as_list()

	

	
_check_variable(variable)

	

	
_check_literal(literal)

	

	
add_clause(clause)

	

	
add_clauses(clauses)

	

	
name_var(m, name)

	

	
new_var(name=None)

	

	
from_name(name)

	

	
from_index(m)

	

	
_assign(vals, name=None)

	

	
_convert(x)

	

	
_eval(func, args, no_literal_args, polarity, name)

	

	
Prevent(what, *args)

	

	
Require(what, *args)

	

	
Not(x, polarity=None, name=None)

	

	
And(f, g, polarity=None, name=None)

	

	
Or(f, g, polarity=None, name=None)

	

	
Xor(f, g, polarity=None, name=None)

	

	
ITE(c, t, f, polarity=None, name=None)

	If c Then t Else f.

In this function, if any of c, t, or f are True and False the resulting
expression is resolved.

	
All(iter, polarity=None, name=None)

	

	
Any(vals, polarity=None, name=None)

	

	
AtMostOne_NSQ(vals, polarity=None, name=None)

	

	
AtMostOne_BDD(vals, polarity=None, name=None)

	

	
AtMostOne(vals, polarity=None, name=None)

	

	
ExactlyOne_NSQ(vals, polarity=None, name=None)

	

	
ExactlyOne_BDD(vals, polarity=None, name=None)

	

	
ExactlyOne(vals, polarity=None, name=None)

	

	
LinearBound(equation, lo, hi, preprocess=True, polarity=None, name=None)

	

	
sat(additional=None, includeIf=False, names=False, limit=0)

	Calculate a SAT solution for the current clause set.

Returned is the list of those solutions. When the clauses are
unsatisfiable, an empty list is returned.

	
itersolve(constraints=None, m=None)

	

	
minimize(objective, bestsol=None, trymax=False)

	

	
minimal_unsatisfiable_subset(clauses, sat, explicit_specs)

	Given a set of clauses, find a minimal unsatisfiable subset (an
unsatisfiable core)

A set is a minimal unsatisfiable subset if no proper subset is
unsatisfiable. A set of clauses may have many minimal unsatisfiable
subsets of different sizes.

sat should be a function that takes a tuple of clauses and returns True if
the clauses are satisfiable and False if they are not. The algorithm will
work with any order-reversing function (reversing the order of subset and
the order False < True), that is, any function where (A <= B) iff (sat(B)
<= sat(A)), where A <= B means A is a subset of B and False < True).

 path

path

Common path utilities.

Functions

	is_path(value)

	

	expand(path)

	

	paths_equal(path1, path2)

	Examples

	url_to_path(url)

	Convert a file:// URL to a path.

	tokenized_startswith(test_iterable, startswith_iterable)

	

	get_all_directories(→ list[tuple[str]])

	

	get_leaf_directories(→ Sequence[str])

	

	explode_directories(→ set[str])

	

	pyc_path(py_path, python_major_minor_version)

	This must not return backslashes on Windows as that will break

	missing_pyc_files(python_major_minor_version, files)

	

	parse_entry_point_def(ep_definition)

	

	get_python_short_path([python_version])

	

	get_python_site_packages_short_path(python_version)

	

	get_major_minor_version(string[, with_dot])

	

	get_bin_directory_short_path()

	

	win_path_ok(path)

	

	win_path_double_escape(path)

	

	win_path_backout(path)

	

	ensure_pad(name[, pad])

	Examples

	is_private_env_name(env_name)

	Examples

	is_private_env_path(env_path)

	Examples

	right_pad_os_sep(path)

	

	split_filename(path_or_url)

	

	get_python_noarch_target_path(source_short_path, ...)

	

	win_path_to_unix(path[, root_prefix])

	

	which(executable)

	Backwards-compatibility wrapper. Use shutil.which directly if possible.

	strip_pkg_extension(path)

	Examples

	is_package_file(path)

	Examples

Attributes

	PATH_MATCH_REGEX

	

	KNOWN_EXTENSIONS

	

	_VERSION_REGEX

	

	
PATH_MATCH_REGEX = '\\./|\\.\\.|~|/|[a-zA-Z]:[/\\\\]|\\\\\\\\|//'

	

	
KNOWN_EXTENSIONS = ('.conda', '.tar.bz2', '.json', '.jlap', '.json.zst')

	

	
is_path(value)

	

	
expand(path)

	

	
paths_equal(path1, path2)

	Examples

>>> paths_equal('/a/b/c', '/a/b/c/d/..')
True

	
url_to_path(url)

	Convert a file:// URL to a path.

Relative file URLs (i.e. file:relative/path) are not supported.

	
tokenized_startswith(test_iterable, startswith_iterable)

	

	
get_all_directories(files: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) → list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	

	
get_leaf_directories(files: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) → Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
explode_directories(child_directories: Iterable[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Ellipsis]]) → set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
pyc_path(py_path, python_major_minor_version)

	This must not return backslashes on Windows as that will break
tests and leads to an eventual need to make url_to_path return
backslashes too and that may end up changing files on disc or
to the result of comparisons with the contents of them.

	
missing_pyc_files(python_major_minor_version, files)

	

	
parse_entry_point_def(ep_definition)

	

	
get_python_short_path(python_version=None)

	

	
get_python_site_packages_short_path(python_version)

	

	
_VERSION_REGEX

	

	
get_major_minor_version(string, with_dot=True)

	

	
get_bin_directory_short_path()

	

	
win_path_ok(path)

	

	
win_path_double_escape(path)

	

	
win_path_backout(path)

	

	
ensure_pad(name, pad='_')

	Examples

>>> ensure_pad('conda')
'_conda_'
>>> ensure_pad('_conda')
'__conda_'
>>> ensure_pad('')
''

	
is_private_env_name(env_name)

	Examples

>>> is_private_env_name("_conda")
False
>>> is_private_env_name("_conda_")
True

	
is_private_env_path(env_path)

	Examples

>>> is_private_env_path('/some/path/to/envs/_conda_')
True
>>> is_private_env_path('/not/an/envs_dir/_conda_')
False

	
right_pad_os_sep(path)

	

	
split_filename(path_or_url)

	

	
get_python_noarch_target_path(source_short_path, target_site_packages_short_path)

	

	
win_path_to_unix(path, root_prefix='')

	

	
which(executable)

	Backwards-compatibility wrapper. Use shutil.which directly if possible.

	
strip_pkg_extension(path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Examples

>>> strip_pkg_extension("/path/_license-1.1-py27_1.tar.bz2")
('/path/_license-1.1-py27_1', '.tar.bz2')
>>> strip_pkg_extension("/path/_license-1.1-py27_1.conda")
('/path/_license-1.1-py27_1', '.conda')
>>> strip_pkg_extension("/path/_license-1.1-py27_1")
('/path/_license-1.1-py27_1', None)

	
is_package_file(path)

	Examples

>>> is_package_file("/path/_license-1.1-py27_1.tar.bz2")
True
>>> is_package_file("/path/_license-1.1-py27_1.conda")
True
>>> is_package_file("/path/_license-1.1-py27_1")
False

 pkg_formats

pkg_formats

 python

python

Common Python package format utilities.

Classes

	PythonDistribution

	Base object describing a python distribution based on path to anchor file.

	PythonInstalledDistribution

	Python distribution installed via distutils.

	PythonEggInfoDistribution

	Python distribution installed via setuptools.

	PythonEggLinkDistribution

	Python distribution installed via setuptools.

	PythonDistributionMetadata

	Object representing the metada of a Python Distribution given by anchor

	Evaluator

	This class is used to evaluate marker expressions.

Functions

	norm_package_name(name)

	

	pypi_name_to_conda_name(pypi_name)

	

	norm_package_version(version)

	Normalize a version by removing extra spaces and parentheses.

	split_spec(spec, sep)

	Split a spec by separator and return stripped start and end parts.

	parse_specification(spec)

	Parse a requirement from a python distribution metadata and return a

	get_site_packages_anchor_files(site_packages_path, ...)

	Get all the anchor files for the site packages directory.

	get_dist_file_from_egg_link(egg_link_file, prefix_path)

	Return the egg info file path following an egg link.

	parse_marker(marker_string)

	Parse marker string and return a dictionary containing a marker expression.

	_is_literal(o)

	

	get_default_marker_context()

	Return the default context dictionary to use when parsing markers.

	interpret(marker[, execution_context])

	Interpret a marker and return a result depending on environment.

Attributes

	PYPI_TO_CONDA

	

	PYPI_CONDA_DEPS

	

	PARTIAL_PYPI_SPEC_PATTERN

	

	PY_FILE_RE

	

	PySpec

	

	IDENTIFIER

	

	VERSION_IDENTIFIER

	

	COMPARE_OP

	

	MARKER_OP

	

	OR

	

	AND

	

	NON_SPACE

	

	STRING_CHUNK

	

	DEFAULT_MARKER_CONTEXT

	

	evaluator

	

	
PYPI_TO_CONDA

	

	
PYPI_CONDA_DEPS

	

	
PARTIAL_PYPI_SPEC_PATTERN

	

	
PY_FILE_RE

	

	
PySpec

	

	
exception MetadataWarning

	Bases: Warning [https://docs.python.org/3/library/exceptions.html#Warning]

Base class for warning categories.

	
class PythonDistribution(anchor_full_path, python_version)

	Base object describing a python distribution based on path to anchor file.

	
property name

	

	
property norm_name

	

	
property conda_name

	

	
property version

	

	
MANIFEST_FILES = ()

	

	
REQUIRES_FILES = ()

	

	
MANDATORY_FILES = ()

	

	
ENTRY_POINTS_FILES = ('entry_points.txt',)

	

	
static init(prefix_path, anchor_file, python_version)

	

	
_check_files()

	Check the existence of mandatory files for a given distribution.

	
_check_path_data(path, checksum, size)

	Normalizes record data content and format.

	
static _parse_requires_file_data(data, global_section='__global__')

	

	
static _parse_entries_file_data(data)

	

	
_load_requires_provides_file()

	

	
manifest_full_path()

	

	
get_paths()

	Read the list of installed paths from record or source file.

Example

	[(u'skdata/__init__.py', u'sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU', 0),
	(u'skdata/diabetes.py', None, None),
...

]

	
get_dist_requirements()

	

	
get_python_requirements()

	

	
get_external_requirements()

	

	
get_extra_provides()

	

	
get_conda_dependencies()

	Process metadata fields providing dependency information.

This includes normalizing fields, and evaluating environment markers.

	
abstract get_optional_dependencies()

	

	
get_entry_points()

	

	
class PythonInstalledDistribution(prefix_path, anchor_file, python_version)

	Bases: PythonDistribution

Python distribution installed via distutils.

Notes

	https://www.python.org/dev/peps/pep-0376/

	
MANIFEST_FILES = ('RECORD',)

	

	
REQUIRES_FILES = ()

	

	
MANDATORY_FILES = ('METADATA',)

	

	
ENTRY_POINTS_FILES = ()

	

	
is_manageable = True

	

	
class PythonEggInfoDistribution(anchor_full_path, python_version, sp_reference)

	Bases: PythonDistribution

Python distribution installed via setuptools.

Notes

	http://peak.telecommunity.com/DevCenter/EggFormats

	
property is_manageable

	

	
MANIFEST_FILES = ('installed-files.txt', 'SOURCES', 'SOURCES.txt')

	

	
REQUIRES_FILES = ('requires.txt', 'depends.txt')

	

	
MANDATORY_FILES = ()

	

	
ENTRY_POINTS_FILES = ('entry_points.txt',)

	

	
class PythonEggLinkDistribution(prefix_path, anchor_file, python_version)

	Bases: PythonEggInfoDistribution

Python distribution installed via setuptools.

Notes

	http://peak.telecommunity.com/DevCenter/EggFormats

	
is_manageable = False

	

	
class PythonDistributionMetadata(path)

	Object representing the metada of a Python Distribution given by anchor
file (or directory) path.

This metadata is extracted from a single file. Python distributions might
create additional files that complement this metadata information, but
that is handled at the python distribution level.

Notes

	https://packaging.python.org/specifications/core-metadata/

	Metadata 2.1: https://www.python.org/dev/peps/pep-0566/

	Metadata 2.0: https://www.python.org/dev/peps/pep-0426/ (Withdrawn)

	Metadata 1.2: https://www.python.org/dev/peps/pep-0345/

	Metadata 1.1: https://www.python.org/dev/peps/pep-0314/

	Metadata 1.0: https://www.python.org/dev/peps/pep-0241/

	
property name

	

	
property version

	

	
FILE_NAMES = ('METADATA', 'PKG-INFO')

	

	
SINGLE_USE_KEYS

	

	
MULTIPLE_USE_KEYS

	

	
static _process_path(path, metadata_filenames)

	Find metadata file inside dist-info folder, or check direct file.

	
classmethod _message_to_dict(message)

	Convert the RFC-822 headers data into a dictionary.

message is an email.parser.Message instance.

The canonical method to transform metadata fields into such a data
structure is as follows:

	The original key-value format should be read with
email.parser.HeaderParser

	All transformed keys should be reduced to lower case. Hyphens
should be replaced with underscores, but otherwise should retain
all other characters

	The transformed value for any field marked with "(Multiple-use")
should be a single list containing all the original values for the
given key

	The Keywords field should be converted to a list by splitting the
original value on whitespace characters

	The message body, if present, should be set to the value of the
description key.

	The result should be stored as a string-keyed dictionary.

	
classmethod _read_metadata(fpath)

	Read the original format which is stored as RFC-822 headers.

	
_get_multiple_data(keys)

	Helper method to get multiple data values by keys.

Keys is an iterable including the preferred key in order, to include
values of key that might have been replaced (deprecated), for example
keys can be ['requires_dist', 'requires'], where the key 'requires' is
deprecated and replaced by 'requires_dist'.

	
get_dist_requirements()

	Changed in version 2.1: The field format specification was relaxed to
accept the syntax used by popular publishing tools.

Each entry contains a string naming some other distutils project
required by this distribution.

	The format of a requirement string contains from one to four parts:
	
	A project name, in the same format as the Name: field. The only
mandatory part.

	A comma-separated list of ‘extra’ names. These are defined by the
required project, referring to specific features which may need
extra dependencies.

	A version specifier. Tools parsing the format should accept
optional parentheses around this, but tools generating it should
not use parentheses.

	An environment marker after a semicolon. This means that the
requirement is only needed in the specified conditions.

This field may be followed by an environment marker after a semicolon.

Example

	frozenset(['pkginfo', 'PasteDeploy', 'zope.interface (>3.5.0)',
	'pywin32 >1.0; sys_platform == "win32"'])

Return 'Requires' if 'Requires-Dist' is empty.

	
get_python_requirements()

	New in version 1.2.

This field specifies the Python version(s) that the distribution is
guaranteed to be compatible with. Installation tools may look at this
when picking which version of a project to install.

The value must be in the format specified in Version specifiers.

This field may be followed by an environment marker after a semicolon.

Example

	frozenset(['>=3', '>2.6,!=3.0.*,!=3.1.*', '~=2.6',
	'>=3; sys_platform == "win32"'])

	
get_external_requirements()

	Changed in version 2.1: The field format specification was relaxed to
accept the syntax used by popular publishing tools.

Each entry contains a string describing some dependency in the system
that the distribution is to be used. This field is intended to serve
as a hint to downstream project maintainers, and has no semantics
which are meaningful to the distutils distribution.

The format of a requirement string is a name of an external dependency,
optionally followed by a version declaration within parentheses.

This field may be followed by an environment marker after a semicolon.

Because they refer to non-Python software releases, version numbers for
this field are not required to conform to the format specified in PEP
440: they should correspond to the version scheme used by the external
dependency.

Notice that there’s is no particular rule on the strings to be used!

Example

frozenset(['C', 'libpng (>=1.5)', 'make; sys_platform != "win32"'])

	
get_extra_provides()

	New in version 2.1.

A string containing the name of an optional feature. Must be a valid
Python identifier. May be used to make a dependency conditional on
hether the optional feature has been requested.

Example

frozenset(['pdf', 'doc', 'test'])

	
get_dist_provides()

	New in version 1.2.

Changed in version 2.1: The field format specification was relaxed to
accept the syntax used by popular publishing tools.

Each entry contains a string naming a Distutils project which is
contained within this distribution. This field must include the project
identified in the Name field, followed by the version : Name (Version).

A distribution may provide additional names, e.g. to indicate that
multiple projects have been bundled together. For instance, source
distributions of the ZODB project have historically included the
transaction project, which is now available as a separate distribution.
Installing such a source distribution satisfies requirements for both
ZODB and transaction.

A distribution may also provide a “virtual” project name, which does
not correspond to any separately-distributed project: such a name might
be used to indicate an abstract capability which could be supplied by
one of multiple projects. E.g., multiple projects might supply RDBMS
bindings for use by a given ORM: each project might declare that it
provides ORM-bindings, allowing other projects to depend only on having
at most one of them installed.

A version declaration may be supplied and must follow the rules
described in Version specifiers. The distribution’s version number
will be implied if none is specified.

This field may be followed by an environment marker after a semicolon.

Return Provides in case Provides-Dist is empty.

	
get_dist_obsolete()

	New in version 1.2.

Changed in version 2.1: The field format specification was relaxed to
accept the syntax used by popular publishing tools.

Each entry contains a string describing a distutils project’s
distribution which this distribution renders obsolete, meaning that
the two projects should not be installed at the same time.

Version declarations can be supplied. Version numbers must be in the
format specified in Version specifiers [1].

The most common use of this field will be in case a project name
changes, e.g. Gorgon 2.3 gets subsumed into Torqued Python 1.0. When
you install Torqued Python, the Gorgon distribution should be removed.

This field may be followed by an environment marker after a semicolon.

Return Obsoletes in case Obsoletes-Dist is empty.

Example

frozenset(['Gorgon', "OtherProject (<3.0) ; python_version == '2.7'"])

Notes

	[1] https://packaging.python.org/specifications/version-specifiers/

	
get_classifiers()

	Classifiers are described in PEP 301, and the Python Package Index
publishes a dynamic list of currently defined classifiers.

This field may be followed by an environment marker after a semicolon.

Example

	frozenset(['Development Status :: 4 - Beta',
	"Environment :: Console (Text Based) ; os_name == "posix"])

	
norm_package_name(name)

	

	
pypi_name_to_conda_name(pypi_name)

	

	
norm_package_version(version)

	Normalize a version by removing extra spaces and parentheses.

	
split_spec(spec, sep)

	Split a spec by separator and return stripped start and end parts.

	
parse_specification(spec)

	Parse a requirement from a python distribution metadata and return a
namedtuple with name, extras, constraints, marker and url components.

This method does not enforce strict specifications but extracts the
information which is assumed to be correct. As such no errors are raised.

Example

	PySpec(name='requests', extras=['security'], constraints='>=3.3.0',
	marker='foo >= 2.7 or bar == 1', url=''])

	
get_site_packages_anchor_files(site_packages_path, site_packages_dir)

	Get all the anchor files for the site packages directory.

	
get_dist_file_from_egg_link(egg_link_file, prefix_path)

	Return the egg info file path following an egg link.

	
parse_marker(marker_string)

	Parse marker string and return a dictionary containing a marker expression.

The dictionary will contain keys "op", "lhs" and "rhs" for non-terminals in
the expression grammar, or strings. A string contained in quotes is to be
interpreted as a literal string, and a string not contained in quotes is a
variable (such as os_name).

	
IDENTIFIER

	

	
VERSION_IDENTIFIER

	

	
COMPARE_OP

	

	
MARKER_OP

	

	
OR

	

	
AND

	

	
NON_SPACE

	

	
STRING_CHUNK

	

	
_is_literal(o)

	

	
class Evaluator

	This class is used to evaluate marker expressions.

	
operations

	

	
evaluate(expr, context)

	Evaluate a marker expression returned by the parse_requirement()
function in the specified context.

	
get_default_marker_context()

	Return the default context dictionary to use when parsing markers.

	
DEFAULT_MARKER_CONTEXT

	

	
evaluator

	

	
interpret(marker, execution_context=None)

	Interpret a marker and return a result depending on environment.

	Parameters:

	
	marker (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The marker to interpret.

	execution_context (mapping) -- The context used for name lookup.

 serialize

serialize

YAML and JSON serialization and deserialization functions.

Functions

	_yaml_round_trip()

	

	_yaml_safe()

	

	yaml_round_trip_load(string)

	

	yaml_safe_load(string)

	Examples

	yaml_round_trip_dump(object[, stream])

	Dump object to string or stream.

	yaml_safe_dump(object[, stream])

	Dump object to string or stream.

	json_load(string)

	

	json_dump(object)

	

	
_yaml_round_trip()

	

	
_yaml_safe()

	

	
yaml_round_trip_load(string)

	

	
yaml_safe_load(string)

	Examples

>>> yaml_safe_load("key: value")
{'key': 'value'}

	
yaml_round_trip_dump(object, stream=None)

	Dump object to string or stream.

	
yaml_safe_dump(object, stream=None)

	Dump object to string or stream.

	
json_load(string)

	

	
json_dump(object)

	

 signals

signals

Intercept signals and handle them gracefully.

Functions

	get_signal_name(signum)

	Examples

	signal_handler(handler)

	

Attributes

	INTERRUPT_SIGNALS

	

	
INTERRUPT_SIGNALS = ('SIGABRT', 'SIGINT', 'SIGTERM', 'SIGQUIT', 'SIGBREAK')

	

	
get_signal_name(signum)

	Examples

>>> from signal import SIGINT
>>> get_signal_name(SIGINT)
'SIGINT'

	
signal_handler(handler)

	

 toposort

toposort

Topological sorting implementation.

Functions

	_toposort(data)

	Dependencies are expressed as a dictionary whose keys are items

	pop_key(data)

	Pop an item from the graph that has the fewest dependencies in the case of a tie

	_safe_toposort(data)

	Dependencies are expressed as a dictionary whose keys are items

	toposort(data[, safe])

	

	
_toposort(data)

	Dependencies are expressed as a dictionary whose keys are items
and whose values are a set of dependent items. Output is a list of
sets in topological order. The first set consists of items with no
dependences, each subsequent set consists of items that depend upon
items in the preceding sets.

	
pop_key(data)

	Pop an item from the graph that has the fewest dependencies in the case of a tie
The winners will be sorted alphabetically

	
_safe_toposort(data)

	Dependencies are expressed as a dictionary whose keys are items
and whose values are a set of dependent items. Output is a list of
sets in topological order. The first set consists of items with no
dependencies, each subsequent set consists of items that depend upon
items in the preceding sets.

	
toposort(data, safe=True)

	

 url

url

Common URL utilities.

Classes

	Url

	Object used to represent a Url. The string representation of this object is a url string.

Functions

	hex_octal_to_int(ho)

	

	percent_decode(path)

	

	path_to_url(path)

	

	urlparse(→ Url)

	

	url_to_s3_info(url)

	Convert an s3 url to a tuple of bucket and key.

	is_url(url)

	Examples

	is_ipv4_address(string_ip)

	Examples

	is_ipv6_address(string_ip)

	Examples

	is_ip_address(string_ip)

	Examples

	join(*args)

	

	has_scheme(value)

	

	strip_scheme(url)

	Examples

	mask_anaconda_token(url)

	

	split_anaconda_token(url)

	Examples

	split_platform(known_subdirs, url)

	Examples

	_split_platform_re(known_subdirs)

	

	has_platform(url, known_subdirs)

	

	split_scheme_auth_token(url)

	Examples

	split_conda_url_easy_parts(known_subdirs, url)

	

	get_proxy_username_and_pass(scheme)

	

	add_username_and_password(→ str)

	Inserts username and password into provided url

	maybe_add_auth(→ str)

	Add auth if the url doesn't currently have it.

	maybe_unquote(url)

	

	remove_auth(→ str)

	Remove embedded authentication from URL.

Attributes

	file_scheme

	def url_to_path(url):

	url_attrs

	

	join_url

	

	
hex_octal_to_int(ho)

	

	
percent_decode(path)

	

	
file_scheme = 'file://'

	def url_to_path(url):
assert url.startswith(file_scheme), "{} is not a file-scheme URL".format(url)
decoded = percent_decode(url[len(file_scheme):])
if decoded.startswith('/') and decoded[2] == ':':

A Windows path.
decoded.replace('/', '')

return decoded

	
path_to_url(path)

	

	
url_attrs = ('scheme', 'path', 'query', 'fragment', 'username', 'password', 'hostname', 'port')

	

	
class Url

	Bases: namedtuple('Url', url_attrs)

Object used to represent a Url. The string representation of this object is a url string.

This object was inspired by the urllib3 implementation as it gives you a way to construct
URLs from various parts. The motivation behind this object was making something that is
interoperable with built the urllib.parse.urlparse function and has more features than
the built-in ParseResult object.

	
property auth

	

	
property netloc

	

	
__str__()

	Return str(self).

	
as_dict() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Provide a public interface for namedtuple's _asdict

	
replace(**kwargs) → Url

	Provide a public interface for namedtuple's _replace

	
classmethod from_parse_result(parse_result: urllib.parse.ParseResult [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult]) → Url

	

	
urlparse(url: str [https://docs.python.org/3/library/stdtypes.html#str]) → Url

	

	
url_to_s3_info(url)

	Convert an s3 url to a tuple of bucket and key.

Examples

>>> url_to_s3_info("s3://bucket-name.bucket/here/is/the/key")
('bucket-name.bucket', '/here/is/the/key')

	
is_url(url)

	Examples

>>> is_url(None)
False
>>> is_url("s3://some/bucket")
True

	
is_ipv4_address(string_ip)

	Examples

>>> [is_ipv4_address(ip) for ip in ('8.8.8.8', '192.168.10.10', '255.255.255.255')]
[True, True, True]
>>> [is_ipv4_address(ip) for ip in ('8.8.8', '192.168.10.10.20', '256.255.255.255', '::1')]
[False, False, False, False]

	
is_ipv6_address(string_ip)

	Examples

>> [is_ipv6_address(ip) for ip in ('::1', '2001:db8:85a3::370:7334', '1234:'*7+'1234')]
[True, True, True]
>> [is_ipv6_address(ip) for ip in ('192.168.10.10', '1234:'*8+'1234')]
[False, False]

	
is_ip_address(string_ip)

	Examples

>> is_ip_address('192.168.10.10')
True
>> is_ip_address('::1')
True
>> is_ip_address('www.google.com')
False

	
join(*args)

	

	
join_url

	

	
has_scheme(value)

	

	
strip_scheme(url)

	Examples

>>> strip_scheme("https://www.conda.io")
'www.conda.io'
>>> strip_scheme("s3://some.bucket/plus/a/path.ext")
'some.bucket/plus/a/path.ext'

	
mask_anaconda_token(url)

	

	
split_anaconda_token(url)

	Examples

>>> split_anaconda_token("https://1.2.3.4/t/tk-123-456/path")
(u'https://1.2.3.4/path', u'tk-123-456')
>>> split_anaconda_token("https://1.2.3.4/t//path")
(u'https://1.2.3.4/path', u'')
>>> split_anaconda_token("https://some.domain/api/t/tk-123-456/path")
(u'https://some.domain/api/path', u'tk-123-456')
>>> split_anaconda_token("https://1.2.3.4/conda/t/tk-123-456/path")
(u'https://1.2.3.4/conda/path', u'tk-123-456')
>>> split_anaconda_token("https://1.2.3.4/path")
(u'https://1.2.3.4/path', None)
>>> split_anaconda_token("https://10.2.3.4:8080/conda/t/tk-123-45")
(u'https://10.2.3.4:8080/conda', u'tk-123-45')

	
split_platform(known_subdirs, url)

	Examples

>>> from conda.base.constants import KNOWN_SUBDIRS
>>> split_platform(KNOWN_SUBDIRS, "https://1.2.3.4/t/tk-123/linux-ppc64le/path")
(u'https://1.2.3.4/t/tk-123/path', u'linux-ppc64le')

	
_split_platform_re(known_subdirs)

	

	
has_platform(url, known_subdirs)

	

	
split_scheme_auth_token(url)

	Examples

>>> split_scheme_auth_token("https://u:p@conda.io/t/x1029384756/more/path")
('conda.io/more/path', 'https', 'u:p', 'x1029384756')
>>> split_scheme_auth_token(None)
(None, None, None, None)

	
split_conda_url_easy_parts(known_subdirs, url)

	

	
get_proxy_username_and_pass(scheme)

	

	
add_username_and_password(url: str [https://docs.python.org/3/library/stdtypes.html#str], username: str [https://docs.python.org/3/library/stdtypes.html#str], password: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Inserts username and password into provided url

>>> add_username_and_password('https://anaconda.org', 'TestUser', 'Password')
'https://TestUser:Password@anaconda.org'

	
maybe_add_auth(url: str [https://docs.python.org/3/library/stdtypes.html#str], auth: str [https://docs.python.org/3/library/stdtypes.html#str], force=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Add auth if the url doesn't currently have it.

By default, does not replace auth if it already exists. Setting force to True
overrides this behavior.

Examples

>>> maybe_add_auth("https://www.conda.io", "user:passwd")
'https://user:passwd@www.conda.io'
>>> maybe_add_auth("https://www.conda.io", "")
'https://www.conda.io'

	
maybe_unquote(url)

	

	
remove_auth(url: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Remove embedded authentication from URL.

>>> remove_auth("https://user:password@anaconda.com")
'https://anaconda.com'

 core

core

Code in conda.core is the core logic. It is strictly forbidden from having side effects.
No printing to stdout or stderr, no disk manipulation, no http requests.
All side effects should be implemented through conda.gateways. Objects defined in
conda.models should be heavily preferred for conda.core function/method arguments
and return values.

Conda modules importable from conda.core are

	conda._vendor

	conda.common

	conda.core

	conda.models

	conda.gateways

Conda modules strictly off limits for import within conda.core are

	conda.api

	conda.cli

	conda.client

 envs_manager

envs_manager

Tools for managing conda environments.

Functions

	get_user_environments_txt_file([userhome])

	

	register_env(location)

	

	unregister_env(location)

	

	list_all_known_prefixes()

	

	query_all_prefixes(spec)

	

	_clean_environments_txt(environments_txt_file[, ...])

	

	_rewrite_environments_txt(environments_txt_file, prefixes)

	

	
get_user_environments_txt_file(userhome='~')

	

	
register_env(location)

	

	
unregister_env(location)

	

	
list_all_known_prefixes()

	

	
query_all_prefixes(spec)

	

	
_clean_environments_txt(environments_txt_file, remove_location=None)

	

	
_rewrite_environments_txt(environments_txt_file, prefixes)

	

 index

index

Tools for fetching the current index.

Functions

	check_allowlist(channel_urls)

	

	get_index([channel_urls, prepend, platform, ...])

	Return the index of packages available on the channels

	fetch_index(channel_urls[, use_cache, index, repodata_fn])

	

	dist_str_in_index(index, dist_str)

	

	_supplement_index_with_prefix(index, prefix)

	

	_supplement_index_with_cache(index)

	

	_make_virtual_package(name[, version, build_string])

	

	_supplement_index_with_features(index[, features])

	

	_supplement_index_with_system(index)

	Loads and populates virtual package records from conda plugins

	get_archspec_name()

	

	calculate_channel_urls([channel_urls, prepend, ...])

	

	get_reduced_index(prefix, channels, subdirs, specs, ...)

	

Attributes

	LAST_CHANNEL_URLS

	

	
check_allowlist(channel_urls)

	

	
LAST_CHANNEL_URLS = []

	

	
get_index(channel_urls=(), prepend=True, platform=None, use_local=False, use_cache=False, unknown=None, prefix=None, repodata_fn=context.repodata_fns[-1])

	Return the index of packages available on the channels

If prepend=False, only the channels passed in as arguments are used.
If platform=None, then the current platform is used.
If prefix is supplied, then the packages installed in that prefix are added.

	
fetch_index(channel_urls, use_cache=False, index=None, repodata_fn=context.repodata_fns[-1])

	

	
dist_str_in_index(index, dist_str)

	

	
_supplement_index_with_prefix(index, prefix)

	

	
_supplement_index_with_cache(index)

	

	
_make_virtual_package(name, version=None, build_string=None)

	

	
_supplement_index_with_features(index, features=())

	

	
_supplement_index_with_system(index)

	Loads and populates virtual package records from conda plugins
and adds them to the provided index, unless there is a naming
conflict.

	
get_archspec_name()

	

	
calculate_channel_urls(channel_urls=(), prepend=True, platform=None, use_local=False)

	

	
get_reduced_index(prefix, channels, subdirs, specs, repodata_fn)

	

 initialize

initialize

Backend logic for conda init.

Sections in this module are

	top-level functions

	plan creators

	plan runners

	individual operations

	helper functions

The top-level functions compose and execute full plans.

A plan is created by composing various individual operations. The plan data structure is a
list of dicts, where each dict represents an individual operation. The dict contains two
keys--function and kwargs--where function is the name of the individual operation function
within this module.

Each individual operation must

	return a Result (i.e. NEEDS_SUDO, MODIFIED, or NO_CHANGE)

	have no side effects if context.dry_run is True

	be verbose and descriptive about the changes being made or proposed is context.verbose

The plan runner functions take the plan (list of dicts) as an argument, and then coordinate the
execution of each individual operation. The docstring for run_plan_elevated() has details on
how that strategy is implemented.

Classes

	Result

	

Functions

	install(conda_prefix)

	

	initialize(conda_prefix, shells, for_user, for_system, ...)

	

	initialize_dev(shell[, dev_env_prefix, conda_source_root])

	

	_initialize_dev_bash(prefix, env_vars, unset_env_vars)

	

	_initialize_dev_cmdexe(prefix, env_vars, unset_env_vars)

	

	make_install_plan(conda_prefix)

	

	make_initialize_plan(conda_prefix, shells, for_user, ...)

	Creates a plan for initializing conda in shells.

	run_plan(plan)

	

	run_plan_elevated(plan)

	The strategy of this function differs between unix and Windows. Both strategies use a

	run_plan_from_stdin()

	

	run_plan_from_temp_file(temp_path)

	

	print_plan_results(plan[, stream])

	

	make_entry_point(target_path, conda_prefix, module, func)

	

	make_entry_point_exe(target_path, conda_prefix)

	

	install_anaconda_prompt(target_path, conda_prefix, reverse)

	

	_install_file(target_path, file_content)

	

	install_conda_sh(target_path, conda_prefix)

	

	install_Scripts_activate_bat(target_path, conda_prefix)

	

	install_activate_bat(target_path, conda_prefix)

	

	install_deactivate_bat(target_path, conda_prefix)

	

	install_activate(target_path, conda_prefix)

	

	install_deactivate(target_path, conda_prefix)

	

	install_condabin_conda_bat(target_path, conda_prefix)

	

	install_library_bin_conda_bat(target_path, conda_prefix)

	

	install_condabin_conda_activate_bat(target_path, ...)

	

	install_condabin_rename_tmp_bat(target_path, conda_prefix)

	

	install_condabin_conda_auto_activate_bat(target_path, ...)

	

	install_condabin_hook_bat(target_path, conda_prefix)

	

	install_conda_fish(target_path, conda_prefix)

	

	install_conda_psm1(target_path, conda_prefix)

	

	install_conda_hook_ps1(target_path, conda_prefix)

	

	install_conda_xsh(target_path, conda_prefix)

	

	install_conda_csh(target_path, conda_prefix)

	

	_config_fish_content(conda_prefix)

	

	init_fish_user(target_path, conda_prefix, reverse)

	

	_config_xonsh_content(conda_prefix)

	

	init_xonsh_user(target_path, conda_prefix, reverse)

	

	_bashrc_content(conda_prefix, shell)

	

	init_sh_user(target_path, conda_prefix, shell[, reverse])

	

	init_sh_system(target_path, conda_prefix[, reverse])

	

	_read_windows_registry(target_path)

	

	_write_windows_registry(target_path, value_value, ...)

	

	init_cmd_exe_registry(target_path, conda_prefix[, reverse])

	

	init_long_path(target_path)

	

	_powershell_profile_content(conda_prefix)

	

	init_powershell_user(target_path, conda_prefix, reverse)

	

	remove_conda_in_sp_dir(target_path)

	

	make_conda_egg_link(target_path, conda_source_root)

	

	modify_easy_install_pth(target_path, conda_source_root)

	

	make_dev_egg_info_file(target_path)

	

	make_diff(old, new)

	

	_get_python_info(prefix)

	

Attributes

	CONDA_INITIALIZE_RE_BLOCK

	

	CONDA_INITIALIZE_PS_RE_BLOCK

	

	temp_path

	

	
CONDA_INITIALIZE_RE_BLOCK = '^# >>> conda initialize >>>(?:\\n|\\r\\n)([\\s\\S]*?)# <<< conda initialize <<<(?:\\n|\\r\\n)?'

	

	
CONDA_INITIALIZE_PS_RE_BLOCK = '^#region conda initialize(?:\\n|\\r\\n)([\\s\\S]*?)#endregion(?:\\n|\\r\\n)?'

	

	
class Result

	
	
NEEDS_SUDO = 'needs sudo'

	

	
MODIFIED = 'modified'

	

	
NO_CHANGE = 'no change'

	

	
install(conda_prefix)

	

	
initialize(conda_prefix, shells, for_user, for_system, anaconda_prompt, reverse=False)

	

	
initialize_dev(shell, dev_env_prefix=None, conda_source_root=None)

	

	
_initialize_dev_bash(prefix, env_vars, unset_env_vars)

	

	
_initialize_dev_cmdexe(prefix, env_vars, unset_env_vars)

	

	
make_install_plan(conda_prefix)

	

	
make_initialize_plan(conda_prefix, shells, for_user, for_system, anaconda_prompt, reverse=False)

	Creates a plan for initializing conda in shells.

Bash:
On Linux, when opening the terminal, .bashrc is sourced (because it is an interactive shell).
On macOS on the other hand, the .bash_profile gets sourced by default when executing it in
Terminal.app. Some other programs do the same on macOS so that's why we're initializing conda
in .bash_profile.
On Windows, there are multiple ways to open bash depending on how it was installed. Git Bash,
Cygwin, and MSYS2 all use .bash_profile by default.

PowerShell:
There's several places PowerShell can store its path, depending on if it's Windows PowerShell,
PowerShell Core on Windows, or PowerShell Core on macOS/Linux. The easiest way to resolve it
is to just ask different possible installations of PowerShell where their profiles are.

	
run_plan(plan)

	

	
run_plan_elevated(plan)

	The strategy of this function differs between unix and Windows. Both strategies use a
subprocess call, where the subprocess is run with elevated privileges. The executable
invoked with the subprocess is python -m conda.core.initialize, so see the
if __name__ == "__main__" at the bottom of this module.

For unix platforms, we convert the plan list to json, and then call this module with
sudo python -m conda.core.initialize while piping the plan json to stdin. We collect json
from stdout for the results of the plan execution with elevated privileges.

For Windows, we create a temporary file that holds the json content of the plan. The
subprocess reads the content of the file, modifies the content of the file with updated
execution status, and then closes the file. This process then reads the content of that file
for the individual operation execution results, and then deletes the file.

	
run_plan_from_stdin()

	

	
run_plan_from_temp_file(temp_path)

	

	
print_plan_results(plan, stream=None)

	

	
make_entry_point(target_path, conda_prefix, module, func)

	

	
make_entry_point_exe(target_path, conda_prefix)

	

	
install_anaconda_prompt(target_path, conda_prefix, reverse)

	

	
_install_file(target_path, file_content)

	

	
install_conda_sh(target_path, conda_prefix)

	

	
install_Scripts_activate_bat(target_path, conda_prefix)

	

	
install_activate_bat(target_path, conda_prefix)

	

	
install_deactivate_bat(target_path, conda_prefix)

	

	
install_activate(target_path, conda_prefix)

	

	
install_deactivate(target_path, conda_prefix)

	

	
install_condabin_conda_bat(target_path, conda_prefix)

	

	
install_library_bin_conda_bat(target_path, conda_prefix)

	

	
install_condabin_conda_activate_bat(target_path, conda_prefix)

	

	
install_condabin_rename_tmp_bat(target_path, conda_prefix)

	

	
install_condabin_conda_auto_activate_bat(target_path, conda_prefix)

	

	
install_condabin_hook_bat(target_path, conda_prefix)

	

	
install_conda_fish(target_path, conda_prefix)

	

	
install_conda_psm1(target_path, conda_prefix)

	

	
install_conda_hook_ps1(target_path, conda_prefix)

	

	
install_conda_xsh(target_path, conda_prefix)

	

	
install_conda_csh(target_path, conda_prefix)

	

	
_config_fish_content(conda_prefix)

	

	
init_fish_user(target_path, conda_prefix, reverse)

	

	
_config_xonsh_content(conda_prefix)

	

	
init_xonsh_user(target_path, conda_prefix, reverse)

	

	
_bashrc_content(conda_prefix, shell)

	

	
init_sh_user(target_path, conda_prefix, shell, reverse=False)

	

	
init_sh_system(target_path, conda_prefix, reverse=False)

	

	
_read_windows_registry(target_path)

	

	
_write_windows_registry(target_path, value_value, value_type)

	

	
init_cmd_exe_registry(target_path, conda_prefix, reverse=False)

	

	
init_long_path(target_path)

	

	
_powershell_profile_content(conda_prefix)

	

	
init_powershell_user(target_path, conda_prefix, reverse)

	

	
remove_conda_in_sp_dir(target_path)

	

	
make_conda_egg_link(target_path, conda_source_root)

	

	
modify_easy_install_pth(target_path, conda_source_root)

	

	
make_dev_egg_info_file(target_path)

	

	
make_diff(old, new)

	

	
_get_python_info(prefix)

	

	
temp_path

	

 link

link

Package installation implemented as a series of link/unlink transactions.

Classes

	PrefixSetup

	

	ActionGroup

	

	PrefixActionGroup

	

	ChangeReport

	

	UnlinkLinkTransaction

	

Functions

	determine_link_type(extracted_package_dir, target_prefix)

	

	make_unlink_actions(transaction_context, ...)

	

	match_specs_to_dists(packages_info_to_link, specs)

	

	run_script(→ bool)

	Call the post-link (or pre-unlink) script, returning True on success,

	messages(prefix)

	

	
determine_link_type(extracted_package_dir, target_prefix)

	

	
make_unlink_actions(transaction_context, target_prefix, prefix_record)

	

	
match_specs_to_dists(packages_info_to_link, specs)

	

	
class PrefixSetup

	Bases: NamedTuple

	
target_prefix: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
unlink_precs: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis]

	

	
link_precs: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis]

	

	
remove_specs: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.resolve.MatchSpec, Ellipsis]

	

	
update_specs: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.resolve.MatchSpec, Ellipsis]

	

	
neutered_specs: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.resolve.MatchSpec, Ellipsis]

	

	
class ActionGroup

	Bases: NamedTuple

	
type: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
pkg_data: conda.models.package_info.PackageInfo | None [https://docs.python.org/3/library/constants.html#None]

	

	
actions: Iterable[conda.core.path_actions._Action]

	

	
target_prefix: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class PrefixActionGroup

	Bases: NamedTuple

	
remove_menu_action_groups: Iterable[ActionGroup]

	

	
unlink_action_groups: Iterable[ActionGroup]

	

	
unregister_action_groups: Iterable[ActionGroup]

	

	
link_action_groups: Iterable[ActionGroup]

	

	
register_action_groups: Iterable[ActionGroup]

	

	
compile_action_groups: Iterable[ActionGroup]

	

	
make_menu_action_groups: Iterable[ActionGroup]

	

	
entry_point_action_groups: Iterable[ActionGroup]

	

	
prefix_record_groups: Iterable[ActionGroup]

	

	
class ChangeReport

	Bases: NamedTuple

	
prefix: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
specs_to_remove: Iterable[conda.resolve.MatchSpec]

	

	
specs_to_add: Iterable[conda.resolve.MatchSpec]

	

	
removed_precs: Iterable[conda.models.records.PackageRecord]

	

	
new_precs: Iterable[conda.models.records.PackageRecord]

	

	
updated_precs: Iterable[conda.models.records.PackageRecord]

	

	
downgraded_precs: Iterable[conda.models.records.PackageRecord]

	

	
superseded_precs: Iterable[conda.models.records.PackageRecord]

	

	
fetch_precs: Iterable[conda.models.records.PackageRecord]

	

	
class UnlinkLinkTransaction(*setups)

	
	
property nothing_to_do

	

	
download_and_extract()

	

	
prepare()

	

	
verify()

	

	
_verify_pre_link_message(all_link_groups)

	

	
execute()

	

	
_get_pfe()

	

	
classmethod _prepare(transaction_context, target_prefix, unlink_precs, link_precs, remove_specs, update_specs, neutered_specs)

	

	
static _verify_individual_level(prefix_action_group)

	

	
static _verify_prefix_level(target_prefix_AND_prefix_action_group_tuple)

	

	
static _verify_transaction_level(prefix_setups)

	

	
_verify(prefix_setups, prefix_action_groups)

	

	
_execute(all_action_groups)

	

	
static _execute_actions(axngroup)

	

	
static _execute_post_link_actions(axngroup)

	

	
static _reverse_actions(axngroup, reverse_from_idx=-1)

	

	
static _get_python_version(target_prefix, pcrecs_to_unlink, packages_info_to_link)

	

	
static _make_link_actions(transaction_context, package_info, target_prefix, requested_link_type, requested_spec)

	

	
static _make_entry_point_actions(transaction_context, package_info, target_prefix, requested_link_type, requested_spec, link_action_groups)

	

	
static _make_compile_actions(transaction_context, package_info, target_prefix, requested_link_type, requested_spec, link_action_groups)

	

	
_make_legacy_action_groups()

	

	
print_transaction_summary()

	

	
_change_report_str(change_report)

	

	
static _calculate_change_report(prefix, unlink_precs, link_precs, download_urls, specs_to_remove, specs_to_add)

	

	
run_script(prefix: str [https://docs.python.org/3/library/stdtypes.html#str], prec, action: str [https://docs.python.org/3/library/stdtypes.html#str] = 'post-link', env_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = None, activate: bool [https://docs.python.org/3/library/functions.html#bool] = False) → bool [https://docs.python.org/3/library/functions.html#bool]

	Call the post-link (or pre-unlink) script, returning True on success,
False on failure.

	
messages(prefix)

	

 package_cache

package_cache

Backport of conda.core.package_cache_data for conda-build.

	
ProgressiveFetchExtract

	

 package_cache_data

package_cache_data

Tools for managing the package cache (previously downloaded packages).

Classes

	PackageCacheType

	This metaclass does basic caching of PackageCache instance objects.

	PackageCacheData

	

	UrlsData

	

	ProgressiveFetchExtract

	

Functions

	do_cache_action(prec, cache_action, progress_bar[, ...])

	This function gets called from ProgressiveFetchExtract.execute.

	do_extract_action(prec, extract_action, progress_bar)

	This function gets called after do_cache_action completes.

	do_cleanup(actions)

	

	do_reverse(actions)

	

	done_callback(future, actions, progress_bar, exceptions)

	

	rm_fetched(dist)

	Checks to see if the requested package is in the cache; and if so, it removes both

	download(url, dst_path[, session, md5sum, urlstxt, ...])

	

Attributes

	FileNotFoundError

	

	THREADSAFE_EXTRACT

	

	EXTRACT_THREADS

	

	
FileNotFoundError

	

	
THREADSAFE_EXTRACT = False

	

	
EXTRACT_THREADS

	

	
class PackageCacheType

	Bases: type [https://docs.python.org/3/library/functions.html#type]

This metaclass does basic caching of PackageCache instance objects.

	
__call__(pkgs_dir: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path])

	Call self as a function.

	
class PackageCacheData(pkgs_dir)

	
	
property _package_cache_records

	

	
property is_writable

	

	
cache: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], PackageCacheData]

	

	
insert(package_cache_record)

	

	
load()

	

	
reload()

	

	
get(package_ref, default=NULL)

	

	
remove(package_ref, default=NULL)

	

	
query(package_ref_or_match_spec)

	

	
iter_records()

	

	
classmethod query_all(package_ref_or_match_spec, pkgs_dirs=None)

	

	
classmethod first_writable(pkgs_dirs=None)

	

	
classmethod writable_caches(pkgs_dirs=None)

	

	
classmethod read_only_caches(pkgs_dirs=None)

	

	
classmethod all_caches_writable_first(pkgs_dirs=None)

	

	
classmethod get_all_extracted_entries()

	

	
classmethod get_entry_to_link(package_ref)

	

	
classmethod tarball_file_in_cache(tarball_path, md5sum=None, exclude_caches=())

	

	
classmethod clear()

	

	
tarball_file_in_this_cache(tarball_path, md5sum=None)

	

	
_check_writable()

	

	
static _clean_tarball_path_and_get_md5sum(tarball_path, md5sum=None)

	

	
_scan_for_dist_no_channel(dist_str)

	

	
itervalues()

	

	
values()

	

	
__repr__()

	Return repr(self).

	
_make_single_record(package_filename)

	

	
static _dedupe_pkgs_dir_contents(pkgs_dir_contents)

	

	
class UrlsData(pkgs_dir)

	
	
__contains__(url)

	

	
__iter__()

	

	
add_url(url)

	

	
get_url(package_path)

	

	
class ProgressiveFetchExtract(link_prefs)

	
	
property cache_actions

	

	
property extract_actions

	

	
static make_actions_for_record(pref_or_spec)

	

	
prepare()

	

	
execute()

	Run each action in self.paired_actions. Each action in cache_actions
runs before its corresponding extract_actions.

	
static _progress_bar(prec_or_spec, position=None, leave=False) → conda.common.io.ProgressBar

	

	
__hash__()

	Return hash(self).

	
__eq__(other)

	Return self==value.

	
do_cache_action(prec, cache_action, progress_bar, download_total=1.0, *, cancelled)

	This function gets called from ProgressiveFetchExtract.execute.

	
do_extract_action(prec, extract_action, progress_bar)

	This function gets called after do_cache_action completes.

	
do_cleanup(actions)

	

	
do_reverse(actions)

	

	
done_callback(future: concurrent.futures.Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future], actions: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.core.path_actions.CacheUrlAction | conda.core.path_actions.ExtractPackageAction, Ellipsis], progress_bar: conda.common.io.ProgressBar, exceptions: list [https://docs.python.org/3/library/stdtypes.html#list][Exception [https://docs.python.org/3/library/exceptions.html#Exception]], finish: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	

	
rm_fetched(dist)

	Checks to see if the requested package is in the cache; and if so, it removes both
the package itself and its extracted contents.

	
download(url, dst_path, session=None, md5sum=None, urlstxt=False, retries=3)

	

 path_actions

path_actions

Atomic actions that make up a package installation or removal transaction.

Classes

	_Action

	

	PathAction

	

	MultiPathAction

	

	PrefixPathAction

	

	CreateInPrefixPathAction

	

	LinkPathAction

	

	PrefixReplaceLinkAction

	

	MakeMenuAction

	

	CreateNonadminAction

	

	CompileMultiPycAction

	

	AggregateCompileMultiPycAction

	Bunch up all of our compile actions, so that they all get carried out at once.

	CreatePythonEntryPointAction

	

	CreatePrefixRecordAction

	

	UpdateHistoryAction

	

	RegisterEnvironmentLocationAction

	

	RemoveFromPrefixPathAction

	

	UnlinkPathAction

	

	RemoveMenuAction

	

	RemoveLinkedPackageRecordAction

	

	UnregisterEnvironmentLocationAction

	

	CacheUrlAction

	

	ExtractPackageAction

	

Attributes

	FileNotFoundError

	

	_MENU_RE

	

	REPR_IGNORE_KWARGS

	

	
FileNotFoundError

	

	
_MENU_RE

	

	
REPR_IGNORE_KWARGS = ('transaction_context', 'package_info', 'hold_path')

	

	
class _Action

	
	
property verified

	

	
_verified = False

	

	
abstract verify()

	

	
abstract execute()

	

	
abstract reverse()

	

	
abstract cleanup()

	

	
__repr__()

	Return repr(self).

	
class PathAction

	Bases: _Action

	
abstract property target_full_path

	

	
class MultiPathAction

	Bases: _Action

	
abstract property target_full_paths

	

	
class PrefixPathAction(transaction_context, target_prefix, target_short_path)

	Bases: PathAction

	
property target_short_paths

	

	
property target_full_path

	

	
class CreateInPrefixPathAction(transaction_context, package_info, source_prefix, source_short_path, target_prefix, target_short_path)

	Bases: PrefixPathAction

	
property source_full_path

	

	
verify()

	

	
cleanup()

	

	
class LinkPathAction(transaction_context, package_info, extracted_package_dir, source_short_path, target_prefix, target_short_path, link_type, source_path_data)

	Bases: CreateInPrefixPathAction

	
classmethod create_file_link_actions(transaction_context, package_info, target_prefix, requested_link_type)

	

	
classmethod create_directory_actions(transaction_context, package_info, target_prefix, requested_link_type, file_link_actions)

	

	
classmethod create_python_entry_point_windows_exe_action(transaction_context, package_info, target_prefix, requested_link_type, entry_point_def)

	

	
verify()

	

	
execute()

	

	
reverse()

	

	
class PrefixReplaceLinkAction(transaction_context, package_info, extracted_package_dir, source_short_path, target_prefix, target_short_path, link_type, prefix_placeholder, file_mode, source_path_data)

	Bases: LinkPathAction

	
verify()

	

	
execute()

	

	
class MakeMenuAction(transaction_context, package_info, target_prefix, target_short_path)

	Bases: CreateInPrefixPathAction

	
classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type)

	

	
execute()

	

	
reverse()

	

	
class CreateNonadminAction(transaction_context, package_info, target_prefix)

	Bases: CreateInPrefixPathAction

	
classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type)

	

	
execute()

	

	
reverse()

	

	
class CompileMultiPycAction(transaction_context, package_info, target_prefix, source_short_paths, target_short_paths)

	Bases: MultiPathAction

	
property target_full_paths

	

	
property source_full_paths

	

	
classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type, file_link_actions)

	

	
verify()

	

	
cleanup()

	

	
execute()

	

	
reverse()

	

	
class AggregateCompileMultiPycAction(*individuals, **kw)

	Bases: CompileMultiPycAction

Bunch up all of our compile actions, so that they all get carried out at once.
This avoids clobbering and is faster when we have several individual packages requiring
compilation.

	
class CreatePythonEntryPointAction(transaction_context, package_info, target_prefix, target_short_path, module, func)

	Bases: CreateInPrefixPathAction

	
classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type)

	

	
execute()

	

	
reverse()

	

	
class CreatePrefixRecordAction(transaction_context, package_info, target_prefix, target_short_path, requested_link_type, requested_spec, all_link_path_actions)

	Bases: CreateInPrefixPathAction

	
classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type, requested_spec, all_link_path_actions)

	

	
execute()

	

	
reverse()

	

	
class UpdateHistoryAction(transaction_context, target_prefix, target_short_path, remove_specs, update_specs, neutered_specs)

	Bases: CreateInPrefixPathAction

	
classmethod create_actions(transaction_context, target_prefix, remove_specs, update_specs, neutered_specs)

	

	
execute()

	

	
reverse()

	

	
cleanup()

	

	
class RegisterEnvironmentLocationAction(transaction_context, target_prefix)

	Bases: PathAction

	
abstract property target_full_path

	

	
verify()

	

	
execute()

	

	
reverse()

	

	
cleanup()

	

	
class RemoveFromPrefixPathAction(transaction_context, linked_package_data, target_prefix, target_short_path)

	Bases: PrefixPathAction

	
verify()

	

	
class UnlinkPathAction(transaction_context, linked_package_data, target_prefix, target_short_path, link_type=LinkType.hardlink)

	Bases: RemoveFromPrefixPathAction

	
execute()

	

	
reverse()

	

	
cleanup()

	

	
class RemoveMenuAction(transaction_context, linked_package_data, target_prefix, target_short_path)

	Bases: RemoveFromPrefixPathAction

	
classmethod create_actions(transaction_context, linked_package_data, target_prefix)

	

	
execute()

	

	
reverse()

	

	
cleanup()

	

	
class RemoveLinkedPackageRecordAction(transaction_context, linked_package_data, target_prefix, target_short_path)

	Bases: UnlinkPathAction

	
execute()

	

	
reverse()

	

	
class UnregisterEnvironmentLocationAction(transaction_context, target_prefix)

	Bases: PathAction

	
abstract property target_full_path

	

	
verify()

	

	
execute()

	

	
reverse()

	

	
cleanup()

	

	
class CacheUrlAction(url, target_pkgs_dir, target_package_basename, sha256=None, size=None, md5=None)

	Bases: PathAction

	
property target_full_path

	

	
verify()

	

	
execute(progress_update_callback=None)

	

	
_execute_local(source_path, target_package_cache, progress_update_callback=None)

	

	
_execute_channel(target_package_cache, progress_update_callback=None)

	

	
reverse()

	

	
cleanup()

	

	
__str__()

	Return str(self).

	
class ExtractPackageAction(source_full_path, target_pkgs_dir, target_extracted_dirname, record_or_spec, sha256, size, md5)

	Bases: PathAction

	
property target_full_path

	

	
verify()

	

	
execute(progress_update_callback=None)

	

	
reverse()

	

	
cleanup()

	

	
__str__()

	Return str(self).

 portability

portability

Tools for cross-OS portability.

Functions

	_subdir_is_win(→ bool)

	

	update_prefix(path, new_prefix[, placeholder, mode, ...])

	

	replace_prefix(→ bytes)

	Replaces placeholder text with the new_prefix provided. The mode provided can

	binary_replace(→ bytes)

	Perform a binary replacement of data, where the placeholder search is

	has_pyzzer_entry_point(data)

	

	replace_pyzzer_entry_point_shebang(all_data, ...)

	Code adapted from pyzzer. This is meant to deal with entry point exe's created by distlib,

	replace_long_shebang(mode, data)

	

	generate_shebang_for_entry_point(executable[, ...])

	This function can be used to generate a shebang line for Python entry points.

Attributes

	SHEBANG_REGEX

	

	MAX_SHEBANG_LENGTH

	

	POPULAR_ENCODINGS

	

	
SHEBANG_REGEX = b'^(#!(?:[]*)(/(?:\\\\ |[^ \\n\\r\\t])*)(.*))$'

	

	
MAX_SHEBANG_LENGTH

	

	
POPULAR_ENCODINGS = ('utf-8', 'utf-16-le', 'utf-16-be', 'utf-32-le', 'utf-32-be')

	

	
exception _PaddingError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
_subdir_is_win(subdir: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	

	
update_prefix(path, new_prefix, placeholder=PREFIX_PLACEHOLDER, mode=FileMode.text, subdir=context.subdir)

	

	
replace_prefix(mode: conda.models.enums.FileMode, data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], placeholder: str [https://docs.python.org/3/library/stdtypes.html#str], new_prefix: str [https://docs.python.org/3/library/stdtypes.html#str], subdir: str [https://docs.python.org/3/library/stdtypes.html#str] = 'noarch') → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Replaces placeholder text with the new_prefix provided. The mode provided can
either be text or binary.

We use the POPULAR_ENCODINGS module level constant defined above to make several
passes at replacing the placeholder. We do this to account for as many encodings as
possible. If this causes any performance problems in the future, it could potentially
be removed (i.e. just using the most popular "utf-8" encoding").

More information/discussion available here: https://github.com/conda/conda/pull/9946

	
binary_replace(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], search: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], replacement: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], encoding: str [https://docs.python.org/3/library/stdtypes.html#str] = 'utf-8', subdir: str [https://docs.python.org/3/library/stdtypes.html#str] = 'noarch') → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Perform a binary replacement of data, where the placeholder search is
replaced with replacement and the remaining string is padded with null characters.
All input arguments are expected to be bytes objects.

	Parameters:

	
	data -- The bytes object that will be searched and replaced

	search -- The bytes object to find

	replacement -- The bytes object that will replace search

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The encoding of the expected string in the binary.

	
has_pyzzer_entry_point(data)

	

	
replace_pyzzer_entry_point_shebang(all_data, placeholder, new_prefix)

	Code adapted from pyzzer. This is meant to deal with entry point exe's created by distlib,
which consist of a launcher, then a shebang, then a zip archive of the entry point code to run.
We need to change the shebang.
https://bitbucket.org/vinay.sajip/pyzzer/src/5d5740cb04308f067d5844a56fbe91e7a27efccc/pyzzer/__init__.py?at=default&fileviewer=file-view-default#__init__.py-112 # NOQA

	
replace_long_shebang(mode, data)

	

	
generate_shebang_for_entry_point(executable, with_usr_bin_env=False)

	This function can be used to generate a shebang line for Python entry points.

Use cases:
- At install/link time, to generate the noarch: python entry points.
- conda init uses it to create its own entry point during conda-build

 prefix_data

prefix_data

Tools for managing the packages installed within an environment.

Classes

	PrefixDataType

	Basic caching of PrefixData instance objects.

	PrefixData

	

Functions

	get_conda_anchor_files_and_records(...)

	Return the anchor files for the conda records of python packages.

	get_python_version_for_prefix(prefix)

	

	delete_prefix_from_linked_data(→ bool)

	Here, path may be a complete prefix or a dist inside a prefix

	
class PrefixDataType

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Basic caching of PrefixData instance objects.

	
__call__(prefix_path: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], pip_interop_enabled: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Call self as a function.

	
class PrefixData(prefix_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], pip_interop_enabled: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None)

	
	
property _prefix_records

	

	
property is_writable

	

	
property _python_pkg_record

	Return the prefix record for the package python.

	
cache: dict [https://docs.python.org/3/library/stdtypes.html#dict][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], PrefixData]

	

	
load()

	

	
reload()

	

	
_get_json_fn(prefix_record)

	

	
insert(prefix_record)

	

	
remove(package_name)

	

	
get(package_name, default=NULL)

	

	
iter_records()

	

	
iter_records_sorted()

	

	
all_subdir_urls()

	

	
query(package_ref_or_match_spec)

	

	
_load_single_record(prefix_record_json_path)

	

	
_has_python()

	

	
_load_site_packages()

	Load non-conda-installed python packages in the site-packages of the prefix.

Python packages not handled by conda are installed via other means,
like using pip or using python setup.py develop for local development.

Packages found that are not handled by conda are converted into a
prefix record and handled in memory.

Packages clobbering conda packages (i.e. the conda-meta record) are
removed from the in memory representation.

	
_get_environment_state_file()

	

	
_write_environment_state_file(state)

	

	
get_environment_env_vars()

	

	
set_environment_env_vars(env_vars)

	

	
unset_environment_env_vars(env_vars)

	

	
get_conda_anchor_files_and_records(site_packages_short_path, python_records)

	Return the anchor files for the conda records of python packages.

	
get_python_version_for_prefix(prefix)

	

	
delete_prefix_from_linked_data(path: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Here, path may be a complete prefix or a dist inside a prefix

 solve

solve

The classic solver implementation.

Classes

	Solver

	A high-level API to conda's solving logic. Three public methods are provided to access a

	SolverStateContainer

	

Functions

	get_pinned_specs(prefix)

	Find pinned specs from file and return a tuple of MatchSpec.

	diff_for_unlink_link_precs([force_reinstall])

	

	
class Solver(prefix: str [https://docs.python.org/3/library/stdtypes.html#str], channels: Iterable[conda.models.channel.Channel], subdirs: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]] = (), specs_to_add: Iterable[conda.models.match_spec.MatchSpec] = (), specs_to_remove: Iterable[conda.models.match_spec.MatchSpec] = (), repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str] = REPODATA_FN, command=NULL)

	A high-level API to conda's solving logic. Three public methods are provided to access a
solution in various forms.

	solve_final_state()

	solve_for_diff()

	solve_for_transaction()

	
solve_for_transaction(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL, force_remove=NULL, force_reinstall=NULL, should_retry_solve=False)

	Gives an UnlinkLinkTransaction instance that can be used to execute the solution
on an environment.

	Parameters:

	
	deps_modifier (DepsModifier) -- See solve_final_state().

	prune (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	ignore_pinned (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	force_remove (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	force_reinstall (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_for_diff().

	should_retry_solve (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	Return type:

	UnlinkLinkTransaction

	
solve_for_diff(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL, force_remove=NULL, force_reinstall=NULL, should_retry_solve=False) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis]]

	Gives the package references to remove from an environment, followed by
the package references to add to an environment.

	Parameters:

	
	deps_modifier (DepsModifier) -- See solve_final_state().

	prune (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	ignore_pinned (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	force_remove (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	force_reinstall (bool [https://docs.python.org/3/library/functions.html#bool]) --
	For requested specs_to_add that are already satisfied in the environment,
	instructs the solver to remove the package and spec from the environment,
and then add it back--possibly with the exact package instance modified,
depending on the spec exactness.

	should_retry_solve (bool [https://docs.python.org/3/library/functions.html#bool]) -- See solve_final_state().

	Returns:

	A two-tuple of PackageRef sequences. The first is the group of packages to
remove from the environment, in sorted dependency order from leaves to roots.
The second is the group of packages to add to the environment, in sorted
dependency order from roots to leaves.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][PackageRef], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][PackageRef]

	
solve_final_state(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL, force_remove=NULL, should_retry_solve=False)

	Gives the final, solved state of the environment.

	Parameters:

	
	update_modifier (UpdateModifier) -- An optional flag directing how updates are handled regarding packages already
existing in the environment.

	deps_modifier (DepsModifier) -- An optional flag indicating special solver handling for dependencies. The
default solver behavior is to be as conservative as possible with dependency
updates (in the case the dependency already exists in the environment), while
still ensuring all dependencies are satisfied. Options include
* NO_DEPS
* ONLY_DEPS
* UPDATE_DEPS
* UPDATE_DEPS_ONLY_DEPS
* FREEZE_INSTALLED

	prune (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, the solution will not contain packages that were
previously brought into the environment as dependencies but are no longer
required as dependencies and are not user-requested.

	ignore_pinned (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, the solution will ignore pinned package configuration
for the prefix.

	force_remove (bool [https://docs.python.org/3/library/functions.html#bool]) -- Forces removal of a package without removing packages that depend on it.

	should_retry_solve (bool [https://docs.python.org/3/library/functions.html#bool]) -- Indicates whether this solve will be retried. This allows us to control
whether to call find_conflicts (slow) in ssc.r.solve

	Returns:

	In sorted dependency order from roots to leaves, the package references for
the solved state of the environment.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][PackageRef]

	
determine_constricting_specs(spec, solution_precs)

	

	
get_request_package_in_solution(solution_precs, specs_map)

	

	
get_constrained_packages(pre_packages, post_packages, index_keys)

	

	
_collect_all_metadata(ssc)

	

	
_remove_specs(ssc)

	

	
_find_inconsistent_packages(ssc)

	

	
_package_has_updates(ssc, spec, installed_pool)

	

	
_should_freeze(ssc, target_prec, conflict_specs, explicit_pool, installed_pool)

	

	
_add_specs(ssc)

	

	
_run_sat(ssc)

	

	
_post_sat_handling(ssc)

	

	
_notify_conda_outdated(link_precs)

	

	
_prepare(prepared_specs)

	

	
class SolverStateContainer(prefix, update_modifier, deps_modifier, prune, ignore_pinned, force_remove, should_retry_solve)

	
	
prefix_data()

	

	
specs_from_history_map()

	

	
track_features_specs()

	

	
pinned_specs()

	

	
set_repository_metadata(index, r)

	

	
_init_solution_precs()

	

	
working_state_reset()

	

	
get_pinned_specs(prefix)

	Find pinned specs from file and return a tuple of MatchSpec.

	
diff_for_unlink_link_precs(prefix, final_precs, specs_to_add=(), force_reinstall=NULL) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis]]

	

 subdir_data

subdir_data

Tools for managing a subdir's repodata.json.

Classes

	SubdirDataType

	

	PackageRecordList

	Lazily convert dicts to PackageRecord.

	SubdirData

	

Functions

	get_cache_control_max_age(→ int)

	

	make_feature_record(feature_name)

	

Attributes

	REPODATA_PICKLE_VERSION

	

	MAX_REPODATA_VERSION

	

	REPODATA_HEADER_RE

	

	
REPODATA_PICKLE_VERSION = 30

	

	
MAX_REPODATA_VERSION = 2

	

	
REPODATA_HEADER_RE = b'"(_etag|_mod|_cache_control)":[]?"(.*?[^\\\\])"[,}\\s]'

	

	
get_cache_control_max_age(cache_control_value: str [https://docs.python.org/3/library/stdtypes.html#str]) → int [https://docs.python.org/3/library/functions.html#int]

	

	
class SubdirDataType

	Bases: type [https://docs.python.org/3/library/functions.html#type]

	
__call__(channel, repodata_fn=REPODATA_FN)

	Call self as a function.

	
class PackageRecordList(initlist=None)

	Bases: collections.UserList [https://docs.python.org/3/library/collections.html#collections.UserList]

Lazily convert dicts to PackageRecord.

	
__getitem__(i)

	

	
class SubdirData(channel, repodata_fn=REPODATA_FN, RepoInterface=CondaRepoInterface)

	
	
property _repo: conda.gateways.repodata.RepoInterface

	Changes as we mutate self.repodata_fn.

	
property repo_cache: conda.gateways.repodata.RepodataCache

	

	
property repo_fetch: conda.gateways.repodata.RepodataFetch

	Object to get repodata. Not cached since self.repodata_fn is mutable.

Replaces self._repo & self.repo_cache.

	
property cache_path_base

	

	
property url_w_repodata_fn

	

	
property cache_path_json

	

	
property cache_path_state

	Out-of-band etag and other state needed by the RepoInterface.

	
property cache_path_pickle

	

	
cache

	

	
classmethod clear_cached_local_channel_data(exclude_file=True)

	

	
static query_all(package_ref_or_match_spec, channels=None, subdirs=None, repodata_fn=REPODATA_FN)

	

	
query(package_ref_or_match_spec)

	

	
reload()

	

	
load()

	

	
iter_records()

	

	
_iter_records_by_name(name)

	

	
_load()

	Try to load repodata. If e.g. we are downloading
current_repodata.json, fall back to repodata.json when the former is
unavailable.

	
_pickle_me()

	

	
_read_local_repodata(state: conda.gateways.repodata.RepodataState)

	

	
_pickle_valid_checks(pickled_state, mod, etag)

	Throw away the pickle if these don't all match.

	
_read_pickled(state: conda.gateways.repodata.RepodataState)

	

	
_process_raw_repodata_str(raw_repodata_str, state: conda.gateways.repodata.RepodataState | None [https://docs.python.org/3/library/constants.html#None] = None)

	State contains information that was previously in-band in raw_repodata_str.

	
_process_raw_repodata(repodata: dict [https://docs.python.org/3/library/stdtypes.html#dict], state: conda.gateways.repodata.RepodataState | None [https://docs.python.org/3/library/constants.html#None] = None)

	

	
_get_base_url(repodata: dict [https://docs.python.org/3/library/stdtypes.html#dict], with_credentials: bool [https://docs.python.org/3/library/functions.html#bool] = True) → str [https://docs.python.org/3/library/stdtypes.html#str]

	In repodata_version=1, .tar.bz2 and .conda artifacts are assumed to
be colocated next to repodata.json, in the same server and directory.

In repodata_version=2, repodata.json files can define a 'base_url' field
to override that default assumption. See CEP-15 for more details.

This method deals with both cases and returns the appropriate value.

	
make_feature_record(feature_name)

	

 deprecations

deprecations

Tools to aid in deprecating code.

Classes

	DeprecationHandler

	

Attributes

	T

	

	deprecated

	

	
T

	

	
exception DeprecatedError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Unspecified run-time error.

	
class DeprecationHandler(version: str [https://docs.python.org/3/library/stdtypes.html#str])

	
	
_version: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

	
_version_tuple: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], Ellipsis] | None [https://docs.python.org/3/library/constants.html#None]

	

	
_version_object: packaging.version.Version | None [https://docs.python.org/3/library/constants.html#None]

	

	
static _get_version_tuple(version: str [https://docs.python.org/3/library/stdtypes.html#str]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], Ellipsis] | None [https://docs.python.org/3/library/constants.html#None]

	Return version as non-empty tuple of ints if possible, else None.

	Parameters:

	version -- Version string to parse.

	
_version_less_than(version: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Test whether own version is less than the given version.

	Parameters:

	version -- Version string to compare against.

	
__call__(deprecate_in: str [https://docs.python.org/3/library/stdtypes.html#str], remove_in: str [https://docs.python.org/3/library/stdtypes.html#str], *, addendum: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, stack: int [https://docs.python.org/3/library/functions.html#int] = 0) → Callable[[Callable[P, T]], Callable[P, T]]

	Deprecation decorator for functions, methods, & classes.

	Parameters:

	
	deprecate_in -- Version in which code will be marked as deprecated.

	remove_in -- Version in which code is expected to be removed.

	addendum -- Optional additional messaging. Useful to indicate what to do instead.

	stack -- Optional stacklevel increment.

	
argument(deprecate_in: str [https://docs.python.org/3/library/stdtypes.html#str], remove_in: str [https://docs.python.org/3/library/stdtypes.html#str], argument: str [https://docs.python.org/3/library/stdtypes.html#str], *, rename: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, addendum: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, stack: int [https://docs.python.org/3/library/functions.html#int] = 0) → Callable[[Callable[P, T]], Callable[P, T]]

	Deprecation decorator for keyword arguments.

	Parameters:

	
	deprecate_in -- Version in which code will be marked as deprecated.

	remove_in -- Version in which code is expected to be removed.

	argument -- The argument to deprecate.

	rename -- Optional new argument name.

	addendum -- Optional additional messaging. Useful to indicate what to do instead.

	stack -- Optional stacklevel increment.

	
action(deprecate_in: str [https://docs.python.org/3/library/stdtypes.html#str], remove_in: str [https://docs.python.org/3/library/stdtypes.html#str], action: ActionType, *, addendum: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, stack: int [https://docs.python.org/3/library/functions.html#int] = 0) → ActionType

	Wraps any argparse.Action to issue a deprecation warning.

	
module(deprecate_in: str [https://docs.python.org/3/library/stdtypes.html#str], remove_in: str [https://docs.python.org/3/library/stdtypes.html#str], *, addendum: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, stack: int [https://docs.python.org/3/library/functions.html#int] = 0) → None [https://docs.python.org/3/library/constants.html#None]

	Deprecation function for modules.

	Parameters:

	
	deprecate_in -- Version in which code will be marked as deprecated.

	remove_in -- Version in which code is expected to be removed.

	addendum -- Optional additional messaging. Useful to indicate what to do instead.

	stack -- Optional stacklevel increment.

	
constant(deprecate_in: str [https://docs.python.org/3/library/stdtypes.html#str], remove_in: str [https://docs.python.org/3/library/stdtypes.html#str], constant: str [https://docs.python.org/3/library/stdtypes.html#str], value: Any, *, addendum: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, stack: int [https://docs.python.org/3/library/functions.html#int] = 0) → None [https://docs.python.org/3/library/constants.html#None]

	Deprecation function for module constant/global.

	Parameters:

	
	deprecate_in -- Version in which code will be marked as deprecated.

	remove_in -- Version in which code is expected to be removed.

	constant --

	value --

	addendum -- Optional additional messaging. Useful to indicate what to do instead.

	stack -- Optional stacklevel increment.

	
topic(deprecate_in: str [https://docs.python.org/3/library/stdtypes.html#str], remove_in: str [https://docs.python.org/3/library/stdtypes.html#str], *, topic: str [https://docs.python.org/3/library/stdtypes.html#str], addendum: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, stack: int [https://docs.python.org/3/library/functions.html#int] = 0) → None [https://docs.python.org/3/library/constants.html#None]

	Deprecation function for a topic.

	Parameters:

	
	deprecate_in -- Version in which code will be marked as deprecated.

	remove_in -- Version in which code is expected to be removed.

	topic -- The topic being deprecated.

	addendum -- Optional additional messaging. Useful to indicate what to do instead.

	stack -- Optional stacklevel increment.

	
_get_module(stack: int [https://docs.python.org/3/library/functions.html#int]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][types.ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Detect the module from which we are being called.

	Parameters:

	stack -- The stacklevel increment.

	Returns:

	The module and module name.

	
_generate_message(deprecate_in: str [https://docs.python.org/3/library/stdtypes.html#str], remove_in: str [https://docs.python.org/3/library/stdtypes.html#str], prefix: str [https://docs.python.org/3/library/stdtypes.html#str], addendum: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None], *, deprecation_type: type [https://docs.python.org/3/library/functions.html#type][Warning [https://docs.python.org/3/library/exceptions.html#Warning]] = DeprecationWarning) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][type [https://docs.python.org/3/library/functions.html#type][Warning [https://docs.python.org/3/library/exceptions.html#Warning]] | None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Generate the standardized deprecation message and determine whether the
deprecation is pending, active, or past.

	Parameters:

	
	deprecate_in -- Version in which code will be marked as deprecated.

	remove_in -- Version in which code is expected to be removed.

	prefix -- The message prefix, usually the function name.

	addendum -- Additional messaging. Useful to indicate what to do instead.

	deprecation_type -- The warning type to use for active deprecations.

	Returns:

	The warning category (if applicable) and the message.

	
deprecated

	

 env

env

 env

env

Environment object describing the conda environment.yaml file.

Classes

	Dependencies

	A dict subclass that parses the raw dependencies into a conda and pip list

	Environment

	A class representing an environment.yaml file

Functions

	validate_keys(data, kwargs)

	Check for unknown keys, remove them and print a warning

	from_environment(name, prefix[, no_builds, ...])

	Get Environment object from prefix

	from_yaml(yamlstr, **kwargs)

	Load and return a Environment from a given yaml string

	_expand_channels(data)

	Expands Environment variables for the channels found in the yaml data

	from_file(filename)

	Load and return an Environment from a given file

	get_filename(filename)

	Expand filename if local path or return the url

	print_result(args, prefix, result)

	Print the result of an install operation

Attributes

	VALID_KEYS

	

	
VALID_KEYS = ('name', 'dependencies', 'prefix', 'channels', 'variables')

	

	
validate_keys(data, kwargs)

	Check for unknown keys, remove them and print a warning

	
from_environment(name, prefix, no_builds=False, ignore_channels=False, from_history=False)

	
Get Environment object from prefix

	Parameters:

	
	name -- The name of environment

	prefix -- The path of prefix

	no_builds -- Whether has build requirement

	ignore_channels -- whether ignore_channels

	from_history -- Whether environment file should be based on explicit specs in history

Returns: Environment object

	
from_yaml(yamlstr, **kwargs)

	Load and return a Environment from a given yaml string

	
_expand_channels(data)

	Expands Environment variables for the channels found in the yaml data

	
from_file(filename)

	Load and return an Environment from a given file

	
class Dependencies(raw, *args, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

A dict subclass that parses the raw dependencies into a conda and pip list

	
parse()

	Parse the raw dependencies into a conda and pip list

	
add(package_name)

	Add a package to the Environment

	
class Environment(name=None, filename=None, channels=None, dependencies=None, prefix=None, variables=None)

	A class representing an environment.yaml file

	
add_channels(channels)

	Add channels to the Environment

	
remove_channels()

	Remove all channels from the Environment

	
to_dict(stream=None)

	Convert information related to the Environment into a dictionary

	
to_yaml(stream=None)

	Convert information related to the Environment into a yaml string

	
save()

	Save the Environment data to a yaml file

	
get_filename(filename)

	Expand filename if local path or return the url

	
print_result(args, prefix, result)

	Print the result of an install operation

 installers

installers

 base

base

Dynamic installer loading.

Functions

	get_installer(name)

	Gets the installer for the given environment.

	
get_installer(name)

	
Gets the installer for the given environment.

Raises: InvalidInstaller if unable to load installer

 conda

conda

Conda-flavored installer.

Functions

	solve(prefix, specs, args, env, *, **kwargs)

	Solve the environment

	dry_run(specs, args, env, *_, **kwargs)

	Do a dry run of the environment solve

	install(prefix, specs, args, env, *_, **kwargs)

	Install packages into an environment

	
solve(prefix, specs, args, env, *, **kwargs)

	Solve the environment

	
dry_run(specs, args, env, *_, **kwargs)

	Do a dry run of the environment solve

	
install(prefix, specs, args, env, *_, **kwargs)

	Install packages into an environment

 pip

pip

Pip-flavored installer.

Functions

	_pip_install_via_requirements(prefix, specs, args, *_, ...)

	Installs the pip dependencies in specs using a temporary pip requirements file.

	install(*args, **kwargs)

	

	
_pip_install_via_requirements(prefix, specs, args, *_, **kwargs)

	Installs the pip dependencies in specs using a temporary pip requirements file.

	Parameters:

	
	prefix (string) -- The path to the python and pip executables.

	specs (iterable of strings) -- Each element should be a valid pip dependency.
See: https://pip.pypa.io/en/stable/user_guide/#requirements-files

https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format

	
install(*args, **kwargs)

	

 pip_util

pip_util

Functions related to core conda functionality that relates to pip

NOTE: This modules used to in conda, as conda/pip.py

Functions

	pip_subprocess(args, prefix, cwd)

	Run pip in a subprocess

	get_pip_installed_packages(stdout)

	Return the list of pip packages installed based on the command output

	
pip_subprocess(args, prefix, cwd)

	Run pip in a subprocess

	
get_pip_installed_packages(stdout)

	Return the list of pip packages installed based on the command output

 specs

specs

Classes

	BinstarSpec

	spec = BinstarSpec('darth/deathstar')

	RequirementsSpec

	Reads dependencies from a requirements.txt file

	YamlFileSpec

	

Functions

	get_spec_class_from_file(→ FileSpecTypes)

	Determine spec class to use from the provided filename

	detect(→ SpecTypes)

	Return the appropriate spec type to use.

Attributes

	CONDA_SESSION_SCHEMES

	

	FileSpecTypes

	

	SpecTypes

	

	
exception EnvironmentFileExtensionNotValid(filename, *args, **kwargs)

	Bases: CondaEnvException

Common base class for all non-exit exceptions.

	
exception EnvironmentFileNotFound(filename, *args, **kwargs)

	Bases: CondaEnvException

Common base class for all non-exit exceptions.

	
exception SpecNotFound(msg, *args, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
CONDA_SESSION_SCHEMES

	

	
class BinstarSpec(name=None)

	spec = BinstarSpec('darth/deathstar')
spec.can_handle() # => True / False
spec.environment # => YAML string
spec.msg # => Error messages
:raises: EnvironmentFileNotDownloaded

	
msg

	

	
can_handle() → bool [https://docs.python.org/3/library/functions.html#bool]

	Validates loader can process environment definition.
:return: True or False

	
valid_name() → bool [https://docs.python.org/3/library/functions.html#bool]

	Validates name
:return: True or False

	
valid_package() → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if package has an environment file
:return: True or False

	
binstar() → types.ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType]

	

	
file_data() → list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	

	
environment() → conda.env.env.Environment

	

	
package()

	

	
username() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
packagename() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class RequirementsSpec(filename=None, name=None, **kwargs)

	Reads dependencies from a requirements.txt file
and returns an Environment object from it.

	
property environment

	

	
msg

	

	
extensions

	

	
_valid_file()

	

	
_valid_name()

	

	
can_handle()

	

	
class YamlFileSpec(filename=None, **kwargs)

	
	
property environment

	

	
_environment

	

	
extensions

	

	
can_handle()

	

	
FileSpecTypes

	

	
get_spec_class_from_file(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → FileSpecTypes

	Determine spec class to use from the provided filename

	Raises:

	EnvironmentFileExtensionNotValid | EnvironmentFileNotFound --

	
SpecTypes

	

	
detect(name: str [https://docs.python.org/3/library/stdtypes.html#str] = None, filename: str [https://docs.python.org/3/library/stdtypes.html#str] = None, directory: str [https://docs.python.org/3/library/stdtypes.html#str] = None, remote_definition: str [https://docs.python.org/3/library/stdtypes.html#str] = None) → SpecTypes

	Return the appropriate spec type to use.

	Raises:

	
	SpecNotFound -- Raised if no suitable spec class could be found given the input

	EnvironmentFileExtensionNotValid | EnvironmentFileNotFound --

 binstar

binstar

Define binstar spec.

Classes

	BinstarSpec

	spec = BinstarSpec('darth/deathstar')

Attributes

	ENVIRONMENT_TYPE

	

	
ENVIRONMENT_TYPE = 'env'

	

	
class BinstarSpec(name=None)

	spec = BinstarSpec('darth/deathstar')
spec.can_handle() # => True / False
spec.environment # => YAML string
spec.msg # => Error messages
:raises: EnvironmentFileNotDownloaded

	
msg

	

	
can_handle() → bool [https://docs.python.org/3/library/functions.html#bool]

	Validates loader can process environment definition.
:return: True or False

	
valid_name() → bool [https://docs.python.org/3/library/functions.html#bool]

	Validates name
:return: True or False

	
valid_package() → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if package has an environment file
:return: True or False

	
binstar() → types.ModuleType [https://docs.python.org/3/library/types.html#types.ModuleType]

	

	
file_data() → list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	

	
environment() → conda.env.env.Environment

	

	
package()

	

	
username() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
packagename() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

 requirements

requirements

Define requirements.txt spec.

Classes

	RequirementsSpec

	Reads dependencies from a requirements.txt file

	
class RequirementsSpec(filename=None, name=None, **kwargs)

	Reads dependencies from a requirements.txt file
and returns an Environment object from it.

	
property environment

	

	
msg

	

	
extensions

	

	
_valid_file()

	

	
_valid_name()

	

	
can_handle()

	

 yaml_file

yaml_file

Define YAML spec.

Classes

	YamlFileSpec

	

	
class YamlFileSpec(filename=None, **kwargs)

	
	
property environment

	

	
_environment

	

	
extensions

	

	
can_handle()

	

 exception_handler

exception_handler

Error handling and error reporting.

Classes

	ExceptionHandler

	

Functions

	conda_exception_handler(func, *args, **kwargs)

	

	
class ExceptionHandler

	
	
property http_timeout

	

	
property user_agent

	

	
property error_upload_url

	

	
property _isatty

	

	
__call__(func, *args, **kwargs)

	

	
write_out(*content)

	

	
handle_exception(exc_val, exc_tb)

	

	
handle_application_exception(exc_val, exc_tb)

	

	
_print_conda_exception(exc_val, exc_tb)

	

	
handle_unexpected_exception(exc_val, exc_tb)

	

	
handle_reportable_application_exception(exc_val, exc_tb)

	

	
get_error_report(exc_val, exc_tb)

	

	
print_unexpected_error_report(error_report)

	

	
print_expected_error_report(error_report)

	

	
_upload(error_report) → None [https://docs.python.org/3/library/constants.html#None]

	Determine whether or not to upload the error report.

	
_ask_upload()

	

	
_execute_upload(error_report)

	

	
_post_upload(do_upload)

	

	
conda_exception_handler(func, *args, **kwargs)

	

 exceptions

exceptions

Conda exceptions.

Functions

	maybe_raise(error, context)

	

	print_conda_exception(exc_val[, exc_tb])

	

	_format_exc([exc_val, exc_tb])

	

	
exception ResolvePackageNotFound(bad_deps)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception LockError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception ArgumentError(message, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
return_code = 2

	

	
exception Help(message, caused_by=None, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception ActivateHelp

	Bases: Help

Common base class for all non-exit exceptions.

	
exception DeactivateHelp

	Bases: Help

Common base class for all non-exit exceptions.

	
exception GenericHelp(command)

	Bases: Help

Common base class for all non-exit exceptions.

	
exception CondaSignalInterrupt(signum)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception TooManyArgumentsError(expected, received, offending_arguments, optional_message='', *args)

	Bases: ArgumentError

Common base class for all non-exit exceptions.

	
exception ClobberError(message, path_conflict, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
__repr__()

	Return repr(self).

	
exception BasicClobberError(source_path, target_path, context)

	Bases: ClobberError

Common base class for all non-exit exceptions.

	
exception KnownPackageClobberError(target_path, colliding_dist_being_linked, colliding_linked_dist, context)

	Bases: ClobberError

Common base class for all non-exit exceptions.

	
exception UnknownPackageClobberError(target_path, colliding_dist_being_linked, context)

	Bases: ClobberError

Common base class for all non-exit exceptions.

	
exception SharedLinkPathClobberError(target_path, incompatible_package_dists, context)

	Bases: ClobberError

Common base class for all non-exit exceptions.

	
exception CommandNotFoundError(command)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception PathNotFoundError(path)

	Bases: conda.CondaError, OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Common base class for all non-exit exceptions.

	
exception DirectoryNotFoundError(path)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception EnvironmentLocationNotFound(location)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception EnvironmentNameNotFound(environment_name)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception NoBaseEnvironmentError

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception DirectoryNotACondaEnvironmentError(target_directory)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaEnvironmentError(message, *args)

	Bases: conda.CondaError, OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Common base class for all non-exit exceptions.

	
exception DryRunExit

	Bases: conda.CondaExitZero

Common base class for all non-exit exceptions.

	
exception CondaSystemExit(*args)

	Bases: conda.CondaExitZero, SystemExit [https://docs.python.org/3/library/exceptions.html#SystemExit]

Common base class for all non-exit exceptions.

	
exception PaddingError(dist, placeholder, placeholder_length)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception LinkError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaOSError(message, **kwargs)

	Bases: conda.CondaError, OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Common base class for all non-exit exceptions.

	
exception ProxyError

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaIOError(message, *args)

	Bases: conda.CondaError, OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Common base class for all non-exit exceptions.

	
exception CondaFileIOError(filepath, message, *args)

	Bases: CondaIOError

Common base class for all non-exit exceptions.

	
exception CondaKeyError(key, message, *args)

	Bases: conda.CondaError, KeyError [https://docs.python.org/3/library/exceptions.html#KeyError]

Common base class for all non-exit exceptions.

	
exception ChannelError(message, caused_by=None, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception ChannelNotAllowed(channel)

	Bases: ChannelError

Common base class for all non-exit exceptions.

	
exception UnavailableInvalidChannel(channel, status_code, response: requests.models.Response | None [https://docs.python.org/3/library/constants.html#None] = None)

	Bases: ChannelError

Common base class for all non-exit exceptions.

	
status_code: str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]

	

	
exception OperationNotAllowed(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaImportError(message)

	Bases: conda.CondaError, ImportError [https://docs.python.org/3/library/exceptions.html#ImportError]

Common base class for all non-exit exceptions.

	
exception ParseError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CouldntParseError(reason)

	Bases: ParseError

Common base class for all non-exit exceptions.

	
exception ChecksumMismatchError(url, target_full_path, checksum_type, expected_checksum, actual_checksum)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception PackageNotInstalledError(prefix, package_name)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaHTTPError(message, url, status_code, reason, elapsed_time, response=None, caused_by=None)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaSSLError(message, caused_by=None, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception AuthenticationError(message, caused_by=None, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception PackagesNotFoundError(packages, channel_urls=())

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception UnsatisfiableError(bad_deps, chains=True, strict=False)

	Bases: conda.CondaError

An exception to report unsatisfiable dependencies.

	Parameters:

	
	bad_deps -- a list of tuples of objects (likely MatchSpecs).

	chains -- (optional) if True, the tuples are interpreted as chains
of dependencies, from top level to bottom. If False, the tuples
are interpreted as simple lists of conflicting specs.

	Returns:

	Raises an exception with a formatted message detailing the
unsatisfiable specifications.

	
_format_chain_str(bad_deps)

	

	
exception RemoveError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception DisallowedPackageError(package_ref, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception SpecsConfigurationConflictError(requested_specs, pinned_specs, prefix)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaIndexError(message)

	Bases: conda.CondaError, IndexError [https://docs.python.org/3/library/exceptions.html#IndexError]

Common base class for all non-exit exceptions.

	
exception CondaValueError(message, *args, **kwargs)

	Bases: conda.CondaError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Common base class for all non-exit exceptions.

	
exception CyclicalDependencyError(packages_with_cycles, **kwargs)

	Bases: conda.CondaError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Common base class for all non-exit exceptions.

	
exception CorruptedEnvironmentError(environment_location, corrupted_file, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaHistoryError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaUpgradeError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaVerificationError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception SafetyError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaMemoryError(caused_by, **kwargs)

	Bases: conda.CondaError, MemoryError [https://docs.python.org/3/library/exceptions.html#MemoryError]

Common base class for all non-exit exceptions.

	
exception NotWritableError(path, errno, **kwargs)

	Bases: conda.CondaError, OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Common base class for all non-exit exceptions.

	
exception NoWritableEnvsDirError(envs_dirs, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception NoWritablePkgsDirError(pkgs_dirs, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception EnvironmentNotWritableError(environment_location, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaDependencyError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception BinaryPrefixReplacementError(path, placeholder, new_prefix, original_data_length, new_data_length)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception InvalidSpec(message: str [https://docs.python.org/3/library/stdtypes.html#str], **kwargs)

	Bases: conda.CondaError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Common base class for all non-exit exceptions.

	
exception InvalidVersionSpec(invalid_spec: str [https://docs.python.org/3/library/stdtypes.html#str], details: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: InvalidSpec

Common base class for all non-exit exceptions.

	
exception InvalidMatchSpec(invalid_spec: str [https://docs.python.org/3/library/stdtypes.html#str], details: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: InvalidSpec

Common base class for all non-exit exceptions.

	
exception EncodingError(caused_by, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception NoSpaceLeftError(caused_by, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaEnvException(message, *args, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception EnvironmentFileNotFound(filename, *args, **kwargs)

	Bases: CondaEnvException

Common base class for all non-exit exceptions.

	
exception EnvironmentFileExtensionNotValid(filename, *args, **kwargs)

	Bases: CondaEnvException

Common base class for all non-exit exceptions.

	
exception EnvironmentFileEmpty(filename, *args, **kwargs)

	Bases: CondaEnvException

Common base class for all non-exit exceptions.

	
exception EnvironmentFileNotDownloaded(username, packagename, *args, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception SpecNotFound(msg, *args, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception PluginError(message, caused_by=None, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
maybe_raise(error, context)

	

	
print_conda_exception(exc_val, exc_tb=None)

	

	
_format_exc(exc_val=None, exc_tb=None)

	

	
exception InvalidInstaller(name)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

 exports

exports

Backported exports for conda-build.

Classes

	Completer

	

	InstalledPackages

	

Functions

	iteritems(d, **kw)

	

	rm_rf(path[, max_retries, trash])

	

	hash_file(_)

	

	verify(_)

	

	display_actions(actions, index[, show_channel_urls, ...])

	

	get_index([channel_urls, prepend, platform, ...])

	

	fetch_index(channel_urls[, use_cache, index])

	

	package_cache()

	

	symlink_conda(prefix, root_dir[, shell])

	

	_symlink_conda_hlp(prefix, root_dir, where, symlink_fn)

	

	win_conda_bat_redirect(src, dst, shell)

	Special function for Windows XP where the CreateSymbolicLink

	linked_data(prefix[, ignore_channels])

	Return a dictionary of the linked packages in prefix.

	linked(prefix[, ignore_channels])

	Return the Dists of linked packages in prefix.

	is_linked(prefix, dist)

	Return the install metadata for a linked package in a prefix, or None

	download(url, dst_path[, session, md5sum, urlstxt, ...])

	

Attributes

	non_x86_linux_machines

	

	get_default_urls

	

	arch_name

	

	binstar_upload

	

	bits

	

	default_prefix

	

	default_python

	

	envs_dirs

	

	pkgs_dirs

	

	platform

	

	root_dir

	

	root_writable

	

	subdir

	

	conda_build

	

	get_rc_urls

	

	get_local_urls

	

	load_condarc

	

	PaddingError

	

	LinkError

	

	CondaOSError

	

	CondaFileNotFoundError

	

	PY3

	

	string_types

	

	text_type

	

	KEYS

	

	KEYS_DIR

	

	
non_x86_linux_machines

	

	
get_default_urls

	

	
arch_name

	

	
binstar_upload

	

	
bits

	

	
default_prefix

	

	
default_python

	

	
envs_dirs

	

	
pkgs_dirs

	

	
platform

	

	
root_dir

	

	
root_writable

	

	
subdir

	

	
conda_build

	

	
get_rc_urls

	

	
get_local_urls

	

	
load_condarc

	

	
PaddingError

	

	
LinkError

	

	
CondaOSError

	

	
CondaFileNotFoundError

	

	
PY3 = True

	

	
string_types

	

	
text_type

	

	
iteritems(d, **kw)

	

	
class Completer

	
	
get_items()

	

	
__contains__(item)

	

	
__iter__()

	

	
class InstalledPackages

	

	
rm_rf(path, max_retries=5, trash=True)

	

	
KEYS

	

	
KEYS_DIR

	

	
hash_file(_)

	

	
verify(_)

	

	
display_actions(actions, index, show_channel_urls=None, specs_to_remove=(), specs_to_add=())

	

	
get_index(channel_urls=(), prepend=True, platform=None, use_local=False, use_cache=False, unknown=None, prefix=None)

	

	
fetch_index(channel_urls, use_cache=False, index=None)

	

	
package_cache()

	

	
symlink_conda(prefix, root_dir, shell=None)

	

	
_symlink_conda_hlp(prefix, root_dir, where, symlink_fn)

	

	
win_conda_bat_redirect(src, dst, shell)

	Special function for Windows XP where the CreateSymbolicLink
function is not available.

Simply creates a .bat file at dst which calls src together with
all command line arguments.

Works of course only with callable files, e.g. .bat or .exe files.

	
linked_data(prefix, ignore_channels=False)

	Return a dictionary of the linked packages in prefix.

	
linked(prefix, ignore_channels=False)

	Return the Dists of linked packages in prefix.

	
is_linked(prefix, dist)

	Return the install metadata for a linked package in a prefix, or None
if the package is not linked in the prefix.

	
download(url, dst_path, session=None, md5sum=None, urlstxt=False, retries=3, sha256=None, size=None)

	

 gateways

gateways

Gateways isolate interaction of conda code with the outside world. Disk manipulation,
database interaction, and remote requests should all be through various gateways. Functions
and methods in conda.gateways must use conda.models for arguments and return values.

Conda modules importable from conda.gateways are

	conda._vendor

	conda.common

	conda.models

	conda.gateways

Conda modules off limits for import within conda.gateways are

	conda.api

	conda.cli

	conda.client

	conda.core

Conda modules strictly prohibited from importing conda.gateways are

	conda.api

	conda.cli

	conda.client

 anaconda_client

anaconda_client

Anaconda-client (binstar) token management for CondaSession.

Classes

	EnvAppDirs

	

Functions

	replace_first_api_with_conda(url)

	

	_get_binstar_token_directory()

	

	read_binstar_tokens()

	

	set_binstar_token(url, token)

	

	remove_binstar_token(url)

	

	
replace_first_api_with_conda(url)

	

	
class EnvAppDirs(appname, appauthor, root_path)

	
	
property user_data_dir

	

	
property site_data_dir

	

	
property user_cache_dir

	

	
property user_log_dir

	

	
_get_binstar_token_directory()

	

	
read_binstar_tokens()

	

	
set_binstar_token(url, token)

	

	
remove_binstar_token(url)

	

 connection

connection

 adapters

adapters

 ftp

ftp

Defines FTP transport adapter for CondaSession (requests.Session).

Taken from requests-ftp (https://github.com/Lukasa/requests-ftp/blob/master/requests_ftp/ftp.py).

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Classes

	FTPAdapter

	A Requests Transport Adapter that handles FTP urls.

Functions

	_new_makepasv(self)

	

	data_callback_factory(variable)

	Returns a callback suitable for use by the FTP library. This callback

	build_text_response(request, data, code)

	Build a response for textual data.

	build_binary_response(request, data, code)

	Build a response for data whose encoding is unknown.

	build_response(request, data, code, encoding)

	Builds a response object from the data returned by ftplib, using the

	parse_multipart_files(request)

	Given a prepared request, return a file-like object containing the

	get_status_code_from_code_response(code)

	Handle complicated code response, even multi-lines.

Attributes

	_old_makepasv

	

	
_old_makepasv

	

	
_new_makepasv(self)

	

	
class FTPAdapter

	Bases: conda.gateways.connection.BaseAdapter

A Requests Transport Adapter that handles FTP urls.

	
send(request, **kwargs)

	Sends a PreparedRequest object over FTP. Returns a response object.

	
close()

	Dispose of any internal state.

	
list(path, request)

	Executes the FTP LIST command on the given path.

	
retr(path, request)

	Executes the FTP RETR command on the given path.

	
stor(path, request)

	Executes the FTP STOR command on the given path.

	
nlst(path, request)

	Executes the FTP NLST command on the given path.

	
get_username_password_from_header(request)

	Given a PreparedRequest object, reverse the process of adding HTTP
Basic auth to obtain the username and password. Allows the FTP adapter
to piggyback on the basic auth notation without changing the control
flow.

	
get_host_and_path_from_url(request)

	Given a PreparedRequest object, split the URL in such a manner as to
determine the host and the path. This is a separate method to wrap some
of urlparse's craziness.

	
data_callback_factory(variable)

	Returns a callback suitable for use by the FTP library. This callback
will repeatedly save data into the variable provided to this function. This
variable should be a file-like structure.

	
build_text_response(request, data, code)

	Build a response for textual data.

	
build_binary_response(request, data, code)

	Build a response for data whose encoding is unknown.

	
build_response(request, data, code, encoding)

	Builds a response object from the data returned by ftplib, using the
specified encoding.

	
parse_multipart_files(request)

	Given a prepared request, return a file-like object containing the
original data. This is pretty hacky.

	
get_status_code_from_code_response(code)

	Handle complicated code response, even multi-lines.

We get the status code in two ways:
- extracting the code from the last valid line in the response
- getting it from the 3 first digits in the code
After a comparison between the two values,
we can safely set the code or raise a warning.
.. rubric:: Examples

	get_status_code_from_code_response('200 Welcome') == 200

	multi_line_code = '226-File successfully transferredn226 0.000 seconds'
get_status_code_from_code_response(multi_line_code) == 226

	multi_line_with_code_conflicts = '200-File successfully transferredn226 0.000 seconds'
get_status_code_from_code_response(multi_line_with_code_conflicts) == 226

	For more detail see RFC 959, page 36, on multi-line responses:
	https://www.ietf.org/rfc/rfc959.txt
"Thus the format for multi-line replies is that the first line

will begin with the exact required reply code, followed
immediately by a Hyphen, "-" (also known as Minus), followed by
text. The last line will begin with the same code, followed
immediately by Space <SP>, optionally some text, and the Telnet
end-of-line code."

 http

http [https://docs.python.org/3/library/http.html#module-http]

Defines HTTP transport adapter for CondaSession (requests.Session).

Closely derived from pip:

https://github.com/pypa/pip/blob/8c24fd2a80bad21aa29aec02fb48bd89a1e8f5e1/src/pip/_internal/network/session.py#L254

Under the MIT license:

Copyright (c) 2008-2023 The pip developers (see AUTHORS.txt file on the pip repository)

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Classes

	_SSLContextAdapterMixin

	Mixin to add the ssl_context constructor argument to HTTP adapters.

	HTTPAdapter

	Mixin to add the ssl_context constructor argument to HTTP adapters.

	
class _SSLContextAdapterMixin(*, ssl_context: ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any)

	Mixin to add the ssl_context constructor argument to HTTP adapters.

The additional argument is forwarded directly to the pool manager. This allows us
to dynamically decide what SSL store to use at runtime, which is used to implement
the optional truststore backend.

	
init_poolmanager(connections: int [https://docs.python.org/3/library/functions.html#int], maxsize: int [https://docs.python.org/3/library/functions.html#int], block: bool [https://docs.python.org/3/library/functions.html#bool] = DEFAULT_POOLBLOCK, **pool_kwargs: Any) → urllib3.PoolManager

	

	
class HTTPAdapter(*, ssl_context: ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any)

	Bases: _SSLContextAdapterMixin, conda.gateways.connection.HTTPAdapter

Mixin to add the ssl_context constructor argument to HTTP adapters.

The additional argument is forwarded directly to the pool manager. This allows us
to dynamically decide what SSL store to use at runtime, which is used to implement
the optional truststore backend.

 localfs

localfs

Defines local filesystem transport adapter for CondaSession (requests.Session).

Classes

	LocalFSAdapter

	The Base Transport Adapter

	
class LocalFSAdapter

	Bases: conda.gateways.connection.BaseAdapter

The Base Transport Adapter

	
send(request, stream=None, timeout=None, verify=None, cert=None, proxies=None)

	Sends PreparedRequest object. Returns Response object.

	Parameters:

	
	request -- The PreparedRequest being sent.

	stream -- (optional) Whether to stream the request content.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) -- (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) tuple.

	verify -- (optional) Either a boolean, in which case it controls whether we verify
the server's TLS certificate, or a string, in which case it must be a path
to a CA bundle to use

	cert -- (optional) Any user-provided SSL certificate to be trusted.

	proxies -- (optional) The proxies dictionary to apply to the request.

	
close()

	Cleans up adapter specific items.

 s3

s3

Defines S3 transport adapter for CondaSession (requests.Session).

Classes

	S3Adapter

	The Base Transport Adapter

Attributes

	stderrlog

	

	
stderrlog

	

	
class S3Adapter

	Bases: conda.gateways.connection.BaseAdapter

The Base Transport Adapter

	
send(request: conda.gateways.connection.PreparedRequest, stream: bool [https://docs.python.org/3/library/functions.html#bool] = False, timeout: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], None [https://docs.python.org/3/library/constants.html#None]] = None, verify: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str] = True, cert: None [https://docs.python.org/3/library/constants.html#None] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | str [https://docs.python.org/3/library/stdtypes.html#str] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | str [https://docs.python.org/3/library/stdtypes.html#str]] = None, proxies: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → conda.gateways.connection.Response

	Sends PreparedRequest object. Returns Response object.

	Parameters:

	
	request -- The PreparedRequest being sent.

	stream -- (optional) Whether to stream the request content.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) -- (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) tuple.

	verify -- (optional) Either a boolean, in which case it controls whether we verify
the server's TLS certificate, or a string, in which case it must be a path
to a CA bundle to use

	cert -- (optional) Any user-provided SSL certificate to be trusted.

	proxies -- (optional) The proxies dictionary to apply to the request.

	
close()

	Cleans up adapter specific items.

	
_send_boto3(resp: conda.gateways.connection.Response, request: conda.gateways.connection.PreparedRequest) → conda.gateways.connection.Response

	

	
_write_tempfile(writer_callable)

	

 download

download

Download logic for conda indices and packages.

Classes

	TmpDownload

	Context manager to handle downloads to a tempfile.

Functions

	disable_ssl_verify_warning()

	

	download(url, target_full_path[, md5, sha256, size, ...])

	

	download_inner(url, target_full_path, md5, sha256, ...)

	

	download_partial_file(target_full_path, *, url, ...)

	Create or open locked partial download file, moving onto target_full_path

	download_http_errors(url)

	Exception translator used inside download()

	download_text(url)

	

Attributes

	CHUNK_SIZE

	

	
CHUNK_SIZE

	

	
disable_ssl_verify_warning()

	

	
download(url, target_full_path, md5=None, sha256=None, size=None, progress_update_callback=None)

	

	
download_inner(url, target_full_path, md5, sha256, size, progress_update_callback)

	

	
download_partial_file(target_full_path: str [https://docs.python.org/3/library/stdtypes.html#str] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], *, url: str [https://docs.python.org/3/library/stdtypes.html#str], sha256: str [https://docs.python.org/3/library/stdtypes.html#str], md5: str [https://docs.python.org/3/library/stdtypes.html#str], size: int [https://docs.python.org/3/library/functions.html#int])

	Create or open locked partial download file, moving onto target_full_path
when finished. Preserve partial file on exception.

	
download_http_errors(url: str [https://docs.python.org/3/library/stdtypes.html#str])

	Exception translator used inside download()

	
download_text(url)

	

	
class TmpDownload(url, verbose=True)

	Context manager to handle downloads to a tempfile.

	
__enter__()

	

	
__exit__(exc_type, exc_value, traceback)

	

 session

session

Requests session configured with all accepted scheme adapters.

Classes

	EnforceUnusedAdapter

	The Base Transport Adapter

	CondaSessionType

	Takes advice from https://github.com/requests/requests/issues/1871#issuecomment-33327847

	CondaSession

	A Requests session.

	CondaHttpAuth

	Base class that all auth implementations derive from

Functions

	get_channel_name_from_url(→ str | None)

	Given a URL, determine the channel it belongs to and return its name.

	get_session(url)

	Function that determines the correct Session object to be returned

	get_session_storage_key(→ str)

	Function that determines which storage key to use for our CondaSession object caching

Attributes

	RETRIES

	

	CONDA_SESSION_SCHEMES

	

	
RETRIES = 3

	

	
CONDA_SESSION_SCHEMES

	

	
class EnforceUnusedAdapter

	Bases: conda.gateways.connection.BaseAdapter

The Base Transport Adapter

	
send(request, *args, **kwargs)

	Sends PreparedRequest object. Returns Response object.

	Parameters:

	
	request -- The PreparedRequest being sent.

	stream -- (optional) Whether to stream the request content.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) -- (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) tuple.

	verify -- (optional) Either a boolean, in which case it controls whether we verify
the server's TLS certificate, or a string, in which case it must be a path
to a CA bundle to use

	cert -- (optional) Any user-provided SSL certificate to be trusted.

	proxies -- (optional) The proxies dictionary to apply to the request.

	
abstract close()

	Cleans up adapter specific items.

	
get_channel_name_from_url(url: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Given a URL, determine the channel it belongs to and return its name.

	
get_session(url: str [https://docs.python.org/3/library/stdtypes.html#str])

	Function that determines the correct Session object to be returned
based on the URL that is passed in.

	
get_session_storage_key(auth) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Function that determines which storage key to use for our CondaSession object caching

	
class CondaSessionType

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Takes advice from https://github.com/requests/requests/issues/1871#issuecomment-33327847
and creates one Session instance per thread.

	
__call__(**kwargs)

	Call self as a function.

	
class CondaSession(auth: conda.gateways.connection.AuthBase | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Bases: conda.gateways.connection.Session

A Requests session.

Provides cookie persistence, connection-pooling, and configuration.

Basic Usage:

>>> import requests
>>> s = requests.Session()
>>> s.get('https://httpbin.org/get')
<Response [200]>

Or as a context manager:

>>> with requests.Session() as s:
... s.get('https://httpbin.org/get')
<Response [200]>

	
classmethod cache_clear()

	

	
class CondaHttpAuth

	Bases: conda.gateways.connection.AuthBase

Base class that all auth implementations derive from

	
__call__(request)

	

	
static _apply_basic_auth(request)

	

	
static add_binstar_token(url)

	

	
static handle_407(response, **kwargs)

	Prompts the user for the proxy username and password and modifies the
proxy in the session object to include it.

	This method is modeled after
	
	requests.auth.HTTPDigestAuth.handle_401()

	requests.auth.HTTPProxyAuth

	the previous conda.fetch.handle_proxy_407()

It both adds 'username:password' to the proxy URL, as well as adding a
'Proxy-Authorization' header. If any of this is incorrect, please file an issue.

 disk

disk

Functions

	exp_backoff_fn(fn, *args, **kwargs)

	Mostly for retrying file operations that fail on Windows due to virus scanners

	mkdir_p(path)

	

	mkdir_p_sudo_safe(path)

	

Attributes

	on_win

	

	TRACE

	

	MAX_TRIES

	

	
on_win

	

	
TRACE = 5

	

	
MAX_TRIES = 7

	

	
exp_backoff_fn(fn, *args, **kwargs)

	Mostly for retrying file operations that fail on Windows due to virus scanners

	
mkdir_p(path)

	

	
mkdir_p_sudo_safe(path)

	

 create

create

Disk utility functions for creating new files or directories.

Classes

	TemporaryDirectory

	Create and return a temporary directory. This has the same

	ProgressFileWrapper

	

Functions

	write_as_json_to_file(file_path, obj)

	

	create_python_entry_point(target_full_path, ...)

	

	create_application_entry_point(source_full_path, ...)

	

	extract_tarball(tarball_full_path[, ...])

	

	make_menu(prefix, file_path[, remove])

	Create cross-platform menu items (e.g. Windows Start Menu)

	create_hard_link_or_copy(src, dst)

	

	_is_unix_executable_using_ORIGIN(path)

	

	_do_softlink(src, dst)

	

	create_fake_executable_softlink(src, dst)

	

	copy(src, dst)

	

	_do_copy(src, dst)

	

	create_link(src, dst[, link_type, force])

	

	compile_multiple_pyc(python_exe_full_path, ...)

	

	create_package_cache_directory(pkgs_dir)

	

	create_envs_directory(envs_dir)

	

Attributes

	stdoutlog

	

	mkdir_p

	

	python_entry_point_template

	

	application_entry_point_template

	

	
class TemporaryDirectory(suffix='', prefix='tmp', dir=None)

	Create and return a temporary directory. This has the same
behavior as mkdtemp but can be used as a context manager. For
.. rubric:: Example

	with TemporaryDirectory() as tmpdir:
	...

Upon exiting the context, the directory and everything contained
in it are removed.

	
name

	

	
_closed = False

	

	
__repr__()

	Return repr(self).

	
__enter__()

	

	
cleanup(_warn=False, _warnings=_warnings)

	

	
__exit__(exc, value, tb)

	

	
__del__()

	

	
stdoutlog

	

	
mkdir_p

	

	
python_entry_point_template

	

	
application_entry_point_template

	

	
write_as_json_to_file(file_path, obj)

	

	
create_python_entry_point(target_full_path, python_full_path, module, func)

	

	
create_application_entry_point(source_full_path, target_full_path, python_full_path)

	

	
class ProgressFileWrapper(fileobj, progress_update_callback)

	
	
__getattr__(name)

	

	
__setattr__(name, value)

	Implement setattr(self, name, value).

	
read(size=-1)

	

	
progress_update()

	

	
extract_tarball(tarball_full_path, destination_directory=None, progress_update_callback=None)

	

	
make_menu(prefix, file_path, remove=False)

	Create cross-platform menu items (e.g. Windows Start Menu)

Passes all menu config files %PREFIX%/Menu/*.json to menuinst.install.
remove=True will remove the menu items.

	
create_hard_link_or_copy(src, dst)

	

	
_is_unix_executable_using_ORIGIN(path)

	

	
_do_softlink(src, dst)

	

	
create_fake_executable_softlink(src, dst)

	

	
copy(src, dst)

	

	
_do_copy(src, dst)

	

	
create_link(src, dst, link_type=LinkType.hardlink, force=False)

	

	
compile_multiple_pyc(python_exe_full_path, py_full_paths, pyc_full_paths, prefix, py_ver)

	

	
create_package_cache_directory(pkgs_dir)

	

	
create_envs_directory(envs_dir)

	

 delete

delete

Disk utility functions for deleting files and folders.

Functions

	rmtree(path, *args, **kwargs)

	

	unlink_or_rename_to_trash(path)

	If files are in use, especially on windows, we can't remove them.

	remove_empty_parent_paths(path)

	

	rm_rf(path[, max_retries, trash, clean_empty_parents])

	Completely delete path

	delete_trash(prefix)

	

	backoff_rmdir(dirpath[, max_tries])

	

	path_is_clean(path)

	Sometimes we can't completely remove a path because files are considered in use

	
rmtree(path, *args, **kwargs)

	

	
unlink_or_rename_to_trash(path)

	If files are in use, especially on windows, we can't remove them.
The fallback path is to rename them (but keep their folder the same),
which maintains the file handle validity. See comments at:
https://serverfault.com/a/503769

	
remove_empty_parent_paths(path)

	

	
rm_rf(path, max_retries=5, trash=True, clean_empty_parents=False, *args, **kw)

	Completely delete path
max_retries is the number of times to retry on failure. The default is 5. This only applies
to deleting a directory.
If removing path fails and trash is True, files will be moved to the trash directory.

	
delete_trash(prefix)

	

	
backoff_rmdir(dirpath, max_tries=MAX_TRIES)

	

	
path_is_clean(path)

	Sometimes we can't completely remove a path because files are considered in use
by python (hardlinking confusion). For our tests, it is sufficient that either the
folder doesn't exist, or nothing but temporary file copies are left.

 link

link

Disk utility functions for symlinking files and folders.

Portions of the code within this module are taken from https://github.com/jaraco/jaraco.windows
which is MIT licensed by Jason R. Coombs.

https://github.com/jaraco/skeleton/issues/1#issuecomment-285448440

	
lchmod

	

	
link

	

	
islink

	

 lock

lock

Record locking to manage potential repodata / repodata metadata file contention
between conda processes. Try to acquire a lock on a single byte in the metadat
file; modify both files; then release the lock.

Functions

	_lock_noop(fd)

	When locking is not available.

	_lock_impl(fd)

	

	lock(fd)

	

Attributes

	LOCK_BYTE

	

	LOCK_ATTEMPTS

	

	LOCK_SLEEP

	

	
LOCK_BYTE = 21

	

	
LOCK_ATTEMPTS = 10

	

	
LOCK_SLEEP = 1

	

	
_lock_noop(fd)

	When locking is not available.

	
_lock_impl(fd)

	

	
lock(fd)

	

 permissions

permissions

Disk utility functions for modifying file and directory permissions.

Functions

	make_writable(path)

	

	make_read_only(path)

	

	recursive_make_writable(path[, max_tries])

	

	make_executable(path)

	

	is_executable(path)

	

	
make_writable(path)

	

	
make_read_only(path)

	

	
recursive_make_writable(path, max_tries=MAX_TRIES)

	

	
make_executable(path)

	

	
is_executable(path)

	

 read

read

Disk utility functions for reading and processing file contents.

Functions

	yield_lines(path)

	Generator function for lines in file. Empty generator if path does not exist.

	compute_sum(→ str)

	

	read_package_info(record, package_cache_record)

	

	read_index_json(extracted_package_directory)

	

	read_index_json_from_tarball(package_tarball_full_path)

	

	read_repodata_json(extracted_package_directory)

	

	read_icondata(extracted_package_directory)

	

	read_package_metadata(extracted_package_directory)

	

	read_paths_json(extracted_package_directory)

	

	read_has_prefix(path)

	Reads has_prefix file and return dict mapping filepaths to tuples(placeholder, FileMode).

	read_no_link(info_dir)

	

	read_soft_links(extracted_package_directory, files)

	

	read_python_record(prefix_path, anchor_file, ...)

	Convert a python package defined by an anchor file (Metadata information)

Attributes

	listdir

	

	
listdir

	

	
yield_lines(path)

	Generator function for lines in file. Empty generator if path does not exist.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- path to file

	Returns:

	each line in file, not starting with '#'

	Return type:

	iterator

	
compute_sum(path: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike], algo: Literal[md5, sha256]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
read_package_info(record, package_cache_record)

	

	
read_index_json(extracted_package_directory)

	

	
read_index_json_from_tarball(package_tarball_full_path)

	

	
read_repodata_json(extracted_package_directory)

	

	
read_icondata(extracted_package_directory)

	

	
read_package_metadata(extracted_package_directory)

	

	
read_paths_json(extracted_package_directory)

	

	
read_has_prefix(path)

	Reads has_prefix file and return dict mapping filepaths to tuples(placeholder, FileMode).

	A line in has_prefix contains one of:
	
	filepath

	placeholder mode filepath

	Mode values are one of:
	
	text

	binary

	
read_no_link(info_dir)

	

	
read_soft_links(extracted_package_directory, files)

	

	
read_python_record(prefix_path, anchor_file, python_version)

	Convert a python package defined by an anchor file (Metadata information)
into a conda prefix record object.

 test

test [https://docs.python.org/3/library/test.html#module-test]

Disk utility functions testing path properties (e.g., writable, hardlinks, softlinks, etc.).

Functions

	file_path_is_writable(path)

	

	hardlink_supported(source_file, dest_dir)

	

	softlink_supported(source_file, dest_dir)

	

	is_conda_environment(prefix)

	

	
file_path_is_writable(path)

	

	
hardlink_supported(source_file, dest_dir)

	

	
softlink_supported(source_file, dest_dir)

	

	
is_conda_environment(prefix)

	

 update

update

Disk utility functions for modifying existing files or directories.

Functions

	update_file_in_place_as_binary(file_full_path, callback)

	

	rename(source_path, destination_path[, force])

	

	rename_context(source[, destination, dry_run])

	Used for removing a directory when there are dependent actions (i.e. you need to ensure

	backoff_rename(source_path, destination_path[, force])

	

	touch(path[, mkdir, sudo_safe])

	

Attributes

	SHEBANG_REGEX

	

	
SHEBANG_REGEX

	

	
exception CancelOperation

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
update_file_in_place_as_binary(file_full_path, callback)

	

	
rename(source_path, destination_path, force=False)

	

	
rename_context(source: str [https://docs.python.org/3/library/stdtypes.html#str], destination: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, dry_run: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Used for removing a directory when there are dependent actions (i.e. you need to ensure
other actions succeed before removing it).

Example

	with rename_context(directory):
	# Do dependent actions here

	
backoff_rename(source_path, destination_path, force=False)

	

	
touch(path, mkdir=False, sudo_safe=False)

	

 logging

logging [https://docs.python.org/3/library/logging.html#module-logging]

Configure logging for conda.

Classes

	TokenURLFilter

	Filter instances are used to perform arbitrary filtering of LogRecords.

	StdStreamHandler

	Log StreamHandler that always writes to the current sys stream.

Functions

	initialize_logging()

	

	initialize_std_loggers()

	

	initialize_root_logger([level])

	

	set_conda_log_level([level])

	

	set_all_logger_level([level])

	

	set_file_logging([logger_name, level, path])

	

	set_verbosity(verbosity)

	

	set_log_level(log_level)

	

	trace(self, message, *args, **kwargs)

	

Attributes

	_VERBOSITY_LEVELS

	

	
_VERBOSITY_LEVELS

	

	
class TokenURLFilter(name='')

	Bases: logging.Filter [https://docs.python.org/3/library/logging.html#logging.Filter]

Filter instances are used to perform arbitrary filtering of LogRecords.

Loggers and Handlers can optionally use Filter instances to filter
records as desired. The base filter class only allows events which are
below a certain point in the logger hierarchy. For example, a filter
initialized with "A.B" will allow events logged by loggers "A.B",
"A.B.C", "A.B.C.D", "A.B.D" etc. but not "A.BB", "B.A.B" etc. If
initialized with the empty string, all events are passed.

	
TOKEN_URL_PATTERN

	

	
TOKEN_REPLACE

	

	
filter(record)

	Since Python 2's getMessage() is incapable of handling any
strings that are not unicode when it interpolates the message
with the arguments, we fix that here by doing it ourselves.

At the same time we replace tokens in the arguments which was
not happening until now.

	
class StdStreamHandler(sys_stream)

	Bases: logging.StreamHandler [https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler]

Log StreamHandler that always writes to the current sys stream.

	
terminator = '\n'

	

	
__getattr__(attr)

	

	
emit(record)

	Emit a record.

If a formatter is specified, it is used to format the record.
The record is then written to the stream with a trailing newline. If
exception information is present, it is formatted using
traceback.print_exception and appended to the stream. If the stream
has an 'encoding' attribute, it is used to determine how to do the
output to the stream.

	
initialize_logging()

	

	
initialize_std_loggers()

	

	
initialize_root_logger(level=ERROR)

	

	
set_conda_log_level(level=WARN)

	

	
set_all_logger_level(level=DEBUG)

	

	
set_file_logging(logger_name=None, level=DEBUG, path=None)

	

	
set_verbosity(verbosity: int [https://docs.python.org/3/library/functions.html#int])

	

	
set_log_level(log_level: int [https://docs.python.org/3/library/functions.html#int])

	

	
trace(self, message, *args, **kwargs)

	

 repodata

repodata

Repodata interface.

Classes

	PackageCacheData

	

	Channel

	Channel:

	RepoInterface

	Helper class that provides a standard way to create an ABC using

	CondaRepoInterface

	Provides an interface for retrieving repodata data from channels.

	RepodataState

	Load/save info file that accompanies cached repodata.json.

	RepodataCache

	Handle caching for a single repodata.json + repodata.info.json

	RepodataFetch

	Combine RepodataCache and RepoInterface to provide subdir_data.SubdirData()

Functions

	stringify(obj[, content_max_len])

	

	maybe_unquote(url)

	

	get_session(url)

	Function that determines the correct Session object to be returned

	mkdir_p_sudo_safe(path)

	

	lock(fd)

	

	get_repo_interface(→ type[RepoInterface])

	

	_add_http_value_to_dict(resp, http_key, d, dict_key)

	

	conda_http_errors(url, repodata_fn)

	Use in a with: statement to translate requests exceptions to conda ones.

	_md5_not_for_security(data)

	

	cache_fn_url(url[, repodata_fn])

	

	get_cache_control_max_age(cache_control_value)

	

	create_cache_dir()

	

Attributes

	CONDA_HOMEPAGE_URL

	

	REPODATA_FN

	

	context

	

	join_url

	

	stderrlog

	

	CHECK_ALTERNATE_FORMAT_INTERVAL

	

	LAST_MODIFIED_KEY

	

	ETAG_KEY

	

	CACHE_CONTROL_KEY

	

	URL_KEY

	

	CACHE_STATE_SUFFIX

	

	ERROR_SNIPPET_LENGTH

	

	
exception CondaError(message, caused_by=None, **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
return_code = 1

	

	
reportable = False

	

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
dump_map()

	

	
stringify(obj, content_max_len=0)

	

	
CONDA_HOMEPAGE_URL = 'https://conda.io'

	

	
REPODATA_FN = 'repodata.json'

	

	
context

	

	
join_url

	

	
maybe_unquote(url)

	

	
class PackageCacheData(pkgs_dir)

	
	
property _package_cache_records

	

	
property is_writable

	

	
cache: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], PackageCacheData]

	

	
insert(package_cache_record)

	

	
load()

	

	
reload()

	

	
get(package_ref, default=NULL)

	

	
remove(package_ref, default=NULL)

	

	
query(package_ref_or_match_spec)

	

	
iter_records()

	

	
classmethod query_all(package_ref_or_match_spec, pkgs_dirs=None)

	

	
classmethod first_writable(pkgs_dirs=None)

	

	
classmethod writable_caches(pkgs_dirs=None)

	

	
classmethod read_only_caches(pkgs_dirs=None)

	

	
classmethod all_caches_writable_first(pkgs_dirs=None)

	

	
classmethod get_all_extracted_entries()

	

	
classmethod get_entry_to_link(package_ref)

	

	
classmethod tarball_file_in_cache(tarball_path, md5sum=None, exclude_caches=())

	

	
classmethod clear()

	

	
tarball_file_in_this_cache(tarball_path, md5sum=None)

	

	
_check_writable()

	

	
static _clean_tarball_path_and_get_md5sum(tarball_path, md5sum=None)

	

	
_scan_for_dist_no_channel(dist_str)

	

	
itervalues()

	

	
values()

	

	
__repr__()

	Return repr(self).

	
_make_single_record(package_filename)

	

	
static _dedupe_pkgs_dir_contents(pkgs_dir_contents)

	

	
exception CondaDependencyError(message)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaHTTPError(message, url, status_code, reason, elapsed_time, response=None, caused_by=None)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception CondaSSLError(message, caused_by=None, **kwargs)

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception NotWritableError(path, errno, **kwargs)

	Bases: conda.CondaError, OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Common base class for all non-exit exceptions.

	
exception ProxyError

	Bases: conda.CondaError

Common base class for all non-exit exceptions.

	
exception UnavailableInvalidChannel(channel, status_code, response: requests.models.Response | None [https://docs.python.org/3/library/constants.html#None] = None)

	Bases: ChannelError

Common base class for all non-exit exceptions.

	
status_code: str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]

	

	
class Channel(scheme=None, auth=None, location=None, token=None, name=None, platform=None, package_filename=None)

	Channel:
scheme <> auth <> location <> token <> channel <> subchannel <> platform <> package_filename

Package Spec:
channel <> subchannel <> namespace <> package_name

	
property channel_location

	

	
property channel_name

	

	
property subdir

	

	
property canonical_name

	

	
property base_url

	

	
property base_urls

	

	
property subdir_url

	

	
property url_channel_wtf

	

	
cache

	

	
static _reset_state()

	

	
static from_url(url)

	

	
static from_channel_name(channel_name)

	

	
static from_value(value)

	

	
static make_simple_channel(channel_alias, channel_url, name=None)

	

	
urls(with_credentials=False, subdirs=None)

	

	
url(with_credentials=False)

	

	
__str__()

	Return str(self).

	
__repr__()

	Return repr(self).

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
__nonzero__()

	

	
__bool__()

	

	
__json__()

	

	
dump()

	

	
get_session(url: str [https://docs.python.org/3/library/stdtypes.html#str])

	Function that determines the correct Session object to be returned
based on the URL that is passed in.

	
mkdir_p_sudo_safe(path)

	

	
lock(fd)

	

	
stderrlog

	

	
CHECK_ALTERNATE_FORMAT_INTERVAL

	

	
LAST_MODIFIED_KEY = 'mod'

	

	
ETAG_KEY = 'etag'

	

	
CACHE_CONTROL_KEY = 'cache_control'

	

	
URL_KEY = 'url'

	

	
CACHE_STATE_SUFFIX = '.info.json'

	

	
ERROR_SNIPPET_LENGTH = 32

	

	
exception RepodataIsEmpty(channel, status_code, response: requests.models.Response | None [https://docs.python.org/3/library/constants.html#None] = None)

	Bases: conda.exceptions.UnavailableInvalidChannel

Subclass used to determine when empty repodata should be cached, e.g. for a
channel that doesn't provide current_repodata.json

	
exception RepodataOnDisk

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Indicate that RepoInterface.repodata() successfully wrote repodata to disk,
instead of returning a string.

	
class RepoInterface

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Helper class that provides a standard way to create an ABC using
inheritance.

	
repodata(state: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Given a mutable state dictionary with information about the cache,
return repodata.json (or current_repodata.json) as a str. This function
also updates state, which is expected to be saved by the caller.

	
exception Response304ContentUnchanged

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
get_repo_interface() → type [https://docs.python.org/3/library/functions.html#type][RepoInterface]

	

	
class CondaRepoInterface(url: str [https://docs.python.org/3/library/stdtypes.html#str], repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None], **kwargs)

	Bases: RepoInterface

Provides an interface for retrieving repodata data from channels.

	
_url: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
_repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
repodata(state: RepodataState) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Given a mutable state dictionary with information about the cache,
return repodata.json (or current_repodata.json) as a str. This function
also updates state, which is expected to be saved by the caller.

	
_add_http_value_to_dict(resp, http_key, d, dict_key)

	

	
conda_http_errors(url, repodata_fn)

	Use in a with: statement to translate requests exceptions to conda ones.

	
class RepodataState(cache_path_json: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | str [https://docs.python.org/3/library/stdtypes.html#str] = '', cache_path_state: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | str [https://docs.python.org/3/library/stdtypes.html#str] = '', repodata_fn='', dict=None)

	Bases: collections.UserDict [https://docs.python.org/3/library/collections.html#collections.UserDict]

Load/save info file that accompanies cached repodata.json.

	
property mod: str [https://docs.python.org/3/library/stdtypes.html#str]

	Last-Modified header or ""

	
property etag: str [https://docs.python.org/3/library/stdtypes.html#str]

	Etag header or ""

	
property cache_control: str [https://docs.python.org/3/library/stdtypes.html#str]

	Cache-Control header or ""

	
_aliased

	

	
_strings

	

	
has_format(format: str [https://docs.python.org/3/library/stdtypes.html#str]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][bool [https://docs.python.org/3/library/functions.html#bool], datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None [https://docs.python.org/3/library/constants.html#None]]

	

	
set_has_format(format: str [https://docs.python.org/3/library/stdtypes.html#str], value: bool [https://docs.python.org/3/library/functions.html#bool])

	

	
clear_has_format(format: str [https://docs.python.org/3/library/stdtypes.html#str])

	Remove 'has_{format}' instead of setting to False.

	
should_check_format(format: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return True if named format should be attempted.

	
__contains__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	

	
__setitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str], item: Any) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__getitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → Any

	

	
class RepodataCache(base, repodata_fn)

	Handle caching for a single repodata.json + repodata.info.json
(<hex-string>*.json inside dir)

Avoid race conditions while loading, saving repodata.json and cache state.

	
property cache_path_json

	

	
property cache_path_state

	Out-of-band etag and other state needed by the RepoInterface.

	
load(*, state_only=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
load_state()

	Update self.state without reading repodata.json.

Return self.state.

	
save(data: str [https://docs.python.org/3/library/stdtypes.html#str])

	Write data to <repodata>.json cache path, synchronize state.

	
replace(temp_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path])

	Rename path onto <repodata>.json path, synchronize state.

Relies on path's mtime not changing on move. temp_path should be
adjacent to self.cache_path_json to be on the same filesystem.

	
refresh(refresh_ns=0)

	Update access time in cache info file to indicate a HTTP 304 Not Modified response.

	
lock(mode='a+')

	Lock .info.json file. Hold lock while modifying related files.

mode: "a+" then seek(0) to write/create; "r+" to read.

	
stale()

	Compare state refresh_ns against cache control header and
context.local_repodata_ttl.

	
timeout()

	Return number of seconds until cache times out (<= 0 if already timed
out).

	
class RepodataFetch(cache_path_base: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], channel: conda.models.channel.Channel, repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str], *, repo_interface_cls)

	Combine RepodataCache and RepoInterface to provide subdir_data.SubdirData()
with what it needs.

Provide a variety of formats since some RepoInterface have to
json.loads(...) anyway, and some clients don't need the Python data
structure at all.

	
property url_w_repodata_fn

	

	
property cache_path_json

	

	
property cache_path_state

	Out-of-band etag and other state needed by the RepoInterface.

	
property repo_cache: RepodataCache

	

	
property _repo: RepoInterface

	Changes as we mutate self.repodata_fn.

	
cache_path_base: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	

	
channel: conda.models.channel.Channel

	

	
repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
url_w_subdir: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
url_w_credentials: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
repo_interface_cls: Any

	

	
fetch_latest_parsed() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], RepodataState]

	Retrieve parsed latest or latest-cached repodata as a dict; update
cache.

	Returns:

	(repodata contents, state including cache headers)

	
fetch_latest_path() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], RepodataState]

	Retrieve latest or latest-cached repodata; update cache.

	Returns:

	(pathlib.Path to uncompressed repodata contents, RepodataState)

	
fetch_latest() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict] | str [https://docs.python.org/3/library/stdtypes.html#str], RepodataState]

	Return up-to-date repodata and cache information. Fetch repodata from
remote if cache has expired; return cached data if cache has not
expired; return stale cached data or dummy data if in offline mode.

	
read_cache() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], RepodataState]

	Read repodata from disk, without trying to fetch a fresh version.

	
_md5_not_for_security(data)

	

	
cache_fn_url(url, repodata_fn=REPODATA_FN)

	

	
get_cache_control_max_age(cache_control_value: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None])

	

	
create_cache_dir()

	

 jlap

jlap

Incremental repodata feature based on .jlap patch files.

 core

core

JLAP reader.

Classes

	JLAP

	A more or less complete user-defined wrapper around list objects.

Functions

	keyed_hash(data, key)

	Keyed hash.

	line_and_pos(→ Iterator[tuple[int, bytes]])

	
	param lines:

	iterator over input split by 'n', with 'n' removed.

Attributes

	DIGEST_SIZE

	

	DEFAULT_IV

	

	
DIGEST_SIZE = 32

	

	
DEFAULT_IV

	

	
keyed_hash(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], key: bytes [https://docs.python.org/3/library/stdtypes.html#bytes])

	Keyed hash.

	
line_and_pos(lines: Iterable[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], pos=0) → Iterator[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
	Parameters:

	
	lines -- iterator over input split by 'n', with 'n' removed.

	pos -- initial position

	
class JLAP(initlist=None)

	Bases: collections.UserList [https://docs.python.org/3/library/collections.html#collections.UserList]

A more or less complete user-defined wrapper around list objects.

	
property body

	All lines except the first, and last two.

	
property penultimate

	Next-to-last line. Should contain the footer.

	
property last

	Last line. Should contain the trailing checksum.

	
classmethod from_lines(lines: Iterable[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]], iv: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], pos=0, verify=True)

	
	Parameters:

	
	lines -- iterator over input split by b'n', with b'n' removed

	pos -- initial position

	iv -- initialization vector (first line of .jlap stream, hex
decoded). Ignored if pos==0.

	verify -- assert last line equals computed checksum of previous
line. Useful for writing new .jlap files if False.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] -- if trailing and computed checksums do not match

	Returns:

	list of (offset, line, checksum)

	
classmethod from_path(path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | str [https://docs.python.org/3/library/stdtypes.html#str], verify=True)

	

	
add(line: str [https://docs.python.org/3/library/stdtypes.html#str])

	Add line to buffer, following checksum rules.

Buffer must not be empty.

(Remember to pop trailing checksum and possibly trailing metadata line, if
appending to a complete jlap file)

Less efficient than creating a new buffer from many lines and our last iv,
and extending.

	Returns:

	self

	
terminate()

	Add trailing checksum to buffer.

	Returns:

	self

	
write(path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path])

	Write buffer to path.

 fetch

fetch

JLAP consumer.

Classes

	HashWriter

	Base class for raw binary I/O.

Functions

	hash()

	Ordinary hash.

	process_jlap_response(response[, pos, iv])

	

	fetch_jlap(url[, pos, etag, iv, ignore_etag, session])

	

	request_jlap(url[, pos, etag, ignore_etag, session])

	Return the part of the remote .jlap file we are interested in.

	format_hash(hash)

	Abbreviate hash for formatting.

	find_patches(patches, have, want)

	

	apply_patches(data, apply)

	

	withext(url, ext)

	

	timeme(message)

	

	build_headers(json_path, state)

	Caching headers for a path and state.

	download_and_hash(hasher, url, json_path, session, state)

	Download url if it doesn't exist, passing bytes through hasher.update().

	_is_http_error_most_400_codes(→ bool)

	Determine whether the HTTPError is an HTTP 400 error code (except for 416).

	request_url_jlap_state(→ dict | None)

	

Attributes

	DIGEST_SIZE

	

	JLAP_KEY

	

	HEADERS

	

	NOMINAL_HASH

	

	ON_DISK_HASH

	

	LATEST

	

	STORE_HEADERS

	

	
DIGEST_SIZE = 32

	

	
JLAP_KEY = 'jlap'

	

	
HEADERS = 'headers'

	

	
NOMINAL_HASH = 'blake2_256_nominal'

	

	
ON_DISK_HASH = 'blake2_256'

	

	
LATEST = 'latest'

	

	
STORE_HEADERS

	

	
hash()

	Ordinary hash.

	
exception Jlap304NotModified

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
exception JlapSkipZst

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
exception JlapPatchNotFound

	Bases: LookupError [https://docs.python.org/3/library/exceptions.html#LookupError]

Base class for lookup errors.

	
process_jlap_response(response: conda.gateways.connection.Response, pos=0, iv=b'')

	

	
fetch_jlap(url, pos=0, etag=None, iv=b'', ignore_etag=True, session=None)

	

	
request_jlap(url, pos=0, etag=None, ignore_etag=True, session: conda.gateways.connection.Session | None [https://docs.python.org/3/library/constants.html#None] = None)

	Return the part of the remote .jlap file we are interested in.

	
format_hash(hash)

	Abbreviate hash for formatting.

	
find_patches(patches, have, want)

	

	
apply_patches(data, apply)

	

	
withext(url, ext)

	

	
timeme(message)

	

	
build_headers(json_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], state: conda.gateways.repodata.RepodataState)

	Caching headers for a path and state.

	
class HashWriter(backing, hasher)

	Bases: io.RawIOBase [https://docs.python.org/3/library/io.html#io.RawIOBase]

Base class for raw binary I/O.

	
write(b: bytes [https://docs.python.org/3/library/stdtypes.html#bytes])

	

	
close()

	Flush and close the IO object.

This method has no effect if the file is already closed.

	
download_and_hash(hasher, url, json_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], session: conda.gateways.connection.Session, state: conda.gateways.repodata.RepodataState | None [https://docs.python.org/3/library/constants.html#None], is_zst=False, dest_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Download url if it doesn't exist, passing bytes through hasher.update().

json_path: Path of old cached data (ignore etag if not exists).
dest_path: Path to write new data.

	
_is_http_error_most_400_codes(e: requests.HTTPError) → bool [https://docs.python.org/3/library/functions.html#bool]

	Determine whether the HTTPError is an HTTP 400 error code (except for 416).

	
request_url_jlap_state(url, state: conda.gateways.repodata.RepodataState, full_download=False, *, session: conda.gateways.connection.Session, cache: conda.gateways.repodata.RepodataCache, temp_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	

 interface

interface

JLAP interface for repodata.

Classes

	JlapRepoInterface

	Helper class that provides a standard way to create an ABC using

	RepodataStateSkipFormat

	Load/save info file that accompanies cached repodata.json.

	ZstdRepoInterface

	Support repodata.json.zst (if available) without checking .jlap

	
class JlapRepoInterface(url: str [https://docs.python.org/3/library/stdtypes.html#str], repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None], *, cache: conda.gateways.repodata.RepodataCache, **kwargs)

	Bases: conda.gateways.repodata.RepoInterface

Helper class that provides a standard way to create an ABC using
inheritance.

	
repodata(state: dict [https://docs.python.org/3/library/stdtypes.html#dict] | conda.gateways.repodata.RepodataState) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Fetch newest repodata if necessary.

Always writes to cache_path_json.

	
repodata_parsed(state: dict [https://docs.python.org/3/library/stdtypes.html#dict] | conda.gateways.repodata.RepodataState) → dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	JLAP has to parse the JSON anyway.

Use this to avoid a redundant parse when repodata is updated.

When repodata is not updated, it doesn't matter whether this function or
the caller reads from a file.

	
_repodata_state_copy(state: dict [https://docs.python.org/3/library/stdtypes.html#dict] | conda.gateways.repodata.RepodataState)

	

	
class RepodataStateSkipFormat(*args, skip_formats=set(), **kwargs)

	Bases: conda.gateways.repodata.RepodataState

Load/save info file that accompanies cached repodata.json.

	
skip_formats: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
should_check_format(format)

	Return True if named format should be attempted.

	
class ZstdRepoInterface(url: str [https://docs.python.org/3/library/stdtypes.html#str], repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None], *, cache: conda.gateways.repodata.RepodataCache, **kwargs)

	Bases: JlapRepoInterface

Support repodata.json.zst (if available) without checking .jlap

	
_repodata_state_copy(state: dict [https://docs.python.org/3/library/stdtypes.html#dict] | conda.gateways.repodata.RepodataState)

	

 lock

lock

Backwards compatibility import.

Moved to prevent circular imports.

 subprocess

subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess]

Helpler functions for subprocess.

Functions

	_format_output(command_str, cwd, rc, stdout, stderr)

	

	any_subprocess(args, prefix[, env, cwd])

	

	subprocess_call(command[, env, path, stdin, ...])

	This utility function should be preferred for all conda subprocessing.

	_subprocess_clean_env(env[, clean_python, clean_conda])

	

	subprocess_call_with_clean_env(command[, path, stdin, ...])

	

Attributes

	Response

	

	
Response

	

	
_format_output(command_str, cwd, rc, stdout, stderr)

	

	
any_subprocess(args, prefix, env=None, cwd=None)

	

	
subprocess_call(command: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | Sequence[str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]], env: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, path: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | None [https://docs.python.org/3/library/constants.html#None] = None, stdin: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, raise_on_error: bool [https://docs.python.org/3/library/functions.html#bool] = True, capture_output: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	This utility function should be preferred for all conda subprocessing.
It handles multiple tricky details.

	
_subprocess_clean_env(env, clean_python=True, clean_conda=True)

	

	
subprocess_call_with_clean_env(command, path=None, stdin=None, raise_on_error=True, clean_python=True, clean_conda=True)

	

 history

history

Tools interfacing with conda's history file.

Classes

	History

	

Functions

	write_head(fo)

	

	is_diff(content)

	

	pretty_diff(diff)

	

	pretty_content(content)

	

Attributes

	h

	

	
exception CondaHistoryWarning

	Bases: Warning [https://docs.python.org/3/library/exceptions.html#Warning]

Base class for warning categories.

	
write_head(fo)

	

	
is_diff(content)

	

	
pretty_diff(diff)

	

	
pretty_content(content)

	

	
class History(prefix)

	
	
com_pat

	

	
spec_pat

	

	
conda_v_pat

	

	
__enter__()

	

	
__exit__(exc_type, exc_value, traceback)

	

	
init_log_file()

	

	
file_is_empty()

	

	
update() → None [https://docs.python.org/3/library/constants.html#None]

	Update the history file (creating a new one if necessary).

	
parse() → list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]]

	Parse the history file.

Return a list of tuples(datetime strings, set of distributions/diffs, comments).

	
static _parse_old_format_specs_string(specs_string)

	Parse specifications string that use conda<4.5 syntax.

Examples

	"param >=1.5.1,<2.0'"

	"python>=3.5.1,jupyter >=1.0.0,<2.0,matplotlib >=1.5.1,<2.0"

	
classmethod _parse_comment_line(line)

	Parse comment lines in the history file.

These lines can be of command type or action type.

Examples

	"# cmd: /scratch/mc3/bin/conda install -c conda-forge param>=1.5.1,<2.0"

	"# install specs: python>=3.5.1,jupyter >=1.0.0,<2.0,matplotlib >=1.5.1,<2.0"

	
get_user_requests()

	Return a list of user requested items.

Each item is a dict with the following keys:
'date': the date and time running the command
'cmd': a list of argv of the actual command which was run
'action': install/remove/update
'specs': the specs being used

	
get_requested_specs_map()

	

	
construct_states()

	Return a list of tuples(datetime strings, set of distributions).

	
get_state(rev=-1)

	Return the state, i.e. the set of distributions, for a given revision.

Defaults to latest (which is the same as the current state when
the log file is up-to-date).

Returns a list of dist_strs.

	
print_log()

	

	
object_log()

	

	
write_changes(last_state, current_state)

	

	
write_specs(remove_specs=(), update_specs=(), neutered_specs=())

	

	
h

	

 instructions

instructions

Define the instruction set (constants) for conda operations.

Functions

	PRINT_CMD(state, arg)

	

	FETCH_CMD(state, package_cache_entry)

	

	EXTRACT_CMD(state, arg)

	

	PROGRESSIVEFETCHEXTRACT_CMD(state, ...)

	

	UNLINKLINKTRANSACTION_CMD(state, arg)

	

	check_files_in_package(source_dir, files)

	

Attributes

	CHECK_FETCH

	

	FETCH

	

	CHECK_EXTRACT

	

	EXTRACT

	

	RM_EXTRACTED

	

	RM_FETCHED

	

	PRINT

	

	PROGRESS

	

	SYMLINK_CONDA

	

	UNLINK

	

	LINK

	

	UNLINKLINKTRANSACTION

	

	PROGRESSIVEFETCHEXTRACT

	

	PROGRESS_COMMANDS

	

	ACTION_CODES

	

	commands

	

	OP_ORDER

	

	
CHECK_FETCH = 'CHECK_FETCH'

	

	
FETCH = 'FETCH'

	

	
CHECK_EXTRACT = 'CHECK_EXTRACT'

	

	
EXTRACT = 'EXTRACT'

	

	
RM_EXTRACTED = 'RM_EXTRACTED'

	

	
RM_FETCHED = 'RM_FETCHED'

	

	
PRINT = 'PRINT'

	

	
PROGRESS = 'PROGRESS'

	

	
SYMLINK_CONDA = 'SYMLINK_CONDA'

	

	
UNLINK = 'UNLINK'

	

	
LINK = 'LINK'

	

	
UNLINKLINKTRANSACTION = 'UNLINKLINKTRANSACTION'

	

	
PROGRESSIVEFETCHEXTRACT = 'PROGRESSIVEFETCHEXTRACT'

	

	
PROGRESS_COMMANDS

	

	
ACTION_CODES = ()

	

	
PRINT_CMD(state, arg)

	

	
FETCH_CMD(state, package_cache_entry)

	

	
EXTRACT_CMD(state, arg)

	

	
PROGRESSIVEFETCHEXTRACT_CMD(state, progressive_fetch_extract)

	

	
UNLINKLINKTRANSACTION_CMD(state, arg)

	

	
check_files_in_package(source_dir, files)

	

	
commands

	

	
OP_ORDER = ()

	

 misc

misc

Miscellaneous utility functions.

Functions

	conda_installed_files(prefix[, exclude_self_build])

	Return the set of files which have been installed (using conda) into

	explicit(specs, prefix[, verbose, force_extract, ...])

	

	rel_path(prefix, path[, windows_forward_slashes])

	

	walk_prefix(prefix[, ignore_predefined_files, ...])

	Return the set of all files in a given prefix directory.

	untracked(prefix[, exclude_self_build])

	Return (the set) of all untracked files for a given prefix.

	touch_nonadmin(prefix)

	Creates $PREFIX/.nonadmin if sys.prefix/.nonadmin exists (on Windows).

	clone_env(prefix1, prefix2[, verbose, quiet, index_args])

	Clone existing prefix1 into new prefix2.

Attributes

	url_pat

	

	
conda_installed_files(prefix, exclude_self_build=False)

	Return the set of files which have been installed (using conda) into
a given prefix.

	
url_pat

	

	
explicit(specs, prefix, verbose=False, force_extract=True, index_args=None, index=None)

	

	
rel_path(prefix, path, windows_forward_slashes=True)

	

	
walk_prefix(prefix, ignore_predefined_files=True, windows_forward_slashes=True)

	Return the set of all files in a given prefix directory.

	
untracked(prefix, exclude_self_build=False)

	Return (the set) of all untracked files for a given prefix.

	
touch_nonadmin(prefix)

	Creates $PREFIX/.nonadmin if sys.prefix/.nonadmin exists (on Windows).

	
clone_env(prefix1, prefix2, verbose=True, quiet=False, index_args=None)

	Clone existing prefix1 into new prefix2.

 models

models

Models are data transfer objects or "light-weight" domain objects with no appreciable logic
other than their own validation. Models are used to pass data between layers of the stack. In
many ways they are similar to ORM objects. Unlike ORM objects, they are NOT themselves allowed
to load data from a remote resource. Thought of another way, they cannot import from
conda.gateways, but rather conda.gateways imports from conda.models as appropriate
to create model objects from remote resources.

Conda modules importable from conda.models are

	conda._vendor

	conda.common

	conda.models

 channel

channel

Defines Channel and MultiChannel objects and other channel-related functions.

Object inheritance:

[image: Inheritance diagram of Channel, MultiChannel]

Classes

	ChannelType

	This metaclass does basic caching and enables static constructor method usage with a

	Channel

	Channel:

	MultiChannel

	Channel:

Functions

	tokenized_startswith(test_iterable, startswith_iterable)

	

	tokenized_conda_url_startswith(test_url, startswith_url)

	

	_get_channel_for_name(channel_name)

	

	_read_channel_configuration(scheme, host, port, path)

	

	parse_conda_channel_url(url)

	

	get_conda_build_local_url()

	

	prioritize_channels(channels[, with_credentials, subdirs])

	

	all_channel_urls(channels[, subdirs, with_credentials])

	

	offline_keep(url)

	

	get_channel_objs(ctx)

	Return current channels as Channel objects

	
class ChannelType

	Bases: type [https://docs.python.org/3/library/functions.html#type]

This metaclass does basic caching and enables static constructor method usage with a
single arg.

	
__call__(*args, **kwargs)

	Call self as a function.

	
class Channel(scheme=None, auth=None, location=None, token=None, name=None, platform=None, package_filename=None)

	Channel:
scheme <> auth <> location <> token <> channel <> subchannel <> platform <> package_filename

Package Spec:
channel <> subchannel <> namespace <> package_name

	
property channel_location

	

	
property channel_name

	

	
property subdir

	

	
property canonical_name

	

	
property base_url

	

	
property base_urls

	

	
property subdir_url

	

	
property url_channel_wtf

	

	
cache

	

	
static _reset_state()

	

	
static from_url(url)

	

	
static from_channel_name(channel_name)

	

	
static from_value(value)

	

	
static make_simple_channel(channel_alias, channel_url, name=None)

	

	
urls(with_credentials=False, subdirs=None)

	

	
url(with_credentials=False)

	

	
__str__()

	Return str(self).

	
__repr__()

	Return repr(self).

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
__nonzero__()

	

	
__bool__()

	

	
__json__()

	

	
dump()

	

	
class MultiChannel(name, channels, platform=None)

	Bases: Channel

Channel:
scheme <> auth <> location <> token <> channel <> subchannel <> platform <> package_filename

Package Spec:
channel <> subchannel <> namespace <> package_name

	
property channel_location

	

	
property canonical_name

	

	
property base_url

	

	
property base_urls

	

	
urls(with_credentials=False, subdirs=None)

	

	
url(with_credentials=False)

	

	
dump()

	

	
tokenized_startswith(test_iterable, startswith_iterable)

	

	
tokenized_conda_url_startswith(test_url, startswith_url)

	

	
_get_channel_for_name(channel_name)

	

	
_read_channel_configuration(scheme, host, port, path)

	

	
parse_conda_channel_url(url)

	

	
get_conda_build_local_url()

	

	
prioritize_channels(channels, with_credentials=True, subdirs=None)

	

	
all_channel_urls(channels, subdirs=None, with_credentials=True)

	

	
offline_keep(url)

	

	
get_channel_objs(ctx: conda.base.context.Context)

	Return current channels as Channel objects

 dist

dist

(Legacy) Low-level implementation of a Channel.

Classes

	DistDetails

	

	DistType

	

	Dist

	

Functions

	strip_extension(original_dist)

	

	split_extension(original_dist)

	

	dist_str_to_quad(dist_str)

	

	
class DistDetails

	Bases: NamedTuple

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
version: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
build_string: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
build_number: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
dist_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
fmt: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class DistType(name, bases, attr)

	Bases: conda.auxlib.entity.EntityType

	
__call__(*args, **kwargs)

	Call self as a function.

	
strip_extension(original_dist)

	

	
split_extension(original_dist)

	

	
class Dist(channel, dist_name=None, name=None, version=None, build_string=None, build_number=None, base_url=None, platform=None, fmt='.tar.bz2')

	Bases: conda.auxlib.entity.Entity

	
property full_name

	

	
property build

	

	
property subdir

	

	
property pair

	

	
property quad

	

	
property is_feature_package

	

	
property is_channel

	

	
property fn

	

	
cache

	

	
_lazy_validate = True

	

	
channel

	

	
dist_name

	

	
name

	

	
fmt

	

	
version

	

	
build_string

	

	
build_number

	

	
base_url

	

	
platform

	

	
to_package_ref()

	

	
__str__()

	Return str(self).

	
to_filename(extension=None)

	

	
to_matchspec()

	

	
to_match_spec()

	

	
classmethod from_string(string, channel_override=NULL)

	

	
static parse_dist_name(string)

	

	
classmethod from_url(url)

	

	
to_url()

	

	
__key__()

	

	
__lt__(other)

	Return self<value.

	
__gt__(other)

	Return self>value.

	
__le__(other)

	Return self<=value.

	
__ge__(other)

	Return self>=value.

	
__hash__()

	Return hash(self).

	
__eq__(other)

	Return self==value.

	
__ne__(other)

	Return self!=value.

	
split(sep=None, maxsplit=-1)

	

	
rsplit(sep=None, maxsplit=-1)

	

	
startswith(match)

	

	
__contains__(item)

	

	
dist_str_to_quad(dist_str)

	

 enums

enums

Collection of enums used throughout conda.

Classes

	Arch

	Generic enumeration.

	Platform

	Generic enumeration.

	FileMode

	Generic enumeration.

	LinkType

	Generic enumeration.

	PathType

	Refers to if the file in question is hard linked or soft linked. Originally designed to be used

	LeasedPathType

	Generic enumeration.

	PackageType

	Generic enumeration.

	NoarchType

	Generic enumeration.

	
class Arch

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
x86 = 'x86'

	

	
x86_64 = 'x86_64'

	

	
arm64 = 'arm64'

	

	
armv6l = 'armv6l'

	

	
armv7l = 'armv7l'

	

	
aarch64 = 'aarch64'

	

	
ppc64 = 'ppc64'

	

	
ppc64le = 'ppc64le'

	

	
riscv64 = 'riscv64'

	

	
s390x = 's390x'

	

	
z = 'z'

	

	
classmethod from_sys()

	

	
__json__()

	

	
class Platform

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
freebsd = 'freebsd'

	

	
linux = 'linux'

	

	
win = 'win32'

	

	
openbsd = 'openbsd5'

	

	
osx = 'darwin'

	

	
zos = 'zos'

	

	
classmethod from_sys()

	

	
__json__()

	

	
class FileMode

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
text = 'text'

	

	
binary = 'binary'

	

	
__str__()

	Return str(self).

	
class LinkType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
hardlink = 1

	

	
softlink = 2

	

	
copy = 3

	

	
directory = 4

	

	
__int__()

	

	
__str__()

	Return str(self).

	
__json__()

	

	
class PathType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Refers to if the file in question is hard linked or soft linked. Originally designed to be used
in paths.json

	
hardlink = 'hardlink'

	

	
softlink = 'softlink'

	

	
directory = 'directory'

	

	
linked_package_record = 'linked_package_record'

	

	
pyc_file = 'pyc_file'

	

	
unix_python_entry_point = 'unix_python_entry_point'

	

	
windows_python_entry_point_script = 'windows_python_entry_point_script'

	

	
windows_python_entry_point_exe = 'windows_python_entry_point_exe'

	

	
basic_types()

	

	
__str__()

	Return str(self).

	
__json__()

	

	
class LeasedPathType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
application_entry_point = 'application_entry_point'

	

	
application_entry_point_windows_exe = 'application_entry_point_windows_exe'

	

	
application_softlink = 'application_softlink'

	

	
__str__()

	Return str(self).

	
__json__()

	

	
class PackageType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
NOARCH_GENERIC = 'noarch_generic'

	

	
NOARCH_PYTHON = 'noarch_python'

	

	
VIRTUAL_PRIVATE_ENV = 'virtual_private_env'

	

	
VIRTUAL_PYTHON_WHEEL = 'virtual_python_wheel'

	

	
VIRTUAL_PYTHON_EGG_MANAGEABLE = 'virtual_python_egg_manageable'

	

	
VIRTUAL_PYTHON_EGG_UNMANAGEABLE = 'virtual_python_egg_unmanageable'

	

	
VIRTUAL_PYTHON_EGG_LINK = 'virtual_python_egg_link'

	

	
VIRTUAL_SYSTEM = 'virtual_system'

	

	
static conda_package_types()

	

	
static unmanageable_package_types()

	

	
class NoarchType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Generic enumeration.

Derive from this class to define new enumerations.

	
generic = 'generic'

	

	
python = 'python'

	

	
static coerce(val)

	

 leased_path_entry

leased_path_entry

Implements object describing a symbolic link from the base environment to a private environment.

Since private environments are an unrealized feature of conda and has been deprecated this data
model no longer serves a purpose and has also been deprecated.

Classes

	LeasedPathEntry

	_path: short path for the leased path, using forward slashes

	
class LeasedPathEntry(**kwargs)

	Bases: conda.auxlib.entity.Entity

_path: short path for the leased path, using forward slashes
target_path: the full path to the executable in the private env
target_prefix: the full path to the private environment
leased_path: the full path for the lease in the root prefix
package_name: the package holding the lease
leased_path_type: application_entry_point

	
_path

	

	
target_path

	

	
target_prefix

	

	
leased_path

	

	
package_name

	

	
leased_path_type

	

 match_spec

match_spec

Implements the query language for conda packages (a.k.a, MatchSpec).

The MatchSpec is the conda package specification (e.g. conda==23.3, python<3.7,
cryptography * *_0) and is used to communicate the desired packages to install.

Classes

	MatchSpecType

	

	MatchSpec

	The query language for conda packages.

	MatchInterface

	

	_StrMatchMixin

	

	ExactStrMatch

	

	ExactLowerStrMatch

	

	GlobStrMatch

	

	GlobLowerStrMatch

	

	SplitStrMatch

	

	FeatureMatch

	

	ChannelMatch

	

	CaseInsensitiveStrMatch

	

Functions

	_parse_version_plus_build(v_plus_b)

	This should reliably pull the build string out of a version + build string combo.

	_parse_legacy_dist(dist_str)

	Examples

	_parse_channel(channel_val)

	

	_parse_spec_str(spec_str)

	

Attributes

	_PARSE_CACHE

	

	_implementors

	

	
class MatchSpecType

	Bases: type [https://docs.python.org/3/library/functions.html#type]

	
__call__(spec_arg=None, **kwargs)

	Call self as a function.

	
class MatchSpec(optional=False, target=None, **kwargs)

	The query language for conda packages.

Any of the fields that comprise a PackageRecord can be used to compose a
MatchSpec.

MatchSpec can be composed with keyword arguments, where keys are any of the
attributes of PackageRecord. Values for keyword arguments are the exact values the
attribute should match against. Many fields can also be matched against non-exact values--by
including wildcard * and >/< ranges--where supported. Any non-specified field is
the equivalent of a full wildcard match.

MatchSpec can also be composed using a single positional argument, with optional
keyword arguments. Keyword arguments also override any conflicting information provided in
the positional argument. The positional argument can be either an existing MatchSpec
instance or a string. Conda has historically had several string representations for equivalent
MatchSpec`s. This :class:`MatchSpec should accept any existing valid spec string, and
correctly compose a MatchSpec instance.

A series of rules are now followed for creating the canonical string representation of a
MatchSpec instance. The canonical string representation can generically be
represented by

(channel(/subdir):(namespace):)name(version(build))[key1=value1,key2=value2]

where () indicate optional fields. The rules for constructing a canonical string
representation are:

	name (i.e. "package name") is required, but its value can be '*'. Its position is always
outside the key-value brackets.

	If version is an exact version, it goes outside the key-value brackets and is prepended
by ==. If version is a "fuzzy" value (e.g. 1.11.*), it goes outside the key-value
brackets with the .* left off and is prepended by =. Otherwise version is included
inside key-value brackets.

	If version is an exact version, and build is an exact value, build goes outside
key-value brackets prepended by a =. Otherwise, build goes inside key-value brackets.
build_string is an alias for build.

	The namespace position is being held for a future conda feature.

	If channel is included and is an exact value, a :: separator is ued between channel
and name. channel can either be a canonical channel name or a channel url. In the
canonical string representation, the canonical channel name will always be used.

	If channel is an exact value and subdir is an exact value, subdir is appended to
channel with a / separator. Otherwise, subdir is included in the key-value brackets.

	Key-value brackets can be delimited by comma, space, or comma+space. Value can optionally
be wrapped in single or double quotes, but must be wrapped if value contains a comma,
space, or equal sign. The canonical format uses comma delimiters and single quotes.

	When constructing a MatchSpec instance from a string, any key-value pair given
inside the key-value brackets overrides any matching parameter given outside the brackets.

When MatchSpec attribute values are simple strings, the are interpreted using the
following conventions:

	If the string begins with ^ and ends with $, it is converted to a regex.

	If the string contains an asterisk (*), it is transformed from a glob to a regex.

	Otherwise, an exact match to the string is sought.

Examples

>>> str(MatchSpec(name='foo', build='py2*', channel='conda-forge'))
'conda-forge::foo[build=py2*]'
>>> str(MatchSpec('foo 1.0 py27_0'))
'foo==1.0=py27_0'
>>> str(MatchSpec('foo=1.0=py27_0'))
'foo==1.0=py27_0'
>>> str(MatchSpec('conda-forge::foo[version=1.0.*]'))
'conda-forge::foo=1.0'
>>> str(MatchSpec('conda-forge/linux-64::foo>=1.0'))
"conda-forge/linux-64::foo[version='>=1.0']"
>>> str(MatchSpec('*/linux-64::foo>=1.0'))
"foo[subdir=linux-64,version='>=1.0']"

	To fully-specify a package with a full, exact spec, the fields
	
	channel

	subdir

	name

	version

	build

must be given as exact values. In the future, the namespace field will be added to this list.
Alternatively, an exact spec is given by '*[md5=12345678901234567890123456789012]'
or '*[sha256=f453db4ffe2271ec492a2913af4e61d4a6c118201f07de757df0eff769b65d2e]'.

	
property is_name_only_spec

	

	
property optional

	

	
property target

	

	
property original_spec_str

	

	
property name

	

	
property strictness

	

	
property spec

	

	
property version

	

	
property fn

	

	
FIELD_NAMES = ('channel', 'subdir', 'name', 'version', 'build', 'build_number', 'track_features', 'features',...

	

	
FIELD_NAMES_SET

	

	
_MATCHER_CACHE

	

	
classmethod from_dist_str(dist_str)

	

	
get_exact_value(field_name)

	

	
get_raw_value(field_name)

	

	
get(field_name, default=None)

	

	
dist_str()

	

	
match(rec)

	Accepts a PackageRecord or a dict, and matches can pull from any field
in that record. Returns True for a match, and False for no match.

	
_match_individual(record, field_name, match_component)

	

	
_is_simple()

	

	
_is_single()

	

	
_to_filename_do_not_use()

	

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
__json__()

	

	
conda_build_form()

	

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
_hash_key()

	

	
__contains__(field)

	

	
_build_components(**kwargs)

	

	
static _make_component(field_name, value)

	

	
classmethod merge(match_specs, union=False)

	

	
classmethod union(match_specs)

	

	
_merge(other, union=False)

	

	
_parse_version_plus_build(v_plus_b)

	This should reliably pull the build string out of a version + build string combo.
.. rubric:: Examples

>>> _parse_version_plus_build("=1.2.3 0")
('=1.2.3', '0')
>>> _parse_version_plus_build("1.2.3=0")
('1.2.3', '0')
>>> _parse_version_plus_build(">=1.0 , < 2.0 py34_0")
('>=1.0,<2.0', 'py34_0')
>>> _parse_version_plus_build(">=1.0 , < 2.0 =py34_0")
('>=1.0,<2.0', 'py34_0')
>>> _parse_version_plus_build("=1.2.3 ")
('=1.2.3', None)
>>> _parse_version_plus_build(">1.8,<2|==1.7")
('>1.8,<2|==1.7', None)
>>> _parse_version_plus_build("* openblas_0")
('*', 'openblas_0')
>>> _parse_version_plus_build("* *")
('*', '*')

	
_parse_legacy_dist(dist_str)

	Examples

>>> _parse_legacy_dist("_license-1.1-py27_1.tar.bz2")
('_license', '1.1', 'py27_1')
>>> _parse_legacy_dist("_license-1.1-py27_1")
('_license', '1.1', 'py27_1')

	
_parse_channel(channel_val)

	

	
_PARSE_CACHE

	

	
_parse_spec_str(spec_str)

	

	
class MatchInterface(value)

	
	
property raw_value

	

	
abstract property exact_value

	If the match value is an exact specification, returns the value.
Otherwise returns None.

	
abstract match(other)

	

	
matches(value)

	

	
merge(other)

	

	
union(other)

	

	
class _StrMatchMixin

	
	
property exact_value

	

	
__str__()

	Return str(self).

	
__repr__()

	Return repr(self).

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
class ExactStrMatch(value)

	Bases: _StrMatchMixin, MatchInterface

	
__slots__ = ('_raw_value',)

	

	
match(other)

	

	
class ExactLowerStrMatch(value)

	Bases: ExactStrMatch

	
match(other)

	

	
class GlobStrMatch(value)

	Bases: _StrMatchMixin, MatchInterface

	
property exact_value

	If the match value is an exact specification, returns the value.
Otherwise returns None.

	
property matches_all

	

	
__slots__ = ('_raw_value', '_re_match')

	

	
match(other)

	

	
class GlobLowerStrMatch(value)

	Bases: GlobStrMatch

	
class SplitStrMatch(value)

	Bases: MatchInterface

	
property exact_value

	If the match value is an exact specification, returns the value.
Otherwise returns None.

	
__slots__ = ('_raw_value',)

	

	
_convert(value)

	

	
match(other)

	

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
class FeatureMatch(value)

	Bases: MatchInterface

	
property exact_value

	If the match value is an exact specification, returns the value.
Otherwise returns None.

	
__slots__ = ('_raw_value',)

	

	
_convert(value)

	

	
match(other)

	

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
__eq__(other)

	Return self==value.

	
__hash__()

	Return hash(self).

	
class ChannelMatch(value)

	Bases: GlobStrMatch

	
match(other)

	

	
__str__()

	Return str(self).

	
__repr__()

	Return repr(self).

	
class CaseInsensitiveStrMatch(value)

	Bases: GlobLowerStrMatch

	
match(other)

	

	
_implementors

	

 package_info

package_info

(Legacy) Low-level implementation of a PackageRecord.

Classes

	NoarchField

	Fields are doing something very similar to boxing and unboxing

	Noarch

	

	PreferredEnv

	

	PackageMetadata

	

	PackageInfo

	

	
class NoarchField(enum_class, default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: conda.auxlib.entity.EnumField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
box(instance, instance_type, val)

	

	
class Noarch(**kwargs)

	Bases: conda.auxlib.entity.Entity

	
type

	

	
entry_points

	

	
class PreferredEnv(**kwargs)

	Bases: conda.auxlib.entity.Entity

	
name

	

	
executable_paths

	

	
softlink_paths

	

	
class PackageMetadata(**kwargs)

	Bases: conda.auxlib.entity.Entity

	
package_metadata_version

	

	
noarch

	

	
preferred_env

	

	
class PackageInfo(**kwargs)

	Bases: conda.auxlib.entity.ImmutableEntity

	
property name

	

	
property version

	

	
property build

	

	
property build_number

	

	
extracted_package_dir

	

	
package_tarball_full_path

	

	
channel

	

	
repodata_record

	

	
url

	

	
icondata

	

	
package_metadata

	

	
paths_data

	

	
dist_str()

	

 prefix_graph

prefix_graph

Implements directed graphs to sort and manipulate packages within a prefix.

Object inheritance:

[image: Inheritance diagram of PrefixGraph, GeneralGraph]

Classes

	PrefixGraph

	A directed graph structure used for sorting packages (prefix_records) in prefixes and

	GeneralGraph

	Compared with PrefixGraph, this class takes in more than one record of a given name,

	
class PrefixGraph(records, specs=())

	A directed graph structure used for sorting packages (prefix_records) in prefixes and
manipulating packages within prefixes (e.g. removing and pruning).

The terminology used for edge direction is "parents" and "children" rather than "successors"
and "predecessors". The parent nodes of a record are those records in the graph that
match the record's "depends" field. E.g. NodeA depends on NodeB, then NodeA is a child
of NodeB, and NodeB is a parent of NodeA. Nodes can have zero parents, or more than two
parents.

Most public methods mutate the graph.

	
property records

	

	
remove_spec(spec)

	Remove all matching nodes, and any associated child nodes.

	Parameters:

	spec (MatchSpec) --

	Returns:

	The removed nodes.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][PrefixRecord]

	
remove_youngest_descendant_nodes_with_specs()

	A specialized method used to determine only dependencies of requested specs.

	Returns:

	The removed nodes.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][PrefixRecord]

	
prune()

	Prune back all packages until all child nodes are anchored by a spec.

	Returns:

	The pruned nodes.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][PrefixRecord]

	
get_node_by_name(name)

	

	
all_descendants(node)

	

	
all_ancestors(node)

	

	
_remove_node(node)

	Removes this node and all edges referencing it.

	
_toposort()

	

	
classmethod _toposort_raise_on_cycles(graph)

	

	
classmethod _topo_sort_handle_cycles(graph)

	

	
static _toposort_pop_key(graph)

	Pop an item from the graph that has the fewest parents.
In the case of a tie, use the node with the alphabetically-first package name.

	
static _toposort_prepare_graph(graph)

	

	
class GeneralGraph(records, specs=())

	Bases: PrefixGraph

Compared with PrefixGraph, this class takes in more than one record of a given name,
and operates on that graph from the higher view across any matching dependencies. It is
not a Prefix thing, but more like a "graph of all possible candidates" thing, and is used
for unsatisfiability analysis

	
breadth_first_search_by_name(root_spec, target_spec)

	Return shorted path from root_spec to spec_name

 records

records

Implements the data model for conda packages.

A PackageRecord is the record of a package present in a channel. A PackageCache is the record of a
downloaded and cached package. A PrefixRecord is the record of a package installed into a conda
environment.

Object inheritance:

[image: Inheritance diagram of PackageRecord, PackageCacheRecord, PrefixRecord]

Classes

	LinkTypeField

	Fields are doing something very similar to boxing and unboxing

	NoarchField

	Fields are doing something very similar to boxing and unboxing

	TimestampField

	Fields are doing something very similar to boxing and unboxing

	Link

	

	_FeaturesField

	Fields are doing something very similar to boxing and unboxing

	ChannelField

	Fields are doing something very similar to boxing and unboxing

	SubdirField

	Fields are doing something very similar to boxing and unboxing

	FilenameField

	Fields are doing something very similar to boxing and unboxing

	PackageTypeField

	Fields are doing something very similar to boxing and unboxing

	PathData

	

	PathDataV1

	

	PathsData

	

	PackageRecord

	

	Md5Field

	Fields are doing something very similar to boxing and unboxing

	PackageCacheRecord

	

	PrefixRecord

	

Attributes

	EMPTY_LINK

	

	
class LinkTypeField(enum_class, default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: conda.auxlib.entity.EnumField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
box(instance, instance_type, val)

	

	
class NoarchField(enum_class, default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True, nullable=False, immutable=False, aliases=())

	Bases: conda.auxlib.entity.EnumField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
box(instance, instance_type, val)

	

	
class TimestampField

	Bases: conda.auxlib.entity.NumberField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
static _make_seconds(val)

	

	
static _make_milliseconds(val)

	

	
box(instance, instance_type, val)

	

	
dump(instance, instance_type, val)

	

	
__get__(instance, instance_type)

	

	
class Link(**kwargs)

	Bases: conda.auxlib.entity.DictSafeMixin, conda.auxlib.entity.Entity

	
source

	

	
type

	

	
EMPTY_LINK

	

	
class _FeaturesField(**kwargs)

	Bases: conda.auxlib.entity.ListField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
box(instance, instance_type, val)

	

	
dump(instance, instance_type, val)

	

	
class ChannelField(aliases=())

	Bases: conda.auxlib.entity.ComposableField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
dump(instance, instance_type, val)

	

	
__get__(instance, instance_type)

	

	
class SubdirField

	Bases: conda.auxlib.entity.StringField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
__get__(instance, instance_type)

	

	
class FilenameField(aliases=())

	Bases: conda.auxlib.entity.StringField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
__get__(instance, instance_type)

	

	
class PackageTypeField

	Bases: conda.auxlib.entity.EnumField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
__get__(instance, instance_type)

	

	
class PathData(**kwargs)

	Bases: conda.auxlib.entity.Entity

	
property path

	

	
_path

	

	
prefix_placeholder

	

	
file_mode

	

	
no_link

	

	
path_type

	

	
class PathDataV1(**kwargs)

	Bases: PathData

	
sha256

	

	
size_in_bytes

	

	
inode_paths

	

	
sha256_in_prefix

	

	
class PathsData(**kwargs)

	Bases: conda.auxlib.entity.Entity

	
paths_version

	

	
paths

	

	
class PackageRecord(*args, **kwargs)

	Bases: conda.auxlib.entity.DictSafeMixin, conda.auxlib.entity.Entity

	
property schannel

	

	
property _pkey

	

	
property is_unmanageable

	

	
property combined_depends

	

	
property namekey

	

	
name

	

	
version

	

	
build

	

	
build_number

	

	
channel

	

	
subdir

	

	
fn

	

	
md5

	

	
legacy_bz2_md5

	

	
legacy_bz2_size

	

	
url

	

	
sha256

	

	
arch

	

	
platform

	

	
depends

	

	
constrains

	

	
track_features

	

	
features

	

	
noarch

	

	
preferred_env

	

	
license

	

	
license_family

	

	
package_type

	

	
timestamp

	

	
date

	

	
size

	

	
metadata: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
__hash__()

	Return hash(self).

	
__eq__(other)

	Return self==value.

	
dist_str()

	

	
dist_fields_dump()

	

	
__str__()

	Return str(self).

	
to_match_spec()

	

	
to_simple_match_spec()

	

	
record_id()

	

	
class Md5Field

	Bases: conda.auxlib.entity.StringField

Fields are doing something very similar to boxing and unboxing
of c#/java primitives. __set__ should take a "primitive" or "raw" value and create a "boxed"
or "programmatically usable" value of it. While __get__ should return the boxed value,
dump in turn should unbox the value into a primitive or raw value.

	Parameters:

	
	types (primitive literal or type [https://docs.python.org/3/library/functions.html#type] or sequence of types) --

	default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

	required (boolean, optional) --

	validation (callable, optional) --

	dump (boolean, optional) --

	
__get__(instance, instance_type)

	

	
class PackageCacheRecord(*args, **kwargs)

	Bases: PackageRecord

	
property is_fetched

	

	
property is_extracted

	

	
property tarball_basename

	

	
package_tarball_full_path

	

	
extracted_package_dir

	

	
md5

	

	
_calculate_md5sum()

	

	
class PrefixRecord(*args, **kwargs)

	Bases: PackageRecord

	
package_tarball_full_path

	

	
extracted_package_dir

	

	
files

	

	
paths_data

	

	
link

	

	
requested_spec

	

	
auth

	

 version

version

Implements the version spec with parsing and comparison logic.

Object inheritance:

[image: Inheritance diagram of BaseSpec, VersionSpec, BuildNumberMatch]

Classes

	SingleStrArgCachingType

	

	VersionOrder

	Implement an order relation between version strings.

	BaseSpec

	

	VersionSpec

	

	BuildNumberMatch

	

Functions

	normalized_version(→ VersionOrder)

	Parse a version string and return VersionOrder object.

	ver_eval(vtest, spec)

	

	treeify(spec_str)

	Examples

	untreeify(spec[, _inand, depth])

	Examples

	compatible_release_operator(x, y)

	

Attributes

	version_check_re

	

	version_split_re

	

	version_cache

	

	VSPEC_TOKENS

	

	version_relation_re

	

	regex_split_re

	

	OPERATOR_MAP

	

	OPERATOR_START

	

	VersionMatch

	

	
normalized_version(version: str [https://docs.python.org/3/library/stdtypes.html#str]) → VersionOrder

	Parse a version string and return VersionOrder object.

	
ver_eval(vtest, spec)

	

	
version_check_re

	

	
version_split_re

	

	
version_cache

	

	
class SingleStrArgCachingType

	Bases: type [https://docs.python.org/3/library/functions.html#type]

	
__call__(arg)

	Call self as a function.

	
class VersionOrder(vstr: str [https://docs.python.org/3/library/stdtypes.html#str])

	Implement an order relation between version strings.

Version strings can contain the usual alphanumeric characters
(A-Za-z0-9), separated into components by dots and underscores. Empty
segments (i.e. two consecutive dots, a leading/trailing underscore)
are not permitted. An optional epoch number - an integer
followed by '!' - can proceed the actual version string
(this is useful to indicate a change in the versioning
scheme itself). Version comparison is case-insensitive.

Conda supports six types of version strings:
* Release versions contain only integers, e.g. '1.0', '2.3.5'.
* Pre-release versions use additional letters such as 'a' or 'rc',

for example '1.0a1', '1.2.beta3', '2.3.5rc3'.

	Development versions are indicated by the string 'dev',
for example '1.0dev42', '2.3.5.dev12'.

	Post-release versions are indicated by the string 'post',
for example '1.0post1', '2.3.5.post2'.

	Tagged versions have a suffix that specifies a particular
property of interest, e.g. '1.1.parallel'. Tags can be added
to any of the preceding four types. As far as sorting is concerned,
tags are treated like strings in pre-release versions.

	An optional local version string separated by '+' can be appended
to the main (upstream) version string. It is only considered
in comparisons when the main versions are equal, but otherwise
handled in exactly the same manner.

To obtain a predictable version ordering, it is crucial to keep the
version number scheme of a given package consistent over time.
Specifically,
* version strings should always have the same number of components

(except for an optional tag suffix or local version string),

	letters/strings indicating non-release versions should always
occur at the same position.

Before comparison, version strings are parsed as follows:
* They are first split into epoch, version number, and local version

number at '!' and '+' respectively. If there is no '!', the epoch is
set to 0. If there is no '+', the local version is empty.

	The version part is then split into components at '.' and '_'.

	Each component is split again into runs of numerals and non-numerals

	Subcomponents containing only numerals are converted to integers.

	Strings are converted to lower case, with special treatment for 'dev'
and 'post'.

	When a component starts with a letter, the fillvalue 0 is inserted
to keep numbers and strings in phase, resulting in '1.1.a1' == 1.1.0a1'.

	The same is repeated for the local version part.

Examples

1.2g.beta15.rc => [[0], [1], [2, 'g'], [0, 'beta', 15], [0, 'rc']]
1!2.15.1_ALPHA => [[1], [2], [15], [1, '_alpha']]

The resulting lists are compared lexicographically, where the following
rules are applied to each pair of corresponding subcomponents:
* integers are compared numerically
* strings are compared lexicographically, case-insensitive
* strings are smaller than integers, except
* 'dev' versions are smaller than all corresponding versions of other types
* 'post' versions are greater than all corresponding versions of other types
* if a subcomponent has no correspondent, the missing correspondent is

treated as integer 0 to ensure '1.1' == '1.1.0'.

	The resulting order is:
	

0.4

< 0.4.0
< 0.4.1.rc

	== 0.4.1.RC # case-insensitive comparison
	< 0.4.1
< 0.5a1
< 0.5b3
< 0.5C1 # case-insensitive comparison
< 0.5
< 0.9.6
< 0.960923
< 1.0
< 1.1dev1 # special case 'dev'
< 1.1_ # appended underscore is special case for openssl-like versions
< 1.1a1
< 1.1.0dev1 # special case 'dev'

	== 1.1.dev1 # 0 is inserted before string
	< 1.1.a1
< 1.1.0rc1
< 1.1.0

	== 1.1
	< 1.1.0post1 # special case 'post'

	== 1.1.post1 # 0 is inserted before string
	< 1.1post1 # special case 'post'
< 1996.07.12
< 1!0.4.1 # epoch increased
< 1!3.1.1.6
< 2!0.4.1 # epoch increased again

Some packages (most notably openssl) have incompatible version conventions.
In particular, openssl interprets letters as version counters rather than
pre-release identifiers. For openssl, the relation

1.0.1 < 1.0.1a => False # should be true for openssl

holds, whereas conda packages use the opposite ordering. You can work-around
this problem by appending an underscore to plain version numbers:

1.0.1_ < 1.0.1a => True # ensure correct ordering for openssl

	
cache

	

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return str(self).

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return repr(self).

	
_eq(t1: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], t2: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	

	
__eq__(other: object [https://docs.python.org/3/library/functions.html#object]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return self==value.

	
startswith(other: object [https://docs.python.org/3/library/functions.html#object]) → bool [https://docs.python.org/3/library/functions.html#bool]

	

	
__ne__(other: object [https://docs.python.org/3/library/functions.html#object]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return self!=value.

	
__lt__(other: object [https://docs.python.org/3/library/functions.html#object]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return self<value.

	
__gt__(other: object [https://docs.python.org/3/library/functions.html#object]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return self>value.

	
__le__(other: object [https://docs.python.org/3/library/functions.html#object]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return self<=value.

	
__ge__(other: object [https://docs.python.org/3/library/functions.html#object]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return self>=value.

	
VSPEC_TOKENS = '\\s*\\^[^$]*[$]|\\s*[()|,]|[^()|,]+'

	

	
treeify(spec_str)

	Examples

>>> treeify("1.2.3")
'1.2.3'
>>> treeify("1.2.3,>4.5.6")
(',', '1.2.3', '>4.5.6')
>>> treeify("1.2.3,4.5.6|<=7.8.9")
('|', (',', '1.2.3', '4.5.6'), '<=7.8.9')
>>> treeify("(1.2.3|4.5.6),<=7.8.9")
(',', ('|', '1.2.3', '4.5.6'), '<=7.8.9')
>>> treeify("((1.5|((1.6|1.7), 1.8), 1.9 |2.0))|2.1")
('|', '1.5', (',', ('|', '1.6', '1.7'), '1.8', '1.9'), '2.0', '2.1')
>>> treeify("1.5|(1.6|1.7),1.8,1.9|2.0|2.1")
('|', '1.5', (',', ('|', '1.6', '1.7'), '1.8', '1.9'), '2.0', '2.1')

	
untreeify(spec, _inand=False, depth=0)

	Examples

>>> untreeify('1.2.3')
'1.2.3'
>>> untreeify((',', '1.2.3', '>4.5.6'))
'1.2.3,>4.5.6'
>>> untreeify(('|', (',', '1.2.3', '4.5.6'), '<=7.8.9'))
'(1.2.3,4.5.6)|<=7.8.9'
>>> untreeify((',', ('|', '1.2.3', '4.5.6'), '<=7.8.9'))
'(1.2.3|4.5.6),<=7.8.9'
>>> untreeify(('|', '1.5', (',', ('|', '1.6', '1.7'), '1.8', '1.9'), '2.0', '2.1'))
'1.5|((1.6|1.7),1.8,1.9)|2.0|2.1'

	
compatible_release_operator(x, y)

	

	
version_relation_re

	

	
regex_split_re

	

	
OPERATOR_MAP

	

	
OPERATOR_START

	

	
class BaseSpec(spec_str, matcher, is_exact)

	
	
property spec

	

	
property raw_value

	

	
property exact_value

	

	
is_exact()

	

	
__eq__(other)

	Return self==value.

	
__ne__(other)

	Return self!=value.

	
__hash__()

	Return hash(self).

	
__str__()

	Return str(self).

	
__repr__()

	Return repr(self).

	
abstract merge(other)

	

	
regex_match(spec_str)

	

	
operator_match(spec_str)

	

	
any_match(spec_str)

	

	
all_match(spec_str)

	

	
exact_match(spec_str)

	

	
always_true_match(spec_str)

	

	
class VersionSpec(vspec)

	Bases: BaseSpec

	
cache

	

	
get_matcher(vspec)

	

	
merge(other)

	

	
union(other)

	

	
VersionMatch

	

	
class BuildNumberMatch(vspec)

	Bases: BaseSpec

	
property exact_value: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	

	
cache

	

	
get_matcher(vspec)

	

	
merge(other)

	

	
union(other)

	

	
__str__()

	Return str(self).

	
__repr__()

	Return repr(self).

 notices

notices

Functions

	notices(func)

	Wrapper for "execute" entry points for subcommands.

	
notices(func)

	Wrapper for "execute" entry points for subcommands.

If channel notices need to be fetched, we do that first and then
run the command normally. We then display these notices at the very
end of the command output so that the user is more likely to see them.

	This ordering was specifically done to address the following bug report:
	
	https://github.com/conda/conda/issues/11847

	Parameters:

	func -- Function to be decorated

 cache

cache

	Handles all caching logic including:
	
	Retrieving from cache

	Saving to cache

	Determining whether not certain items have expired and need to be refreshed

Functions

	cached_response(func)

	

	is_notice_response_cache_expired(→ bool)

	This checks the contents of the cache response to see if it is expired.

	get_notices_cache_dir(→ pathlib.Path)

	Returns the location of the notices cache directory as a Path object

	get_notices_cache_file(→ pathlib.Path)

	Returns the location of the notices cache file as a Path object

	get_notice_response_from_cache(...)

	Retrieves a notice response object from cache if it exists.

	write_notice_response_to_cache(→ None)

	Writes our notice data to our local cache location.

	mark_channel_notices_as_viewed(→ None)

	Insert channel notice into our database marking it as read.

	get_viewed_channel_notice_ids(→ set[str])

	Return the ids of the channel notices which have already been seen.

Attributes

	logger

	

	
logger

	

	
cached_response(func)

	

	
is_notice_response_cache_expired(channel_notice_response: conda.notices.types.ChannelNoticeResponse) → bool [https://docs.python.org/3/library/functions.html#bool]

	This checks the contents of the cache response to see if it is expired.

If for whatever reason we encounter an exception while parsing the individual
messages, we assume an invalid cache and return true.

	
get_notices_cache_dir() → pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns the location of the notices cache directory as a Path object

	
get_notices_cache_file() → pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns the location of the notices cache file as a Path object

	
get_notice_response_from_cache(url: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str], cache_dir: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → conda.notices.types.ChannelNoticeResponse | None [https://docs.python.org/3/library/constants.html#None]

	Retrieves a notice response object from cache if it exists.

	
write_notice_response_to_cache(channel_notice_response: conda.notices.types.ChannelNoticeResponse, cache_dir: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → None [https://docs.python.org/3/library/constants.html#None]

	Writes our notice data to our local cache location.

	
mark_channel_notices_as_viewed(cache_file: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], channel_notices: Sequence[conda.notices.types.ChannelNotice]) → None [https://docs.python.org/3/library/constants.html#None]

	Insert channel notice into our database marking it as read.

	
get_viewed_channel_notice_ids(cache_file: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], channel_notices: Sequence[conda.notices.types.ChannelNotice]) → set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Return the ids of the channel notices which have already been seen.

 core

core

Core conda notices logic.

Functions

	retrieve_notices(...)

	Function used for retrieving notices. This is called by the "notices" decorator as well

	display_notices(→ None)

	Prints the channel notices to std out.

	notices(func)

	Wrapper for "execute" entry points for subcommands.

	get_channel_name_and_urls(→ list[tuple[ChannelUrl, ...)

	Return a sequence of Channel URL and name tuples.

	flatten_notice_responses(...)

	

	filter_notices(...)

	Perform filtering actions for the provided sequence of ChannelNotice objects.

	is_channel_notices_enabled(→ bool)

	Determines whether channel notices are enabled and therefore displayed when

	is_channel_notices_cache_expired(→ bool)

	Checks to see if the notices cache file we use to keep track of

Attributes

	ChannelName

	

	ChannelUrl

	

	logger

	

	
ChannelName

	

	
ChannelUrl

	

	
logger

	

	
retrieve_notices(limit: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, always_show_viewed: bool [https://docs.python.org/3/library/functions.html#bool] = True, silent: bool [https://docs.python.org/3/library/functions.html#bool] = False) → conda.notices.types.ChannelNoticeResultSet

	Function used for retrieving notices. This is called by the "notices" decorator as well
as the sub-command "notices"

	Parameters:

	
	limit -- Limit the number of notices to show (defaults to None).

	always_show_viewed -- Whether all notices should be shown, not only the unread ones
(defaults to True).

	silent -- Whether to use a spinner when fetching and caching notices.

	
display_notices(channel_notice_set: conda.notices.types.ChannelNoticeResultSet) → None [https://docs.python.org/3/library/constants.html#None]

	Prints the channel notices to std out.

	
notices(func)

	Wrapper for "execute" entry points for subcommands.

If channel notices need to be fetched, we do that first and then
run the command normally. We then display these notices at the very
end of the command output so that the user is more likely to see them.

	This ordering was specifically done to address the following bug report:
	
	https://github.com/conda/conda/issues/11847

	Parameters:

	func -- Function to be decorated

	
get_channel_name_and_urls(channels: Sequence[conda.models.channel.Channel | conda.models.channel.MultiChannel]) → list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][ChannelUrl, ChannelName]]

	Return a sequence of Channel URL and name tuples.

This function handles both Channel and MultiChannel object types.

	
flatten_notice_responses(channel_notice_responses: Sequence[conda.notices.types.ChannelNoticeResponse]) → Sequence[conda.notices.types.ChannelNotice]

	

	
filter_notices(channel_notices: Sequence[conda.notices.types.ChannelNotice], limit: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, exclude: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → Sequence[conda.notices.types.ChannelNotice]

	Perform filtering actions for the provided sequence of ChannelNotice objects.

	
is_channel_notices_enabled(ctx: conda.base.context.Context) → bool [https://docs.python.org/3/library/functions.html#bool]

	Determines whether channel notices are enabled and therefore displayed when
invoking the notices command decorator.

	This only happens when:
	
	offline is False

	number_channel_notices is greater than 0

	Parameters:

	ctx -- The conda context object

	
is_channel_notices_cache_expired() → bool [https://docs.python.org/3/library/functions.html#bool]

	Checks to see if the notices cache file we use to keep track of
displayed notices is expired. This involves checking the mtime
attribute of the file. Anything older than what is specified as
the NOTICES_DECORATOR_DISPLAY_INTERVAL is considered expired.

 fetch

fetch

Notices network fetch logic.

Functions

	get_notice_responses(...)

	Provided a list of channel notification url/name tuples, return a sequence of

	get_channel_notice_response(...)

	Return a channel response object. We use this to wrap the response with

Attributes

	logger

	

	
logger

	

	
get_notice_responses(url_and_names: Sequence[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]], silent: bool [https://docs.python.org/3/library/functions.html#bool] = False, max_workers: int [https://docs.python.org/3/library/functions.html#int] = 10) → Sequence[conda.notices.types.ChannelNoticeResponse]

	Provided a list of channel notification url/name tuples, return a sequence of
ChannelNoticeResponse objects.

	Parameters:

	
	url_and_names -- channel url and the channel name

	silent -- turn off "loading animation" (defaults to False)

	max_workers -- increase worker number in thread executor (defaults to 10)

	Returns:

	Sequence[ChannelNoticeResponse]

	
get_channel_notice_response(url: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → conda.notices.types.ChannelNoticeResponse | None [https://docs.python.org/3/library/constants.html#None]

	Return a channel response object. We use this to wrap the response with
additional channel information to use. If the response was invalid we suppress/log
and error message.

 types

types [https://docs.python.org/3/library/types.html#module-types]

Implements all conda.notices types.

Classes

	ChannelNotice

	Represents an individual channel notice.

	ChannelNoticeResultSet

	Represents a list of a channel notices, plus some accompanying

	ChannelNoticeResponse

	

Attributes

	UNDEFINED_MESSAGE_ID

	

	
UNDEFINED_MESSAGE_ID = 'undefined'

	

	
class ChannelNotice

	Bases: NamedTuple

Represents an individual channel notice.

	
id: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
channel_name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

	
message: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

	
level: conda.base.constants.NoticeLevel

	

	
created_at: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None [https://docs.python.org/3/library/constants.html#None]

	

	
expired_at: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None [https://docs.python.org/3/library/constants.html#None]

	

	
interval: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	

	
to_dict()

	

	
class ChannelNoticeResultSet

	Bases: NamedTuple

Represents a list of a channel notices, plus some accompanying
metadata such as viewed_channel_notices.

	
channel_notices: Sequence[ChannelNotice]

	

	
total_number_channel_notices: int [https://docs.python.org/3/library/functions.html#int]

	

	
viewed_channel_notices: int [https://docs.python.org/3/library/functions.html#int]

	

	
class ChannelNoticeResponse

	Bases: NamedTuple

	
property notices: Sequence[ChannelNotice]

	

	
url: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
json_data: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	

	
static _parse_notice_level(level: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) → conda.base.constants.NoticeLevel

	We use this to validate notice levels and provide reasonable defaults
if any are invalid.

	
static _parse_iso_timestamp(iso_timestamp: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) → datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None [https://docs.python.org/3/library/constants.html#None]

	Parse ISO timestamp and fail over to a default value of none.

	
classmethod get_cache_key(url: str [https://docs.python.org/3/library/stdtypes.html#str], cache_dir: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns where this channel response will be cached by hashing the URL.

 views

views

Handles all display/view logic.

Functions

	print_notices(channel_notices)

	Accepts a list of channel notice responses and prints a display.

	print_notice_message(→ None)

	Prints a single channel notice.

	print_more_notices_message(→ None)

	Conditionally shows a message informing users how many more message there are.

	
print_notices(channel_notices: Sequence[conda.notices.types.ChannelNotice])

	Accepts a list of channel notice responses and prints a display.

	Parameters:

	channel_notices -- A sequence of ChannelNotice objects.

	
print_notice_message(notice: conda.notices.types.ChannelNotice, indent: str [https://docs.python.org/3/library/stdtypes.html#str] = ' ') → None [https://docs.python.org/3/library/constants.html#None]

	Prints a single channel notice.

	
print_more_notices_message(total_notices: int [https://docs.python.org/3/library/functions.html#int], displayed_notices: int [https://docs.python.org/3/library/functions.html#int], viewed_notices: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Conditionally shows a message informing users how many more message there are.

 plan

plan

Handle the planning of installs and their execution.

Note

conda.install uses canonical package names in its interface functions,
whereas conda.resolve uses package filenames, as those are used as index
keys. We try to keep fixes to this "impedance mismatch" local to this
module.

Functions

	print_dists(dists_extras)

	

	display_actions(actions, index[, show_channel_urls, ...])

	

	add_unlink(actions, dist)

	

	add_defaults_to_specs(r, linked, specs[, update, prefix])

	

	_get_best_prec_match(precs)

	

	revert_actions(prefix[, revision, index])

	

	execute_actions(actions, index[, verbose])

	

	_plan_from_actions(actions, index)

	

	_inject_UNLINKLINKTRANSACTION(plan, index, prefix, ...)

	

	_handle_menuinst(unlink_dists, link_dists)

	

	install_actions(prefix, index, specs[, force, ...])

	

	get_blank_actions(prefix)

	

	execute_plan(old_plan[, index, verbose])

	Deprecated: This should conda.instructions.execute_instructions instead.

	execute_instructions(plan[, index, verbose, _commands])

	Execute the instructions in the plan

	_update_old_plan(old_plan)

	Update an old plan object to work with

	
print_dists(dists_extras)

	

	
display_actions(actions, index, show_channel_urls=None, specs_to_remove=(), specs_to_add=())

	

	
add_unlink(actions, dist)

	

	
add_defaults_to_specs(r, linked, specs, update=False, prefix=None)

	

	
_get_best_prec_match(precs)

	

	
revert_actions(prefix, revision=-1, index=None)

	

	
execute_actions(actions, index, verbose=False)

	

	
_plan_from_actions(actions, index)

	

	
_inject_UNLINKLINKTRANSACTION(plan, index, prefix, axn, specs)

	

	
_handle_menuinst(unlink_dists, link_dists)

	

	
install_actions(prefix, index, specs, force=False, only_names=None, always_copy=False, pinned=True, update_deps=True, prune=False, channel_priority_map=None, is_update=False, minimal_hint=False)

	

	
get_blank_actions(prefix)

	

	
execute_plan(old_plan, index=None, verbose=False)

	Deprecated: This should conda.instructions.execute_instructions instead.

	
execute_instructions(plan, index=None, verbose=False, _commands=None)

	Execute the instructions in the plan

	Parameters:

	
	plan -- A list of (instruction, arg) tuples

	index -- The meta-data index

	verbose -- verbose output

	_commands -- (For testing only) dict mapping an instruction to executable if None

then the default commands will be used

	
_update_old_plan(old_plan)

	Update an old plan object to work with
conda.instructions.execute_instructions

 plugins

plugins

In this module, you will find everything relevant to conda's plugin system.
It contains all of the code that plugin authors will use to write plugins,
as well as conda's internal implementations of plugins.

Modules relevant for plugin authors

	conda.plugins.hookspec: all available hook specifications are listed here, including
examples of how to use them

	conda.plugins.types: important types to use when defining plugin hooks

Modules relevant for internal development

	conda.plugins.manager: includes our custom subclass of pluggy's
PluginManager [https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager] class

Modules with internal plugin implementations

	conda.plugins.solvers: implementation of the "classic" solver

	conda.plugins.subcommands.doctor: conda doctor subcommand

	conda.plugins.virtual_packages: registers virtual packages in conda

Classes

	CondaAuthHandler

	Return type to use when the defining the conda auth handlers hook.

	CondaHealthCheck

	Return type to use when defining conda health checks plugin hook.

	CondaPostCommand

	Return type to use when defining a conda post-command plugin hook.

	CondaPostSolve

	Return type to use when defining a conda post-solve plugin hook.

	CondaPreCommand

	Return type to use when defining a conda pre-command plugin hook.

	CondaPreSolve

	Return type to use when defining a conda pre-solve plugin hook.

	CondaSetting

	Return type to use when defining a conda setting plugin hook.

	CondaSolver

	Return type to use when defining a conda solver plugin hook.

	CondaSubcommand

	Return type to use when defining a conda subcommand plugin hook.

	CondaVirtualPackage

	Return type to use when defining a conda virtual package plugin hook.

Attributes

	hookimpl

	Decorator used to mark plugin hook implementations

	
hookimpl

	Decorator used to mark plugin hook implementations

	
class CondaAuthHandler

	Bases: NamedTuple

Return type to use when the defining the conda auth handlers hook.

	Parameters:

	
	name -- Name (e.g., basic-auth). This name should be unique
and only one may be registered at a time.

	handler -- Type that will be used as the authentication handler
during network requests.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
handler: type [https://docs.python.org/3/library/functions.html#type][ChannelAuthBase]

	

	
class CondaHealthCheck

	Bases: NamedTuple

Return type to use when defining conda health checks plugin hook.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
class CondaPostCommand

	Bases: NamedTuple

Return type to use when defining a conda post-command plugin hook.

For details on how this is used, see
conda_post_commands().

	Parameters:

	
	name -- Post-command name (e.g., custom_plugin_post_commands).

	action -- Callable which contains the code to be run.

	run_for -- Represents the command(s) this will be run on (e.g. install or create).

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
run_for: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
class CondaPostSolve

	Return type to use when defining a conda post-solve plugin hook.

For details on how this is used, see
conda_post_solves().

	Parameters:

	
	name -- Post-solve name (e.g., custom_plugin_post_solve).

	action -- Callable which contains the code to be run.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
class CondaPreCommand

	Bases: NamedTuple

Return type to use when defining a conda pre-command plugin hook.

For details on how this is used, see
conda_pre_commands().

	Parameters:

	
	name -- Pre-command name (e.g., custom_plugin_pre_commands).

	action -- Callable which contains the code to be run.

	run_for -- Represents the command(s) this will be run on (e.g. install or create).

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
run_for: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
class CondaPreSolve

	Return type to use when defining a conda pre-solve plugin hook.

For details on how this is used, see
conda_pre_solves().

	Parameters:

	
	name -- Pre-solve name (e.g., custom_plugin_pre_solve).

	action -- Callable which contains the code to be run.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][conda.models.match_spec.MatchSpec], frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][conda.models.match_spec.MatchSpec]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
class CondaSetting

	Return type to use when defining a conda setting plugin hook.

For details on how this is used, see
conda_settings().

	Parameters:

	
	name -- name of the setting (e.g., config_param)

	description -- description of the setting that should be targeted
towards users of the plugin

	parameter -- Parameter instance containing the setting definition

	aliases -- alternative names of the setting

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
description: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
parameter: conda.common.configuration.Parameter

	

	
aliases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Ellipsis]

	

	
class CondaSolver

	Bases: NamedTuple

Return type to use when defining a conda solver plugin hook.

For details on how this is used, see
conda_solvers().

	Parameters:

	
	name -- Solver name (e.g., custom-solver).

	backend -- Type that will be instantiated as the solver backend.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
backend: type [https://docs.python.org/3/library/functions.html#type][conda.core.solve.Solver]

	

	
class CondaSubcommand

	Return type to use when defining a conda subcommand plugin hook.

For details on how this is used, see
conda_subcommands().

	Parameters:

	
	name -- Subcommand name (e.g., conda my-subcommand-name).

	summary -- Subcommand summary, will be shown in conda --help.

	action -- Callable that will be run when the subcommand is invoked.

	configure_parser -- Callable that will be run when the subcommand parser is initialized.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
summary: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]], int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]]

	

	
configure_parser: Callable[[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]], None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None]

	

	
class CondaVirtualPackage

	Bases: NamedTuple

Return type to use when defining a conda virtual package plugin hook.

For details on how this is used, see
conda_virtual_packages().

	Parameters:

	
	name -- Virtual package name (e.g., my_custom_os).

	version -- Virtual package version (e.g., 1.2.3).

	build -- Virtual package build string (e.g., x86_64).

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
version: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

	
build: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

 hookspec

hookspec

Pluggy hook specifications ("hookspecs") to register conda plugins.

Each hookspec defined in CondaSpecs contains
an example of how to use it.

Classes

	CondaSpecs

	The conda plugin hookspecs, to be used by developers.

Attributes

	spec_name

	Name used for organizing conda hook specifications

	_hookspec

	The conda plugin hook specifications, to be used by developers

	hookimpl

	Decorator used to mark plugin hook implementations

	
spec_name = 'conda'

	Name used for organizing conda hook specifications

	
_hookspec

	The conda plugin hook specifications, to be used by developers

	
hookimpl

	Decorator used to mark plugin hook implementations

	
class CondaSpecs

	The conda plugin hookspecs, to be used by developers.

	
conda_solvers() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaSolver]

	Register solvers in conda.

Example:

import logging

from conda import plugins
from conda.core import solve

log = logging.getLogger(__name__)

class VerboseSolver(solve.Solver):
 def solve_final_state(self, *args, **kwargs):
 log.info("My verbose solver!")
 return super().solve_final_state(*args, **kwargs)

@plugins.hookimpl
def conda_solvers():
 yield plugins.CondaSolver(
 name="verbose-classic",
 backend=VerboseSolver,
)

	Returns:

	An iterable of solver entries.

	
conda_subcommands() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaSubcommand]

	Register external subcommands in conda.

Example:

from conda import plugins

def example_command(args):
 print("This is an example command!")

@plugins.hookimpl
def conda_subcommands():
 yield plugins.CondaSubcommand(
 name="example",
 summary="example command",
 action=example_command,
)

	Returns:

	An iterable of subcommand entries.

	
conda_virtual_packages() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaVirtualPackage]

	Register virtual packages in Conda.

Example:

from conda import plugins

@plugins.hookimpl
def conda_virtual_packages():
 yield plugins.CondaVirtualPackage(
 name="my_custom_os",
 version="1.2.3",
 build="x86_64",
)

	Returns:

	An iterable of virtual package entries.

	
conda_pre_commands() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaPreCommand]

	Register pre-command functions in conda.

Example:

from conda import plugins

def example_pre_command(command):
 print("pre-command action")

@plugins.hookimpl
def conda_pre_commands():
 yield plugins.CondaPreCommand(
 name="example-pre-command",
 action=example_pre_command,
 run_for={"install", "create"},
)

	
conda_post_commands() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaPostCommand]

	Register post-command functions in conda.

Example:

from conda import plugins

def example_post_command(command):
 print("post-command action")

@plugins.hookimpl
def conda_post_commands():
 yield plugins.CondaPostCommand(
 name="example-post-command",
 action=example_post_command,
 run_for={"install", "create"},
)

	
conda_auth_handlers() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaAuthHandler]

	Register a conda auth handler derived from the requests API.

This plugin hook allows attaching requests auth handler subclasses,
e.g. when authenticating requests against individual channels hosted
at HTTP/HTTPS services.

Example:

import os
from conda import plugins
from requests.auth import AuthBase

class EnvironmentHeaderAuth(AuthBase):
 def __init__(self, *args, **kwargs):
 self.username = os.environ["EXAMPLE_CONDA_AUTH_USERNAME"]
 self.password = os.environ["EXAMPLE_CONDA_AUTH_PASSWORD"]

 def __call__(self, request):
 request.headers["X-Username"] = self.username
 request.headers["X-Password"] = self.password
 return request

@plugins.hookimpl
def conda_auth_handlers():
 yield plugins.CondaAuthHandler(
 name="environment-header-auth",
 auth_handler=EnvironmentHeaderAuth,
)

	
conda_health_checks() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaHealthCheck]

	Register health checks for conda doctor.

This plugin hook allows you to add more "health checks" to conda doctor
that you can write to diagnose problems in your conda environment.
Check out the health checks already shipped with conda for inspiration.

Example:

from conda import plugins

def example_health_check(prefix: str, verbose: bool):
 print("This is an example health check!")

@plugins.hookimpl
def conda_health_checks():
 yield plugins.CondaHealthCheck(
 name="example-health-check",
 action=example_health_check,
)

	
conda_pre_solves() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaPreSolve]

	Register pre-solve functions in conda that are used in the
general solver API, before the solver processes the package specs in
search of a solution.

Example:

from conda import plugins
from conda.models.match_spec import MatchSpec

def example_pre_solve(
 specs_to_add: frozenset[MatchSpec],
 specs_to_remove: frozenset[MatchSpec],
):
 print(f"Adding {len(specs_to_add)} packages")
 print(f"Removing {len(specs_to_remove)} packages")

@plugins.hookimpl
def conda_pre_solves():
 yield plugins.CondaPreSolve(
 name="example-pre-solve",
 action=example_pre_solve,
)

	
conda_post_solves() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaPostSolve]

	Register post-solve functions in conda that are used in the
general solver API, after the solver has provided the package
records to add or remove from the conda environment.

Example:

from conda import plugins
from conda.models.records import PackageRecord

def example_post_solve(
 repodata_fn: str,
 unlink_precs: tuple[PackageRecord, ...],
 link_precs: tuple[PackageRecord, ...],
):
 print(f"Uninstalling {len(unlink_precs)} packages")
 print(f"Installing {len(link_precs)} packages")

@plugins.hookimpl
def conda_post_solves():
 yield plugins.CondaPostSolve(
 name="example-post-solve",
 action=example_post_solve,
)

	
conda_settings() → collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][conda.plugins.types.CondaSetting]

	Register new setting

The example below defines a simple string type parameter

Example:

from conda import plugins
from conda.common.configuration import PrimitiveParameter, SequenceParameter

@plugins.hookimpl
def conda_settings():
 yield plugins.CondaSetting(
 name="example_option",
 description="This is an example option",
 parameter=PrimitiveParameter("default_value", element_type=str),
 aliases=("example_option_alias",),
)

 manager

manager

This module contains a subclass implementation of pluggy's
PluginManager [https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager].

Additionally, it contains a function we use to construct the PluginManager object and
register all plugins during conda's startup process.

Classes

	CondaPluginManager

	The conda plugin manager to implement behavior additional to pluggy's default plugin manager.

Functions

	get_plugin_manager(→ CondaPluginManager)

	Get a cached version of the CondaPluginManager instance,

	
class CondaPluginManager(project_name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, *args, **kwargs)

	Bases: pluggy.PluginManager [https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager]

The conda plugin manager to implement behavior additional to pluggy's default plugin manager.

	
get_cached_solver_backend

	

	
get_canonical_name(plugin: object [https://docs.python.org/3/library/functions.html#object]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a canonical name for a plugin object.

Note that a plugin may be registered under a different name
specified by the caller of register(plugin, name).
To obtain the name of a registered plugin use get_name(plugin) instead.

	
register(plugin, name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Call pluggy.PluginManager.register() [https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager.register] and return the result or
ignore errors raised, except ValueError, which means the plugin
had already been registered.

	
load_plugins(*plugins) → int [https://docs.python.org/3/library/functions.html#int]

	Load the provided list of plugins and fail gracefully on error.
The provided list of plugins can either be classes or modules with
hookimpl.

	
load_entrypoints(group: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → int [https://docs.python.org/3/library/functions.html#int]

	Load modules from querying the specified setuptools group.

	Parameters:

	
	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Entry point group to load plugins.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If given, loads only plugins with the given name.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	Returns:

	The number of plugins loaded by this call.

	
get_hook_results(name: Literal[conda.plugins.subcommands]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaSubcommand]

	
get_hook_results(name: Literal[conda.plugins.virtual_packages]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaVirtualPackage]

	
get_hook_results(name: Literal[conda.plugins.solvers]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaSolver]

	
get_hook_results(name: Literal[pre_commands]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaPreCommand]

	
get_hook_results(name: Literal[post_commands]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaPostCommand]

	
get_hook_results(name: Literal[auth_handlers]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaAuthHandler]

	
get_hook_results(name: Literal[conda.plugins.subcommands.doctor.health_checks]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaHealthCheck]

	
get_hook_results(name: Literal[pre_solves]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaPreSolve]

	
get_hook_results(name: Literal[conda.plugins.post_solves]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaPostSolve]

	
get_hook_results(name: Literal[settings]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.plugins.types.CondaSetting]

	Return results of the plugin hooks with the given name and
raise an error if there is a conflict.

	
get_solvers() → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], conda.plugins.types.CondaSolver]

	Return a mapping from solver name to solver class.

	
get_solver_backend(name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → type [https://docs.python.org/3/library/functions.html#type][conda.core.solve.Solver]

	Get the solver backend with the given name (or fall back to the
name provided in the context).

See context.solver for more details.

Please use the cached version of this method called
get_cached_solver_backend() for high-throughput code paths
which is set up as a instance-specific LRU cache.

	
get_auth_handler(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → type [https://docs.python.org/3/library/functions.html#type][requests.auth.AuthBase] | None [https://docs.python.org/3/library/constants.html#None]

	Get the auth handler with the given name or None

	
get_settings() → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], conda.common.configuration.ParameterLoader]

	Return a mapping of plugin setting name to ParameterLoader class

This method intentionally overwrites any duplicates that may be present

	
invoke_pre_commands(command: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Invokes CondaPreCommand.action functions registered with conda_pre_commands.

	Parameters:

	command -- name of the command that is currently being invoked

	
invoke_post_commands(command: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Invokes CondaPostCommand.action functions registered with conda_post_commands.

	Parameters:

	command -- name of the command that is currently being invoked

	
disable_external_plugins() → None [https://docs.python.org/3/library/constants.html#None]

	Disables all currently registered plugins except built-in conda plugins

	
get_subcommands() → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], conda.plugins.types.CondaSubcommand]

	

	
get_virtual_packages() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.plugins.types.CondaVirtualPackage, Ellipsis]

	

	
invoke_health_checks(prefix: str [https://docs.python.org/3/library/stdtypes.html#str], verbose: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
invoke_pre_solves(specs_to_add: frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][conda.models.match_spec.MatchSpec], specs_to_remove: frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][conda.models.match_spec.MatchSpec]) → None [https://docs.python.org/3/library/constants.html#None]

	Invokes CondaPreSolve.action functions registered with conda_pre_solves.

	Parameters:

	
	specs_to_add --

	specs_to_remove --

	
invoke_post_solves(repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str], unlink_precs: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis], link_precs: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis]) → None [https://docs.python.org/3/library/constants.html#None]

	Invokes CondaPostSolve.action functions registered with conda_post_solves.

	Parameters:

	
	repodata_fn --

	unlink_precs --

	link_precs --

	
load_settings() → None [https://docs.python.org/3/library/constants.html#None]

	Iterates through all registered settings and adds them to the
conda.common.configuration.PluginConfig class.

	
get_plugin_manager() → CondaPluginManager

	Get a cached version of the CondaPluginManager instance,
with the built-in and entrypoints provided by the plugins loaded.

 post_solves

post_solves

Register the built-in post_solves hook implementations.

	
plugins

	

 signature_verification

signature_verification

Register signature verification as a post-solve plugin.

Functions

	conda_post_solves()

	

	
conda_post_solves()

	

 solvers

solvers

Register the classic conda solver.

Functions

	conda_solvers()

	The classic solver as shipped by default in conda.

	
conda_solvers()

	The classic solver as shipped by default in conda.

 subcommands

subcommands

	
plugins

	

 doctor

doctor

Implementation for conda doctor subcommand.
Adds various environment and package checks to detect issues or possible environment
corruption.

Classes

	CondaSubcommand

	Return type to use when defining a conda subcommand plugin hook.

Functions

	add_parser_help(→ None)

	So we can use consistent capitalization and periods in the help. You must

	add_parser_prefix(→ argparse._MutuallyExclusiveGroup)

	

	add_parser_verbose(→ None)

	

	get_prefix(→ str)

	

	configure_parser(parser)

	

	execute(→ None)

	Run registered health_check plugins.

	conda_subcommands()

	

Attributes

	context

	

	deprecated

	

	hookimpl

	Decorator used to mark plugin hook implementations

	
context

	

	
add_parser_help(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → None [https://docs.python.org/3/library/constants.html#None]

	So we can use consistent capitalization and periods in the help. You must
use the add_help=False argument to ArgumentParser or add_parser to use
this. Add this first to be consistent with the default argparse output.

	
add_parser_prefix(p: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], prefix_required: bool [https://docs.python.org/3/library/functions.html#bool] = False) → argparse._MutuallyExclusiveGroup

	

	
add_parser_verbose(parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] | argparse._ArgumentGroup) → None [https://docs.python.org/3/library/constants.html#None]

	

	
deprecated

	

	
class CondaSubcommand

	Return type to use when defining a conda subcommand plugin hook.

For details on how this is used, see
conda_subcommands().

	Parameters:

	
	name -- Subcommand name (e.g., conda my-subcommand-name).

	summary -- Subcommand summary, will be shown in conda --help.

	action -- Callable that will be run when the subcommand is invoked.

	configure_parser -- Callable that will be run when the subcommand parser is initialized.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
summary: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]], int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]]

	

	
configure_parser: Callable[[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]], None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None]

	

	
hookimpl

	Decorator used to mark plugin hook implementations

	
get_prefix(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
configure_parser(parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser])

	

	
execute(args: argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) → None [https://docs.python.org/3/library/constants.html#None]

	Run registered health_check plugins.

	
conda_subcommands()

	

 health_checks

health_checks

Backend logic implementation for conda doctor.

Functions

	display_report_heading(→ None)

	Displays our report heading.

	check_envs_txt_file(→ bool)

	Checks whether the environment is listed in the environments.txt file

	find_packages_with_missing_files(→ dict[str, list[str]])

	Finds packages listed in conda-meta which have missing files.

	find_altered_packages(→ dict[str, list[str]])

	Finds altered packages

	display_health_checks(→ None)

	Prints health report.

	missing_files(→ None)

	

	altered_files(→ None)

	

	env_txt_check(→ None)

	

	conda_health_checks()

	

Attributes

	logger

	

	OK_MARK

	

	X_MARK

	

	
logger

	

	
OK_MARK = '✅'

	

	
X_MARK = '❌'

	

	
display_report_heading(prefix: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Displays our report heading.

	
check_envs_txt_file(prefix: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Checks whether the environment is listed in the environments.txt file

	
find_packages_with_missing_files(prefix: str [https://docs.python.org/3/library/stdtypes.html#str] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Finds packages listed in conda-meta which have missing files.

	
find_altered_packages(prefix: str [https://docs.python.org/3/library/stdtypes.html#str] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Finds altered packages

	
display_health_checks(prefix: str [https://docs.python.org/3/library/stdtypes.html#str], verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Prints health report.

	
missing_files(prefix: str [https://docs.python.org/3/library/stdtypes.html#str], verbose: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
altered_files(prefix: str [https://docs.python.org/3/library/stdtypes.html#str], verbose: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
env_txt_check(prefix: str [https://docs.python.org/3/library/stdtypes.html#str], verbose: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
conda_health_checks()

	

 types

types [https://docs.python.org/3/library/types.html#module-types]

Definition of specific return types for use when defining a conda plugin hook.

Each type corresponds to the plugin hook for which it is used.

Classes

	CondaSubcommand

	Return type to use when defining a conda subcommand plugin hook.

	CondaVirtualPackage

	Return type to use when defining a conda virtual package plugin hook.

	CondaSolver

	Return type to use when defining a conda solver plugin hook.

	CondaPreCommand

	Return type to use when defining a conda pre-command plugin hook.

	CondaPostCommand

	Return type to use when defining a conda post-command plugin hook.

	ChannelNameMixin

	Class mixin to make all plugin implementations compatible, e.g. when they

	ChannelAuthBase

	Base class that we require all plugin implementations to use to be compatible.

	CondaAuthHandler

	Return type to use when the defining the conda auth handlers hook.

	CondaHealthCheck

	Return type to use when defining conda health checks plugin hook.

	CondaPreSolve

	Return type to use when defining a conda pre-solve plugin hook.

	CondaPostSolve

	Return type to use when defining a conda post-solve plugin hook.

	CondaSetting

	Return type to use when defining a conda setting plugin hook.

	
class CondaSubcommand

	Return type to use when defining a conda subcommand plugin hook.

For details on how this is used, see
conda_subcommands().

	Parameters:

	
	name -- Subcommand name (e.g., conda my-subcommand-name).

	summary -- Subcommand summary, will be shown in conda --help.

	action -- Callable that will be run when the subcommand is invoked.

	configure_parser -- Callable that will be run when the subcommand parser is initialized.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
summary: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]], int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]]

	

	
configure_parser: Callable[[argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]], None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None]

	

	
class CondaVirtualPackage

	Bases: NamedTuple

Return type to use when defining a conda virtual package plugin hook.

For details on how this is used, see
conda_virtual_packages().

	Parameters:

	
	name -- Virtual package name (e.g., my_custom_os).

	version -- Virtual package version (e.g., 1.2.3).

	build -- Virtual package build string (e.g., x86_64).

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
version: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

	
build: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	

	
class CondaSolver

	Bases: NamedTuple

Return type to use when defining a conda solver plugin hook.

For details on how this is used, see
conda_solvers().

	Parameters:

	
	name -- Solver name (e.g., custom-solver).

	backend -- Type that will be instantiated as the solver backend.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
backend: type [https://docs.python.org/3/library/functions.html#type][conda.core.solve.Solver]

	

	
class CondaPreCommand

	Bases: NamedTuple

Return type to use when defining a conda pre-command plugin hook.

For details on how this is used, see
conda_pre_commands().

	Parameters:

	
	name -- Pre-command name (e.g., custom_plugin_pre_commands).

	action -- Callable which contains the code to be run.

	run_for -- Represents the command(s) this will be run on (e.g. install or create).

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
run_for: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
class CondaPostCommand

	Bases: NamedTuple

Return type to use when defining a conda post-command plugin hook.

For details on how this is used, see
conda_post_commands().

	Parameters:

	
	name -- Post-command name (e.g., custom_plugin_post_commands).

	action -- Callable which contains the code to be run.

	run_for -- Represents the command(s) this will be run on (e.g. install or create).

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
run_for: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
class ChannelNameMixin(channel_name: str [https://docs.python.org/3/library/stdtypes.html#str], *args, **kwargs)

	Class mixin to make all plugin implementations compatible, e.g. when they
use an existing (e.g. 3rd party) requests authentication handler.

Please use the concrete ChannelAuthBase
in case you're creating an own implementation.

	
class ChannelAuthBase(channel_name: str [https://docs.python.org/3/library/stdtypes.html#str], *args, **kwargs)

	Bases: ChannelNameMixin, requests.auth.AuthBase

Base class that we require all plugin implementations to use to be compatible.

Authentication is tightly coupled with individual channels. Therefore, an additional
channel_name property must be set on the requests.auth.AuthBase based class.

	
class CondaAuthHandler

	Bases: NamedTuple

Return type to use when the defining the conda auth handlers hook.

	Parameters:

	
	name -- Name (e.g., basic-auth). This name should be unique
and only one may be registered at a time.

	handler -- Type that will be used as the authentication handler
during network requests.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
handler: type [https://docs.python.org/3/library/functions.html#type][ChannelAuthBase]

	

	
class CondaHealthCheck

	Bases: NamedTuple

Return type to use when defining conda health checks plugin hook.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
class CondaPreSolve

	Return type to use when defining a conda pre-solve plugin hook.

For details on how this is used, see
conda_pre_solves().

	Parameters:

	
	name -- Pre-solve name (e.g., custom_plugin_pre_solve).

	action -- Callable which contains the code to be run.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][conda.models.match_spec.MatchSpec], frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][conda.models.match_spec.MatchSpec]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
class CondaPostSolve

	Return type to use when defining a conda post-solve plugin hook.

For details on how this is used, see
conda_post_solves().

	Parameters:

	
	name -- Post-solve name (e.g., custom_plugin_post_solve).

	action -- Callable which contains the code to be run.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
action: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis]], None [https://docs.python.org/3/library/constants.html#None]]

	

	
class CondaSetting

	Return type to use when defining a conda setting plugin hook.

For details on how this is used, see
conda_settings().

	Parameters:

	
	name -- name of the setting (e.g., config_param)

	description -- description of the setting that should be targeted
towards users of the plugin

	parameter -- Parameter instance containing the setting definition

	aliases -- alternative names of the setting

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
description: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
parameter: conda.common.configuration.Parameter

	

	
aliases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Ellipsis]

	

 virtual_packages

virtual_packages

	
plugins

	

 archspec

archspec

Detect archspec name.

Functions

	conda_virtual_packages()

	

	
conda_virtual_packages()

	

 conda

conda

Expose conda version.

Functions

	conda_virtual_packages()

	

	
conda_virtual_packages()

	

 cuda

cuda

Detect CUDA version.

Functions

	cuda_version()

	Attempt to detect the version of CUDA present in the operating system.

	cached_cuda_version()

	A cached version of the cuda detection system.

	conda_virtual_packages()

	

	_cuda_driver_version_detector_target(queue)

	Attempt to detect the version of CUDA present in the operating system in a

	
cuda_version()

	Attempt to detect the version of CUDA present in the operating system.

On Windows and Linux, the CUDA library is installed by the NVIDIA
driver package, and is typically found in the standard library path,
rather than with the CUDA SDK (which is optional for running CUDA apps).

On macOS, the CUDA library is only installed with the CUDA SDK, and
might not be in the library path.

Returns: version string (e.g., '9.2') or None if CUDA is not found.

	
cached_cuda_version()

	A cached version of the cuda detection system.

	
conda_virtual_packages()

	

	
_cuda_driver_version_detector_target(queue)

	Attempt to detect the version of CUDA present in the operating system in a
subprocess.

On Windows and Linux, the CUDA library is installed by the NVIDIA
driver package, and is typically found in the standard library path,
rather than with the CUDA SDK (which is optional for running CUDA apps).

On macOS, the CUDA library is only installed with the CUDA SDK, and
might not be in the library path.

	Returns: version string (e.g., '9.2') or None if CUDA is not found.
	The result is put in the queue rather than a return value.

 freebsd

freebsd

Detect whether this is FeeBSD.

Functions

	conda_virtual_packages()

	

	
conda_virtual_packages()

	

 linux

linux

Detect whether this is Linux.

Functions

	conda_virtual_packages()

	

	
conda_virtual_packages()

	

 osx

osx

Detect whether this is macOS.

Functions

	conda_virtual_packages()

	

	
conda_virtual_packages()

	

 windows

windows

Detect whether this is Windows.

Functions

	conda_virtual_packages()

	

	
conda_virtual_packages()

	

 resolve

resolve

Low-level SAT solver wrapper/interface for the classic solver.

See conda.core.solver.Solver for the high-level API.

Classes

	Resolve

	

Functions

	_get_sat_solver_cls([sat_solver_choice])

	

	exactness_and_number_of_deps(resolve_obj, ms)

	Sorting key to emphasize packages that have more strict

Attributes

	stdoutlog

	

	Unsatisfiable

	

	ResolvePackageNotFound

	

	_sat_solvers

	

	
stdoutlog

	

	
Unsatisfiable

	

	
ResolvePackageNotFound

	

	
_sat_solvers

	

	
_get_sat_solver_cls(sat_solver_choice=SatSolverChoice.PYCOSAT)

	

	
exactness_and_number_of_deps(resolve_obj, ms)

	Sorting key to emphasize packages that have more strict
requirements. More strict means the reduced index can be reduced
more, so we want to consider these more constrained deps earlier in
reducing the index.

	
class Resolve(index, processed=False, channels=())

	
	
__hash__()

	Return hash(self).

	
default_filter(features=None, filter=None)

	

	
valid(spec_or_prec, filter, optional=True)

	Tests if a package, MatchSpec, or a list of both has satisfiable
dependencies, assuming cyclic dependencies are always valid.

	Parameters:

	
	spec_or_prec -- a package record, a MatchSpec, or an iterable of these.

	filter -- a dictionary of (fkey,valid) pairs, used to consider a subset
of dependencies, and to eliminate repeated searches.

	optional -- if True (default), do not enforce optional specifications
when considering validity. If False, enforce them.

	Returns:

	True if the full set of dependencies can be satisfied; False otherwise.
If filter is supplied and update is True, it will be updated with the
search results.

	
valid2(spec_or_prec, filter_out, optional=True)

	

	
invalid_chains(spec, filter, optional=True)

	Constructs a set of 'dependency chains' for invalid specs.

A dependency chain is a tuple of MatchSpec objects, starting with
the requested spec, proceeding down the dependency tree, ending at
a specification that cannot be satisfied.

	Parameters:

	
	spec -- a package key or MatchSpec

	filter -- a dictionary of (prec, valid) pairs to be used when
testing for package validity.

	Returns:

	A tuple of tuples, empty if the MatchSpec is valid.

	
verify_specs(specs)

	Perform a quick verification that specs and dependencies are reasonable.

	Parameters:

	specs -- An iterable of strings or MatchSpec objects to be tested.

	Returns:

	Nothing, but if there is a conflict, an error is thrown.

Note that this does not attempt to resolve circular dependencies.

	
_classify_bad_deps(bad_deps, specs_to_add, history_specs, strict_channel_priority)

	

	
find_matches_with_strict(ms, strict_channel_priority)

	

	
find_conflicts(specs, specs_to_add=None, history_specs=None)

	

	
breadth_first_search_for_dep_graph(root_spec, target_name, dep_graph, num_targets=1)

	Return shorted path from root_spec to target_name

	
build_graph_of_deps(spec)

	

	
build_conflict_map(specs, specs_to_add=None, history_specs=None)

	Perform a deeper analysis on conflicting specifications, by attempting
to find the common dependencies that might be the cause of conflicts.

	Parameters:

	
	specs -- An iterable of strings or MatchSpec objects to be tested.

	conflict. (It is assumed that the specs) --

	Returns:

	A list of lists of bad deps

	Return type:

	bad_deps

	Strategy:
	If we're here, we know that the specs conflict. This could be because:
- One spec conflicts with another; e.g.

['numpy 1.5*', 'numpy >=1.6']

	
	One spec conflicts with a dependency of another; e.g.
	['numpy 1.5*', 'scipy 0.12.0b1']

	
	Each spec depends on the same package but in a different way; e.g.,
	['A', 'B'] where A depends on numpy 1.5, and B on numpy 1.6.

Technically, all three of these cases can be boiled down to the last
one if we treat the spec itself as one of the "dependencies". There
might be more complex reasons for a conflict, but this code only
considers the ones above.

The purpose of this code, then, is to identify packages (like numpy
above) that all of the specs depend on but in different ways. We
then identify the dependency chains that lead to those packages.

	
_get_strict_channel(package_name)

	

	
_broader(ms, specs_by_name)

	Prevent introduction of matchspecs that broaden our selection of choices.

	
_get_package_pool(specs)

	

	
get_reduced_index(explicit_specs, sort_by_exactness=True, exit_on_conflict=False)

	

	
match_any(mss, prec)

	

	
find_matches(spec: conda.models.match_spec.MatchSpec) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord]

	

	
ms_depends(prec: conda.models.records.PackageRecord) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.models.match_spec.MatchSpec]

	

	
version_key(prec, vtype=None)

	

	
static _make_channel_priorities(channels)

	

	
get_pkgs(ms, emptyok=False)

	

	
static to_sat_name(val)

	

	
static to_feature_metric_id(prec_dist_str, feat)

	

	
push_MatchSpec(C, spec)

	

	
gen_clauses()

	

	
generate_spec_constraints(C, specs)

	

	
generate_feature_count(C)

	

	
generate_update_count(C, specs)

	

	
generate_feature_metric(C)

	

	
generate_removal_count(C, specs)

	

	
generate_install_count(C, specs)

	

	
generate_package_count(C, missing)

	

	
generate_version_metrics(C, specs, include0=False)

	

	
dependency_sort(must_have: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], conda.models.records.PackageRecord]) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.models.records.PackageRecord]

	

	
environment_is_consistent(installed)

	

	
get_conflicting_specs(specs, explicit_specs)

	

	
bad_installed(installed, new_specs)

	

	
restore_bad(pkgs, preserve)

	

	
install_specs(specs, installed, update_deps=True)

	

	
install(specs, installed=None, update_deps=True, returnall=False)

	

	
remove_specs(specs, installed)

	

	
remove(specs, installed)

	

	
solve(specs: list [https://docs.python.org/3/library/stdtypes.html#list], returnall: bool [https://docs.python.org/3/library/functions.html#bool] = False, _remove=False, specs_to_add=None, history_specs=None, should_retry_solve=False) → list [https://docs.python.org/3/library/stdtypes.html#list][conda.models.records.PackageRecord]

	

 testing

testing

Classes

	EntityEncoder

	Extensible JSON <https://json.org> encoder for Python data structures.

	PackageCacheData

	

	PackageRecord

	

	CondaCLIFixture

	

	PathFactoryFixture

	

	TmpEnvFixture

	

	TmpChannelFixture

	

Functions

	reset_context([search_path, argparse_args])

	

	main_subshell(*args[, post_parse_hook])

	Entrypoint for the "subshell" invocation of CLI interface. E.g. conda create.

	path_to_url(path)

	

	conda_ensure_sys_python_is_base_env_python()

	

	conda_move_to_front_of_PATH()

	

	conda_cli(→ CondaCLIFixture)

	Fixture returning CondaCLIFixture instance.

	path_factory(→ PathFactoryFixture)

	Fixture returning PathFactoryFixture instance.

	tmp_env(→ TmpEnvFixture)

	Fixture returning TmpEnvFixture instance.

	tmp_channel(→ TmpChannelFixture)

	Fixture returning TmpChannelFixture instance.

	context_aware_monkeypatch(→ pytest.MonkeyPatch)

	A monkeypatch fixture that resets context after each test

	tmp_pkgs_dir(→ pathlib.Path)

	

Attributes

	PACKAGE_CACHE_MAGIC_FILE

	

	context

	

	on_win

	

	deprecated

	

	
class EntityEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: json.JSONEncoder [https://docs.python.org/3/library/json.html#json.JSONEncoder]

Extensible JSON <https://json.org> encoder for Python data structures.

Supports the following objects and types by default:

	Python

	JSON

	dict

	object

	list, tuple

	array

	str

	string

	int, float

	number

	True

	true

	False

	false

	None

	null

To extend this to recognize other objects, subclass and implement a
.default() method with another method that returns a serializable
object for o if possible, otherwise it should call the superclass
implementation (to raise TypeError).

	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
PACKAGE_CACHE_MAGIC_FILE = 'urls.txt'

	

	
context

	

	
reset_context(search_path=SEARCH_PATH, argparse_args=None)

	

	
main_subshell(*args, post_parse_hook=None, **kwargs)

	Entrypoint for the "subshell" invocation of CLI interface. E.g. conda create.

	
on_win

	

	
path_to_url(path)

	

	
class PackageCacheData(pkgs_dir)

	
	
property _package_cache_records

	

	
property is_writable

	

	
cache: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], PackageCacheData]

	

	
insert(package_cache_record)

	

	
load()

	

	
reload()

	

	
get(package_ref, default=NULL)

	

	
remove(package_ref, default=NULL)

	

	
query(package_ref_or_match_spec)

	

	
iter_records()

	

	
classmethod query_all(package_ref_or_match_spec, pkgs_dirs=None)

	

	
classmethod first_writable(pkgs_dirs=None)

	

	
classmethod writable_caches(pkgs_dirs=None)

	

	
classmethod read_only_caches(pkgs_dirs=None)

	

	
classmethod all_caches_writable_first(pkgs_dirs=None)

	

	
classmethod get_all_extracted_entries()

	

	
classmethod get_entry_to_link(package_ref)

	

	
classmethod tarball_file_in_cache(tarball_path, md5sum=None, exclude_caches=())

	

	
classmethod clear()

	

	
tarball_file_in_this_cache(tarball_path, md5sum=None)

	

	
_check_writable()

	

	
static _clean_tarball_path_and_get_md5sum(tarball_path, md5sum=None)

	

	
_scan_for_dist_no_channel(dist_str)

	

	
itervalues()

	

	
values()

	

	
__repr__()

	Return repr(self).

	
_make_single_record(package_filename)

	

	
static _dedupe_pkgs_dir_contents(pkgs_dir_contents)

	

	
deprecated

	

	
exception CondaExitZero(message, caused_by=None, **kwargs)

	Bases: CondaError

Common base class for all non-exit exceptions.

	
return_code = 0

	

	
class PackageRecord(*args, **kwargs)

	Bases: conda.auxlib.entity.DictSafeMixin, conda.auxlib.entity.Entity

	
property schannel

	

	
property _pkey

	

	
property is_unmanageable

	

	
property combined_depends

	

	
property namekey

	

	
name

	

	
version

	

	
build

	

	
build_number

	

	
channel

	

	
subdir

	

	
fn

	

	
md5

	

	
legacy_bz2_md5

	

	
legacy_bz2_size

	

	
url

	

	
sha256

	

	
arch

	

	
platform

	

	
depends

	

	
constrains

	

	
track_features

	

	
features

	

	
noarch

	

	
preferred_env

	

	
license

	

	
license_family

	

	
package_type

	

	
timestamp

	

	
date

	

	
size

	

	
metadata: set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
__hash__()

	Return hash(self).

	
__eq__(other)

	Return self==value.

	
dist_str()

	

	
dist_fields_dump()

	

	
__str__()

	Return str(self).

	
to_match_spec()

	

	
to_simple_match_spec()

	

	
record_id()

	

	
conda_ensure_sys_python_is_base_env_python()

	

	
conda_move_to_front_of_PATH()

	

	
class CondaCLIFixture

	
	
capsys: pytest.CaptureFixture

	

	
__call__(*argv: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], raises: type [https://docs.python.org/3/library/functions.html#type][Exception [https://docs.python.org/3/library/exceptions.html#Exception]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][type [https://docs.python.org/3/library/functions.html#type][Exception [https://docs.python.org/3/library/exceptions.html#Exception]], Ellipsis]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], pytest.ExceptionInfo]

	
__call__(*argv: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]

	Test conda CLI. Mimic what is done in conda.cli.main.main.

conda ... == conda_cli(...)

	Parameters:

	
	argv -- Arguments to parse.

	raises -- Expected exception to intercept. If provided, the raised exception
will be returned instead of exit code (see pytest.raises and pytest.ExceptionInfo).

	Returns:

	Command results (stdout, stderr, exit code or pytest.ExceptionInfo).

	
conda_cli(capsys: pytest.CaptureFixture) → CondaCLIFixture

	Fixture returning CondaCLIFixture instance.

	
class PathFactoryFixture

	
	
tmp_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	

	
__call__(name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, prefix: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, suffix: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Unique, non-existent path factory.

Extends pytest's tmp_path fixture with a new unique, non-existent path for usage in cases
where we need a temporary path that doesn't exist yet.

	Parameters:

	
	name -- Path name to append to tmp_path

	prefix -- Prefix to prepend to unique name generated

	suffix -- Suffix to append to unique name generated

	Returns:

	A new unique path

	
path_factory(tmp_path: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) → PathFactoryFixture

	Fixture returning PathFactoryFixture instance.

	
class TmpEnvFixture

	
	
path_factory: PathFactoryFixture

	

	
conda_cli: CondaCLIFixture

	

	
__call__(*packages: str [https://docs.python.org/3/library/stdtypes.html#str], prefix: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | None [https://docs.python.org/3/library/constants.html#None] = None) → Iterator[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	Generate a conda environment with the provided packages.

	Parameters:

	
	packages -- The packages to install into environment

	prefix -- The prefix at which to install the conda environment

	Returns:

	The conda environment's prefix

	
tmp_env(path_factory: PathFactoryFixture, conda_cli: CondaCLIFixture) → TmpEnvFixture

	Fixture returning TmpEnvFixture instance.

	
class TmpChannelFixture

	
	
path_factory: PathFactoryFixture

	

	
conda_cli: CondaCLIFixture

	

	
__call__(*packages: str [https://docs.python.org/3/library/stdtypes.html#str]) → Iterator[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	

	
tmp_channel(path_factory: PathFactoryFixture, conda_cli: CondaCLIFixture) → TmpChannelFixture

	Fixture returning TmpChannelFixture instance.

	
context_aware_monkeypatch(monkeypatch: pytest.MonkeyPatch) → pytest.MonkeyPatch

	A monkeypatch fixture that resets context after each test

	
tmp_pkgs_dir(path_factory: PathFactoryFixture, mocker: pytest_mock.MockerFixture) → pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	

 cases

cases

Extends unittest.TestCase to include select pytest fixtures.

Classes

	BaseTestCase

	A class whose instances are single test cases.

	
class BaseTestCase(methodName='runTest')

	Bases: unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]

A class whose instances are single test cases.

By default, the test code itself should be placed in a method named
'runTest'.

If the fixture may be used for many test cases, create as
many test methods as are needed. When instantiating such a TestCase
subclass, specify in the constructor arguments the name of the test method
that the instance is to execute.

Test authors should subclass TestCase for their own tests. Construction
and deconstruction of the test's environment ('fixture') can be
implemented by overriding the 'setUp' and 'tearDown' methods respectively.

If it is necessary to override the __init__ method, the base class
__init__ method must always be called. It is important that subclasses
should not change the signature of their __init__ method, since instances
of the classes are instantiated automatically by parts of the framework
in order to be run.

When subclassing TestCase, you can set these attributes:
* failureException: determines which exception will be raised when

the instance's assertion methods fail; test methods raising this
exception will be deemed to have 'failed' rather than 'errored'.

	
	longMessage: determines whether long messages (including repr of
	objects used in assert methods) will be printed on failure in addition
to any explicit message passed.

	
	maxDiff: sets the maximum length of a diff in failure messages
	by assert methods using difflib. It is looked up as an instance
attribute so can be configured by individual tests if required.

	
fixture_names = ('tmpdir',)

	

	
auto_injector_fixture(request)

	

 fixtures

fixtures

Collection of pytest fixtures used in conda tests.

Functions

	suppress_resource_warning()

	Suppress Unclosed Socket Warning

	tmpdir(tmpdir, request)

	

	clear_subdir_cache()

	

	disable_channel_notices()

	Fixture that will set "context.number_channel_notices" to 0 and then set

	reset_conda_context()

	Resets the context object after each test function is run.

	temp_package_cache(tmp_path_factory)

	Used to isolate package or index cache from other tests.

	parametrized_solver_fixture(...)

	A parameterized fixture that sets the solver backend to (1) libmamba

	solver_classic(→ Iterable[Literal[classic]])

	

	solver_libmamba(→ Iterable[Literal[libmamba]])

	

	_solver_helper(→ Iterable[Solver])

	

Attributes

	Solver

	

	
suppress_resource_warning()

	Suppress Unclosed Socket Warning

It seems urllib3 keeps a socket open to avoid costly recreation costs.

xref: https://github.com/kennethreitz/requests/issues/1882

	
tmpdir(tmpdir, request)

	

	
clear_subdir_cache()

	

	
disable_channel_notices()

	Fixture that will set "context.number_channel_notices" to 0 and then set
it back to its original value.

This is also a good example of how to override values in the context object.

	
reset_conda_context()

	Resets the context object after each test function is run.

	
temp_package_cache(tmp_path_factory)

	Used to isolate package or index cache from other tests.

	
parametrized_solver_fixture(request: pytest.FixtureRequest, monkeypatch: pytest.MonkeyPatch) → Iterable[Literal[libmamba, classic]]

	A parameterized fixture that sets the solver backend to (1) libmamba
and (2) classic for each test. It's using autouse=True, so only import it in
modules that actually need it.

Note that skips and xfails need to be done _inside_ the test body.
Decorators can't be used because they are evaluated before the
fixture has done its work!

So, instead of:

@pytest.mark.skipif(context.solver == "libmamba", reason="...")
def test_foo():

...

Do:

	def test_foo():
	
	if context.solver == "libmamba":
	pytest.skip("...")

...

	
solver_classic(request: pytest.FixtureRequest, monkeypatch: pytest.MonkeyPatch) → Iterable[Literal[classic]]

	

	
solver_libmamba(request: pytest.FixtureRequest, monkeypatch: pytest.MonkeyPatch) → Iterable[Literal[libmamba]]

	

	
Solver

	

	
_solver_helper(request: pytest.FixtureRequest, monkeypatch: pytest.MonkeyPatch, solver: Solver) → Iterable[Solver]

	

 gateways

gateways

 fixtures

fixtures

Collection of pytest fixtures used in conda.gateways tests.

Functions

	minio_s3_server(xprocess, tmp_path)

	Mock a local S3 server using minio

Attributes

	MINIO_EXE

	

	
MINIO_EXE

	

	
minio_s3_server(xprocess, tmp_path)

	Mock a local S3 server using minio

This requires:
- pytest-xprocess: runs the background process
- minio: the executable must be in PATH

Note, the given S3 server will be EMPTY! The test function needs
to populate it. You can use
conda.testing.helpers.populate_s3_server for that.

 helpers

helpers

Collection of helper functions used in conda tests.

Functions

	strip_expected(stderr)

	

	raises(exception, func[, string])

	

	captured([disallow_stderr])

	

	set_active_prefix(→ None)

	

	assert_equals(a, b[, output])

	

	assert_not_in(a, b[, output])

	

	assert_in(a, b[, output])

	

	add_subdir(dist_string)

	

	add_subdir_to_iter(iterable)

	

	tempdir()

	

	supplement_index_with_repodata(index, repodata, ...)

	

	add_feature_records_legacy(index)

	

	_export_subdir_data_to_repodata(subdir_data)

	This function is only temporary and meant to patch wrong / undesirable

	_sync_channel_to_disk(subdir_data)

	This function is only temporary and meant to patch wrong / undesirable

	_alias_canonical_channel_name_cache_to_file_prefixed(name)

	This function is only temporary and meant to patch wrong / undesirable

	_patch_for_local_exports(name, subdir_data)

	This function is only temporary and meant to patch wrong / undesirable

	_get_index_r_base(json_filename_or_packages, channel_name)

	

	get_index_r_1([subdir, add_pip, merge_noarch])

	

	get_index_r_2([subdir, add_pip, merge_noarch])

	

	get_index_r_4([subdir, add_pip, merge_noarch])

	

	get_index_r_5([subdir, add_pip, merge_noarch])

	

	get_index_must_unfreeze([subdir, add_pip, merge_noarch])

	

	get_index_cuda([subdir, add_pip, merge_noarch])

	

	record([name, version, depends, build, build_number, ...])

	

	_get_solver_base(channel_id, tmpdir[, specs_to_add, ...])

	

	get_solver(tmpdir[, specs_to_add, specs_to_remove, ...])

	

	get_solver_2(tmpdir[, specs_to_add, specs_to_remove, ...])

	

	get_solver_4(tmpdir[, specs_to_add, specs_to_remove, ...])

	

	get_solver_5(tmpdir[, specs_to_add, specs_to_remove, ...])

	

	get_solver_aggregate_1(tmpdir[, specs_to_add, ...])

	

	get_solver_aggregate_2(tmpdir[, specs_to_add, ...])

	

	get_solver_must_unfreeze(tmpdir[, specs_to_add, ...])

	

	get_solver_cuda(tmpdir[, specs_to_add, ...])

	

	convert_to_dist_str(solution)

	

	solver_class()

	

Attributes

	TEST_DATA_DIR

	

	CHANNEL_DIR_V2

	

	EXPORTED_CHANNELS_DIR

	

	expected_error_prefix

	

	
TEST_DATA_DIR

	

	
CHANNEL_DIR_V2

	

	
EXPORTED_CHANNELS_DIR

	

	
expected_error_prefix = 'Using Anaconda Cloud api site https://api.anaconda.org'

	

	
strip_expected(stderr)

	

	
raises(exception, func, string=None)

	

	
captured(disallow_stderr=True)

	

	
set_active_prefix(prefix: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
assert_equals(a, b, output='')

	

	
assert_not_in(a, b, output='')

	

	
assert_in(a, b, output='')

	

	
add_subdir(dist_string)

	

	
add_subdir_to_iter(iterable)

	

	
tempdir()

	

	
supplement_index_with_repodata(index, repodata, channel, priority)

	

	
add_feature_records_legacy(index)

	

	
_export_subdir_data_to_repodata(subdir_data: conda.core.subdir_data.SubdirData)

	This function is only temporary and meant to patch wrong / undesirable
testing behaviour. It should end up being replaced with the new class-based,
backend-agnostic solver tests.

	
_sync_channel_to_disk(subdir_data: conda.core.subdir_data.SubdirData)

	This function is only temporary and meant to patch wrong / undesirable
testing behaviour. It should end up being replaced with the new class-based,
backend-agnostic solver tests.

	
_alias_canonical_channel_name_cache_to_file_prefixed(name, subdir_data=None)

	This function is only temporary and meant to patch wrong / undesirable
testing behaviour. It should end up being replaced with the new class-based,
backend-agnostic solver tests.

	
_patch_for_local_exports(name, subdir_data)

	This function is only temporary and meant to patch wrong / undesirable
testing behaviour. It should end up being replaced with the new class-based,
backend-agnostic solver tests.

	
_get_index_r_base(json_filename_or_packages, channel_name, subdir=context.subdir, add_pip=False, merge_noarch=False)

	

	
get_index_r_1(subdir=context.subdir, add_pip=True, merge_noarch=False)

	

	
get_index_r_2(subdir=context.subdir, add_pip=True, merge_noarch=False)

	

	
get_index_r_4(subdir=context.subdir, add_pip=True, merge_noarch=False)

	

	
get_index_r_5(subdir=context.subdir, add_pip=False, merge_noarch=False)

	

	
get_index_must_unfreeze(subdir=context.subdir, add_pip=True, merge_noarch=False)

	

	
get_index_cuda(subdir=context.subdir, add_pip=True, merge_noarch=False)

	

	
record(name='a', version='1.0', depends=None, build='0', build_number=0, timestamp=0, channel=None, **kwargs)

	

	
_get_solver_base(channel_id, tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False, merge_noarch=False)

	

	
get_solver(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False, merge_noarch=False)

	

	
get_solver_2(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False, merge_noarch=False)

	

	
get_solver_4(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False, merge_noarch=False)

	

	
get_solver_5(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False, merge_noarch=False)

	

	
get_solver_aggregate_1(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False, merge_noarch=False)

	

	
get_solver_aggregate_2(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False, merge_noarch=False)

	

	
get_solver_must_unfreeze(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False, merge_noarch=False)

	

	
get_solver_cuda(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False, merge_noarch=False)

	

	
convert_to_dist_str(solution)

	

	
solver_class()

	

 integration

integration

These helpers were originally defined in tests/test_create.py,
but were refactored here so downstream projects can benefit from
them too.

Classes

	Commands

	

Functions

	escape_for_winpath(p)

	

	running_a_python_capable_of_unicode_subprocessing()

	

	set_tmpdir(tmpdir)

	

	_get_temp_prefix([name, use_restricted_unicode])

	

	make_temp_prefix([name, use_restricted_unicode, ...])

	When the env. you are creating will be used to install Python 2.7 on Windows

	FORCE_temp_prefix([name, use_restricted_unicode])

	

	run_command(→ tuple[str, str, int])

	

	make_temp_env(→ Iterator[str])

	

	make_temp_package_cache(→ Iterator[str])

	

	make_temp_channel(→ Iterator[str])

	

	create_temp_location(→ str)

	

	tempdir(→ Iterator[str])

	

	reload_config(→ None)

	

	package_is_installed(...)

	

	get_shortcut_dir([prefix_for_unix])

	

Attributes

	TEST_LOG_LEVEL

	

	PYTHON_BINARY

	

	BIN_DIRECTORY

	

	UNICODE_CHARACTERS

	

	UNICODE_CHARACTERS_RESTRICTED

	

	which_or_where

	

	cp_or_copy

	

	env_or_set

	

	SPACER_CHARACTER

	

	tmpdir_in_use

	

	
TEST_LOG_LEVEL

	

	
PYTHON_BINARY

	

	
BIN_DIRECTORY

	

	
UNICODE_CHARACTERS = 'ōγђ家固한áêñßôç'

	

	
UNICODE_CHARACTERS_RESTRICTED = 'abcdef'

	

	
which_or_where

	

	
cp_or_copy

	

	
env_or_set

	

	
SPACER_CHARACTER = ' '

	

	
escape_for_winpath(p)

	

	
running_a_python_capable_of_unicode_subprocessing()

	

	
tmpdir_in_use

	

	
set_tmpdir(tmpdir)

	

	
_get_temp_prefix(name=None, use_restricted_unicode=False)

	

	
make_temp_prefix(name=None, use_restricted_unicode=False, _temp_prefix=None)

	When the env. you are creating will be used to install Python 2.7 on Windows
only a restricted amount of Unicode will work, and probably only those chars
in your current codepage, so the characters in UNICODE_CHARACTERS_RESTRICTED
should probably be randomly generated from that instead. The problem here is
that the current codepage needs to be able to handle 'sys.prefix' otherwise
ntpath will fall over.

	
FORCE_temp_prefix(name=None, use_restricted_unicode=False)

	

	
class Commands

	
	
COMPARE = 'compare'

	

	
CONFIG = 'config'

	

	
CLEAN = 'clean'

	

	
CREATE = 'create'

	

	
INFO = 'info'

	

	
INSTALL = 'install'

	

	
LIST = 'list'

	

	
REMOVE = 'remove'

	

	
SEARCH = 'search'

	

	
UPDATE = 'update'

	

	
RUN = 'run'

	

	
run_command(command, prefix, *arguments, **kwargs) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]

	

	
make_temp_env(*packages, **kwargs) → Iterator[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
make_temp_package_cache() → Iterator[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
make_temp_channel(packages) → Iterator[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
create_temp_location() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
tempdir() → Iterator[str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
reload_config(prefix) → None [https://docs.python.org/3/library/constants.html#None]

	

	
package_is_installed(prefix: str [https://docs.python.org/3/library/stdtypes.html#str] | os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] | pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], spec: str [https://docs.python.org/3/library/stdtypes.html#str] | conda.models.match_spec.MatchSpec) → conda.models.records.PrefixRecord | None [https://docs.python.org/3/library/constants.html#None]

	

	
get_shortcut_dir(prefix_for_unix=sys.prefix)

	

 notices

notices

 fixtures

fixtures

Collection of pytest fixtures used in conda.notices tests.

Functions

	notices_cache_dir(tmpdir)

	Fixture that creates the notices cache dir while also mocking

	notices_mock_fetch_get_session()

	

	conda_notices_args_n_parser()

	

	
notices_cache_dir(tmpdir)

	Fixture that creates the notices cache dir while also mocking
out a call to user_cache_dir.

	
notices_mock_fetch_get_session()

	

	
conda_notices_args_n_parser()

	

 helpers

helpers

Collection of helper functions used in conda.notices tests.

Classes

	DummyArgs

	Dummy object that sets all kwargs as object properties.

	MockResponse

	

Functions

	get_test_notices(→ dict)

	

	add_resp_to_mock(→ None)

	Adds any number of MockResponse to MagicMock object as side_effects

	create_notice_cache_files(→ None)

	Creates the cache files that we use in tests

	offset_cache_file_mtime(→ None)

	Allows for offsetting the mtime of the notices cache file. This is often

	notices_decorator_assert_message_in_stdout(captured, ...)

	Tests a run of notices decorator where we expect to see the messages

	get_notice_cache_filenames(→ tuple[str])

	Returns the filenames of the cache files that will be searched for

Attributes

	DEFAULT_NOTICE_MESG

	

	
DEFAULT_NOTICE_MESG = 'Here is an example message that will be displayed to users'

	

	
get_test_notices(messages: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], level: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = 'info', created_at: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None [https://docs.python.org/3/library/constants.html#None] = None, expired_at: datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] | None [https://docs.python.org/3/library/constants.html#None] = None) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	

	
add_resp_to_mock(mock_session: unittest.mock.MagicMock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.MagicMock], status_code: int [https://docs.python.org/3/library/functions.html#int], messages_json: dict [https://docs.python.org/3/library/stdtypes.html#dict], raise_exc: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Adds any number of MockResponse to MagicMock object as side_effects

	
create_notice_cache_files(cache_dir: pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], cache_files: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], messages_json_seq: Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) → None [https://docs.python.org/3/library/constants.html#None]

	Creates the cache files that we use in tests

	
offset_cache_file_mtime(mtime_offset) → None [https://docs.python.org/3/library/constants.html#None]

	Allows for offsetting the mtime of the notices cache file. This is often
used to mock an older creation time the cache file.

	
class DummyArgs(**kwargs)

	Dummy object that sets all kwargs as object properties.

	
notices_decorator_assert_message_in_stdout(captured, messages: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], dummy_mesg: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, not_in: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Tests a run of notices decorator where we expect to see the messages
print to stdout.

	
class MockResponse(status_code, json_data, raise_exc=False)

	
	
json()

	

	
get_notice_cache_filenames(ctx: conda.base.context.Context) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns the filenames of the cache files that will be searched for

 solver_helpers

solver_helpers

Helpers for testing the solver.

Classes

	SimpleEnvironment

	Helper environment object.

	SolverTests

	Tests for conda.core.solve.Solver implementations.

Functions

	index_packages(num)

	Get the index data of the helpers.get_index_r_* helpers.

	package_string(record)

	

	package_string_set(packages)

	Transforms package container in package string set.

	package_dict(packages)

	Transforms package container into a dictionary.

	empty_prefix()

	

	temp_simple_env(→ SimpleEnvironment)

	

	
index_packages(num)

	Get the index data of the helpers.get_index_r_* helpers.

	
package_string(record)

	

	
package_string_set(packages)

	Transforms package container in package string set.

	
package_dict(packages)

	Transforms package container into a dictionary.

	
class SimpleEnvironment(path, solver_class, subdirs=context.subdirs)

	Helper environment object.

	
property _channel_packages

	Helper that unfolds the repo_packages into a dictionary.

	
REPO_DATA_KEYS = ('build', 'build_number', 'depends', 'license', 'md5', 'name', 'sha256', 'size', 'subdir',...

	

	
solver(add, remove)

	Writes repo_packages to the disk and creates a solver instance.

	
solver_transaction(add=(), remove=(), as_specs=False)

	

	
install(*specs, as_specs=False)

	

	
remove(*specs, as_specs=False)

	

	
_package_data(record)

	Turn record into data, to be written in the JSON environment/repo files.

	
_write_installed_packages()

	

	
_write_repo_packages(channel_name, packages)

	Write packages to the channel path.

	
empty_prefix()

	

	
temp_simple_env(solver_class=Solver) → SimpleEnvironment

	

	
class SolverTests

	Tests for conda.core.solve.Solver implementations.

	
abstract property solver_class: type [https://docs.python.org/3/library/functions.html#type][conda.core.solve.Solver]

	Class under test.

	
property tests_to_skip

	

	
skip_tests(request)

	

	
env()

	

	
find_package_in_list(packages, **kwargs)

	

	
find_package(**kwargs)

	

	
assert_unsatisfiable(exc_info, entries)

	Helper to assert that a conda.exceptions.UnsatisfiableError
instance as a the specified set of unsatisfiable specifications.

	
test_empty(env)

	

	
test_iopro_mkl(env)

	

	
test_iopro_nomkl(env)

	

	
test_mkl(env)

	

	
test_accelerate(env)

	

	
test_scipy_mkl(env)

	

	
test_anaconda_nomkl(env)

	

	
test_pseudo_boolean(env)

	

	
test_unsat_from_r1(env)

	

	
test_unsat_simple(env)

	

	
test_get_dists(env)

	

	
test_unsat_shortest_chain_1(env)

	

	
test_unsat_shortest_chain_2(env)

	

	
test_unsat_shortest_chain_3(env)

	

	
test_unsat_shortest_chain_4(env)

	

	
test_unsat_chain(env)

	

	
test_unsat_any_two_not_three(env)

	

	
test_unsat_expand_single(env)

	

	
test_unsat_missing_dep(env)

	

	
test_nonexistent(env)

	

	
test_timestamps_and_deps(env)

	

	
test_nonexistent_deps(env)

	

	
test_install_package_with_feature(env)

	

	
test_unintentional_feature_downgrade(env)

	

	
test_circular_dependencies(env)

	

	
test_irrational_version(env)

	

	
test_no_features(env)

	

	
test_channel_priority_1(monkeypatch, env)

	

	
test_unsat_channel_priority(monkeypatch, env)

	

	
test_remove(env)

	

	
test_surplus_features_1(env)

	

	
test_surplus_features_2(env)

	

	
test_get_reduced_index_broadening_with_unsatisfiable_early_dep(env)

	

	
test_get_reduced_index_broadening_preferred_solution(env)

	

	
test_arch_preferred_over_noarch_when_otherwise_equal(env)

	

	
test_noarch_preferred_over_arch_when_version_greater(env)

	

	
test_noarch_preferred_over_arch_when_version_greater_dep(env)

	

	
test_noarch_preferred_over_arch_when_build_greater(env)

	

	
test_noarch_preferred_over_arch_when_build_greater_dep(env)

	

 trust

trust

 constants

constants

Context trust constants.

You could argue that the signatures being here is not necessary; indeed, we
are not necessarily going to be able to check them properly (based on some
prior expectations) as the user, since this is the beginning of trust
bootstrapping, the first/backup version of the root of trust metadata.
Still, the signatures here are useful for diagnostic purposes, and, more
important, to allow self-consistency checks: that helps us avoid breaking the
chain of trust if someone accidentally lists the wrong keys down the line. (:
The discrepancy can be detected when loading the root data, and we can
decline to cache incorrect trust metadata that would make further root
updates impossible.

	
INITIAL_TRUST_ROOT

	

	
KEY_MGR_FILE = 'key_mgr.json'

	

 signature_verification

signature_verification

Interface between conda-content-trust and conda.

Classes

	_SignatureVerification

	

Attributes

	RE_ROOT_METADATA

	

	signature_verification

	

	
exception SignatureError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Common base class for all non-exit exceptions.

	
RE_ROOT_METADATA

	

	
class _SignatureVerification

	
	
property enabled: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property trusted_root: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	

	
property key_mgr: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None]

	

	
_fetch_channel_signing_data(signing_data_url: str [https://docs.python.org/3/library/stdtypes.html#str], filename: str [https://docs.python.org/3/library/stdtypes.html#str], etag=None, mod_stamp=None) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	

	
verify(repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str], record: conda.models.records.PackageRecord)

	

	
__call__(repodata_fn: str [https://docs.python.org/3/library/stdtypes.html#str], unlink_precs: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis], link_precs: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][conda.models.records.PackageRecord, Ellipsis]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
classmethod cache_clear() → None [https://docs.python.org/3/library/constants.html#None]

	

	
signature_verification

	

 utils

utils

Utility functions.

Functions

	path_identity(path)

	Used as a dummy path converter where no conversion necessary

	unix_path_to_win(path[, root_prefix])

	Convert a path or :-separated string of paths into a Windows representation

	win_path_to_cygwin(path)

	

	cygwin_path_to_win(path)

	

	translate_stream(stream, translator)

	

	human_bytes(n)

	Return the number of bytes n in more human readable form.

	sys_prefix_unfollowed()

	Since conda is installed into non-root environments as a symlink only

	quote_for_shell(*arguments)

	Properly quote arguments for command line passing.

	massage_arguments(arguments[, errors])

	

	wrap_subprocess_call(root_prefix, prefix, dev_mode, ...)

	

	get_comspec()

	Returns COMSPEC from envvars.

	ensure_dir_exists(func)

	Ensures that the directory exists for functions returning

Attributes

	unix_shell_base

	

	msys2_shell_base

	

	shells

	

	_RE_UNSAFE

	

	
path_identity(path)

	Used as a dummy path converter where no conversion necessary

	
unix_path_to_win(path, root_prefix='')

	Convert a path or :-separated string of paths into a Windows representation

Does not add cygdrive. If you need that, set root_prefix to "/cygdrive"

	
win_path_to_cygwin(path)

	

	
cygwin_path_to_win(path)

	

	
translate_stream(stream, translator)

	

	
human_bytes(n)

	Return the number of bytes n in more human readable form.

Examples

>>> human_bytes(42)
'42 B'
>>> human_bytes(1042)
'1 KB'
>>> human_bytes(10004242)
'9.5 MB'
>>> human_bytes(100000004242)
'93.13 GB'

	
unix_shell_base

	

	
msys2_shell_base

	

	
shells

	

	
sys_prefix_unfollowed()

	Since conda is installed into non-root environments as a symlink only
and because sys.prefix follows symlinks, this function can be used to
get the 'unfollowed' sys.prefix.

This value is usually the same as the prefix of the environment into
which conda has been symlinked. An example of when this is necessary
is when conda looks for external sub-commands in find_commands.py

	
quote_for_shell(*arguments)

	Properly quote arguments for command line passing.

For POSIX uses shlex.join, for Windows uses a custom implementation to properly escape
metacharacters.

	Parameters:

	arguments (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) -- Arguments to quote.

	Returns:

	Quoted arguments.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
_RE_UNSAFE

	

	
massage_arguments(arguments, errors='assert')

	

	
wrap_subprocess_call(root_prefix, prefix, dev_mode, debug_wrapper_scripts, arguments, use_system_tmp_path=False)

	

	
get_comspec()

	Returns COMSPEC from envvars.

Ensures COMSPEC envvar is set to cmd.exe, if not attempt to find it.

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] -- COMSPEC is undefined and cannot be found.

	Returns:

	COMSPEC value.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ensure_dir_exists(func)

	Ensures that the directory exists for functions returning
a Path object containing a directory

 conda_env

conda_env

 cli

cli

 common

common

DEPRECATED: Use conda.env.env instead.

Common utilities for conda-env command line tools.

 main

main

DEPRECATED: Use conda.cli.main_env instead.

Entry point for all conda-env subcommands.

Functions

	show_help_on_empty_command()

	

	create_parser()

	

	do_call(arguments, parser)

	

	main()

	

	
show_help_on_empty_command()

	

	
create_parser()

	

	
do_call(arguments, parser)

	

	
main()

	

 main_config

main_config

DEPRECATED: Use conda.cli.main_env_config instead.

CLI implementation for conda-env config.

Allows for programmatically interacting with conda-env's configuration files (e.g., ~/.condarc).

	
config_description = Multiline-String

	
Show Value"""
Configure a conda environment
"""

	
config_example = Multiline-String

	
Show Value"""
examples:
 conda env config vars list
 conda env config --append channels conda-forge
"""

 main_create

main_create

DEPRECATED: Use conda.cli.main_env_create instead.

CLI implementation for conda-env create.

Creates new conda environments with the specified packages.

	
description = Multiline-String

	
Show Value"""
Create an environment based on an environment definition file.

If using an environment.yml file (the default), you can name the
environment in the first line of the file with 'name: envname' or
you can specify the environment name in the CLI command using the
-n/--name argument. The name specified in the CLI will override
the name specified in the environment.yml file.

Unless you are in the directory containing the environment definition
file, use -f to specify the file path of the environment definition
file you want to use.
"""

	
example = Multiline-String

	
Show Value"""
examples:
 conda env create
 conda env create -n envname
 conda env create folder/envname
 conda env create -f /path/to/environment.yml
 conda env create -f /path/to/requirements.txt -n envname
 conda env create -f /path/to/requirements.txt -p /home/user/envname
"""

 main_export

main_export

DEPRECATED: Use conda.cli.main_export instead.

CLI implementation for conda-env export.

Dumps specified environment package specifications to the screen.

	
description = Multiline-String

	
Show Value"""
Export a given environment
"""

	
example = Multiline-String

	
Show Value"""
examples:
 conda env export
 conda env export --file SOME_FILE
"""

 main_list

main_list

DEPRECATED: Use conda.cli.main_env_list instead.

CLI implementation for conda-env list.

Lists available conda environments.

	
description = Multiline-String

	
Show Value"""
List the Conda environments
"""

	
example = Multiline-String

	
Show Value"""
examples:
 conda env list
 conda env list --json
"""

 main_remove

main_remove

DEPRECATED: Use conda.cli.main_env_remove instead.

CLI implementation for conda-env remove.

Removes the specified conda environment.

	
_help = 'Remove an environment'

	

	
_description

	

	
_example = Multiline-String

	
Show Value"""

Examples:

 conda env remove --name FOO
 conda env remove -n FOO
"""

 main_update

main_update

DEPRECATED: Use conda.cli.main_env_update instead.

CLI implementation for conda-env update.

Updates the conda environments with the specified packages.

	
description = Multiline-String

	
Show Value"""
Update the current environment based on environment file
"""

	
example = Multiline-String

	
Show Value"""
examples:
 conda env update
 conda env update -n=foo
 conda env update -f=/path/to/environment.yml
 conda env update --name=foo --file=environment.yml
 conda env update vader/deathstar
"""

 main_vars

main_vars

DEPRECATED: Use conda.cli.main_env_vars instead.

CLI implementation for conda-env config vars.

Allows for configuring conda-env's vars.

	
var_description = Multiline-String

	
Show Value"""
Interact with environment variables associated with Conda environments
"""

	
var_example = Multiline-String

	
Show Value"""
examples:
 conda env config vars list -n my_env
 conda env config vars set MY_VAR=something OTHER_THING=ohhhhya
 conda env config vars unset MY_VAR
"""

	
list_description = Multiline-String

	
Show Value"""
List environment variables for a conda environment
"""

	
list_example = Multiline-String

	
Show Value"""
examples:
 conda env config vars list -n my_env
"""

	
set_description = Multiline-String

	
Show Value"""
Set environment variables for a conda environment
"""

	
set_example = Multiline-String

	
Show Value"""
example:
 conda env config vars set MY_VAR=weee
"""

	
unset_description = Multiline-String

	
Show Value"""
Unset environment variables for a conda environment
"""

	
unset_example = Multiline-String

	
Show Value"""
example:
 conda env config vars unset MY_VAR
"""

 env

env

DEPRECATED: Use conda.env.env instead.

Environment object describing the conda environment.yaml file.

 installers

installers

 base

base

DEPRECATED: Use conda.env.installers.base instead.

Dynamic installer loading.

	
ENTRY_POINT = 'conda_env.installers'

	

 conda

conda

DEPRECATED: Use conda.env.installers.conda instead.

Conda-flavored installer.

 pip

pip

DEPRECATED: Use conda.env.installers.pip instead.

Pip-flavored installer.

 pip_util

pip_util

DEPRECATED: Use conda.env.pip_util instead.

Environment object describing the conda environment.yaml file.

	
_canonicalize_regex

	

 specs

specs

DEPRECATED: Use conda.env.specs instead.

Dynamic installer loading.

 binstar

binstar

DEPRECATED: Use conda.env.specs.binstar instead.

Define binstar spec.

 requirements

requirements

DEPRECATED: Use conda.env.specs.requirements instead.

Define requirements.txt spec.

 yaml_file

yaml_file

DEPRECATED: Use conda.env.specs.yaml_file instead.

Define YAML spec.

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 conda	

 	
 	
 conda.__main__	

 	
 	
 conda._vendor	

 	
 	
 conda._vendor.appdirs	

 	
 	
 conda._vendor.cpuinfo	

 	
 	
 conda._vendor.cpuinfo.cpuinfo	

 	
 	
 conda._vendor.distro	

 	
 	
 conda._vendor.frozendict	

 	
 	
 conda._version	

 	
 	
 conda.activate	

 	
 	
 conda.api	

 	
 	
 conda.auxlib	

 	
 	
 conda.auxlib.collection	

 	
 	
 conda.auxlib.compat	

 	
 	
 conda.auxlib.decorators	

 	
 	
 conda.auxlib.entity	

 	
 	
 conda.auxlib.exceptions	

 	
 	
 conda.auxlib.ish	

 	
 	
 conda.auxlib.logz	

 	
 	
 conda.auxlib.type_coercion	

 	
 	
 conda.base	

 	
 	
 conda.base.constants	

 	
 	
 conda.base.context	

 	
 	
 conda.base.exceptions	

 	
 	
 conda.cli	

 	
 	
 conda.cli.actions	

 	
 	
 conda.cli.common	

 	
 	
 conda.cli.conda_argparse	

 	
 	
 conda.cli.find_commands	

 	
 	
 conda.cli.helpers	

 	
 	
 conda.cli.install	

 	
 	
 conda.cli.main	

 	
 	
 conda.cli.main_clean	

 	
 	
 conda.cli.main_compare	

 	
 	
 conda.cli.main_config	

 	
 	
 conda.cli.main_create	

 	
 	
 conda.cli.main_env	

 	
 	
 conda.cli.main_env_config	

 	
 	
 conda.cli.main_env_create	

 	
 	
 conda.cli.main_env_export	

 	
 	
 conda.cli.main_env_list	

 	
 	
 conda.cli.main_env_remove	

 	
 	
 conda.cli.main_env_update	

 	
 	
 conda.cli.main_env_vars	

 	
 	
 conda.cli.main_export	

 	
 	
 conda.cli.main_info	

 	
 	
 conda.cli.main_init	

 	
 	
 conda.cli.main_install	

 	
 	
 conda.cli.main_list	

 	
 	
 conda.cli.main_mock_activate	

 	
 	
 conda.cli.main_mock_deactivate	

 	
 	
 conda.cli.main_notices	

 	
 	
 conda.cli.main_package	

 	
 	
 conda.cli.main_pip	

 	
 	
 conda.cli.main_remove	

 	
 	
 conda.cli.main_rename	

 	
 	
 conda.cli.main_run	

 	
 	
 conda.cli.main_search	

 	
 	
 conda.cli.main_update	

 	
 	
 conda.cli.python_api	

 	
 	
 conda.common	

 	
 	
 conda.common._logic	

 	
 	
 conda.common._os	

 	
 	
 conda.common._os.linux	

 	
 	
 conda.common._os.unix	

 	
 	
 conda.common._os.windows	

 	
 	
 conda.common.compat	

 	
 	
 conda.common.configuration	

 	
 	
 conda.common.constants	

 	
 	
 conda.common.decorators	

 	
 	
 conda.common.disk	

 	
 	
 conda.common.io	

 	
 	
 conda.common.iterators	

 	
 	
 conda.common.logic	

 	
 	
 conda.common.path	

 	
 	
 conda.common.pkg_formats	

 	
 	
 conda.common.pkg_formats.python	

 	
 	
 conda.common.serialize	

 	
 	
 conda.common.signals	

 	
 	
 conda.common.toposort	

 	
 	
 conda.common.url	

 	
 	
 conda.core	

 	
 	
 conda.core.envs_manager	

 	
 	
 conda.core.index	

 	
 	
 conda.core.initialize	

 	
 	
 conda.core.link	

 	
 	
 conda.core.package_cache	

 	
 	
 conda.core.package_cache_data	

 	
 	
 conda.core.path_actions	

 	
 	
 conda.core.portability	

 	
 	
 conda.core.prefix_data	

 	
 	
 conda.core.solve	

 	
 	
 conda.core.subdir_data	

 	
 	
 conda.deprecations	

 	
 	
 conda.env	

 	
 	
 conda.env.env	

 	
 	
 conda.env.installers	

 	
 	
 conda.env.installers.base	

 	
 	
 conda.env.installers.conda	

 	
 	
 conda.env.installers.pip	

 	
 	
 conda.env.pip_util	

 	
 	
 conda.env.specs	

 	
 	
 conda.env.specs.binstar	

 	
 	
 conda.env.specs.requirements	

 	
 	
 conda.env.specs.yaml_file	

 	
 	
 conda.exception_handler	

 	
 	
 conda.exceptions	

 	
 	
 conda.exports	

 	
 	
 conda.gateways	

 	
 	
 conda.gateways.anaconda_client	

 	
 	
 conda.gateways.connection	

 	
 	
 conda.gateways.connection.adapters	

 	
 	
 conda.gateways.connection.adapters.ftp	

 	
 	
 conda.gateways.connection.adapters.http	

 	
 	
 conda.gateways.connection.adapters.localfs	

 	
 	
 conda.gateways.connection.adapters.s3	

 	
 	
 conda.gateways.connection.download	

 	
 	
 conda.gateways.connection.session	

 	
 	
 conda.gateways.disk	

 	
 	
 conda.gateways.disk.create	

 	
 	
 conda.gateways.disk.delete	

 	
 	
 conda.gateways.disk.link	

 	
 	
 conda.gateways.disk.lock	

 	
 	
 conda.gateways.disk.permissions	

 	
 	
 conda.gateways.disk.read	

 	
 	
 conda.gateways.disk.test	

 	
 	
 conda.gateways.disk.update	

 	
 	
 conda.gateways.logging	

 	
 	
 conda.gateways.repodata	

 	
 	
 conda.gateways.repodata.jlap	

 	
 	
 conda.gateways.repodata.jlap.core	

 	
 	
 conda.gateways.repodata.jlap.fetch	

 	
 	
 conda.gateways.repodata.jlap.interface	

 	
 	
 conda.gateways.repodata.lock	

 	
 	
 conda.gateways.subprocess	

 	
 	
 conda.history	

 	
 	
 conda.instructions	

 	
 	
 conda.misc	

 	
 	
 conda.models	

 	
 	
 conda.models.channel	

 	
 	
 conda.models.dist	

 	
 	
 conda.models.enums	

 	
 	
 conda.models.leased_path_entry	

 	
 	
 conda.models.match_spec	

 	
 	
 conda.models.package_info	

 	
 	
 conda.models.prefix_graph	

 	
 	
 conda.models.records	

 	
 	
 conda.models.version	

 	
 	
 conda.notices	

 	
 	
 conda.notices.cache	

 	
 	
 conda.notices.core	

 	
 	
 conda.notices.fetch	

 	
 	
 conda.notices.types	

 	
 	
 conda.notices.views	

 	
 	
 conda.plan	

 	
 	
 conda.plugins	

 	
 	
 conda.plugins.hookspec	

 	
 	
 conda.plugins.manager	

 	
 	
 conda.plugins.post_solves	

 	
 	
 conda.plugins.post_solves.signature_verification	

 	
 	
 conda.plugins.solvers	

 	
 	
 conda.plugins.subcommands	

 	
 	
 conda.plugins.subcommands.doctor	

 	
 	
 conda.plugins.subcommands.doctor.health_checks	

 	
 	
 conda.plugins.types	

 	
 	
 conda.plugins.virtual_packages	

 	
 	
 conda.plugins.virtual_packages.archspec	

 	
 	
 conda.plugins.virtual_packages.conda	

 	
 	
 conda.plugins.virtual_packages.cuda	

 	
 	
 conda.plugins.virtual_packages.freebsd	

 	
 	
 conda.plugins.virtual_packages.linux	

 	
 	
 conda.plugins.virtual_packages.osx	

 	
 	
 conda.plugins.virtual_packages.windows	

 	
 	
 conda.resolve	

 	
 	
 conda.testing	

 	
 	
 conda.testing.cases	

 	
 	
 conda.testing.fixtures	

 	
 	
 conda.testing.gateways	

 	
 	
 conda.testing.gateways.fixtures	

 	
 	
 conda.testing.helpers	

 	
 	
 conda.testing.integration	

 	
 	
 conda.testing.notices	

 	
 	
 conda.testing.notices.fixtures	

 	
 	
 conda.testing.notices.helpers	

 	
 	
 conda.testing.solver_helpers	

 	
 	
 conda.trust	

 	
 	
 conda.trust.constants	

 	
 	
 conda.trust.signature_verification	

 	
 	
 conda.utils	

 	[image: -]
 	
 conda_env	

 	
 	
 conda_env.cli	

 	
 	
 conda_env.cli.common	

 	
 	
 conda_env.cli.main	

 	
 	
 conda_env.cli.main_config	

 	
 	
 conda_env.cli.main_create	

 	
 	
 conda_env.cli.main_export	

 	
 	
 conda_env.cli.main_list	

 	
 	
 conda_env.cli.main_remove	

 	
 	
 conda_env.cli.main_update	

 	
 	
 conda_env.cli.main_vars	

 	
 	
 conda_env.env	

 	
 	
 conda_env.installers	

 	
 	
 conda_env.installers.base	

 	
 	
 conda_env.installers.conda	

 	
 	
 conda_env.installers.pip	

 	
 	
 conda_env.pip_util	

 	
 	
 conda_env.specs	

 	
 	
 conda_env.specs.binstar	

 	
 	
 conda_env.specs.requirements	

 	
 	
 conda_env.specs.yaml_file	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	__author__ (in module conda)

 	(in module conda.auxlib)

 	__bool__() (Channel method), [1]

 	__call__() (_GreedySubParsersAction method)

 	(_SignatureVerification method)

 	(BooleanOptionalAction method)

 	(ChannelPriorityMeta method)

 	(ChannelType method)

 	(CondaCLIFixture method)

 	(CondaHttpAuth method)

 	(CondaSessionType method)

 	(ContextDecorator method)

 	(DeprecationHandler method)

 	(DistType method)

 	(ExceptionHandler method)

 	(ExtendConstAction method)

 	(MatchSpecType method)

 	(NullCountAction method)

 	(PackageCacheType method)

 	(PathFactoryFixture method)

 	(PrefixDataType method)

 	(SingleStrArgCachingType method)

 	(SubdirDataType method)

 	(time_recorder method)

 	(TmpChannelFixture method)

 	(TmpEnvFixture method)

 	__contains__() (Completer method)

 	(Dist method)

 	(frozendict method)

 	(MatchSpec method)

 	(RepodataState method)

 	(UrlsData method)

 	__copyright__ (in module conda)

 	(in module conda.auxlib)

 	__del__() (TemporaryDirectory method)

 	__delattr__() (ImmutableEntity method)

 	__delete__() (Field method)

 	__dump_fields() (Entity class method)

 	__email__ (in module conda)

 	(in module conda.auxlib)

 	__enter__() (History method)

 	(Spinner method)

 	(SwallowBrokenPipe method)

 	(TemporaryDirectory method)

 	(time_recorder method)

 	(TmpDownload method)

 	__eq__() (_StrMatchMixin method)

 	(BaseSpec method)

 	(Channel method), [1]

 	(Dist method)

 	(Entity method)

 	(FeatureMatch method)

 	(LoadedParameter method)

 	(MatchSpec method)

 	(PackageRecord method), [1]

 	(PrimitiveLoadedParameter method)

 	(ProgressiveFetchExtract method)

 	(SplitStrMatch method)

 	(VersionOrder method)

 	__exit__() (History method)

 	(Spinner method)

 	(SwallowBrokenPipe method)

 	(TemporaryDirectory method)

 	(time_recorder method)

 	(TmpDownload method)

 	__fields__ (Entity attribute)

 	__ge__() (Dist method)

 	(VersionOrder method)

 	__get__() (ChannelField method)

 	(classproperty method)

 	(Field method)

 	(FilenameField method)

 	(Md5Field method)

 	(PackageTypeField method)

 	(ParameterLoader method)

 	(SubdirField method)

 	(TimestampField method)

 	__getattr__() (ProgressFileWrapper method)

 	(StdStreamHandler method)

 	__getitem__() (frozendict method)

 	(PackageRecordList method)

 	(RepodataState method)

 	__gt__() (Dist method)

 	(VersionOrder method)

 	__hash__() (_StrMatchMixin method)

 	(BaseSpec method)

 	(Channel method), [1]

 	(Dist method)

 	(Entity method)

 	(FeatureMatch method)

 	(frozendict method)

 	(LoadedParameter method)

 	(MatchSpec method)

 	(PackageRecord method), [1]

 	(PrimitiveLoadedParameter method)

 	(ProgressiveFetchExtract method)

 	(Resolve method)

 	(SplitStrMatch method)

 	__important_split_value (EnvRawParameter property)

 	__int__() (LinkType method)

 	__iter__() (Completer method)

 	(frozendict method)

 	(UrlsData method)

 	__json__() (Arch method)

 	(Channel method), [1]

 	(frozendict method)

 	(LeasedPathType method)

 	(LinkType method)

 	(MatchSpec method)

 	(PathType method)

 	(Platform method)

 	__key__() (Dist method)

 	__le__() (Dist method)

 	(VersionOrder method)

 	__len__() (frozendict method)

 	__license__ (in module conda)

 	(in module conda.auxlib)

 	__lt__() (Dist method)

 	(VersionOrder method)

 	__name__ (ChannelPriority attribute)

 	(in module conda)

 	__ne__() (BaseSpec method)

 	(Dist method)

 	(VersionOrder method)

 	__nonzero__() (Channel method), [1]

 	__register__() (Entity class method)

 	__repr__() (_Action method)

 	(_StrMatchMixin method)

 	(BaseSpec method)

 	(BuildNumberMatch method)

 	(Channel method), [1]

 	(ChannelMatch method)

 	(ClobberError method)

 	(CondaError method), [1]

 	(CondaMultiError method)

 	(Entity method)

 	(FeatureMatch method)

 	(frozendict method)

 	(LinuxDistribution method)

 	(MatchSpec method)

 	(PackageCacheData method), [1], [2]

 	(RawParameter method)

 	(SplitStrMatch method)

 	(TemporaryDirectory method)

 	(VersionOrder method)

 	__set__() (classproperty method)

 	(Field method)

 	__setattr__() (ImmutableEntity method)

 	(ProgressFileWrapper method)

 	__setitem__() (RepodataState method)

 	__slots__ (ExactStrMatch attribute)

 	(FeatureMatch attribute)

 	(GlobStrMatch attribute)

 	(SplitStrMatch attribute)

 	__str__() (_StrMatchMixin method)

 	(BaseSpec method)

 	(BuildNumberMatch method)

 	(CacheUrlAction method)

 	(Channel method), [1]

 	(ChannelMatch method)

 	(CondaError method), [1]

 	(CondaMultiError method)

 	(DepsModifier method)

 	(Dist method)

 	(ExtractPackageAction method)

 	(FeatureMatch method)

 	(FileMode method)

 	(LeasedPathType method)

 	(LinkType method)

 	(MatchSpec method)

 	(PackageRecord method), [1]

 	(ParameterFlag method)

 	(PathConflict method)

 	(PathType method)

 	(SafetyChecks method)

 	(SplitStrMatch method)

 	(UpdateModifier method)

 	(Url method)

 	(ValueEnum method)

 	(VersionOrder method)

 	__summary__ (in module conda)

 	(in module conda.auxlib)

 	__url__ (in module conda)

 	(in module conda.auxlib)

 	__version__ (in module conda)

 	(in module conda._vendor.appdirs)

 	(in module conda._version)

 	(in module conda.auxlib)

 	__version_info__ (in module conda._vendor.appdirs)

 	__version_tuple__ (in module conda._version)

 	_Action (class in conda.core.path_actions)

 	_Activator (class in conda.activate)

 	_add_http_value_to_dict() (in module conda.gateways.repodata)

 	_add_info_dir() (in module conda.cli.main_package)

 	_add_prefix_to_path() (_Activator method)

 	_add_specs() (Solver method)

 	_aggressive_update_packages (Context attribute)

 	_alias_canonical_channel_name_cache_to_file_prefixed() (in module conda.testing.helpers)

 	_aliased (RepodataState attribute)

 	_apply_basic_auth() (CondaHttpAuth static method)

 	_arch_names (in module conda.base.context)

 	_ask_upload() (ExceptionHandler method)

 	_asm_func() (CPUID method), [1]

 	_assign() (Clauses method)

 	_b64_to_obj() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_bashrc_content() (in module conda.core.initialize)

 	_broader() (Resolve method)

 	_build_activate_stack() (_Activator method)

 	_build_activator_cls() (in module conda.activate)

 	_build_components() (MatchSpec method)

 	cache (BuildNumberMatch attribute)

 	(Channel attribute), [1]

 	(Dist attribute)

 	(PackageCacheData attribute), [1], [2]

 	(PrefixData attribute)

 	(SubdirData attribute)

 	(VersionOrder attribute)

 	(VersionSpec attribute)

 	_calculate_change_report() (UnlinkLinkTransaction static method)

 	_calculate_md5sum() (PackageCacheRecord method)

 	_canonicalize_regex (in module conda_env.pip_util)

 	_change_report_str() (UnlinkLinkTransaction method)

 	_channel_alias (Context attribute)

 	_channel_packages (SimpleEnvironment property)

 	_channels (Context attribute)

 	_check_arch() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_check_files() (PythonDistribution method)

 	_check_literal() (Clauses method)

 	_check_path_data() (PythonDistribution method)

 	_check_value() (ArgumentParser method)

 	_check_variable() (Clauses method)

 	_check_writable() (PackageCacheData method), [1], [2]

 	_classify_bad_deps() (Resolve method)

 	_ClauseArray (class in conda.common._logic)

 	_ClauseList (class in conda.common._logic)

 	_clean_environments_txt() (in module conda.core.envs_manager)

 	_clean_tarball_path_and_get_md5sum() (PackageCacheData static method), [1], [2]

 	_closed (TemporaryDirectory attribute)

 	_collect_all_metadata() (Solver method)

 	_collect_validation_error() (Configuration static method)

 	_conda_build (Context attribute)

 	_config_fish_content() (in module conda.core.initialize)

 	_config_xonsh_content() (in module conda.core.initialize)

 	_convert() (Clauses method)

 	(FeatureMatch method)

 	(SplitStrMatch method)

 	_copy_new_fields() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_croot (Context attribute)

 	_cuda_driver_version_detector_target() (in module conda.plugins.virtual_packages.cuda)

 	_custom_channels (Context attribute)

 	_custom_multichannels (Context attribute)

 	_debug (Context attribute)

 	_dedupe_pkgs_dir_contents() (PackageCacheData static method), [1], [2]

 	_default_channels (Context attribute)

 	_default_env() (_Activator method)

 	_default_threads (Context attribute)

 	_description (in module conda_env.cli.main_remove)

 	_distro (in module conda._vendor.distro)

 	_DISTRO_RELEASE_BASENAME_PATTERN (in module conda._vendor.distro)

 	_DISTRO_RELEASE_CONTENT_REVERSED_PATTERN (in module conda._vendor.distro)

 	_DISTRO_RELEASE_IGNORE_BASENAMES (in module conda._vendor.distro)

 	_do_copy() (in module conda.gateways.disk.create)

 	_do_softlink() (in module conda.gateways.disk.create)

 	_DUMPS (in module conda.auxlib.logz)

 	_element_type (LoadedParameter attribute)

 	(Parameter attribute)

 	_ensure_dir() (time_recorder method)

 	_ensure_value() (NullCountAction static method)

 	_environment (YamlFileSpec attribute), [1]

 	_envs_dirs (Context attribute)

 	_eq() (VersionOrder method)

 	_eval() (Clauses method)

 	_example (in module conda_env.cli.main_remove)

 	_exec() (in module conda.cli.conda_argparse)

 	_exec_unix() (in module conda.cli.conda_argparse)

 	_exec_win() (in module conda.cli.conda_argparse)

 	_execute() (in module conda.cli.main_clean)

 	(UnlinkLinkTransaction method)

 	_execute_actions() (UnlinkLinkTransaction static method)

 	_execute_channel() (CacheUrlAction method)

 	_execute_local() (CacheUrlAction method)

 	_execute_post_link_actions() (UnlinkLinkTransaction static method)

 	_execute_threads (Context attribute)

 	_execute_upload() (ExceptionHandler method)

 	_expand_channels() (in module conda.env.env)

 	_expand_search_path() (Configuration static method)

 	_export_subdir_data_to_repodata() (in module conda.testing.helpers)

 	_FeaturesField (class in conda.models.records)

 	_fetch_channel_signing_data() (_SignatureVerification method)

 	_fetch_threads (Context attribute)

 	_filter_dict_keys_with_empty_values() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_finalize() (_Activator method)

 	(JSONFormatMixin method)

 	_find_inconsistent_packages() (Solver method)

 	_first_important_matches() (LoadedParameter static method)

 	_first_writable_envs_dir() (in module conda.base.context)

 	_format_chain_str() (UnsatisfiableError method)

 	_format_exc() (in module conda.exceptions)

 	_format_output() (in module conda.gateways.subprocess)

 	_FORMATTER (in module conda.common.io)

 	_friendly_bytes_to_int() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_generate_message() (DeprecationHandler method)

 	_get_activate_scripts() (_Activator method)

 	_get_attr() (in module conda.auxlib.ish)

 	_get_base_url() (SubdirData method)

 	_get_best_prec_match() (in module conda.plan)

 	_get_binstar_token_directory() (in module conda.gateways.anaconda_client)

 	_get_channel_for_name() (in module conda.models.channel)

 	_get_cpu_info() (in module conda.base.context)

 	_get_cpu_info_from_cat_var_run_dmesg_boot() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_cpufreq_info() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_cpuid() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_cpuid_actual() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_cpuid_subprocess_wrapper() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	
 	_get_cpu_info_from_dmesg() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_ibm_pa_features() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_kstat() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_lscpu() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_platform_uname() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_proc_cpuinfo() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_registry() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_sysctl() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_sysinfo() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_sysinfo_v1() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_sysinfo_v2() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_from_wmic() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_cpu_info_internal() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_deactivate_scripts() (_Activator method)

 	_get_distro_release_info() (LinuxDistribution method)

 	_get_environment_env_vars() (_Activator method)

 	_get_environment_state_file() (PrefixData method)

 	_get_field() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_field_actual() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_get_index_r_base() (in module conda.testing.helpers)

 	_get_json_fn() (PrefixData method)

 	_get_lsb_release_info() (LinuxDistribution method)

 	_get_module() (DeprecationHandler method)

 	_get_multiple_data() (PythonDistributionMetadata method)

 	_get_os_release_info() (LinuxDistribution method)

 	_get_package_pool() (Resolve method)

 	_get_path_dirs() (_Activator method)

 	_get_pfe() (UnlinkLinkTransaction method)

 	_get_pkgs_dirs() (in module conda.cli.main_clean)

 	_get_python_info() (in module conda.core.initialize)

 	_get_python_version() (UnlinkLinkTransaction static method)

 	_get_sat_solver_cls() (in module conda.resolve)

 	_get_size() (in module conda.cli.main_clean)

 	_get_solver_base() (in module conda.testing.helpers)

 	_get_starting_path_list() (_Activator method)

 	_get_strict_channel() (Resolve method)

 	_get_subactions() (_GreedySubParsersAction method)

 	_get_temp_prefix() (in module conda.testing.integration)

 	_get_total_size() (in module conda.cli.main_clean)

 	_get_version_tuple() (DeprecationHandler static method)

 	_get_win_folder (in module conda._vendor.appdirs)

 	_get_win_folder_from_registry() (in module conda._vendor.appdirs)

 	_get_win_folder_with_ctypes() (in module conda._vendor.appdirs)

 	_get_win_folder_with_pywin32() (in module conda._vendor.appdirs)

 	_get_yaml_key_comment() (YamlRawParameter static method)

 	_get_yaml_list_comment_item() (YamlRawParameter static method)

 	_get_yaml_list_comments() (YamlRawParameter class method)

 	_get_yaml_map_comments() (YamlRawParameter static method)

 	_GreedySubParsersAction (class in conda.cli.conda_argparse)

 	_handle_menuinst() (in module conda.plan)

 	_has_python() (PrefixData method)

 	_hash_key() (MatchSpec method)

 	_help (in module conda_env.cli.main_remove)

 	_hook_postamble() (_Activator method)

 	(PowerShellActivator method)

 	_hook_preamble() (_Activator method)

 	(CmdExeActivator method)

 	(CshActivator method)

 	(FishActivator method)

 	(JSONFormatMixin method)

 	(PosixActivator method)

 	(PowerShellActivator method)

 	(XonshActivator method)

 	_hookspec (in module conda.plugins.hookspec)

 	_hz_friendly_to_full() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_hz_short_to_friendly() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_hz_short_to_full() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_implementors (in module conda.models.match_spec)

 	_init_solution_precs() (SolverStateContainer method)

 	_initd (Entity property)

 	_initialize_dev_bash() (in module conda.core.initialize)

 	_initialize_dev_cmdexe() (in module conda.core.initialize)

 	_inject_UNLINKLINKTRANSACTION() (in module conda.plan)

 	_install_file() (in module conda.core.initialize)

 	_is_bit_set() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_is_http_error_most_400_codes() (in module conda.gateways.repodata.jlap.fetch)

 	_is_literal() (in module conda.common.pkg_formats.python)

 	_is_selinux_enforcing() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_is_simple() (MatchSpec method)

 	_is_single() (MatchSpec method)

 	_is_unix_executable_using_ORIGIN() (in module conda.gateways.disk.create)

 	_isatty (ExceptionHandler property)

 	_iter_records_by_name() (SubdirData method)

 	_lazy_validate (Dist attribute)

 	(Entity attribute)

 	_load() (SubdirData method)

 	_load_requires_provides_file() (PythonDistribution method)

 	_load_search_path() (Configuration class method)

 	_load_single_record() (PrefixData method)

 	_load_site_packages() (PrefixData method)

 	_lock_impl() (in module conda.gateways.disk.lock)

 	_lock_noop() (in module conda.gateways.disk.lock)

 	_logger_lock() (in module conda.common.io)

 	_make_channel_priorities() (Resolve static method)

 	_make_compile_actions() (UnlinkLinkTransaction static method)

 	_make_component() (MatchSpec static method)

 	_make_entry_point_actions() (UnlinkLinkTransaction static method)

 	_make_legacy_action_groups() (UnlinkLinkTransaction method)

 	_make_link_actions() (UnlinkLinkTransaction static method)

 	_make_milliseconds() (TimestampField static method)

 	_make_seconds() (TimestampField static method)

 	_make_single_record() (PackageCacheData method), [1], [2]

 	_make_virtual_package() (in module conda.core.index)

 	_match_individual() (MatchSpec method)

 	_match_key_is_important() (LoadedParameter static method)

 	_MATCHER_CACHE (MatchSpec attribute)

 	_md5_not_for_security() (in module conda.gateways.repodata)

 	_MENU_RE (in module conda.core.path_actions)

 	_merge() (MatchSpec method)

 	_message_to_dict() (PythonDistributionMetadata class method)

 	_migrated_channel_aliases (Context attribute)

 	_native_subdir() (Context method)

 	_new_makepasv() (in module conda.gateways.connection.adapters.ftp)

 	_notify_conda_outdated() (Solver method)

 	_obj_to_b64() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_old_makepasv (in module conda.gateways.connection.adapters.ftp)

 	_order_helper (Field attribute)

 	_OS_RELEASE_BASENAME (in module conda._vendor.distro)

 	_override() (Context method)

 	_package_cache_records (PackageCacheData property), [1], [2]

 	_package_data() (SimpleEnvironment method)

 	_package_has_updates() (Solver method)

 	_PaddingError

 	_parse_and_set_args() (_Activator method)

 	_parse_arch() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_PARSE_CACHE (in module conda.models.match_spec)

 	_parse_channel() (in module conda.models.match_spec)

 	_parse_comment_line() (History class method)

 	_parse_cpu_brand_string() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_parse_cpu_brand_string_dx() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_parse_distro_release_content() (LinuxDistribution static method)

 	_parse_distro_release_file() (LinuxDistribution method)

 	_parse_dmesg_output() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_parse_entries_file_data() (PythonDistribution static method)

 	_parse_iso_timestamp() (ChannelNoticeResponse static method)

 	_parse_legacy_dist() (in module conda.models.match_spec)

 	_parse_lsb_release_content() (LinuxDistribution static method)

 	_parse_notice_level() (ChannelNoticeResponse static method)

 	_parse_old_format_specs_string() (History static method)

 	_parse_os_release_content() (LinuxDistribution static method)

 	_parse_requires_file_data() (PythonDistribution static method)

 	_parse_spec_str() (in module conda.models.match_spec)

 	_parse_version_plus_build() (in module conda.models.match_spec)

 	_patch_for_local_exports() (in module conda.testing.helpers)

 	_path (LeasedPathEntry attribute)

 	(PathData attribute)

 	_pickle_me() (SubdirData method)

 	_pickle_valid_checks() (SubdirData method)

 	_pip_install_via_requirements() (in module conda.env.installers.pip)

 	_pkey (PackageRecord property), [1]

 	_pkgs_dirs (Context attribute)

 	_plan_from_actions() (in module conda.plan)

 	_platform_map (in module conda.base.context)

 	_post_sat_handling() (Solver method)

 	_post_upload() (ExceptionHandler method)

 	_powershell_profile_content() (in module conda.core.initialize)

 	_prefix_records (PrefixData property)

 	_prepare() (Solver method)

 	(UnlinkLinkTransaction class method)

 	_print_conda_exception() (ExceptionHandler method)

 	_process_path() (PythonDistributionMetadata static method)

 	_process_raw_repodata() (SubdirData method)

 	_process_raw_repodata_str() (SubdirData method)

 	_program_paths() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_progress_bar() (ProgressiveFetchExtract static method)

 	_prompt_modifier() (_Activator method)

 	_PycoSatSolver (class in conda.common._logic)

 	_PyCryptoSatSolver (class in conda.common._logic)

 	_PySatSolver (class in conda.common._logic)

 	_python_pkg_record (PrefixData property)

 	_raw_parameters_from_single_source() (ParameterLoader method)

 	_RE_CUSTOM_EXPANDVARS (in module conda.common.configuration)

 	_RE_UNSAFE (in module conda.utils)

 	_read_channel_configuration() (in module conda.models.channel)

 	_read_local_repodata() (SubdirData method)

 	_read_metadata() (PythonDistributionMetadata class method)

 	_read_pickled() (SubdirData method)

 	_read_windows_registry() (in module conda.core.initialize)

 	_read_windows_registry_key() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_remove_node() (PrefixGraph method)

 	_remove_prefix_from_path() (_Activator method)

 	_remove_specs() (Solver method)

 	_replace_prefix_in_path() (_Activator method)

 	_repo (RepodataFetch property)

 	(SubdirData property)

 	_repodata_fn (CondaRepoInterface attribute)

 	_repodata_state_copy() (JlapRepoInterface method)

 	(ZstdRepoInterface method)

 	_repodata_threads (Context attribute)

 	_reset_cache() (Configuration method)

 	_reset_state() (Channel static method), [1]

 	_reverse_actions() (UnlinkLinkTransaction static method)

 	_rewrite_environments_txt() (in module conda.core.envs_manager)

 	_rm_rf() (in module conda.cli.main_clean)

 	_root_prefix (Context attribute)

 	_run_and_get_stdout() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_run_asm() (CPUID method), [1]

 	_run_sat() (Clauses method)

 	(Solver method)

 	_safe_toposort() (in module conda.common.toposort)

 	_sat_solver_cls_to_str (in module conda.common._logic)

 	_sat_solver_str_to_cls (in module conda.common._logic)

 	_sat_solvers (in module conda.resolve)

 	_SatSolver (class in conda.common._logic)

 	_scan_for_dist_no_channel() (PackageCacheData method), [1], [2]

 	_send_boto3() (S3Adapter method)

 	_set_argparse_args() (Configuration method)

 	_set_entry_name() (time_recorder method)

 	_set_env_vars() (Configuration method)

 	_set_name() (ParameterLoader method)

 	_set_raw_data() (Configuration method)

 	_set_search_path() (Configuration method)

 	_should_freeze() (Solver method)

 	_SignatureVerification (class in conda.trust.signature_verification)

 	_signing_metadata_url_base (Context attribute)

 	_solve() (in module conda.env.installers.conda)

 	_solver_helper() (in module conda.testing.fixtures)

 	_split_platform_re() (in module conda.common.url)

 	_SSLContextAdapterMixin (class in conda.gateways.connection.adapters.http)

 	_start_spinning() (Spinner method)

 	_strings (RepodataState attribute)

 	_StrMatchMixin (class in conda.models.match_spec)

 	_subdir (Context attribute)

 	_subdir_is_win() (in module conda.core.portability)

 	_subdirs (Context attribute)

 	_subprocess_clean_env() (in module conda.gateways.subprocess)

 	_supplement_index_with_cache() (in module conda.core.index)

 	_supplement_index_with_features() (in module conda.core.index)

 	_supplement_index_with_prefix() (in module conda.core.index)

 	_supplement_index_with_system() (in module conda.core.index)

 	_symlink_conda_hlp() (in module conda.exports)

 	_sync_channel_to_disk() (in module conda.testing.helpers)

 	_to_decimal_string() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_to_filename_do_not_use() (MatchSpec method)

 	_to_friendly_bytes() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_topo_sort_handle_cycles() (PrefixGraph class method)

 	_toposort() (in module conda.common.toposort)

 	(PrefixGraph method)

 	_toposort_pop_key() (PrefixGraph static method)

 	_toposort_prepare_graph() (PrefixGraph static method)

 	_toposort_raise_on_cycles() (PrefixGraph class method)

 	_tqdm() (ProgressBar static method)

 	_trace (Context attribute)

 	_type (BooleanField attribute)

 	(DateField attribute)

 	(IntegerField attribute)

 	(ListField attribute)

 	(LoadedParameter attribute)

 	(MapField attribute)

 	(MapLoadedParameter attribute)

 	(MapParameter attribute)

 	(NumberField attribute)

 	(ObjectLoadedParameter attribute)

 	(ObjectParameter attribute)

 	(Parameter attribute)

 	(SequenceLoadedParameter attribute)

 	(SequenceParameter attribute)

 	(StringField attribute)

 	_typify_data_structure() (LoadedParameter static method)

 	_UNIXCONFDIR (in module conda._vendor.distro)

 	_update_old_plan() (in module conda.plan)

 	_update_prompt() (_Activator method)

 	(CshActivator method)

 	(PosixActivator method)

 	_upload() (ExceptionHandler method)

 	_url (CondaRepoInterface attribute)

 	_use_only_tar_bz2 (Context attribute)

 	_utf_to_str() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	_valid_file() (RequirementsSpec method), [1]

 	_valid_name() (RequirementsSpec method), [1]

 	_verbosity (Context attribute)

 	_VERBOSITY_LEVELS (in module conda.gateways.logging)

 	_verified (_Action attribute)

 	_verify() (UnlinkLinkTransaction method)

 	_verify_individual_level() (UnlinkLinkTransaction static method)

 	_verify_pre_link_message() (UnlinkLinkTransaction method)

 	_verify_prefix_level() (UnlinkLinkTransaction static method)

 	_verify_threads (Context attribute)

 	_verify_transaction_level() (UnlinkLinkTransaction static method)

 	_version (DeprecationHandler attribute)

 	_version_less_than() (DeprecationHandler method)

 	_version_object (DeprecationHandler attribute)

 	_VERSION_REGEX (in module conda.common.path)

 	_version_tuple (DeprecationHandler attribute)

 	_wait_and_close_handle() (in module conda.common._os.windows)

 	_write_environment_state_file() (PrefixData method)

 	_write_installed_packages() (SimpleEnvironment method)

 	_write_repo_packages() (SimpleEnvironment method)

 	_write_tempfile() (S3Adapter method)

 	_write_windows_registry() (in module conda.core.initialize)

 	_yaml_round_trip() (in module conda.common.serialize)

 	_yaml_safe() (in module conda.common.serialize)

 	_yield_commands() (_Activator method)

 	(JSONFormatMixin method)

A

 	
 	aarch64 (Arch attribute)

 	ACCESS_DENIED (ERROR attribute)

 	action (CondaHealthCheck attribute), [1], [2]

 	(CondaPostCommand attribute), [1], [2]

 	(CondaPostSolve attribute), [1]

 	(CondaPreCommand attribute), [1], [2]

 	(CondaPreSolve attribute), [1]

 	(CondaSubcommand attribute), [1], [2], [3]

 	action() (DeprecationHandler method)

 	ACTION_CODES (in module conda.instructions)

 	ActionGroup (class in conda.core.link)

 	actions (ActionGroup attribute)

 	activate() (_Activator method)

 	ActivateHelp

 	activator_map (in module conda.activate)

 	active_prefix (Context property)

 	add() (Dependencies method)

 	(JLAP method)

 	add_anaconda_token (Context attribute)

 	add_binstar_token() (CondaHttpAuth static method)

 	add_channels() (Environment method)

 	add_clause() (Clauses method)

 	add_clauses() (Clauses method)

 	add_defaults_to_specs() (in module conda.plan)

 	add_export_unset_vars() (_Activator method)

 	add_feature_records_legacy() (in module conda.testing.helpers)

 	add_output_and_prompt_options() (in module conda.cli.helpers)

 	add_parser_channels() (in module conda.cli.helpers)

 	add_parser_create_install_update() (in module conda.cli.helpers)

 	add_parser_default_packages() (in module conda.cli.helpers)

 	add_parser_help() (in module conda.cli.helpers)

 	(in module conda.plugins.subcommands.doctor)

 	add_parser_json() (in module conda.cli.helpers)

 	add_parser_known() (in module conda.cli.helpers)

 	add_parser_networking() (in module conda.cli.helpers)

 	add_parser_package_install_options() (in module conda.cli.helpers)

 	add_parser_platform() (in module conda.cli.helpers)

 	add_parser_prefix() (in module conda.cli.helpers)

 	(in module conda.plugins.subcommands.doctor)

 	add_parser_prune() (in module conda.cli.helpers)

 	add_parser_pscheck() (in module conda.cli.helpers)

 	add_parser_show_channel_urls() (in module conda.cli.helpers)

 	add_parser_solver() (in module conda.cli.helpers)

 	add_parser_solver_mode() (in module conda.cli.helpers)

 	add_parser_update_modifiers() (in module conda.cli.helpers)

 	add_parser_verbose() (in module conda.cli.helpers)

 	(in module conda.plugins.subcommands.doctor)

 	add_pip_as_python_dependency (Context attribute)

 	add_plugin_setting() (in module conda.base.context)

 	add_resp_to_mock() (in module conda.testing.notices.helpers)

 	add_subdir() (in module conda.testing.helpers)

 	add_subdir_to_iter() (in module conda.testing.helpers)

 	add_unlink() (in module conda.plan)

 	add_url() (UrlsData method)

 	add_username_and_password() (in module conda.common.url)

 	Administering a multi-user conda installation

 	AggregateCompileMultiPycAction (class in conda.core.path_actions)

 	aggressive_update_packages (Context property)

 	aliases (CondaSetting attribute), [1], [2]

 	All() (Clauses method), [1]

 	all_ancestors() (PrefixGraph method)

 	all_caches_writable_first() (PackageCacheData class method), [1], [2]

 	all_channel_urls() (in module conda.models.channel)

 	all_descendants() (PrefixGraph method)

 	all_match() (BaseSpec method)

 	all_subdir_urls() (PrefixData method)

 	allow_conda_downgrades (Context attribute)

 	allow_cycles (Context attribute)

 	allow_non_channel_urls (Context attribute)

 	allow_softlinks (Context attribute)

 	
 	allowlist_channels (Context attribute)

 	altered_files() (in module conda.plugins.subcommands.doctor.health_checks)

 	always_copy (Context attribute)

 	always_softlink (Context attribute)

 	always_true_match() (BaseSpec method)

 	always_yes (Context attribute)

 	Anaconda Distribution

 	anaconda_upload (Context attribute)

 	AND (in module conda.common.pkg_formats.python)

 	And() (Clauses method), [1]

 	Any() (Clauses method), [1]

 	any_match() (BaseSpec method)

 	any_subprocess() (in module conda.gateways.subprocess)

 	APP_NAME (in module conda.base.constants)

 	AppDirs (class in conda._vendor.appdirs)

 	AppDirsError

 	append() (_ClauseArray method)

 	application_entry_point (LeasedPathType attribute)

 	application_entry_point_template (in module conda.gateways.disk.create)

 	application_entry_point_windows_exe (LeasedPathType attribute)

 	application_softlink (LeasedPathType attribute)

 	apply() (ContextStack method)

 	(ContextStackObject method)

 	apply_patches() (in module conda.gateways.repodata.jlap.fetch)

 	appname (in module conda._vendor.appdirs)

 	Arch (class in conda.models.enums)

 	arch (PackageRecord attribute), [1]

 	arch_name (Context property)

 	(in module conda.exports)

 	arch_string_raw (DataSource attribute), [1]

 	arg2spec() (in module conda.cli.common)

 	ArgParseRawParameter (class in conda.common.configuration)

 	argument() (DeprecationHandler method)

 	ArgumentError

 	ArgumentParser (class in conda.cli.conda_argparse)

 	argv() (in module conda.common.io)

 	arm64 (Arch attribute)

 	armv6l (Arch attribute)

 	armv7l (Arch attribute)

 	as_array() (_ClauseArray method)

 	(_ClauseList method)

 	as_completed (in module conda.common.io)

 	as_dict() (Url method)

 	as_list() (_ClauseArray method)

 	(_ClauseList method)

 	(_SatSolver method)

 	(Clauses method), [1]

 	ASM (class in conda._vendor.cpuinfo)

 	(class in conda._vendor.cpuinfo.cpuinfo)

 	assert_equals() (in module conda.testing.helpers)

 	assert_in() (in module conda.testing.helpers)

 	assert_not_in() (in module conda.testing.helpers)

 	assert_unsatisfiable() (SolverTests method)

 	assign() (Clauses method)

 	AssignmentError

 	ASSOC_INCOMPLETE (ERROR attribute)

 	AtMostOne() (Clauses method)

 	AtMostOne_BDD() (Clauses method), [1]

 	AtMostOne_NSQ() (Clauses method), [1]

 	attach_stderr() (in module conda.auxlib.logz)

 	attach_stderr_handler() (in module conda.common.io)

 	AttrDict (class in conda.auxlib.collection)

 	auth (PrefixRecord attribute)

 	(Url property)

 	AuthenticationError, [1]

 	auto_activate_base (Context attribute)

 	auto_injector_fixture() (BaseTestCase method)

 	auto_stack (Context attribute)

 	auto_update_conda (Context attribute)

 	AuxlibError (class in conda.auxlib.exceptions)

 	av_data_dir (Context property)

B

 	
 	backend (CondaSolver attribute), [1], [2]

 	backoff_rename() (in module conda.gateways.disk.update)

 	backoff_rmdir() (in module conda.gateways.disk.delete)

 	backslash_to_forwardslash() (in module conda.activate)

 	BAD_FORMAT (ERROR attribute)

 	bad_installed() (Resolve method)

 	base_url (Channel property), [1]

 	(Dist attribute)

 	(MultiChannel property)

 	base_urls (Channel property), [1]

 	(MultiChannel property)

 	BaseSpec (class in conda.models.version)

 	BaseTestCase (class in conda.testing.cases)

 	basic_types() (PathType method)

 	BasicClobberError

 	BDD() (Clauses method)

 	BIN_DIRECTORY (in module conda.testing.integration)

 	binary (FileMode attribute)

 	binary_replace() (in module conda.core.portability)

 	BinaryPrefixReplacementError

 	binstar() (BinstarSpec method), [1]

 	binstar_upload (Context property)

 	(in module conda.exports)

 	BinstarSpec (class in conda.env.specs)

 	(class in conda.env.specs.binstar)

 	bits (Context property)

 	(DataSource attribute), [1]

 	(in module conda.exports)

 	bld_path (Context attribute)

 	body (JLAP property)

 	BooleanField (class in conda.auxlib.entity)

 	BooleanOptionalAction (class in conda.cli.helpers)

 	BoolField (in module conda.auxlib.entity)

 	boolify() (in module conda.auxlib.type_coercion)

 	bottom (ParameterFlag attribute)

 	box() (_FeaturesField method)

 	(BooleanField method)

 	(ComposableField method)

 	(DateField method)

 	(EnumField method)

 	(Field method)

 	(LinkTypeField method)

 	(ListField method)

 	(MapField method)

 	(NoarchField method), [1]

 	(StringField method)

 	(TimestampField method)

 	
 	breadth_first_search_by_name() (GeneralGraph method)

 	breadth_first_search_for_dep_graph() (Resolve method)

 	build (CondaVirtualPackage attribute), [1], [2]

 	(Dist property)

 	(PackageInfo property)

 	(PackageRecord attribute), [1]

 	build_activate() (_Activator method)

 	build_binary_response() (in module conda.gateways.connection.adapters.ftp)

 	build_conflict_map() (Resolve method)

 	build_deactivate() (_Activator method)

 	build_graph_of_deps() (Resolve method)

 	build_headers() (in module conda.gateways.repodata.jlap.fetch)

 	build_number (Dist attribute)

 	(DistDetails attribute)

 	(PackageInfo property)

 	(PackageRecord attribute), [1]

 	build_number() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	build_reactivate() (_Activator method)

 	build_response() (in module conda.gateways.connection.adapters.ftp)

 	build_stack() (_Activator method)

 	build_string (Dist attribute)

 	(DistDetails attribute)

 	build_text_response() (in module conda.gateways.connection.adapters.ftp)

 	BuildNumberMatch (class in conda.models.version)

 	BUILTIN_COMMANDS (in module conda.cli.conda_argparse)

C

 	
 	cache_actions (ProgressiveFetchExtract property)

 	cache_clear() (_SignatureVerification class method)

 	(CondaSession class method)

 	cache_control (RepodataState property)

 	CACHE_CONTROL_KEY (in module conda.gateways.repodata)

 	cache_fn_url() (in module conda.gateways.repodata)

 	cache_path_base (RepodataFetch attribute)

 	(SubdirData property)

 	cache_path_json (RepodataCache property)

 	(RepodataFetch property)

 	(SubdirData property)

 	cache_path_pickle (SubdirData property)

 	cache_path_state (RepodataCache property)

 	(RepodataFetch property)

 	(SubdirData property)

 	CACHE_STATE_SUFFIX (in module conda.gateways.repodata)

 	cached_cuda_version() (in module conda.plugins.virtual_packages.cuda)

 	cached_response() (in module conda.notices.cache)

 	CacheUrlAction (class in conda.core.path_actions)

 	calculate_channel_urls() (in module conda.core.index)

 	call_each() (in module conda.auxlib.collection)

 	CAN_CALL_CPUID_IN_SUBPROCESS (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	can_cpuid (DataSource attribute), [1]

 	can_handle() (BinstarSpec method), [1]

 	(RequirementsSpec method), [1]

 	(YamlFileSpec method), [1]

 	CancelOperation

 	canonical_name (Channel property), [1]

 	(MultiChannel property)

 	capsys (CondaCLIFixture attribute)

 	captured() (in module conda.common.io)

 	(in module conda.testing.helpers)

 	CaptureTarget (class in conda.common.io)

 	CaseInsensitiveStrMatch (class in conda.models.match_spec)

 	cat_proc_cpuinfo() (DataSource static method), [1]

 	cat_var_run_dmesg_boot() (DataSource static method), [1]

 	category_map (Context property)

 	changeps1 (Context attribute)

 	ChangeReport (class in conda.core.link)

 	Channel (class in conda.gateways.repodata)

 	(class in conda.models.channel)

 	channel (Dist attribute)

 	(PackageInfo attribute)

 	(PackageRecord attribute), [1]

 	(RepodataFetch attribute)

 	channel_alias() (Context method)

 	channel_alias_validation() (in module conda.base.context)

 	CHANNEL_DIR_V2 (in module conda.testing.helpers)

 	channel_location (Channel property), [1]

 	(MultiChannel property)

 	channel_name (Channel property), [1]

 	(ChannelNotice attribute)

 	channel_notices (ChannelNoticeResultSet attribute)

 	channel_priority (Context attribute)

 	channel_settings (Context attribute)

 	ChannelAuthBase (class in conda.plugins.types)

 	ChannelError

 	ChannelField (class in conda.models.records)

 	ChannelMatch (class in conda.models.match_spec)

 	ChannelName (in module conda.notices.core)

 	ChannelNameMixin (class in conda.plugins.types)

 	ChannelNotAllowed

 	ChannelNotice (class in conda.notices.types)

 	ChannelNoticeResponse (class in conda.notices.types)

 	ChannelNoticeResultSet (class in conda.notices.types)

 	ChannelPriority (class in conda.base.constants)

 	ChannelPriorityMeta (class in conda.base.constants)

 	Channels, [1]

 	channels (Context property)

 	ChannelType (class in conda.models.channel)

 	ChannelUrl (in module conda.notices.core)

 	Cheat sheet

 	check_allowlist() (in module conda.core.index)

 	CHECK_ALTERNATE_FORMAT_INTERVAL (in module conda.gateways.repodata)

 	check_envs_txt_file() (in module conda.plugins.subcommands.doctor.health_checks)

 	CHECK_EXTRACT (in module conda.instructions)

 	CHECK_FETCH (in module conda.instructions)

 	check_files_in_package() (in module conda.instructions)

 	check_non_admin() (in module conda.cli.common)

 	check_prefix() (in module conda.cli.install)

 	check_source() (Configuration method)

 	ChecksumMismatchError

 	CHUNK_SIZE (in module conda.gateways.connection.download)

 	CLASSIC_SOLVER (in module conda.base.constants)

 	classproperty (class in conda.auxlib.decorators)

 	Clauses (class in conda.common._logic)

 	(class in conda.common.logic)

 	CLEAN (Commands attribute), [1]

 	cleanup() (_Action method)

 	(CacheUrlAction method)

 	(CompileMultiPycAction method)

 	(CreateInPrefixPathAction method)

 	(ExtractPackageAction method)

 	(RegisterEnvironmentLocationAction method)

 	(RemoveMenuAction method)

 	(TemporaryDirectory method)

 	(UnlinkPathAction method)

 	(UnregisterEnvironmentLocationAction method)

 	(UpdateHistoryAction method)

 	clear() (PackageCacheData class method), [1], [2]

 	clear_cached_local_channel_data() (SubdirData class method)

 	clear_has_format() (RepodataState method)

 	clear_memoized_methods() (in module conda.auxlib.decorators)

 	clear_subdir_cache() (in module conda.testing.fixtures)

 	client_ssl_cert (Context attribute)

 	client_ssl_cert_key (Context attribute)

 	clobber (Context attribute)

 	(PathConflict attribute)

 	ClobberError

 	clone() (in module conda.cli.install)

 	clone_env() (in module conda.misc)

 	close() (EnforceUnusedAdapter method)

 	(FTPAdapter method)

 	(HashWriter method)

 	(LocalFSAdapter method)

 	(ProgressBar method)

 	(S3Adapter method)

 	CmdExeActivator (class in conda.activate)

 	codename() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	coerce() (NoarchType static method)

 	collect_all() (Configuration method)

 	collect_errors() (LoadedParameter method)

 	(MapLoadedParameter method)

 	(ObjectLoadedParameter method)

 	(SequenceLoadedParameter method)

 	com_pat (History attribute)

 	Combine() (Clauses method)

 	combined_depends (PackageRecord property), [1]

 	command_header() (Trace method), [1]

 	command_join (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(JSONFormatMixin attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	command_output() (Trace method), [1]

 	CommandNotFoundError

 	Commands

 	(class in conda.cli.python_api)

 	(class in conda.testing.integration)

 	commands (in module conda.instructions)

 	commands() (_Activator method)

 	COMPARE (Commands attribute)

 	COMPARE_OP (in module conda.common.pkg_formats.python)

 	compare_packages() (in module conda.cli.main_compare)

 	compatible_release_operator() (in module conda.models.version)

 	COMPATIBLE_SHELLS (in module conda.base.constants)

 	compile() (ASM method), [1]

 	compile_action_groups (PrefixActionGroup attribute)

 	compile_multiple_pyc() (in module conda.gateways.disk.create)

 	CompileMultiPycAction (class in conda.core.path_actions)

 	Completer (class in conda.exports)

 	ComposableField (class in conda.auxlib.entity)

 	compute_sum() (in module conda.gateways.disk.read)

 	
 conda

 	module

 	Conda for data scientists

 	
 conda.__main__

 	module

 	
 conda._vendor

 	module

 	
 conda._vendor.appdirs

 	module

 	
 conda._vendor.cpuinfo

 	module

 	
 conda._vendor.cpuinfo.cpuinfo

 	module

 	
 conda._vendor.distro

 	module

 	
 conda._vendor.frozendict

 	module

 	
 conda._version

 	module

 	
 conda.activate

 	module

 	
 conda.api

 	module

 	
 conda.auxlib

 	module

 	
 conda.auxlib.collection

 	module

 	
 conda.auxlib.compat

 	module

 	
 conda.auxlib.decorators

 	module

 	
 conda.auxlib.entity

 	module

 	
 conda.auxlib.exceptions

 	module

 	
 conda.auxlib.ish

 	module

 	
 conda.auxlib.logz

 	module

 	
 conda.auxlib.type_coercion

 	module

 	
 conda.base

 	module

 	
 conda.base.constants

 	module

 	
 conda.base.context

 	module

 	
 conda.base.exceptions

 	module

 	
 conda.cli

 	module

 	
 conda.cli.actions

 	module

 	
 conda.cli.common

 	module

 	
 conda.cli.conda_argparse

 	module

 	
 conda.cli.find_commands

 	module

 	
 conda.cli.helpers

 	module

 	
 conda.cli.install

 	module

 	
 conda.cli.main

 	module

 	
 conda.cli.main_clean

 	module

 	
 conda.cli.main_compare

 	module

 	
 conda.cli.main_config

 	module

 	
 conda.cli.main_create

 	module

 	
 conda.cli.main_env

 	module

 	
 conda.cli.main_env_config

 	module

 	
 conda.cli.main_env_create

 	module

 	
 conda.cli.main_env_export

 	module

 	
 conda.cli.main_env_list

 	module

 	
 conda.cli.main_env_remove

 	module

 	
 conda.cli.main_env_update

 	module

 	
 conda.cli.main_env_vars

 	module

 	
 conda.cli.main_export

 	module

 	
 conda.cli.main_info

 	module

 	
 conda.cli.main_init

 	module

 	
 conda.cli.main_install

 	module

 	
 conda.cli.main_list

 	module

 	
 conda.cli.main_mock_activate

 	module

 	
 conda.cli.main_mock_deactivate

 	module

 	
 conda.cli.main_notices

 	module

 	
 conda.cli.main_package

 	module

 	
 conda.cli.main_pip

 	module

 	
 conda.cli.main_remove

 	module

 	
 conda.cli.main_rename

 	module

 	
 conda.cli.main_run

 	module

 	
 conda.cli.main_search

 	module

 	
 conda.cli.main_update

 	module

 	
 conda.cli.python_api

 	module

 	
 conda.common

 	module

 	
 conda.common._logic

 	module

 	
 conda.common._os

 	module

 	
 conda.common._os.linux

 	module

 	
 conda.common._os.unix

 	module

 	
 conda.common._os.windows

 	module

 	
 conda.common.compat

 	module

 	
 conda.common.configuration

 	module

 	
 conda.common.constants

 	module

 	
 conda.common.decorators

 	module

 	
 conda.common.disk

 	module

 	
 conda.common.io

 	module

 	
 conda.common.iterators

 	module

 	
 conda.common.logic

 	module

 	
 conda.common.path

 	module

 	
 conda.common.pkg_formats

 	module

 	
 conda.common.pkg_formats.python

 	module

 	
 conda.common.serialize

 	module

 	
 conda.common.signals

 	module

 	
 conda.common.toposort

 	module

 	
 conda.common.url

 	module

 	
 conda.core

 	module

 	
 conda.core.envs_manager

 	module

 	
 conda.core.index

 	module

 	
 conda.core.initialize

 	module

 	
 conda.core.link

 	module

 	
 conda.core.package_cache

 	module

 	
 conda.core.package_cache_data

 	module

 	
 conda.core.path_actions

 	module

 	
 conda.core.portability

 	module

 	
 conda.core.prefix_data

 	module

 	
 conda.core.solve

 	module

 	
 conda.core.subdir_data

 	module

 	
 conda.deprecations

 	module

 	
 conda.env

 	module

 	
 conda.env.env

 	module

 	
 conda.env.installers

 	module

 	
 conda.env.installers.base

 	module

 	
 conda.env.installers.conda

 	module

 	
 conda.env.installers.pip

 	module

 	
 conda.env.pip_util

 	module

 	
 conda.env.specs

 	module

 	
 conda.env.specs.binstar

 	module

 	
 conda.env.specs.requirements

 	module

 	
 conda.env.specs.yaml_file

 	module

 	
 conda.exception_handler

 	module

 	
 conda.exceptions

 	module

 	
 conda.exports

 	module

 	
 conda.gateways

 	module

 	
 conda.gateways.anaconda_client

 	module

 	
 conda.gateways.connection

 	module

 	
 conda.gateways.connection.adapters

 	module

 	
 conda.gateways.connection.adapters.ftp

 	module

 	
 conda.gateways.connection.adapters.http

 	module

 	
 conda.gateways.connection.adapters.localfs

 	module

 	
 conda.gateways.connection.adapters.s3

 	module

 	
 conda.gateways.connection.download

 	module

 	
 conda.gateways.connection.session

 	module

 	
 conda.gateways.disk

 	module

 	
 conda.gateways.disk.create

 	module

 	
 conda.gateways.disk.delete

 	module

 	
 conda.gateways.disk.link

 	module

 	
 conda.gateways.disk.lock

 	module

 	
 	
 conda.gateways.disk.permissions

 	module

 	
 conda.gateways.disk.read

 	module

 	
 conda.gateways.disk.test

 	module

 	
 conda.gateways.disk.update

 	module

 	
 conda.gateways.logging

 	module

 	
 conda.gateways.repodata

 	module

 	
 conda.gateways.repodata.jlap

 	module

 	
 conda.gateways.repodata.jlap.core

 	module

 	
 conda.gateways.repodata.jlap.fetch

 	module

 	
 conda.gateways.repodata.jlap.interface

 	module

 	
 conda.gateways.repodata.lock

 	module

 	
 conda.gateways.subprocess

 	module

 	
 conda.history

 	module

 	
 conda.instructions

 	module

 	
 conda.misc

 	module

 	
 conda.models

 	module

 	
 conda.models.channel

 	module

 	
 conda.models.dist

 	module

 	
 conda.models.enums

 	module

 	
 conda.models.leased_path_entry

 	module

 	
 conda.models.match_spec

 	module

 	
 conda.models.package_info

 	module

 	
 conda.models.prefix_graph

 	module

 	
 conda.models.records

 	module

 	
 conda.models.version

 	module

 	
 conda.notices

 	module

 	
 conda.notices.cache

 	module

 	
 conda.notices.core

 	module

 	
 conda.notices.fetch

 	module

 	
 conda.notices.types

 	module

 	
 conda.notices.views

 	module

 	
 conda.plan

 	module

 	
 conda.plugins

 	module

 	
 conda.plugins.hookspec

 	module

 	
 conda.plugins.manager

 	module

 	
 conda.plugins.post_solves

 	module

 	
 conda.plugins.post_solves.signature_verification

 	module

 	
 conda.plugins.solvers

 	module

 	
 conda.plugins.subcommands

 	module

 	
 conda.plugins.subcommands.doctor

 	module

 	
 conda.plugins.subcommands.doctor.health_checks

 	module

 	
 conda.plugins.types

 	module

 	
 conda.plugins.virtual_packages

 	module

 	
 conda.plugins.virtual_packages.archspec

 	module

 	
 conda.plugins.virtual_packages.conda

 	module

 	
 conda.plugins.virtual_packages.cuda

 	module

 	
 conda.plugins.virtual_packages.freebsd

 	module

 	
 conda.plugins.virtual_packages.linux

 	module

 	
 conda.plugins.virtual_packages.osx

 	module

 	
 conda.plugins.virtual_packages.windows

 	module

 	
 conda.resolve

 	module

 	
 conda.testing

 	module

 	
 conda.testing.cases

 	module

 	
 conda.testing.fixtures

 	module

 	
 conda.testing.gateways

 	module

 	
 conda.testing.gateways.fixtures

 	module

 	
 conda.testing.helpers

 	module

 	
 conda.testing.integration

 	module

 	
 conda.testing.notices

 	module

 	
 conda.testing.notices.fixtures

 	module

 	
 conda.testing.notices.helpers

 	module

 	
 conda.testing.solver_helpers

 	module

 	
 conda.trust

 	module

 	
 conda.trust.constants

 	module

 	
 conda.trust.signature_verification

 	module

 	
 conda.utils

 	module

 	conda_auth_handlers() (CondaSpecs method)

 	(in module conda.plugins.hookspec.CondaSpecs)

 	conda_build (Context property)

 	(in module conda.exports)

 	conda_build_form() (MatchSpec method)

 	conda_build_local_paths (Context property)

 	conda_build_local_urls (Context property)

 	conda_cli (TmpChannelFixture attribute)

 	(TmpEnvFixture attribute)

 	conda_cli() (in module conda.testing)

 	conda_ensure_sys_python_is_base_env_python() (in module conda.testing)

 	
 conda_env

 	module

 	
 conda_env.cli

 	module

 	
 conda_env.cli.common

 	module

 	
 conda_env.cli.main

 	module

 	
 conda_env.cli.main_config

 	module

 	
 conda_env.cli.main_create

 	module

 	
 conda_env.cli.main_export

 	module

 	
 conda_env.cli.main_list

 	module

 	
 conda_env.cli.main_remove

 	module

 	
 conda_env.cli.main_update

 	module

 	
 conda_env.cli.main_vars

 	module

 	
 conda_env.env

 	module

 	
 conda_env.installers

 	module

 	
 conda_env.installers.base

 	module

 	
 conda_env.installers.conda

 	module

 	
 conda_env.installers.pip

 	module

 	
 conda_env.pip_util

 	module

 	
 conda_env.specs

 	module

 	
 conda_env.specs.binstar

 	module

 	
 conda_env.specs.requirements

 	module

 	
 conda_env.specs.yaml_file

 	module

 	CONDA_ENV_VARS_UNSET_VAR (in module conda.base.constants)

 	conda_exception_handler() (in module conda.exception_handler)

 	conda_exe (Context property)

 	conda_exe_vars_dict (Context property)

 	conda_health_checks() (CondaSpecs method)

 	(in module conda.plugins.hookspec.CondaSpecs)

 	(in module conda.plugins.subcommands.doctor.health_checks)

 	CONDA_HOMEPAGE_URL (in module conda.base.constants)

 	(in module conda.gateways.repodata)

 	conda_http_errors() (in module conda.gateways.repodata)

 	CONDA_INITIALIZE_PS_RE_BLOCK (in module conda.core.initialize)

 	CONDA_INITIALIZE_RE_BLOCK (in module conda.core.initialize)

 	conda_installed_files() (in module conda.misc)

 	CONDA_LOGS_DIR (in module conda.base.constants)

 	conda_move_to_front_of_PATH() (in module conda.testing)

 	conda_name (PythonDistribution property)

 	conda_notices_args_n_parser() (in module conda.testing.notices.fixtures)

 	CONDA_PACKAGE_EXTENSION_V1 (in module conda.base.constants)

 	CONDA_PACKAGE_EXTENSION_V2 (in module conda.base.constants)

 	CONDA_PACKAGE_EXTENSIONS (in module conda.base.constants)

 	CONDA_PACKAGE_PARTS (in module conda.base.constants)

 	CONDA_PACKAGE_ROOT (in module conda)

 	conda_package_types() (PackageType static method)

 	conda_post_commands() (CondaSpecs method)

 	(in module conda.plugins.hookspec.CondaSpecs)

 	conda_post_solves() (CondaSpecs method)

 	(in module conda.plugins.post_solves.signature_verification)

 	conda_pre_commands() (CondaSpecs method)

 	(in module conda.plugins.hookspec.CondaSpecs)

 	conda_pre_solves() (CondaSpecs method)

 	conda_prefix (Context property)

 	CONDA_SESSION_SCHEMES (in module conda.env.specs)

 	(in module conda.gateways.connection.session)

 	conda_settings() (CondaSpecs method)

 	(in module conda.plugins.hookspec.CondaSpecs)

 	conda_signal_handler() (in module conda)

 	conda_solvers() (CondaSpecs method)

 	(in module conda.plugins.hookspec.CondaSpecs)

 	(in module conda.plugins.solvers)

 	conda_subcommands() (CondaSpecs method)

 	(in module conda.plugins.hookspec.CondaSpecs)

 	(in module conda.plugins.subcommands.doctor)

 	CONDA_TARBALL_EXTENSION (in module conda.base.constants)

 	CONDA_TEMP_EXTENSION (in module conda.base.constants)

 	CONDA_TEMP_EXTENSIONS (in module conda.base.constants)

 	conda_tests_ctxt_mgmt_def_pol (in module conda.base.context)

 	conda_v_pat (History attribute)

 	conda_virtual_packages() (CondaSpecs method)

 	(in module conda.plugins.hookspec.CondaSpecs)

 	(in module conda.plugins.virtual_packages.archspec)

 	(in module conda.plugins.virtual_packages.conda)

 	(in module conda.plugins.virtual_packages.cuda)

 	(in module conda.plugins.virtual_packages.freebsd)

 	(in module conda.plugins.virtual_packages.linux)

 	(in module conda.plugins.virtual_packages.osx)

 	(in module conda.plugins.virtual_packages.windows)

 	CondaAuthHandler (class in conda.plugins)

 	(class in conda.plugins.types), [1]

 	CondaCLIFixture (class in conda.testing)

 	CondaDependencyError, [1]

 	CondaEnvException

 	CondaEnvironmentError

 	CondaError, [1]

 	CondaExitZero, [1]

 	CondaFileIOError

 	CondaFileNotFoundError (in module conda.exports)

 	CondaHealthCheck (class in conda.plugins)

 	(class in conda.plugins.types), [1]

 	CondaHistoryError

 	CondaHistoryWarning

 	CondaHttpAuth (class in conda.gateways.connection.session)

 	CondaHTTPError, [1]

 	CondaImportError

 	CondaIndexError

 	CondaIOError

 	CondaKeyError

 	CondaMemoryError

 	CondaMultiError

 	CondaOSError

 	(in module conda.exports)

 	CondaPluginManager (class in conda.plugins.manager)

 	CondaPostCommand (class in conda.plugins)

 	(class in conda.plugins.types), [1]

 	CondaPostSolve (class in conda.plugins)

 	(class in conda.plugins.types)

 	CondaPreCommand (class in conda.plugins)

 	(class in conda.plugins.types), [1]

 	CondaPreSolve (class in conda.plugins)

 	(class in conda.plugins.types)

 	CONDARC_FILENAMES (in module conda.common.configuration)

 	CondaRepoInterface (class in conda.gateways.repodata)

 	CondaSession (class in conda.gateways.connection.session)

 	CondaSessionType (class in conda.gateways.connection.session)

 	CondaSetting (class in conda.plugins)

 	(class in conda.plugins.types), [1]

 	CondaSignalInterrupt

 	CondaSolver (class in conda.plugins)

 	(class in conda.plugins.types), [1]

 	CondaSpecs (class in conda.plugins.hookspec)

 	CondaSSLError, [1]

 	CondaSubcommand (class in conda.plugins)

 	(class in conda.plugins.subcommands.doctor)

 	(class in conda.plugins.types), [1]

 	CondaSystemExit

 	CondaUpgradeError

 	CondaValueError

 	CondaVerificationError

 	CondaVirtualPackage (class in conda.plugins)

 	(class in conda.plugins.types), [1]

 	CONFIG (Commands attribute), [1]

 	config_description (in module conda_env.cli.main_config)

 	config_example (in module conda_env.cli.main_config)

 	config_files (Context property)

 	Configuration (class in conda.common.configuration)

 	ConfigurationError

 	ConfigurationLoadError

 	ConfigurationObject (class in conda.common.configuration)

 	ConfigurationType (class in conda.common.configuration)

 	configure_parser (CondaSubcommand attribute), [1], [2], [3]

 	configure_parser() (in module conda.cli.main_clean)

 	(in module conda.cli.main_compare)

 	(in module conda.cli.main_config)

 	(in module conda.cli.main_create)

 	(in module conda.cli.main_env)

 	(in module conda.cli.main_env_config)

 	(in module conda.cli.main_env_create)

 	(in module conda.cli.main_env_list)

 	(in module conda.cli.main_env_remove)

 	(in module conda.cli.main_env_update)

 	(in module conda.cli.main_env_vars)

 	(in module conda.cli.main_export)

 	(in module conda.cli.main_info)

 	(in module conda.cli.main_init)

 	(in module conda.cli.main_install)

 	(in module conda.cli.main_list)

 	(in module conda.cli.main_mock_activate)

 	(in module conda.cli.main_mock_deactivate)

 	(in module conda.cli.main_notices)

 	(in module conda.cli.main_package)

 	(in module conda.cli.main_remove)

 	(in module conda.cli.main_rename)

 	(in module conda.cli.main_run)

 	(in module conda.cli.main_search)

 	(in module conda.cli.main_update)

 	(in module conda.plugins.subcommands.doctor)

 	configure_parser_plugins() (in module conda.cli.conda_argparse)

 	Configuring conda

 	confirm() (in module conda.cli.common)

 	confirm_yn() (in module conda.cli.common)

 	constant() (DeprecationHandler method)

 	constrains (PackageRecord attribute), [1]

 	construct_states() (History method)

 	contains() (CondaMultiError method)

 	Context (class in conda.base.context)

 	context (in module conda.base.context)

 	(in module conda.gateways.repodata)

 	(in module conda.plugins.subcommands.doctor)

 	(in module conda.testing)

 	context_aware_monkeypatch() (in module conda.testing)

 	context_stack (in module conda.base.context)

 	ContextDecorator (class in conda.common.io)

 	ContextStack (class in conda.base.context)

 	ContextStackObject (class in conda.base.context)

 	convert_to_dist_str() (in module conda.testing.helpers)

 	copy (LinkType attribute)

 	copy() (frozendict method)

 	(in module conda.gateways.disk.create)

 	CorruptedEnvironmentError

 	CouldntParseError

 	cp_or_copy (in module conda.testing.integration)

 	cpu_count (DataSource attribute), [1]

 	cpu_flags (Context property)

 	cpufreq_info() (DataSource static method), [1]

 	CPUID (class in conda._vendor.cpuinfo)

 	(class in conda._vendor.cpuinfo.cpuinfo)

 	CPUINFO_VERSION (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	CPUINFO_VERSION_STRING (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	CREATE (Commands attribute), [1]

 	create_actions() (CompileMultiPycAction class method)

 	(CreateNonadminAction class method)

 	(CreatePrefixRecordAction class method)

 	(CreatePythonEntryPointAction class method)

 	(MakeMenuAction class method)

 	(RemoveMenuAction class method)

 	(UpdateHistoryAction class method)

 	create_application_entry_point() (in module conda.gateways.disk.create)

 	create_cache_dir() (in module conda.gateways.repodata)

 	create_conda_pkg() (in module conda.cli.main_package)

 	create_default_packages (Context attribute)

 	create_directory_actions() (LinkPathAction class method)

 	create_envs_directory() (in module conda.gateways.disk.create)

 	create_fake_executable_softlink() (in module conda.gateways.disk.create)

 	create_file_link_actions() (LinkPathAction class method)

 	create_hard_link_or_copy() (in module conda.gateways.disk.create)

 	create_info() (in module conda.cli.main_package)

 	create_link() (in module conda.gateways.disk.create)

 	create_notice_cache_files() (in module conda.testing.notices.helpers)

 	create_package_cache_directory() (in module conda.gateways.disk.create)

 	create_parser() (in module conda_env.cli.main)

 	create_python_entry_point() (in module conda.gateways.disk.create)

 	create_python_entry_point_windows_exe_action() (LinkPathAction class method)

 	create_temp_location() (in module conda.testing.integration)

 	created_at (ChannelNotice attribute)

 	CreateInPrefixPathAction (class in conda.core.path_actions)

 	CreateNonadminAction (class in conda.core.path_actions)

 	CreatePrefixRecordAction (class in conda.core.path_actions)

 	CreatePythonEntryPointAction (class in conda.core.path_actions)

 	Creating custom channels

 	Creating projects with conda

 	CRITICAL (NoticeLevel attribute)

 	croot (Context property)

 	CshActivator (class in conda.activate)

 	cuda_version() (in module conda.plugins.virtual_packages.cuda)

 	custom_channels() (Context method)

 	custom_expandvars() (in module conda.common.configuration)

 	custom_multichannels() (Context method)

 	CustomValidationError

 	CyclicalDependencyError

 	cygwin_path_to_win() (in module conda.utils)

D

 	
 	dals() (in module conda.auxlib.ish)

 	dashlist() (in module conda.common.io)

 	data_callback_factory() (in module conda.gateways.connection.adapters.ftp)

 	DataSource (class in conda._vendor.cpuinfo)

 	(class in conda._vendor.cpuinfo.cpuinfo)

 	date (PackageRecord attribute), [1]

 	DateField (class in conda.auxlib.entity)

 	DDE_BUSY (ERROR attribute)

 	DDE_FAIL (ERROR attribute)

 	DDE_TIMEOUT (ERROR attribute)

 	deactivate() (_Activator method)

 	DeactivateHelp

 	debug (Context property)

 	DEBUG_FORMATTER (in module conda.auxlib.logz)

 	default (Field property)

 	(Parameter property)

 	default() (DumpEncoder method)

 	(EntityEncoder method)

 	DEFAULT_AGGRESSIVE_UPDATE_PACKAGES (in module conda.base.constants)

 	DEFAULT_CHANNEL_ALIAS (in module conda.base.constants)

 	DEFAULT_CHANNELS (in module conda.base.constants)

 	default_channels() (Context method)

 	DEFAULT_CHANNELS_UNIX (in module conda.base.constants)

 	DEFAULT_CHANNELS_WIN (in module conda.base.constants)

 	DEFAULT_CUSTOM_CHANNELS (in module conda.base.constants)

 	default_filter() (Resolve method)

 	default_in_dump (Field property)

 	DEFAULT_IV (in module conda.gateways.repodata.jlap.core)

 	DEFAULT_MARKER_CONTEXT (in module conda.common.pkg_formats.python)

 	DEFAULT_NOTICE_MESG (in module conda.testing.notices.helpers)

 	default_prefix (Context property)

 	(in module conda.exports)

 	default_python (Context attribute)

 	(in module conda.exports)

 	default_python_default() (in module conda.base.context)

 	default_python_validation() (in module conda.base.context)

 	DEFAULT_SOLVER (in module conda.base.constants)

 	default_threads (Context property)

 	DEFAULTS_CHANNEL_NAME (in module conda.base.constants)

 	DefaultValueRawParameter (class in conda.common.configuration)

 	delete_prefix_from_linked_data() (in module conda.core.prefix_data)

 	delete_trash() (in module conda.gateways.disk.delete)

 	DeltaSecondsFormatter (class in conda.common.io)

 	Dependencies

 	(class in conda.env.env)

 	dependency_sort() (Resolve method)

 	depends (PackageRecord attribute), [1]

 	deprecated (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.frozendict)

 	(in module conda.deprecations)

 	(in module conda.plugins.subcommands.doctor)

 	(in module conda.testing)

 	DeprecatedError

 	DeprecationHandler (class in conda.deprecations)

 	deps_modifier (Context attribute)

 	DepsModifier (class in conda.base.constants)

 	(in module conda.api)

 	describe_all_parameters() (in module conda.cli.main_config)

 	describe_parameter() (Configuration method)

 	description (CondaSetting attribute), [1], [2]

 	(in module conda_env.cli.main_create)

 	(in module conda_env.cli.main_export)

 	(in module conda_env.cli.main_list)

 	(in module conda_env.cli.main_update)

 	description_map() (Context method)

 	detach_stderr() (in module conda.auxlib.logz)

 	detect() (in module conda.env.specs)

 	determine_constricting_specs() (Solver method)

 	determine_link_type() (in module conda.core.link)

 	determine_target_prefix() (in module conda.base.context)

 	dev (Context attribute)

 	dict_cls (frozendict attribute)

 	(FrozenOrderedDict attribute)

 	diff_for_unlink_link_precs() (in module conda.core.solve)

 	DIGEST_SIZE (in module conda.gateways.repodata.jlap.core)

 	(in module conda.gateways.repodata.jlap.fetch)

 	
 	directory (LinkType attribute)

 	(PathType attribute)

 	DirectoryNotACondaEnvironmentError

 	DirectoryNotFoundError

 	Disable SSL Verification

 	disable_channel_notices() (in module conda.testing.fixtures)

 	disable_external_plugins() (CondaPluginManager method)

 	disable_logger() (in module conda.common.io)

 	disable_ssl_verify_warning() (in module conda.gateways.connection.download)

 	DISABLED (ChannelPriority attribute)

 	disabled (SafetyChecks attribute)

 	disallowed_packages (Context attribute)

 	DisallowedPackageError

 	disp_features() (in module conda.cli.common)

 	display_actions() (in module conda.exports)

 	(in module conda.plan)

 	display_health_checks() (in module conda.plugins.subcommands.doctor.health_checks)

 	display_notices() (in module conda.notices.core)

 	display_report_heading() (in module conda.plugins.subcommands.doctor.health_checks)

 	Dist (class in conda.models.dist)

 	dist_fields_dump() (PackageRecord method), [1]

 	dist_name (Dist attribute)

 	(DistDetails attribute)

 	dist_str() (MatchSpec method)

 	(PackageInfo method)

 	(PackageRecord method), [1]

 	dist_str_in_index() (in module conda.core.index)

 	dist_str_to_quad() (in module conda.models.dist)

 	DistDetails (class in conda.models.dist)

 	distro_release_attr() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	distro_release_info() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	DistType (class in conda.models.dist)

 	DLL_NOT_FOUND (ERROR attribute)

 	dmesg_a() (DataSource static method), [1]

 	do_cache_action() (in module conda.core.package_cache_data)

 	do_call() (in module conda.cli.conda_argparse)

 	(in module conda_env.cli.main)

 	do_cleanup() (in module conda.core.package_cache_data)

 	do_extract_action() (in module conda.core.package_cache_data)

 	do_reverse() (in module conda.core.package_cache_data)

 	done_callback() (in module conda.core.package_cache_data)

 	downgraded_precs (ChangeReport attribute)

 	download() (in module conda.core.package_cache_data)

 	(in module conda.exports)

 	(in module conda.gateways.connection.download)

 	download_and_extract() (UnlinkLinkTransaction method)

 	download_and_hash() (in module conda.gateways.repodata.jlap.fetch)

 	download_http_errors() (in module conda.gateways.connection.download)

 	download_inner() (in module conda.gateways.connection.download)

 	download_only (Context attribute)

 	download_partial_file() (in module conda.gateways.connection.download)

 	download_text() (in module conda.gateways.connection.download)

 	dry_run (Context attribute)

 	dry_run() (in module conda.env.installers.conda)

 	DRY_RUN_PREFIX (in module conda.base.constants)

 	DryRunExit

 	DummyArgs (class in conda.testing.notices.helpers)

 	DummyExecutor (class in conda.common.io)

 	dump() (_FeaturesField method)

 	(Channel method), [1]

 	(ChannelField method)

 	(ComposableField method)

 	(DateField method)

 	(Entity method)

 	(EnumField method)

 	(Field method)

 	(ListField method)

 	(MultiChannel method)

 	(TimestampField method)

 	dump_map() (CondaError method), [1]

 	(CondaMultiError method)

 	dump_record() (in module conda.cli.main_info)

 	DumpEncoder (class in conda.auxlib.logz)

E

 	
 	emit() (StdStreamHandler method)

 	EMPTY_LINK (in module conda.models.records)

 	EMPTY_MAP (in module conda.common.configuration)

 	empty_prefix() (in module conda.testing.solver_helpers)

 	enable_private_envs (Context attribute)

 	enabled (_SignatureVerification property)

 	(SafetyChecks attribute)

 	encode_arguments() (in module conda.common.compat)

 	ENCODE_ENVIRONMENT (in module conda.common.compat)

 	encode_environment() (in module conda.common.compat)

 	encode_for_env_var() (in module conda.common.compat)

 	EncodingError

 	EnforceUnusedAdapter (class in conda.gateways.connection.session)

 	ensure_binary() (in module conda.activate)

 	(in module conda.common.compat)

 	ensure_dir_exists() (in module conda.utils)

 	ensure_fs_path_encoding() (in module conda.activate)

 	(in module conda.common.compat)

 	ensure_pad() (in module conda.common.path)

 	ensure_text_type() (in module conda.common.compat)

 	ensure_unicode() (in module conda.common.compat)

 	ensure_utf8_encoding() (in module conda.common.compat)

 	Entity (class in conda.auxlib.entity)

 	EntityEncoder (class in conda.testing)

 	ENTRY_POINT (in module conda_env.installers.base)

 	entry_point_action_groups (PrefixActionGroup attribute)

 	entry_points (Noarch attribute)

 	ENTRY_POINTS_FILES (PythonDistribution attribute)

 	(PythonEggInfoDistribution attribute)

 	(PythonInstalledDistribution attribute)

 	EnumField (class in conda.auxlib.entity)

 	env() (SolverTests method)

 	env_name() (in module conda.base.context)

 	env_or_set (in module conda.testing.integration)

 	env_override() (in module conda.common.decorators)

 	env_prompt (Context attribute)

 	env_txt_check() (in module conda.plugins.subcommands.doctor.health_checks)

 	env_unmodified() (in module conda.common.io)

 	env_var() (in module conda.common.io)

 	env_vars() (in module conda.common.io)

 	EnvAppDirs (class in conda.gateways.anaconda_client)

 	Environment (class in conda.env.env)

 	environment (RequirementsSpec property), [1]

 	(YamlFileSpec property), [1]

 	environment() (BinstarSpec method), [1]

 	environment_is_consistent() (Resolve method)

 	ENVIRONMENT_TYPE (in module conda.env.specs.binstar)

 	EnvironmentFileEmpty

 	EnvironmentFileExtensionNotValid, [1]

 	EnvironmentFileNotDownloaded

 	EnvironmentFileNotFound, [1]

 	EnvironmentLocationNotFound

 	EnvironmentNameNotFound

 	EnvironmentNotWritableError

 	Environments

 	EnvRawParameter (class in conda.common.configuration)

 	envs_dirs (Context property)

 	(in module conda.exports)

 	ERROR (class in conda.common._os.windows)

 	ERROR_SNIPPET_LENGTH (in module conda.gateways.repodata)

 	error_upload_url (Context attribute)

 	(ExceptionHandler property)

 	ERROR_UPLOAD_URL (in module conda.base.constants)

 	escape_for_winpath() (in module conda.testing.integration)

 	escaped_sys_rc_path (in module conda.cli.conda_argparse)

 	escaped_user_rc_path (in module conda.cli.conda_argparse)

 	etag (RepodataState property)

 	ETAG_KEY (in module conda.gateways.repodata)

 	Eval() (Clauses method)

 	evaluate() (Evaluator method)

 	Evaluator (class in conda.common.pkg_formats.python)

 	evaluator (in module conda.common.pkg_formats.python)

 	exact_match() (BaseSpec method)

 	exact_value (_StrMatchMixin property)

 	(BaseSpec property)

 	(BuildNumberMatch property)

 	(FeatureMatch property)

 	(GlobStrMatch property)

 	(MatchInterface property)

 	(SplitStrMatch property)

 	ExactLowerStrMatch (class in conda.models.match_spec)

 	ExactlyOne() (Clauses method)

 	ExactlyOne_BDD() (Clauses method), [1]

 	ExactlyOne_NSQ() (Clauses method), [1]

 	exactness_and_number_of_deps() (in module conda.resolve)

 	ExactStrMatch (class in conda.models.match_spec)

 	example (in module conda_env.cli.main_create)

 	(in module conda_env.cli.main_export)

 	(in module conda_env.cli.main_list)

 	(in module conda_env.cli.main_update)

 	
 	ExceptionHandler (class in conda.exception_handler)

 	executable_paths (PreferredEnv attribute)

 	execute() (_Action method)

 	(_Activator method)

 	(CacheUrlAction method)

 	(CompileMultiPycAction method)

 	(CreateNonadminAction method)

 	(CreatePrefixRecordAction method)

 	(CreatePythonEntryPointAction method)

 	(ExtractPackageAction method)

 	(in module conda.cli.main_clean)

 	(in module conda.cli.main_compare)

 	(in module conda.cli.main_config)

 	(in module conda.cli.main_create)

 	(in module conda.cli.main_env)

 	(in module conda.cli.main_env_config)

 	(in module conda.cli.main_env_create)

 	(in module conda.cli.main_env_list)

 	(in module conda.cli.main_env_remove)

 	(in module conda.cli.main_env_update)

 	(in module conda.cli.main_export)

 	(in module conda.cli.main_info)

 	(in module conda.cli.main_init)

 	(in module conda.cli.main_install)

 	(in module conda.cli.main_list)

 	(in module conda.cli.main_mock_activate)

 	(in module conda.cli.main_mock_deactivate)

 	(in module conda.cli.main_notices)

 	(in module conda.cli.main_package)

 	(in module conda.cli.main_remove)

 	(in module conda.cli.main_rename)

 	(in module conda.cli.main_run)

 	(in module conda.cli.main_search)

 	(in module conda.cli.main_update)

 	(in module conda.plugins.subcommands.doctor)

 	(LinkPathAction method)

 	(MakeMenuAction method)

 	(PrefixReplaceLinkAction method)

 	(ProgressiveFetchExtract method)

 	(RegisterEnvironmentLocationAction method)

 	(RemoveLinkedPackageRecordAction method)

 	(RemoveMenuAction method)

 	(UnlinkLinkTransaction method)

 	(UnlinkPathAction method)

 	(UnregisterEnvironmentLocationAction method)

 	(UpdateHistoryAction method)

 	execute_actions() (in module conda.plan)

 	execute_config() (in module conda.cli.main_config)

 	execute_instructions() (in module conda.plan)

 	execute_list() (in module conda.cli.main_env_vars)

 	execute_plan() (in module conda.plan)

 	execute_set() (in module conda.cli.main_env_vars)

 	execute_threads (Context property)

 	execute_unset() (in module conda.cli.main_env_vars)

 	exp_backoff_fn() (in module conda.gateways.disk)

 	expand() (in module conda.activate)

 	(in module conda.common.path)

 	(LoadedParameter method)

 	expand_environment_variables() (in module conda.common.configuration)

 	expected_error_prefix (in module conda.testing.helpers)

 	experimental (Context attribute)

 	expired_at (ChannelNotice attribute)

 	explicit() (in module conda.misc)

 	explode_directories() (in module conda.common.path)

 	export_var_tmpl (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	EXPORTED_CHANNELS_DIR (in module conda.testing.helpers)

 	extend() (_ClauseArray method)

 	ExtendConstAction (class in conda.cli.actions)

 	extensions (RequirementsSpec attribute), [1]

 	(YamlFileSpec attribute), [1]

 	extra_safety_checks (Context attribute)

 	EXTRACT (in module conda.instructions)

 	extract_actions (ProgressiveFetchExtract property)

 	EXTRACT_CMD() (in module conda.instructions)

 	extract_tarball() (in module conda.gateways.disk.create)

 	EXTRACT_THREADS (in module conda.core.package_cache_data)

 	extracted_package_dir (PackageCacheRecord attribute)

 	(PackageInfo attribute)

 	(PrefixRecord attribute)

 	ExtractPackageAction (class in conda.core.path_actions)

F

 	
 	fail() (Trace method), [1]

 	FALSE (in module conda.common._logic)

 	(in module conda.common.logic)

 	FeatureMatch (class in conda.models.match_spec)

 	features (PackageRecord attribute), [1]

 	FETCH (in module conda.instructions)

 	FETCH_CMD() (in module conda.instructions)

 	fetch_index() (in module conda.core.index)

 	(in module conda.exports)

 	fetch_jlap() (in module conda.gateways.repodata.jlap.fetch)

 	fetch_latest() (RepodataFetch method)

 	fetch_latest_parsed() (RepodataFetch method)

 	fetch_latest_path() (RepodataFetch method)

 	fetch_precs (ChangeReport attribute)

 	fetch_threads (Context property)

 	Field (class in conda.auxlib.entity)

 	FIELD_NAMES (MatchSpec attribute)

 	FIELD_NAMES_SET (MatchSpec attribute)

 	file_data() (BinstarSpec method), [1]

 	file_is_empty() (History method)

 	file_mode (PathData attribute)

 	FILE_NAMES (PythonDistributionMetadata attribute)

 	FILE_NOT_FOUND (ERROR attribute)

 	file_path_is_writable() (in module conda.gateways.disk.test)

 	file_scheme (in module conda.common.url)

 	FileMode (class in conda.models.enums)

 	FilenameField (class in conda.models.records)

 	FileNotFoundError (in module conda.core.package_cache_data)

 	(in module conda.core.path_actions)

 	files (PrefixRecord attribute)

 	FileSpecTypes (in module conda.env.specs)

 	FILESYSTEM_ENCODING (in module conda.common.compat)

 	filter() (TokenURLFilter method)

 	filter_notices() (in module conda.notices.core)

 	final (ParameterFlag attribute)

 	find_altered_packages() (in module conda.plugins.subcommands.doctor.health_checks)

 	find_builtin_commands() (in module conda.cli.conda_argparse)

 	find_commands() (in module conda.cli.find_commands)

 	find_conflicts() (Resolve method)

 	find_executable() (in module conda.cli.find_commands)

 	find_index_cache() (in module conda.cli.main_clean)

 	find_logfiles() (in module conda.cli.main_clean)

 	find_matches() (Resolve method)

 	find_matches_with_strict() (Resolve method)

 	find_or_none() (in module conda.auxlib.ish)

 	find_or_raise() (in module conda.auxlib.ish)

 	find_package() (SolverTests method)

 	find_package_in_list() (SolverTests method)

 	find_packages_with_missing_files() (in module conda.plugins.subcommands.doctor.health_checks)

 	find_patches() (in module conda.gateways.repodata.jlap.fetch)

 	find_pkgs() (in module conda.cli.main_clean)

 	find_pkgs_dirs() (in module conda.cli.main_clean)

 	find_tarballs() (in module conda.cli.main_clean)

 	find_tempfiles() (in module conda.cli.main_clean)

 	finish() (ProgressBar method)

 	
 	first() (in module conda.auxlib.collection)

 	first_writable() (PackageCacheData class method), [1], [2]

 	(PackageCacheData static method)

 	firstitem() (in module conda.auxlib.collection)

 	FishActivator (class in conda.activate)

 	fix_shebang() (in module conda.cli.main_package)

 	fixture_names (BaseTestCase attribute)

 	flatten_notice_responses() (in module conda.notices.core)

 	FLEXIBLE (ChannelPriority attribute)

 	fmt (Dist attribute)

 	(DistDetails attribute)

 	fn (Dist property)

 	(MatchSpec property)

 	(PackageRecord attribute), [1]

 	force (Context attribute)

 	force_32bit (Context attribute)

 	force_reinstall (Context attribute)

 	force_remove (Context attribute)

 	FORCE_temp_prefix() (in module conda.testing.integration)

 	format() (DeltaSecondsFormatter method)

 	format_dict() (in module conda.cli.main_config)

 	format_hash() (in module conda.gateways.repodata.jlap.fetch)

 	format_usage() (BooleanOptionalAction method)

 	formatter_map (in module conda.activate)

 	Free channel (deprecated)

 	free() (ASM method), [1]

 	freebsd (Platform attribute)

 	FREEZE_INSTALLED (UpdateModifier attribute)

 	fresh_context() (in module conda.base.context)

 	from_channel_name() (Channel static method), [1]

 	from_dist_str() (MatchSpec class method)

 	from_environment() (in module conda.env.env)

 	from_file() (in module conda.env.env)

 	from_index() (Clauses method)

 	from_json() (Entity class method)

 	from_lines() (JLAP class method)

 	from_name() (Clauses method)

 	(ParameterFlag class method)

 	from_objects() (Entity class method)

 	from_parse_result() (Url class method)

 	from_path() (JLAP class method)

 	from_string() (Dist class method)

 	(ParameterFlag class method)

 	from_sys() (Arch class method)

 	(Platform class method)

 	from_url() (Channel static method), [1]

 	(Dist class method)

 	from_value() (Channel static method), [1]

 	(ParameterFlag class method)

 	from_yaml() (in module conda.env.env)

 	frozendict (class in conda._vendor.frozendict)

 	FrozenOrderedDict (class in conda._vendor.frozendict)

 	FTPAdapter (class in conda.gateways.connection.adapters.ftp)

 	full_name (Dist property)

 	fullname() (in module conda.auxlib.logz)

G

 	
 	g_trace (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo), [1]

 	gen_clauses() (Resolve method)

 	GeneralGraph (class in conda.models.prefix_graph)

 	generate_feature_count() (Resolve method)

 	generate_feature_metric() (Resolve method)

 	generate_install_count() (Resolve method)

 	generate_package_count() (Resolve method)

 	generate_parser() (in module conda.cli.conda_argparse)

 	(in module conda.cli.main)

 	generate_pre_parser() (in module conda.cli.conda_argparse)

 	generate_removal_count() (Resolve method)

 	generate_shebang_for_entry_point() (in module conda.core.portability)

 	generate_spec_constraints() (Resolve method)

 	generate_update_count() (Resolve method)

 	generate_version_metrics() (Resolve method)

 	generic (NoarchType attribute)

 	GenericHelp

 	get() (MatchSpec method)

 	(PackageCacheData method), [1], [2], [3]

 	(PrefixData method), [1]

 	get_all_directories() (in module conda.common.path)

 	get_all_extracted_entries() (PackageCacheData class method), [1], [2]

 	get_all_matches() (MapParameter method)

 	(ObjectParameter method)

 	(Parameter method)

 	(SequenceParameter method)

 	get_archspec_name() (in module conda.core.index)

 	get_auth_handler() (CondaPluginManager method)

 	get_bin_directory_short_path() (in module conda.common.path)

 	get_blank_actions() (in module conda.plan)

 	get_cache() (CPUID method), [1]

 	get_cache_control_max_age() (in module conda.core.subdir_data)

 	(in module conda.gateways.repodata)

 	get_cache_key() (ChannelNoticeResponse class method)

 	get_cached_solver_backend (CondaPluginManager attribute)

 	get_canonical_name() (CondaPluginManager method)

 	get_channel_name_and_urls() (in module conda.notices.core)

 	get_channel_name_from_url() (in module conda.gateways.connection.session)

 	get_channel_notice_response() (in module conda.notices.fetch)

 	get_channel_objs() (in module conda.models.channel)

 	get_classifiers() (PythonDistributionMetadata method)

 	get_clause_count() (_ClauseArray method)

 	(_ClauseList method)

 	(_SatSolver method)

 	(Clauses method), [1]

 	get_comspec() (in module conda.utils)

 	get_conda_anchor_files_and_records() (in module conda.core.prefix_data)

 	get_conda_build_local_url() (in module conda.models.channel)

 	get_conda_dependencies() (PythonDistribution method)

 	get_conflicting_specs() (Resolve method)

 	get_constrained_packages() (Solver method)

 	get_cpu_info() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	get_cpu_info_json() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	get_default_marker_context() (in module conda.common.pkg_formats.python)

 	get_default_urls (in module conda.exports)

 	get_descriptions() (Configuration method)

 	(Context method)

 	get_dist_file_from_egg_link() (in module conda.common.pkg_formats.python)

 	get_dist_obsolete() (PythonDistributionMetadata method)

 	get_dist_provides() (PythonDistributionMetadata method)

 	get_dist_requirements() (PythonDistribution method)

 	(PythonDistributionMetadata method)

 	get_entry_points() (PythonDistribution method)

 	get_entry_to_link() (PackageCacheData class method), [1], [2]

 	get_env_vars_str() (in module conda.cli.main_info)

 	get_environment_env_vars() (PrefixData method)

 	get_error_report() (ExceptionHandler method)

 	get_exact_value() (MatchSpec method)

 	get_export_unset_vars() (_Activator method)

 	get_external_requirements() (PythonDistribution method)

 	(PythonDistributionMetadata method)

 	get_extra_provides() (PythonDistribution method)

 	(PythonDistributionMetadata method)

 	get_filename() (in module conda.env.env)

 	get_flags() (CPUID method), [1]

 	get_free_space_on_unix() (in module conda.common._os.unix)

 	get_free_space_on_windows() (in module conda.common._os.windows)

 	get_hook_results() (CondaPluginManager method)

 	get_host_and_path_from_url() (FTPAdapter method)

 	get_index() (in module conda.core.index)

 	(in module conda.exports)

 	get_index_cuda() (in module conda.testing.helpers)

 	get_index_must_unfreeze() (in module conda.testing.helpers)

 	get_index_r_1() (in module conda.testing.helpers)

 	
 	get_index_r_2() (in module conda.testing.helpers)

 	get_index_r_4() (in module conda.testing.helpers)

 	get_index_r_5() (in module conda.testing.helpers)

 	get_info() (CPUID method), [1]

 	get_info_dict() (in module conda.cli.main_info)

 	get_installed_version() (in module conda.cli.main_package)

 	get_installer() (in module conda.env.installers.base)

 	get_instrumentation_record_file() (in module conda.common.io)

 	get_items() (Completer method)

 	get_leaf_directories() (in module conda.common.path)

 	get_local_urls (in module conda.exports)

 	get_lock() (ProgressBar class method)

 	get_main_info_str() (in module conda.cli.main_info)

 	get_major_minor_version() (in module conda.common.path)

 	get_matcher() (BuildNumberMatch method)

 	(VersionSpec method)

 	get_max_extension_support() (CPUID method), [1]

 	get_node_by_name() (PrefixGraph method)

 	get_notice_cache_filenames() (in module conda.testing.notices.helpers)

 	get_notice_response_from_cache() (in module conda.notices.cache)

 	get_notice_responses() (in module conda.notices.fetch)

 	get_notices_cache_dir() (in module conda.notices.cache)

 	get_notices_cache_file() (in module conda.notices.cache)

 	get_optional_dependencies() (PythonDistribution method)

 	get_packages() (in module conda.cli.main_compare)

 	(in module conda.cli.main_list)

 	get_paths() (PythonDistribution method)

 	get_pinned_specs() (in module conda.core.solve)

 	get_pip_installed_packages() (in module conda.env.pip_util)

 	get_pkgs() (Resolve method)

 	get_plugin_config_data() (in module conda.base.context)

 	get_plugin_manager() (in module conda.plugins.manager)

 	get_prefix() (in module conda.plugins.subcommands.doctor)

 	get_processor_brand() (CPUID method), [1]

 	get_proxy_username_and_pass() (in module conda.common.url)

 	get_python_noarch_target_path() (in module conda.common.path)

 	get_python_requirements() (PythonDistribution method)

 	(PythonDistributionMetadata method)

 	get_python_short_path() (in module conda.common.path)

 	get_python_site_packages_short_path() (in module conda.common.path)

 	get_python_version_for_prefix() (in module conda.core.prefix_data)

 	get_raw_hz() (CPUID method), [1]

 	get_raw_value() (MatchSpec method)

 	get_rc_urls (in module conda.exports)

 	get_reduced_index() (in module conda.core.index)

 	(Resolve method)

 	get_repo_interface() (in module conda.gateways.repodata)

 	get_request_package_in_solution() (Solver method)

 	get_requested_specs_map() (History method)

 	get_revision() (in module conda.cli.install)

 	get_scripts_export_unset_vars() (_Activator method)

 	(JSONFormatMixin method)

 	get_session() (in module conda.gateways.connection.session)

 	(in module conda.gateways.repodata)

 	get_session_storage_key() (in module conda.gateways.connection.session)

 	get_settings() (CondaPluginManager method)

 	get_shortcut_dir() (in module conda.testing.integration)

 	get_signal_name() (in module conda.common.signals)

 	get_site_packages_anchor_files() (in module conda.common.pkg_formats.python)

 	get_solver() (in module conda.testing.helpers)

 	get_solver_2() (in module conda.testing.helpers)

 	get_solver_4() (in module conda.testing.helpers)

 	get_solver_5() (in module conda.testing.helpers)

 	get_solver_aggregate_1() (in module conda.testing.helpers)

 	get_solver_aggregate_2() (in module conda.testing.helpers)

 	get_solver_backend() (CondaPluginManager method)

 	get_solver_cuda() (in module conda.testing.helpers)

 	get_solver_must_unfreeze() (in module conda.testing.helpers)

 	get_solvers() (CondaPluginManager method)

 	get_spec_class_from_file() (in module conda.env.specs)

 	get_state() (History method)

 	get_status_code_from_code_response() (in module conda.gateways.connection.adapters.ftp)

 	get_subcommands() (CondaPluginManager method)

 	get_test_notices() (in module conda.testing.notices.helpers)

 	get_ticks_func() (CPUID method), [1]

 	get_url() (UrlsData method)

 	get_user_environments_txt_file() (in module conda.core.envs_manager)

 	get_user_requests() (History method)

 	get_user_site() (in module conda.cli.main_info)

 	get_username_password_from_header() (FTPAdapter method)

 	get_vendor_id() (CPUID method), [1]

 	get_viewed_channel_notice_ids() (in module conda.notices.cache)

 	get_virtual_packages() (CondaPluginManager method)

 	Getting started

 	GlobLowerStrMatch (class in conda.models.match_spec)

 	GlobStrMatch (class in conda.models.match_spec)

 	groupby_to_dict() (in module conda.common.iterators)

H

 	
 	h (in module conda.history)

 	handle_407() (CondaHttpAuth static method)

 	handle_application_exception() (ExceptionHandler method)

 	handle_exception() (ExceptionHandler method)

 	handle_reportable_application_exception() (ExceptionHandler method)

 	handle_txn() (in module conda.cli.install)

 	handle_unexpected_exception() (ExceptionHandler method)

 	handler (CondaAuthHandler attribute), [1], [2]

 	hardlink (LinkType attribute)

 	(PathType attribute)

 	hardlink_supported() (in module conda.gateways.disk.test)

 	has_cpufreq_info() (DataSource static method), [1]

 	has_dmesg() (DataSource static method), [1]

 	has_format() (RepodataState method)

 	has_ibm_pa_features() (DataSource static method), [1]

 	has_isainfo() (DataSource static method), [1]

 	has_kstat() (DataSource static method), [1]

 	has_lscpu() (DataSource static method), [1]

 	has_platform() (in module conda.common.url)

 	has_proc_cpuinfo() (DataSource static method), [1]

 	has_pyzzer_entry_point() (in module conda.core.portability)

 	has_scheme() (in module conda.common.url)

 	has_sestatus() (DataSource static method), [1]

 	has_sysctl() (DataSource static method), [1]

 	has_sysinfo() (DataSource static method), [1]

 	
 	has_var_run_dmesg_boot() (DataSource static method), [1]

 	has_wmic() (DataSource static method), [1]

 	hash() (in module conda.gateways.repodata.jlap.fetch)

 	hash_file() (in module conda.exports)

 	HashWriter (class in conda.gateways.repodata.jlap.fetch)

 	header() (Trace method), [1]

 	HEADERS (in module conda.gateways.repodata.jlap.fetch)

 	Help

 	hex_octal_to_int() (in module conda.common.url)

 	HIDE (SW attribute)

 	History (class in conda.history)

 	hook() (_Activator method)

 	hook_source_path (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	hookimpl (in module conda.plugins)

 	(in module conda.plugins.hookspec)

 	(in module conda.plugins.subcommands.doctor)

 	http_timeout (ExceptionHandler property)

 	HTTPAdapter (class in conda.gateways.connection.adapters.http)

 	human_bytes() (in module conda.utils)

I

 	
 	ibm_pa_features() (DataSource static method), [1]

 	icondata (PackageInfo attribute)

 	id (ChannelNotice attribute)

 	id() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	IDENTIFIER (in module conda.common.pkg_formats.python)

 	IGNORE_FIELDS (in module conda.cli.main_info)

 	ignore_pinned (Context attribute)

 	immutable (Field property)

 	ImmutableEntity (class in conda.auxlib.entity)

 	in_dump (Field property)

 	index_packages() (in module conda.testing.solver_helpers)

 	INFO (Commands attribute), [1]

 	info (Context property)

 	INFO (NoticeLevel attribute)

 	info() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	INFO_FORMATTER (in module conda.auxlib.logz)

 	init() (PythonDistribution static method)

 	init_cmd_exe_registry() (in module conda.core.initialize)

 	init_fish_user() (in module conda.core.initialize)

 	init_log_file() (History method)

 	init_loggers() (in module conda.cli.main)

 	init_long_path() (in module conda.core.initialize)

 	init_poolmanager() (_SSLContextAdapterMixin method)

 	init_powershell_user() (in module conda.core.initialize)

 	init_sh_system() (in module conda.core.initialize)

 	init_sh_user() (in module conda.core.initialize)

 	init_xonsh_user() (in module conda.core.initialize)

 	INITIAL_TRUST_ROOT (in module conda.trust.constants)

 	InitializationError

 	initialize() (in module conda.core.initialize)

 	initialize_dev() (in module conda.core.initialize)

 	initialize_logging() (in module conda.auxlib.logz)

 	(in module conda.gateways.logging)

 	initialize_root_logger() (in module conda.gateways.logging)

 	initialize_std_loggers() (in module conda.gateways.logging)

 	inode_paths (PathDataV1 attribute)

 	insert() (PackageCacheData method), [1], [2]

 	(PrefixData method)

 	INSTALL (Commands attribute), [1]

 	install() (in module conda.cli.install)

 	(in module conda.core.initialize)

 	(in module conda.env.installers.conda)

 	(in module conda.env.installers.pip)

 	(Resolve method)

 	(SimpleEnvironment method)

 	install_actions() (in module conda.plan)

 	install_activate() (in module conda.core.initialize)

 	install_activate_bat() (in module conda.core.initialize)

 	install_anaconda_prompt() (in module conda.core.initialize)

 	install_conda_csh() (in module conda.core.initialize)

 	install_conda_fish() (in module conda.core.initialize)

 	install_conda_hook_ps1() (in module conda.core.initialize)

 	install_conda_psm1() (in module conda.core.initialize)

 	install_conda_sh() (in module conda.core.initialize)

 	install_conda_xsh() (in module conda.core.initialize)

 	install_condabin_conda_activate_bat() (in module conda.core.initialize)

 	install_condabin_conda_auto_activate_bat() (in module conda.core.initialize)

 	install_condabin_conda_bat() (in module conda.core.initialize)

 	install_condabin_hook_bat() (in module conda.core.initialize)

 	install_condabin_rename_tmp_bat() (in module conda.core.initialize)

 	install_deactivate() (in module conda.core.initialize)

 	install_deactivate_bat() (in module conda.core.initialize)

 	install_library_bin_conda_bat() (in module conda.core.initialize)

 	install_Scripts_activate_bat() (in module conda.core.initialize)

 	install_specs() (Resolve method)

 	InstalledPackages (class in conda.exports)

 	
 	Installing conda

 	Installing with conda

 	IntegerField (class in conda.auxlib.entity)

 	interpret() (in module conda.common.pkg_formats.python)

 	INTERRUPT_SIGNALS (in module conda.common.signals)

 	interval (ChannelNotice attribute)

 	IntField (in module conda.auxlib.entity)

 	invalid_chains() (Resolve method)

 	InvalidInstaller

 	InvalidMatchSpec

 	InvalidSpec

 	InvalidTypeError

 	InvalidVersionSpec

 	invoke() (_PycoSatSolver method)

 	(_PyCryptoSatSolver method)

 	(_PySatSolver method)

 	(_SatSolver method)

 	invoke_health_checks() (CondaPluginManager method)

 	invoke_post_commands() (CondaPluginManager method)

 	invoke_post_solves() (CondaPluginManager method)

 	invoke_pre_commands() (CondaPluginManager method)

 	invoke_pre_solves() (CondaPluginManager method)

 	is_active_prefix() (in module conda.cli.common)

 	is_admin_on_unix() (in module conda.common._os.unix)

 	is_admin_on_windows() (in module conda.common._os.windows)

 	is_channel (Dist property)

 	is_channel_notices_cache_expired() (in module conda.notices.core)

 	is_channel_notices_enabled() (in module conda.notices.core)

 	is_conda_environment() (in module conda.gateways.disk.test)

 	is_diff() (in module conda.history)

 	is_exact() (BaseSpec method)

 	is_executable() (in module conda.gateways.disk.permissions)

 	is_extracted (PackageCacheRecord property)

 	is_feature_package (Dist property)

 	is_fetched (PackageCacheRecord property)

 	IS_INTERACTIVE (in module conda.common.io)

 	is_ip_address() (in module conda.common.url)

 	is_ipv4_address() (in module conda.common.url)

 	is_ipv6_address() (in module conda.common.url)

 	is_linked() (in module conda.exports)

 	is_manageable (PythonEggInfoDistribution property)

 	(PythonEggLinkDistribution attribute)

 	(PythonInstalledDistribution attribute)

 	is_name_only_spec (MatchSpec property)

 	is_notice_response_cache_expired() (in module conda.notices.cache)

 	is_nullable (Field property)

 	is_package_file() (in module conda.common.path)

 	is_path() (in module conda.common.path)

 	is_private_env_name() (in module conda.common.path)

 	is_private_env_path() (in module conda.common.path)

 	is_unmanageable (PackageRecord property), [1]

 	is_url() (in module conda.common.url)

 	is_windows (DataSource attribute), [1]

 	is_writable (PackageCacheData property), [1], [2], [3]

 	(PrefixData property), [1]

 	isainfo_vb() (DataSource static method), [1]

 	isiterable() (in module conda.auxlib.compat)

 	(in module conda.common.compat)

 	islink (in module conda.gateways.disk.link)

 	ITE() (Clauses method), [1]

 	iter_records() (PackageCacheData method), [1], [2], [3]

 	(PrefixData method), [1]

 	(SubdirData method), [1]

 	iter_records_sorted() (PrefixData method)

 	iteritems (in module conda._vendor.frozendict)

 	iteritems() (in module conda.exports)

 	itersolve() (Clauses method)

 	itervalues() (PackageCacheData method), [1], [2]

J

 	
 	JLAP (class in conda.gateways.repodata.jlap.core)

 	Jlap304NotModified

 	JLAP_KEY (in module conda.gateways.repodata.jlap.fetch)

 	JlapPatchNotFound

 	JlapRepoInterface (class in conda.gateways.repodata.jlap.interface)

 	JlapSkipZst

 	join() (in module conda.common.url)

 	join_url (in module conda.common.url)

 	(in module conda.gateways.repodata)

 	
 	json (Context attribute)

 	json() (Entity method)

 	(MockResponse method)

 	json_data (ChannelNoticeResponse attribute)

 	json_dump() (in module conda.common.serialize)

 	json_load() (in module conda.common.serialize)

 	jsondumps() (in module conda.auxlib.logz)

 	JSONFormatMixin (class in conda.activate)

K

 	
 	key_mgr (_SignatureVerification property)

 	KEY_MGR_FILE (in module conda.trust.constants)

 	keyed_hash() (in module conda.gateways.repodata.jlap.core)

 	keyflag() (ArgParseRawParameter method)

 	(DefaultValueRawParameter method)

 	(EnvRawParameter method)

 	(RawParameter method)

 	(YamlRawParameter method)

 	
 	KEYS (in module conda.exports)

 	keys() (Trace method), [1]

 	KEYS_DIR (in module conda.exports)

 	KNOWN_EXTENSIONS (in module conda.common.path)

 	known_subdirs() (Context method)

 	KnownPackageClobberError

 	kstat_m_cpu_info() (DataSource static method), [1]

L

 	
 	last (JLAP property)

 	last() (in module conda.auxlib.collection)

 	LAST_CHANNEL_URLS (in module conda.core.index)

 	LAST_MODIFIED_KEY (in module conda.gateways.repodata)

 	LATEST (in module conda.gateways.repodata.jlap.fetch)

 	LB_Preprocess() (Clauses method)

 	lchmod (in module conda.gateways.disk.link)

 	leased_path (LeasedPathEntry attribute)

 	leased_path_type (LeasedPathEntry attribute)

 	LeasedPathEntry (class in conda.models.leased_path_entry)

 	LeasedPathType (class in conda.models.enums)

 	legacy_bz2_md5 (PackageRecord attribute), [1]

 	legacy_bz2_size (PackageRecord attribute), [1]

 	level (ChannelNotice attribute)

 	libc_family_version() (Context method)

 	license (PackageRecord attribute), [1]

 	license_family (PackageRecord attribute), [1]

 	like() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	line_and_pos() (in module conda.gateways.repodata.jlap.core)

 	LinearBound() (Clauses method), [1]

 	Link (class in conda.models.records)

 	link (in module conda.gateways.disk.link)

 	LINK (in module conda.instructions)

 	link (PrefixRecord attribute)

 	link_action_groups (PrefixActionGroup attribute)

 	link_precs (PrefixSetup attribute)

 	linked() (in module conda.exports)

 	linked_data() (in module conda.exports)

 	linked_package_record (PathType attribute)

 	LinkError

 	(in module conda.exports)

 	LinkPathAction (class in conda.core.path_actions)

 	LinkType (class in conda.models.enums)

 	LinkTypeField (class in conda.models.records)

 	linux (Platform attribute)

 	linux_distribution() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	linux_get_libc_version() (in module conda.common._os.linux)

 	LinuxDistribution (class in conda._vendor.distro)

 	LIST (Commands attribute), [1]

 	list() (FTPAdapter method)

 	list_all_known_prefixes() (in module conda.core.envs_manager)

 	list_description (in module conda_env.cli.main_vars)

 	
 	list_example (in module conda_env.cli.main_vars)

 	list_packages() (in module conda.cli.main_list)

 	list_parameters() (Configuration method)

 	listdir (in module conda.gateways.disk.read)

 	ListField (class in conda.auxlib.entity)

 	listify() (in module conda.auxlib.type_coercion)

 	load() (Entity class method)

 	(MapParameter method)

 	(ObjectParameter method)

 	(PackageCacheData method), [1], [2]

 	(Parameter method)

 	(PrefixData method)

 	(PrimitiveParameter method)

 	(RepodataCache method)

 	(SequenceParameter method)

 	(SubdirData method)

 	load_condarc (in module conda.exports)

 	load_entrypoints() (CondaPluginManager method)

 	load_file_configs() (in module conda.common.configuration)

 	load_plugins() (CondaPluginManager method)

 	load_settings() (CondaPluginManager method)

 	load_state() (RepodataCache method)

 	LoadedParameter (class in conda.common.configuration)

 	local_build_root (Context property)

 	local_repodata_ttl (Context attribute)

 	LocalFSAdapter (class in conda.gateways.connection.adapters.localfs)

 	locate_prefix_by_name() (in module conda.base.context)

 	lock() (in module conda.gateways.disk.lock)

 	(in module conda.gateways.repodata)

 	(RepodataCache method)

 	LOCK_ATTEMPTS (in module conda.gateways.disk.lock)

 	LOCK_BYTE (in module conda.gateways.disk.lock)

 	LOCK_SLEEP (in module conda.gateways.disk.lock)

 	LockError

 	log_level (Context property)

 	log_totals() (time_recorder class method)

 	logger (in module conda.notices.cache)

 	(in module conda.notices.core)

 	(in module conda.notices.fetch)

 	(in module conda.plugins.subcommands.doctor.health_checks)

 	lsb_release_attr() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	lsb_release_info() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	lscpu() (DataSource static method), [1]

M

 	
 	m (Clauses property)

 	machine_bits (in module conda.base.constants)

 	main() (in module conda._vendor.cpuinfo)

 	(in module conda._vendor.cpuinfo.cpuinfo)

 	(in module conda._vendor.distro)

 	(in module conda.cli)

 	(in module conda.cli.main)

 	(in module conda.cli.main_pip)

 	(in module conda_env.cli.main)

 	main_sourced() (in module conda.cli.main)

 	main_subshell() (in module conda.cli.main)

 	(in module conda.testing)

 	major_version() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	make_actions_for_record() (ProgressiveFetchExtract static method)

 	make_conda_egg_link() (in module conda.core.initialize)

 	make_dev_egg_info_file() (in module conda.core.initialize)

 	make_diff() (in module conda.core.initialize)

 	make_entry_point() (in module conda.core.initialize)

 	make_entry_point_exe() (in module conda.core.initialize)

 	make_executable() (in module conda.gateways.disk.permissions)

 	make_feature_record() (in module conda.core.subdir_data)

 	make_immutable() (in module conda.auxlib.collection)

 	make_initialize_plan() (in module conda.core.initialize)

 	make_install_plan() (in module conda.core.initialize)

 	make_menu() (in module conda.gateways.disk.create)

 	make_menu_action_groups (PrefixActionGroup attribute)

 	make_raw_parameters() (ArgParseRawParameter class method)

 	(EnvRawParameter class method)

 	(RawParameter class method)

 	(YamlRawParameter class method)

 	make_raw_parameters_from_file() (YamlRawParameter class method)

 	make_read_only() (in module conda.gateways.disk.permissions)

 	make_simple_channel() (Channel static method), [1]

 	make_tarbz2() (in module conda.cli.main_package)

 	make_temp_channel() (in module conda.testing.integration)

 	make_temp_env() (in module conda.testing.integration)

 	make_temp_package_cache() (in module conda.testing.integration)

 	make_temp_prefix() (in module conda.testing.integration)

 	make_unlink_actions() (in module conda.core.link)

 	make_writable() (in module conda.gateways.disk.permissions)

 	MakeMenuAction (class in conda.core.path_actions)

 	Managing channels

 	Managing conda

 	Managing environments

 	Managing packages

 	Managing python

 	Managing virtual packages

 	MANDATORY_FILES (PythonDistribution attribute)

 	(PythonEggInfoDistribution attribute)

 	(PythonInstalledDistribution attribute)

 	MANIFEST_FILES (PythonDistribution attribute)

 	(PythonEggInfoDistribution attribute)

 	(PythonInstalledDistribution attribute)

 	manifest_full_path() (PythonDistribution method)

 	map() (DummyExecutor method)

 	MapField (class in conda.auxlib.entity)

 	MapLoadedParameter (class in conda.common.configuration)

 	MapParameter (class in conda.common.configuration)

 	mark_channel_notices_as_viewed() (in module conda.notices.cache)

 	MARKER_OP (in module conda.common.pkg_formats.python)

 	mask_anaconda_token() (in module conda.common.url)

 	massage_arguments() (in module conda.utils)

 	match() (CaseInsensitiveStrMatch method)

 	(ChannelMatch method)

 	(ExactLowerStrMatch method)

 	(ExactStrMatch method)

 	(FeatureMatch method)

 	(GlobStrMatch method)

 	(MatchInterface method)

 	(MatchSpec method)

 	(SplitStrMatch method)

 	match_any() (Resolve method)

 	match_specs_to_dists() (in module conda.core.link)

 	matches() (MatchInterface method)

 	matches_all (GlobStrMatch property)

 	MatchInterface (class in conda.models.match_spec)

 	MatchSpec (class in conda.models.match_spec)

 	MatchSpecType (class in conda.models.match_spec)

 	MAX_CHANNEL_PRIORITY (in module conda.base.constants)

 	MAX_REPODATA_VERSION (in module conda.core.subdir_data)

 	MAX_SHEBANG_LENGTH (in module conda.core.portability)

 	MAX_TRIES (in module conda.gateways.disk)

 	MAXIMIZE (SW attribute)

 	maybe_add_auth() (in module conda.common.url)

 	maybe_raise() (in module conda.exceptions)

 	maybe_unquote() (in module conda.common.url)

 	(in module conda.gateways.repodata)

 	maybecall() (in module conda.auxlib.type_coercion)

 	md5 (PackageCacheRecord attribute)

 	(PackageRecord attribute), [1]

 	Md5Field (class in conda.models.records)

 	memoizedproperty() (in module conda.auxlib.decorators)

 	memoizemethod() (in module conda.auxlib.decorators)

 	merge() (BaseSpec method)

 	(BuildNumberMatch method)

 	(LoadedParameter method)

 	(MapLoadedParameter method)

 	(MatchInterface method)

 	(MatchSpec class method)

 	(ObjectLoadedParameter method)

 	(PrimitiveLoadedParameter method)

 	(SequenceLoadedParameter method)

 	(VersionSpec method)

 	message (ChannelNotice attribute)

 	messages() (in module conda.core.link)

 	metadata (PackageRecord attribute), [1]

 	MetadataWarning

 	migrated_channel_aliases (Context property)

 	migrated_custom_channels (Context attribute)

 	Miniconda

 	Miniforge

 	minimal_unsatisfiable_subset() (in module conda.common.logic)

 	MINIMIZE (SW attribute)

 	minimize() (Clauses method), [1]

 	MINIO_EXE (in module conda.testing.gateways.fixtures)

 	minio_s3_server() (in module conda.testing.gateways.fixtures)

 	minor_version() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	Mirroring channels

 	missing_files() (in module conda.plugins.subcommands.doctor.health_checks)

 	missing_pyc_files() (in module conda.common.path)

 	mkdir_p (in module conda.gateways.disk.create)

 	mkdir_p() (in module conda.gateways.disk)

 	mkdir_p_sudo_safe() (in module conda.gateways.disk)

 	(in module conda.gateways.repodata)

 	mockable_context_envs_dirs() (in module conda.base.context)

 	MockResponse (class in conda.testing.notices.helpers)

 	mod (RepodataState property)

 	MODIFIED (Result attribute)

 	modify_easy_install_pth() (in module conda.core.initialize)

 	
 module

 	conda

 	conda.__main__

 	conda._vendor

 	conda._vendor.appdirs

 	conda._vendor.cpuinfo

 	conda._vendor.cpuinfo.cpuinfo

 	conda._vendor.distro

 	conda._vendor.frozendict

 	conda._version

 	conda.activate

 	conda.api

 	conda.auxlib

 	conda.auxlib.collection

 	conda.auxlib.compat

 	conda.auxlib.decorators

 	conda.auxlib.entity

 	conda.auxlib.exceptions

 	conda.auxlib.ish

 	conda.auxlib.logz

 	conda.auxlib.type_coercion

 	conda.base

 	conda.base.constants

 	conda.base.context

 	conda.base.exceptions

 	conda.cli

 	conda.cli.actions

 	conda.cli.common

 	conda.cli.conda_argparse

 	conda.cli.find_commands

 	conda.cli.helpers

 	conda.cli.install

 	conda.cli.main

 	conda.cli.main_clean

 	conda.cli.main_compare

 	conda.cli.main_config

 	conda.cli.main_create

 	conda.cli.main_env

 	conda.cli.main_env_config

 	conda.cli.main_env_create

 	conda.cli.main_env_export

 	conda.cli.main_env_list

 	conda.cli.main_env_remove

 	conda.cli.main_env_update

 	conda.cli.main_env_vars

 	conda.cli.main_export

 	conda.cli.main_info

 	conda.cli.main_init

 	conda.cli.main_install

 	conda.cli.main_list

 	conda.cli.main_mock_activate

 	conda.cli.main_mock_deactivate

 	conda.cli.main_notices

 	conda.cli.main_package

 	conda.cli.main_pip

 	conda.cli.main_remove

 	conda.cli.main_rename

 	conda.cli.main_run

 	conda.cli.main_search

 	conda.cli.main_update

 	conda.cli.python_api

 	conda.common

 	conda.common._logic

 	conda.common._os

 	conda.common._os.linux

 	conda.common._os.unix

 	conda.common._os.windows

 	conda.common.compat

 	conda.common.configuration

 	conda.common.constants

 	conda.common.decorators

 	conda.common.disk

 	conda.common.io

 	conda.common.iterators

 	conda.common.logic

 	conda.common.path

 	conda.common.pkg_formats

 	conda.common.pkg_formats.python

 	conda.common.serialize

 	conda.common.signals

 	conda.common.toposort

 	conda.common.url

 	conda.core

 	conda.core.envs_manager

 	conda.core.index

 	conda.core.initialize

 	conda.core.link

 	conda.core.package_cache

 	conda.core.package_cache_data

 	conda.core.path_actions

 	conda.core.portability

 	conda.core.prefix_data

 	conda.core.solve

 	conda.core.subdir_data

 	conda.deprecations

 	conda.env

 	conda.env.env

 	conda.env.installers

 	conda.env.installers.base

 	conda.env.installers.conda

 	conda.env.installers.pip

 	conda.env.pip_util

 	conda.env.specs

 	conda.env.specs.binstar

 	conda.env.specs.requirements

 	conda.env.specs.yaml_file

 	conda.exception_handler

 	conda.exceptions

 	conda.exports

 	conda.gateways

 	conda.gateways.anaconda_client

 	conda.gateways.connection

 	conda.gateways.connection.adapters

 	conda.gateways.connection.adapters.ftp

 	conda.gateways.connection.adapters.http

 	conda.gateways.connection.adapters.localfs

 	conda.gateways.connection.adapters.s3

 	conda.gateways.connection.download

 	conda.gateways.connection.session

 	conda.gateways.disk

 	conda.gateways.disk.create

 	conda.gateways.disk.delete

 	conda.gateways.disk.link

 	conda.gateways.disk.lock

 	conda.gateways.disk.permissions

 	conda.gateways.disk.read

 	conda.gateways.disk.test

 	conda.gateways.disk.update

 	conda.gateways.logging

 	conda.gateways.repodata

 	conda.gateways.repodata.jlap

 	conda.gateways.repodata.jlap.core

 	conda.gateways.repodata.jlap.fetch

 	conda.gateways.repodata.jlap.interface

 	conda.gateways.repodata.lock

 	conda.gateways.subprocess

 	conda.history

 	conda.instructions

 	conda.misc

 	conda.models

 	conda.models.channel

 	conda.models.dist

 	conda.models.enums

 	conda.models.leased_path_entry

 	conda.models.match_spec

 	conda.models.package_info

 	conda.models.prefix_graph

 	conda.models.records

 	conda.models.version

 	conda.notices

 	conda.notices.cache

 	conda.notices.core

 	conda.notices.fetch

 	conda.notices.types

 	conda.notices.views

 	conda.plan

 	conda.plugins

 	conda.plugins.hookspec

 	conda.plugins.manager

 	conda.plugins.post_solves

 	conda.plugins.post_solves.signature_verification

 	conda.plugins.solvers

 	conda.plugins.subcommands

 	conda.plugins.subcommands.doctor

 	conda.plugins.subcommands.doctor.health_checks

 	conda.plugins.types

 	conda.plugins.virtual_packages

 	conda.plugins.virtual_packages.archspec

 	conda.plugins.virtual_packages.conda

 	conda.plugins.virtual_packages.cuda

 	conda.plugins.virtual_packages.freebsd

 	conda.plugins.virtual_packages.linux

 	conda.plugins.virtual_packages.osx

 	conda.plugins.virtual_packages.windows

 	conda.resolve

 	conda.testing

 	conda.testing.cases

 	conda.testing.fixtures

 	conda.testing.gateways

 	conda.testing.gateways.fixtures

 	conda.testing.helpers

 	conda.testing.integration

 	conda.testing.notices

 	conda.testing.notices.fixtures

 	conda.testing.notices.helpers

 	conda.testing.solver_helpers

 	conda.trust

 	conda.trust.constants

 	conda.trust.signature_verification

 	conda.utils

 	conda_env

 	conda_env.cli

 	conda_env.cli.common

 	conda_env.cli.main

 	conda_env.cli.main_config

 	conda_env.cli.main_create

 	conda_env.cli.main_export

 	conda_env.cli.main_list

 	conda_env.cli.main_remove

 	conda_env.cli.main_update

 	conda_env.cli.main_vars

 	conda_env.env

 	conda_env.installers

 	conda_env.installers.base

 	conda_env.installers.conda

 	conda_env.installers.pip

 	conda_env.pip_util

 	conda_env.specs

 	conda_env.specs.binstar

 	conda_env.specs.requirements

 	conda_env.specs.yaml_file

 	
 	module() (DeprecationHandler method)

 	ms_depends() (Resolve method)

 	msg (BinstarSpec attribute), [1]

 	(RequirementsSpec attribute), [1]

 	msys2_shell_base (in module conda.utils)

 	MultiChannel (class in conda.models.channel)

 	MultiPathAction (class in conda.core.path_actions)

 	MULTIPLE_USE_KEYS (PythonDistributionMetadata attribute)

 	MultipleKeysError

 	MultiValidationError

N

 	
 	Name

 	name (ChannelNoticeResponse attribute)

 	(CondaAuthHandler attribute), [1], [2]

 	(CondaHealthCheck attribute), [1], [2]

 	(CondaPostCommand attribute), [1], [2]

 	(CondaPostSolve attribute), [1]

 	(CondaPreCommand attribute), [1], [2]

 	(CondaPreSolve attribute), [1]

 	(CondaSetting attribute), [1], [2]

 	(CondaSolver attribute), [1], [2]

 	(CondaSubcommand attribute), [1], [2], [3]

 	(CondaVirtualPackage attribute), [1], [2]

 	(Dist attribute)

 	(DistDetails attribute)

 	(Field property)

 	(MatchSpec property)

 	(PackageInfo property)

 	(PackageRecord attribute), [1]

 	(ParameterLoader property)

 	(PreferredEnv attribute)

 	(PythonDistribution property)

 	(PythonDistributionMetadata property)

 	(TemporaryDirectory attribute)

 	name() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	name_var() (Clauses method)

 	namekey (PackageRecord property), [1]

 	names (ParameterLoader property)

 	names_in_specs() (in module conda.cli.common)

 	NAMESPACE_PACKAGE_NAMES (in module conda.base.constants)

 	NAMESPACES (in module conda.base.constants)

 	NAMESPACES_MAP (in module conda.base.constants)

 	native_path_to_unix() (in module conda.activate)

 	NEEDS_SUDO (Result attribute)

 	netloc (Url property)

 	neutered_specs (PrefixSetup attribute)

 	new_precs (ChangeReport attribute)

 	new_var() (Clauses method), [1]

 	nlst() (FTPAdapter method)

 	NO_ASSOC (ERROR attribute)

 	NO_CHANGE (Result attribute)

 	NO_DEPS (DepsModifier attribute)

 	no_link (PathData attribute)

 	no_lock (Context attribute)

 	no_plugins (Context attribute)

 	NO_PLUGINS (in module conda.base.constants)

 	Noarch (class in conda.models.package_info)

 	noarch (PackageMetadata attribute)

 	(PackageRecord attribute), [1]

 	
 	NOARCH_GENERIC (PackageType attribute)

 	NOARCH_PYTHON (PackageType attribute)

 	NoarchField (class in conda.models.package_info)

 	(class in conda.models.records)

 	NoarchType (class in conda.models.enums)

 	NoBaseEnvironmentError

 	NOMINAL_HASH (in module conda.gateways.repodata.jlap.fetch)

 	non_admin_enabled (Context attribute)

 	NON_SPACE (in module conda.common.pkg_formats.python)

 	non_x86_linux_machines (in module conda.exports)

 	non_x86_machines (in module conda.base.context)

 	NoneType (in module conda.common.compat)

 	norm_name (PythonDistribution property)

 	norm_package_name() (in module conda.common.pkg_formats.python)

 	norm_package_version() (in module conda.common.pkg_formats.python)

 	NORMALIZED_DISTRO_ID (in module conda._vendor.distro)

 	NORMALIZED_LSB_ID (in module conda._vendor.distro)

 	NORMALIZED_OS_ID (in module conda._vendor.distro)

 	normalized_version() (in module conda.models.version)

 	NoSpaceLeftError

 	Not() (Clauses method), [1]

 	NOT_SET (DepsModifier attribute)

 	NotFoundError

 	nothing_to_do (UnlinkLinkTransaction property)

 	NoticeLevel (class in conda.base.constants)

 	notices (ChannelNoticeResponse property)

 	NOTICES (Commands attribute)

 	notices() (in module conda.notices)

 	(in module conda.notices.core)

 	notices_cache_dir() (in module conda.testing.notices.fixtures)

 	NOTICES_CACHE_FN (in module conda.base.constants)

 	NOTICES_CACHE_SUBDIR (in module conda.base.constants)

 	notices_decorator_assert_message_in_stdout() (in module conda.testing.notices.helpers)

 	NOTICES_DECORATOR_DISPLAY_INTERVAL (in module conda.base.constants)

 	NOTICES_FN (in module conda.base.constants)

 	notices_mock_fetch_get_session() (in module conda.testing.notices.fixtures)

 	notify_outdated_conda (Context attribute)

 	NotWritableError, [1]

 	NoWritableEnvsDirError

 	NoWritablePkgsDirError

 	NULL (in module conda.common.constants)

 	nullable (Field property)

 	NullCountAction (class in conda.cli.actions)

 	NullHandler (in module conda.auxlib.logz)

 	number_channel_notices (Context attribute)

 	NumberField (class in conda.auxlib.entity)

 	numberify() (in module conda.auxlib.type_coercion)

O

 	
 	object_log() (History method)

 	ObjectLoadedParameter (class in conda.common.configuration)

 	ObjectParameter (class in conda.common.configuration)

 	offline (Context attribute)

 	offline_keep() (in module conda.models.channel)

 	offset_cache_file_mtime() (in module conda.testing.notices.helpers)

 	OK_MARK (in module conda.plugins.subcommands.doctor.health_checks)

 	ON_DISK_HASH (in module conda.gateways.repodata.jlap.fetch)

 	on_linux (in module conda.common.compat)

 	on_mac (in module conda.common.compat)

 	on_win (in module conda.common._os)

 	(in module conda.common.compat)

 	(in module conda.gateways.disk)

 	(in module conda.testing)

 	ONLY_DEPS (DepsModifier attribute)

 	OOM (ERROR attribute)

 	OP_ORDER (in module conda.instructions)

 	open() (in module conda.common.compat)

 	
 	openbsd (Platform attribute)

 	OperationNotAllowed

 	operations (Evaluator attribute)

 	OPERATOR_MAP (in module conda.models.version)

 	operator_match() (BaseSpec method)

 	OPERATOR_START (in module conda.models.version)

 	optional (MatchSpec property)

 	OR (in module conda.common.pkg_formats.python)

 	Or() (Clauses method), [1]

 	OrderedDict (in module conda._vendor.frozendict)

 	original_spec_str (MatchSpec property)

 	os_distribution_name_version() (Context method)

 	os_release_attr() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	os_release_info() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	osx (Platform attribute)

 	override_channels_enabled (Context attribute)

P

 	
 	Package search and install

 	Package specification

 	package() (BinstarSpec method), [1]

 	package_cache() (in module conda.exports)

 	PACKAGE_CACHE_MAGIC_FILE (in module conda.base.constants)

 	(in module conda.testing)

 	package_dict() (in module conda.testing.solver_helpers)

 	PACKAGE_ENV_VARS_DIR (in module conda.base.constants)

 	package_is_installed() (in module conda.testing.integration)

 	package_metadata (PackageInfo attribute)

 	package_metadata_version (PackageMetadata attribute)

 	package_name (LeasedPathEntry attribute)

 	package_string() (in module conda.testing.solver_helpers)

 	package_string_set() (in module conda.testing.solver_helpers)

 	package_tarball_full_path (PackageCacheRecord attribute)

 	(PackageInfo attribute)

 	(PrefixRecord attribute)

 	package_type (PackageRecord attribute), [1]

 	PackageCacheData (class in conda.api)

 	(class in conda.core.package_cache_data)

 	(class in conda.gateways.repodata)

 	(class in conda.testing)

 	PackageCacheRecord (class in conda.models.records)

 	PackageCacheType (class in conda.core.package_cache_data)

 	PackageInfo (class in conda.models.package_info)

 	PackageMetadata (class in conda.models.package_info)

 	packagename() (BinstarSpec method), [1]

 	PackageNotInstalledError

 	PackageRecord (class in conda.models.records)

 	(class in conda.testing)

 	PackageRecordList (class in conda.core.subdir_data)

 	Packages

 	PackagesNotFoundError

 	PackageType (class in conda.models.enums)

 	PackageTypeField (class in conda.models.records)

 	PaddingError

 	(in module conda.exports)

 	pair (Dist property)

 	Parameter (class in conda.common.configuration)

 	parameter (CondaSetting attribute), [1], [2]

 	parameter_description_builder() (in module conda.cli.main_config)

 	ParameterFlag (class in conda.common.configuration)

 	ParameterLoader (class in conda.common.configuration)

 	parametrized_solver_fixture() (in module conda.testing.fixtures)

 	parse() (Dependencies method)

 	(History method)

 	parse_args() (ArgumentParser method)

 	parse_conda_channel_url() (in module conda.models.channel)

 	parse_dist_name() (Dist static method)

 	parse_entry_point_def() (in module conda.common.path)

 	parse_marker() (in module conda.common.pkg_formats.python)

 	parse_multipart_files() (in module conda.gateways.connection.adapters.ftp)

 	parse_specification() (in module conda.common.pkg_formats.python)

 	ParseError

 	PARTIAL_PYPI_SPEC_PATTERN (in module conda.common.pkg_formats.python)

 	path (PathData property)

 	path_conflict (Context attribute)

 	path_conversion (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	path_factory (TmpChannelFixture attribute)

 	(TmpEnvFixture attribute)

 	path_factory() (in module conda.testing)

 	path_identity() (in module conda.activate)

 	(in module conda.utils)

 	path_is_clean() (in module conda.gateways.disk.delete)

 	PATH_MATCH_REGEX (in module conda.common.path)

 	PATH_NOT_FOUND (ERROR attribute)

 	path_to_url() (in module conda.common.url)

 	(in module conda.testing)

 	path_type (PathData attribute)

 	PathAction (class in conda.core.path_actions)

 	PathConflict (class in conda.base.constants)

 	PathData (class in conda.models.records)

 	PathDataV1 (class in conda.models.records)

 	PathFactoryFixture (class in conda.testing)

 	PathNotFoundError

 	paths (PathsData attribute)

 	paths_data (PackageInfo attribute)

 	(PrefixRecord attribute)

 	paths_equal() (in module conda.common.path)

 	paths_version (PathsData attribute)

 	PathsData (class in conda.models.records)

 	pathsep_join (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(JSONFormatMixin attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	PathType (class in conda.models.enums)

 	penultimate (JLAP property)

 	percent_decode() (in module conda.common.url)

 	Performance

 	PHANDLE (in module conda.common._os.windows)

 	pinned_packages (Context attribute)

 	pinned_specs() (SolverStateContainer method)

 	Pip interoperability (experimental)

 	pip_installed_post_parse_hook() (in module conda.cli.main_pip)

 	pip_interop_enabled (Context attribute)

 	pip_subprocess() (in module conda.env.pip_util)

 	pkg_data (ActionGroup attribute)

 	pkgs_dirs (Context property)

 	(in module conda.exports)

 	Platform (class in conda.models.enums)

 	platform (Context property)

 	(Dist attribute)

 	(in module conda.exports)

 	(PackageRecord attribute), [1]

 	platform_system_release() (Context method)

 	
 	plugin_manager (Context property)

 	PluginConfig (class in conda.base.context)

 	PluginError

 	Plugins

 	plugins (in module conda.plugins.post_solves)

 	(in module conda.plugins.subcommands)

 	(in module conda.plugins.virtual_packages)

 	plugins() (Context method)

 	pop() (ContextStack method)

 	pop_key() (in module conda.common.toposort)

 	POPULAR_ENCODINGS (in module conda.core.portability)

 	PosixActivator (class in conda.activate)

 	post_build_validation() (Configuration method)

 	(Context method)

 	PowerShellActivator (class in conda.activate)

 	ppc64 (Arch attribute)

 	ppc64le (Arch attribute)

 	preferred_env (PackageMetadata attribute)

 	(PackageRecord attribute), [1]

 	PreferredEnv (class in conda.models.package_info)

 	prefix (ChangeReport attribute)

 	prefix_data() (SolverStateContainer method)

 	PREFIX_MAGIC_FILE (in module conda.base.constants)

 	PREFIX_NAME_DISALLOWED_CHARS (in module conda.base.constants)

 	PREFIX_PLACEHOLDER (in module conda.base.constants)

 	prefix_placeholder (PathData attribute)

 	prefix_record_groups (PrefixActionGroup attribute)

 	prefix_specified (Context property)

 	PREFIX_STATE_FILE (in module conda.base.constants)

 	PrefixActionGroup (class in conda.core.link)

 	PrefixData (class in conda.api)

 	(class in conda.core.prefix_data)

 	PrefixDataType (class in conda.core.prefix_data)

 	PrefixGraph (class in conda.models.prefix_graph)

 	PrefixPathAction (class in conda.core.path_actions)

 	PrefixRecord (class in conda.models.records)

 	PrefixReplaceLinkAction (class in conda.core.path_actions)

 	PrefixSetup (class in conda.core.link)

 	prepare() (ProgressiveFetchExtract method)

 	(UnlinkLinkTransaction method)

 	pretty_content() (in module conda.history)

 	pretty_diff() (in module conda.history)

 	pretty_json() (Entity method)

 	pretty_list() (in module conda.common.configuration)

 	pretty_map() (in module conda.common.configuration)

 	pretty_package() (in module conda.cli.main_info)

 	pretty_record() (in module conda.cli.main_search)

 	prevent (PathConflict attribute)

 	Prevent() (Clauses method), [1]

 	primitive_types (in module conda.common.compat)

 	PrimitiveLoadedParameter (class in conda.common.configuration)

 	PrimitiveParameter (class in conda.common.configuration)

 	PRINT (in module conda.instructions)

 	print_activate() (in module conda.cli.install)

 	PRINT_CMD() (in module conda.instructions)

 	print_conda_exception() (in module conda.exceptions)

 	print_config_item() (in module conda.cli.main_config)

 	print_dists() (in module conda.plan)

 	print_envs_list() (in module conda.cli.common)

 	print_expected_error_report() (ExceptionHandler method)

 	print_explicit() (in module conda.cli.main_list)

 	print_export_header() (in module conda.cli.main_list)

 	print_instrumentation_data() (in module conda.common.io)

 	print_log() (History method)

 	print_more_notices_message() (in module conda.notices.views)

 	print_notice_message() (in module conda.notices.views)

 	print_notices() (in module conda.notices.views)

 	print_packages() (in module conda.cli.main_list)

 	print_plan_results() (in module conda.core.initialize)

 	print_result() (in module conda.env.env)

 	print_transaction_summary() (UnlinkLinkTransaction method)

 	print_unexpected_error_report() (ExceptionHandler method)

 	prioritize_channels() (in module conda.models.channel)

 	process_jlap_response() (in module conda.gateways.repodata.jlap.fetch)

 	process_solution() (_PycoSatSolver method)

 	(_PyCryptoSatSolver method)

 	(_PySatSolver method)

 	(_SatSolver method)

 	PROGRESS (in module conda.instructions)

 	PROGRESS_COMMANDS (in module conda.instructions)

 	progress_update() (ProgressFileWrapper method)

 	ProgressBar (class in conda.common.io)

 	ProgressFileWrapper (class in conda.gateways.disk.create)

 	ProgressiveFetchExtract (class in conda.core.package_cache_data)

 	(in module conda.core.package_cache)

 	PROGRESSIVEFETCHEXTRACT (in module conda.instructions)

 	PROGRESSIVEFETCHEXTRACT_CMD() (in module conda.instructions)

 	proxy_servers (Context attribute)

 	ProxyError, [1]

 	prune() (PrefixGraph method)

 	push() (ContextStack method)

 	push_MatchSpec() (Resolve method)

 	PY3 (in module conda._vendor.appdirs)

 	(in module conda.exports)

 	PY_FILE_RE (in module conda.common.pkg_formats.python)

 	pyc_file (PathType attribute)

 	pyc_path() (in module conda.common.path)

 	PYCOSAT (SatSolverChoice attribute)

 	PycoSatSolver (in module conda.common.logic)

 	PYCRYPTOSAT (SatSolverChoice attribute)

 	PyCryptoSatSolver (in module conda.common.logic)

 	PYPI_CONDA_DEPS (in module conda.common.pkg_formats.python)

 	pypi_name_to_conda_name() (in module conda.common.pkg_formats.python)

 	PYPI_TO_CONDA (in module conda.common.pkg_formats.python)

 	PYSAT (SatSolverChoice attribute)

 	PySatSolver (in module conda.common.logic)

 	PySpec (in module conda.common.pkg_formats.python)

 	python (NoarchType attribute)

 	PYTHON_BINARY (in module conda.testing.integration)

 	python_entry_point_template (in module conda.gateways.disk.create)

 	python_implementation_name_version() (Context method)

 	PythonDistribution (class in conda.common.pkg_formats.python)

 	PythonDistributionMetadata (class in conda.common.pkg_formats.python)

 	PythonEggInfoDistribution (class in conda.common.pkg_formats.python)

 	PythonEggLinkDistribution (class in conda.common.pkg_formats.python)

 	PythonInstalledDistribution (class in conda.common.pkg_formats.python)

Q

 	
 	quad (Dist property)

 	query() (PackageCacheData method), [1], [2], [3]

 	(PrefixData method), [1]

 	(SubdirData method), [1]

 	query_all() (PackageCacheData class method), [1], [2]

 	(PackageCacheData static method)

 	(SubdirData static method), [1]

 	
 	query_all_prefixes() (in module conda.core.envs_manager)

 	quiet (Context attribute)

 	quote_for_shell() (in module conda.utils)

R

 	
 	Raise() (in module conda.auxlib.exceptions)

 	raise_errors() (in module conda.common.configuration)

 	raises() (in module conda.testing.helpers)

 	raw_parameters_from_single_source() (ParameterLoader static method)

 	raw_value (BaseSpec property)

 	(MatchInterface property)

 	RawParameter (class in conda.common.configuration)

 	RE_ROOT_METADATA (in module conda.trust.signature_verification)

 	reactivate() (_Activator method)

 	read() (ProgressFileWrapper method)

 	read_binstar_tokens() (in module conda.gateways.anaconda_client)

 	read_cache() (RepodataFetch method)

 	read_has_prefix() (in module conda.gateways.disk.read)

 	read_icondata() (in module conda.gateways.disk.read)

 	read_index_json() (in module conda.gateways.disk.read)

 	read_index_json_from_tarball() (in module conda.gateways.disk.read)

 	read_no_link() (in module conda.gateways.disk.read)

 	read_only_caches() (PackageCacheData class method), [1], [2]

 	read_package_info() (in module conda.gateways.disk.read)

 	read_package_metadata() (in module conda.gateways.disk.read)

 	read_paths_json() (in module conda.gateways.disk.read)

 	read_python_record() (in module conda.gateways.disk.read)

 	read_repodata_json() (in module conda.gateways.disk.read)

 	read_soft_links() (in module conda.gateways.disk.read)

 	RECOGNIZED_URL_SCHEMES (in module conda.base.constants)

 	record() (in module conda.testing.helpers)

 	record_file (time_recorder attribute)

 	record_id() (PackageRecord method), [1]

 	records (PrefixGraph property)

 	recursive_make_writable() (in module conda.gateways.disk.permissions)

 	refresh() (ProgressBar method)

 	(RepodataCache method)

 	regex_match() (BaseSpec method)

 	regex_split_re (in module conda.models.version)

 	register() (CondaPluginManager method)

 	register_action_groups (PrefixActionGroup attribute)

 	register_env() (in module conda.core.envs_manager)

 	register_envs (Context attribute)

 	register_reset_callaback() (Configuration method)

 	RegisterEnvironmentLocationAction (class in conda.core.path_actions)

 	rel_path() (in module conda.misc)

 	reload() (PackageCacheData method), [1], [2], [3]

 	(PrefixData method), [1]

 	(SubdirData method), [1]

 	reload_config() (in module conda.testing.integration)

 	remote_backoff_factor (Context attribute)

 	remote_connect_timeout_secs (Context attribute)

 	remote_max_retries (Context attribute)

 	remote_read_timeout_secs (Context attribute)

 	REMOVE (Commands attribute), [1]

 	remove() (in module conda.cli.main_package)

 	(PackageCacheData method), [1], [2]

 	(PrefixData method)

 	(Resolve method)

 	(SimpleEnvironment method)

 	remove_all_plugin_settings() (in module conda.base.context)

 	remove_auth() (in module conda.common.url)

 	remove_binstar_token() (in module conda.gateways.anaconda_client)

 	remove_channels() (Environment method)

 	remove_conda_in_sp_dir() (in module conda.core.initialize)

 	remove_empty_parent_paths() (in module conda.gateways.disk.delete)

 	remove_menu_action_groups (PrefixActionGroup attribute)

 	remove_spec() (PrefixGraph method)

 	remove_specs (PrefixSetup attribute)

 	remove_specs() (Resolve method)

 	remove_youngest_descendant_nodes_with_specs() (PrefixGraph method)

 	removed_precs (ChangeReport attribute)

 	RemoveError

 	RemoveFromPrefixPathAction (class in conda.core.path_actions)

 	RemoveLinkedPackageRecordAction (class in conda.core.path_actions)

 	RemoveMenuAction (class in conda.core.path_actions)

 	rename() (in module conda.gateways.disk.update)

 	rename_context() (in module conda.gateways.disk.update)

 	replace() (ContextStack method)

 	(RepodataCache method)

 	(Url method)

 	replace_context() (in module conda.base.context)

 	replace_context_default() (in module conda.base.context)

 	replace_first_api_with_conda() (in module conda.gateways.anaconda_client)

 	replace_long_shebang() (in module conda.core.portability)

 	replace_prefix() (in module conda.core.portability)

 	replace_pyzzer_entry_point_shebang() (in module conda.core.portability)

 	repo_cache (RepodataFetch property)

 	(SubdirData property)

 	REPO_DATA_KEYS (SimpleEnvironment attribute)

 	repo_fetch (SubdirData property)

 	repo_interface_cls (RepodataFetch attribute)

 	repodata() (CondaRepoInterface method)

 	(JlapRepoInterface method)

 	(RepoInterface method)

 	REPODATA_FN (in module conda.base.constants)

 	(in module conda.gateways.repodata)

 	repodata_fn (RepodataFetch attribute)

 	repodata_fns (Context attribute)

 	REPODATA_HEADER_RE (in module conda.core.subdir_data)

 	repodata_parsed() (JlapRepoInterface method)

 	REPODATA_PICKLE_VERSION (in module conda.core.subdir_data)

 	repodata_record (PackageInfo attribute)

 	repodata_threads (Context property)

 	repodata_use_zst (Context attribute)

 	RepodataCache (class in conda.gateways.repodata)

 	
 	RepodataFetch (class in conda.gateways.repodata)

 	RepodataIsEmpty

 	RepodataOnDisk

 	RepodataState (class in conda.gateways.repodata)

 	RepodataStateSkipFormat (class in conda.gateways.repodata.jlap.interface)

 	RepoInterface (class in conda.gateways.repodata)

 	report_errors (Context attribute)

 	reportable (CondaError attribute), [1]

 	REPR_IGNORE_KWARGS (in module conda.core.path_actions)

 	request_header_sort_dict (in module conda.auxlib.logz)

 	request_header_sort_key() (in module conda.auxlib.logz)

 	request_jlap() (in module conda.gateways.repodata.jlap.fetch)

 	request_url_jlap_state() (in module conda.gateways.repodata.jlap.fetch)

 	requested_spec (PrefixRecord attribute)

 	requests_version() (Context method)

 	Require() (Clauses method), [1]

 	required (Field property)

 	RequirementsSpec (class in conda.env.specs)

 	(class in conda.env.specs.requirements)

 	REQUIRES_FILES (PythonDistribution attribute)

 	(PythonEggInfoDistribution attribute)

 	(PythonInstalledDistribution attribute)

 	reset_conda_context() (in module conda.testing.fixtures)

 	reset_context() (in module conda.base.context)

 	(in module conda.testing)

 	Resolve (class in conda.resolve)

 	ResolvePackageNotFound

 	(in module conda.resolve)

 	Response (in module conda.gateways.subprocess)

 	Response304ContentUnchanged

 	response_header_sort_dict (in module conda.auxlib.logz)

 	response_header_sort_key() (in module conda.auxlib.logz)

 	RESTORE (SW attribute)

 	restore_bad() (Resolve method)

 	restore_free_channel (Context attribute)

 	restore_state() (_ClauseArray method)

 	(_ClauseList method)

 	(_SatSolver method)

 	Result (class in conda.core.initialize)

 	retr() (FTPAdapter method)

 	RETRIES (in module conda.gateways.connection.session)

 	retrieve_notices() (in module conda.notices.core)

 	return_code (ArgumentError attribute)

 	(CondaError attribute), [1]

 	(CondaExitZero attribute), [1]

 	reverse() (_Action method)

 	(CacheUrlAction method)

 	(CompileMultiPycAction method)

 	(CreateNonadminAction method)

 	(CreatePrefixRecordAction method)

 	(CreatePythonEntryPointAction method)

 	(ExtractPackageAction method)

 	(LinkPathAction method)

 	(MakeMenuAction method)

 	(RegisterEnvironmentLocationAction method)

 	(RemoveLinkedPackageRecordAction method)

 	(RemoveMenuAction method)

 	(UnlinkPathAction method)

 	(UnregisterEnvironmentLocationAction method)

 	(UpdateHistoryAction method)

 	revert_actions() (in module conda.plan)

 	right_pad_os_sep() (in module conda.common.path)

 	riscv64 (Arch attribute)

 	RM_EXTRACTED (in module conda.instructions)

 	RM_FETCHED (in module conda.instructions)

 	rm_fetched() (in module conda.core.package_cache_data)

 	rm_items() (in module conda.cli.main_clean)

 	rm_pkgs() (in module conda.cli.main_clean)

 	rm_rf() (in module conda.exports)

 	(in module conda.gateways.disk.delete)

 	rmtree() (in module conda.gateways.disk.delete)

 	rollback_enabled (Context attribute)

 	root_dir (Context property)

 	(in module conda.exports)

 	ROOT_ENV_NAME (in module conda.base.constants)

 	root_log (in module conda.auxlib.logz)

 	ROOT_NO_RM (in module conda.base.constants)

 	root_prefix() (Context method)

 	root_writable (Context property)

 	(in module conda.exports)

 	rsplit() (Dist method)

 	RUN (Commands attribute), [1]

 	run() (_SatSolver method)

 	(ASM method), [1]

 	run_as_admin() (in module conda.common._os.windows)

 	run_command() (in module conda.cli.python_api)

 	(in module conda.testing.integration)

 	run_for (CondaPostCommand attribute), [1], [2]

 	(CondaPreCommand attribute), [1], [2]

 	run_plan() (in module conda.core.initialize)

 	run_plan_elevated() (in module conda.core.initialize)

 	run_plan_from_stdin() (in module conda.core.initialize)

 	run_plan_from_temp_file() (in module conda.core.initialize)

 	run_script() (in module conda.core.link)

 	run_script_tmpl (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	running_a_python_capable_of_unicode_subprocessing() (in module conda.testing.integration)

S

 	
 	s390x (Arch attribute)

 	S3Adapter (class in conda.gateways.connection.adapters.s3)

 	safety_checks (Context attribute)

 	SafetyChecks (class in conda.base.constants)

 	SafetyError

 	sat() (Clauses method), [1]

 	sat_solver (Context attribute)

 	SatSolverChoice (class in conda.base.constants)

 	save() (Environment method)

 	(RepodataCache method)

 	save_state() (_ClauseArray method)

 	(_ClauseList method)

 	(_SatSolver method)

 	schannel (PackageRecord property), [1]

 	script_extension (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	SEARCH (Commands attribute), [1]

 	SEARCH_PATH (in module conda.base.constants)

 	send() (EnforceUnusedAdapter method)

 	(FTPAdapter method)

 	(LocalFSAdapter method)

 	(S3Adapter method)

 	SenderError

 	sep (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	separate_format_cache (Context attribute)

 	SequenceLoadedParameter (class in conda.common.configuration)

 	SequenceParameter (class in conda.common.configuration)

 	sestatus_b() (DataSource static method), [1]

 	set_active_prefix() (in module conda.testing.helpers)

 	set_all_logger_level() (in module conda.gateways.logging)

 	set_binstar_token() (in module conda.gateways.anaconda_client)

 	set_conda_log_level() (in module conda.gateways.logging)

 	set_description (in module conda_env.cli.main_vars)

 	set_environment_env_vars() (PrefixData method)

 	set_example (in module conda_env.cli.main_vars)

 	set_file_logging() (in module conda.gateways.logging)

 	set_has_format() (RepodataState method)

 	set_log_level() (in module conda.gateways.logging)

 	set_name() (Field method)

 	set_repository_metadata() (SolverStateContainer method)

 	set_root_level() (in module conda.auxlib.logz)

 	set_tmpdir() (in module conda.testing.integration)

 	set_value() (ContextStackObject method)

 	set_var_tmpl (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	set_verbosity() (in module conda.gateways.logging)

 	setter() (classproperty method)

 	Settings

 	setup() (_PycoSatSolver method)

 	(_PyCryptoSatSolver method)

 	(_PySatSolver method)

 	(_SatSolver method)

 	sha256 (PackageRecord attribute), [1]

 	(PathDataV1 attribute)

 	sha256_in_prefix (PathDataV1 attribute)

 	SHARE (ERROR attribute)

 	SharedLinkPathClobberError

 	shebang_pat (in module conda.cli.main_package)

 	SHEBANG_REGEX (in module conda.core.portability)

 	(in module conda.gateways.disk.update)

 	shells (in module conda.utils)

 	shlex_split_unicode() (in module conda.auxlib.compat)

 	shlvl (Context property)

 	shortcuts (Context attribute), [1]

 	shortcuts_only (Context attribute)

 	should_check_format() (RepodataState method)

 	(RepodataStateSkipFormat method)

 	SHOW (SW attribute)

 	show_channel_urls (Context attribute)

 	show_help_on_empty_command() (in module conda_env.cli.main)

 	SHOWDEFAULT (SW attribute)

 	SHOWMAXIMIZED (SW attribute)

 	SHOWMINIMIZED (SW attribute)

 	SHOWMINNOACTIVE (SW attribute)

 	SHOWNA (SW attribute)

 	SHOWNOACTIVATE (SW attribute)

 	SHOWNORMAL (SW attribute)

 	shutdown() (DummyExecutor method)

 	signal_handler() (in module conda.common.signals)

 	signature_verification (in module conda.trust.signature_verification)

 	SignatureError

 	signing_metadata_url_base (Context property)

 	SimpleEnvironment (class in conda.testing.solver_helpers)

 	SINGLE_USE_KEYS (PythonDistributionMetadata attribute)

 	SingleStrArgCachingType (class in conda.models.version)

 	site_data_dir (AppDirs property)

 	(EnvAppDirs property)

 	site_data_dir() (in module conda._vendor.appdirs)

 	six_with_metaclass() (in module conda.common.compat)

 	size (PackageRecord attribute), [1]

 	size_in_bytes (PathDataV1 attribute)

 	SKIP_FIELDS (in module conda.cli.main_info)

 	skip_formats (RepodataStateSkipFormat attribute)

 	skip_tests() (SolverTests method)

 	softlink (LinkType attribute)

 	(PathType attribute)

 	softlink_paths (PreferredEnv attribute)

 	softlink_supported() (in module conda.gateways.disk.test)

 	solve() (Resolve method)

 	
 	solve_final_state() (Solver method), [1]

 	solve_for_diff() (Solver method), [1]

 	solve_for_transaction() (Solver method), [1]

 	Solver (class in conda.api)

 	(class in conda.core.solve)

 	solver (Context attribute)

 	Solver (in module conda.testing.fixtures)

 	solver() (SimpleEnvironment method)

 	solver_class (SolverTests property)

 	solver_class() (in module conda.testing.helpers)

 	solver_classic() (in module conda.testing.fixtures)

 	solver_ignore_timestamps (Context attribute)

 	solver_libmamba() (in module conda.testing.fixtures)

 	solver_transaction() (SimpleEnvironment method)

 	solver_user_agent() (Context method)

 	SolverStateContainer (class in conda.core.solve)

 	SolverTests (class in conda.testing.solver_helpers)

 	source (ArgParseRawParameter attribute)

 	(EnvRawParameter attribute)

 	(Link attribute)

 	source_full_path (CreateInPrefixPathAction property)

 	source_full_paths (CompileMultiPycAction property)

 	SPACER_CHARACTER (in module conda.testing.integration)

 	spec (BaseSpec property)

 	(MatchSpec property)

 	spec_from_line() (in module conda.cli.common)

 	spec_name (in module conda.plugins.hookspec)

 	spec_pat (History attribute)

 	(in module conda.cli.common)

 	SpecNotFound, [1]

 	specs_from_args() (in module conda.cli.common)

 	specs_from_history_map() (SolverStateContainer method)

 	specs_from_url() (in module conda.cli.common)

 	SPECS_SATISFIED_SKIP_SOLVE (UpdateModifier attribute)

 	specs_to_add (ChangeReport attribute)

 	specs_to_remove (ChangeReport attribute)

 	SpecsConfigurationConflictError

 	SpecTypes (in module conda.env.specs)

 	Spinner (class in conda.common.io)

 	spinner_cycle (Spinner attribute)

 	split() (Dist method)

 	split_anaconda_token() (in module conda.common.url)

 	split_conda_url_easy_parts() (in module conda.common.url)

 	split_extension() (in module conda.models.dist)

 	split_filename() (in module conda.common.path)

 	split_platform() (in module conda.common.url)

 	split_scheme_auth_token() (in module conda.common.url)

 	split_spec() (in module conda.common.pkg_formats.python)

 	SplitStrMatch (class in conda.models.match_spec)

 	ssl_verify (Context attribute)

 	ssl_verify_validation() (in module conda.base.context)

 	stack_context() (in module conda.base.context)

 	stack_context_default() (in module conda.base.context)

 	stale() (RepodataCache method)

 	start() (Spinner method)

 	start_time (time_recorder attribute)

 	startswith() (Dist method)

 	(VersionOrder method)

 	status_code (UnavailableInvalidChannel attribute), [1]

 	stderr_log_level() (in module conda.common.io)

 	stderrlog (in module conda.cli.install)

 	(in module conda.gateways.connection.adapters.s3)

 	(in module conda.gateways.repodata)

 	STDOUT (CaptureTarget attribute)

 	(in module conda.cli.python_api)

 	stdout_json() (in module conda.cli.common)

 	stdout_json_success() (in module conda.cli.common)

 	stdoutlog (in module conda.gateways.disk.create)

 	(in module conda.resolve)

 	StdStreamHandler (class in conda.gateways.logging)

 	stop() (Spinner method)

 	stor() (FTPAdapter method)

 	STORE_HEADERS (in module conda.gateways.repodata.jlap.fetch)

 	STRICT (ChannelPriority attribute)

 	strictness (MatchSpec property)

 	STRING (CaptureTarget attribute)

 	(in module conda.cli.python_api)

 	STRING_CHUNK (in module conda.common.pkg_formats.python)

 	string_types (in module conda.exports)

 	StringField (class in conda.auxlib.entity)

 	stringify() (in module conda.auxlib.logz)

 	(in module conda.gateways.repodata)

 	strip_comment() (in module conda.cli.common)

 	strip_expected() (in module conda.testing.helpers)

 	strip_extension() (in module conda.models.dist)

 	strip_pkg_extension() (in module conda.common.path)

 	strip_scheme() (in module conda.common.url)

 	subdir (Channel property), [1]

 	(Context property)

 	(Dist property)

 	(in module conda.exports)

 	(PackageRecord attribute), [1]

 	subdir_url (Channel property), [1]

 	SubdirData (class in conda.api)

 	(class in conda.core.subdir_data)

 	SubdirDataType (class in conda.core.subdir_data)

 	SubdirField (class in conda.models.records)

 	subdirs (Context property)

 	submit() (DummyExecutor method)

 	(ThreadLimitedThreadPoolExecutor method)

 	subprocess_call() (in module conda.gateways.subprocess)

 	subprocess_call_with_clean_env() (in module conda.gateways.subprocess)

 	success() (Trace method), [1]

 	summary (CondaSubcommand attribute), [1], [2], [3]

 	superseded_precs (ChangeReport attribute)

 	supplement_index_with_repodata() (in module conda.testing.helpers)

 	suppress_resource_warning() (in module conda.testing.fixtures)

 	SW (class in conda.common._os.windows)

 	swallow_broken_pipe (in module conda.common.io)

 	SwallowBrokenPipe (class in conda.common.io)

 	SYMLINK_CONDA (in module conda.instructions)

 	symlink_conda() (in module conda.exports)

 	sys_prefix_unfollowed() (in module conda.utils)

 	sys_rc_path (in module conda.base.context)

 	sysctl_machdep_cpu_hw_cpufrequency() (DataSource static method), [1]

 	sysinfo_cpu() (DataSource static method), [1]

T

 	
 	T (in module conda.deprecations)

 	tarball_basename (PackageCacheRecord property)

 	tarball_file_in_cache() (PackageCacheData class method), [1], [2]

 	tarball_file_in_this_cache() (PackageCacheData method), [1], [2]

 	target (MatchSpec property)

 	target_full_path (CacheUrlAction property)

 	(ExtractPackageAction property)

 	(PathAction property)

 	(PrefixPathAction property)

 	(RegisterEnvironmentLocationAction property)

 	(UnregisterEnvironmentLocationAction property)

 	target_full_paths (CompileMultiPycAction property)

 	(MultiPathAction property)

 	target_path (LeasedPathEntry attribute)

 	target_prefix (ActionGroup attribute)

 	(Context property)

 	(LeasedPathEntry attribute)

 	(PrefixSetup attribute)

 	target_prefix_override (Context attribute)

 	target_short_paths (PrefixPathAction property)

 	temp_package_cache() (in module conda.testing.fixtures)

 	temp_path (in module conda.core.initialize)

 	temp_simple_env() (in module conda.testing.solver_helpers)

 	tempdir() (in module conda.testing.helpers)

 	(in module conda.testing.integration)

 	tempfile_extension (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(JSONFormatMixin attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	temporary_content_in_file() (in module conda.common.disk)

 	TemporaryDirectory (class in conda.gateways.disk.create)

 	terminate() (JLAP method)

 	terminator (StdStreamHandler attribute)

 	test_accelerate() (SolverTests method)

 	test_anaconda_nomkl() (SolverTests method)

 	test_arch_preferred_over_noarch_when_otherwise_equal() (SolverTests method)

 	test_channel_priority_1() (SolverTests method)

 	test_circular_dependencies() (SolverTests method)

 	TEST_DATA_DIR (in module conda.testing.helpers)

 	test_empty() (SolverTests method)

 	test_get_dists() (SolverTests method)

 	test_get_reduced_index_broadening_preferred_solution() (SolverTests method)

 	test_get_reduced_index_broadening_with_unsatisfiable_early_dep() (SolverTests method)

 	test_install_package_with_feature() (SolverTests method)

 	test_iopro_mkl() (SolverTests method)

 	test_iopro_nomkl() (SolverTests method)

 	test_irrational_version() (SolverTests method)

 	TEST_LOG_LEVEL (in module conda.testing.integration)

 	test_mkl() (SolverTests method)

 	test_no_features() (SolverTests method)

 	test_noarch_preferred_over_arch_when_build_greater() (SolverTests method)

 	test_noarch_preferred_over_arch_when_build_greater_dep() (SolverTests method)

 	test_noarch_preferred_over_arch_when_version_greater() (SolverTests method)

 	test_noarch_preferred_over_arch_when_version_greater_dep() (SolverTests method)

 	test_nonexistent() (SolverTests method)

 	test_nonexistent_deps() (SolverTests method)

 	test_pseudo_boolean() (SolverTests method)

 	test_remove() (SolverTests method)

 	test_scipy_mkl() (SolverTests method)

 	test_surplus_features_1() (SolverTests method)

 	test_surplus_features_2() (SolverTests method)

 	test_timestamps_and_deps() (SolverTests method)

 	test_unintentional_feature_downgrade() (SolverTests method)

 	test_unsat_any_two_not_three() (SolverTests method)

 	test_unsat_chain() (SolverTests method)

 	test_unsat_channel_priority() (SolverTests method)

 	test_unsat_expand_single() (SolverTests method)

 	test_unsat_from_r1() (SolverTests method)

 	test_unsat_missing_dep() (SolverTests method)

 	test_unsat_shortest_chain_1() (SolverTests method)

 	test_unsat_shortest_chain_2() (SolverTests method)

 	test_unsat_shortest_chain_3() (SolverTests method)

 	
 	test_unsat_shortest_chain_4() (SolverTests method)

 	test_unsat_simple() (SolverTests method)

 	tests_to_skip (SolverTests property)

 	text (FileMode attribute)

 	text_type (in module conda.exports)

 	ThisShouldNeverHappenError

 	ThreadLimitedThreadPoolExecutor (class in conda.common.io)

 	THREADSAFE_EXTRACT (in module conda.core.package_cache_data)

 	time_recorder (class in conda.common.io)

 	timeme() (in module conda.gateways.repodata.jlap.fetch)

 	timeout() (in module conda.common.io)

 	(RepodataCache method)

 	timestamp (PackageRecord attribute), [1]

 	TimestampField (class in conda.models.records)

 	tmp_channel() (in module conda.testing)

 	tmp_env() (in module conda.testing)

 	tmp_path (PathFactoryFixture attribute)

 	tmp_pkgs_dir() (in module conda.testing)

 	TmpChannelFixture (class in conda.testing)

 	tmpdir() (in module conda.testing.fixtures)

 	tmpdir_in_use (in module conda.testing.integration)

 	TmpDownload (class in conda.gateways.connection.download)

 	TmpEnvFixture (class in conda.testing)

 	to_dict() (ChannelNotice method)

 	(Environment method)

 	(Trace method), [1]

 	to_feature_metric_id() (Resolve static method)

 	to_filename() (Dist method)

 	to_json() (frozendict method)

 	to_match_spec() (Dist method)

 	(PackageRecord method), [1]

 	to_matchspec() (Dist method)

 	to_package_ref() (Dist method)

 	to_sat_name() (Resolve static method)

 	to_simple_match_spec() (PackageRecord method), [1]

 	to_url() (Dist method)

 	to_yaml() (Environment method)

 	TOKEN_REPLACE (TokenURLFilter attribute)

 	TOKEN_URL_PATTERN (TokenURLFilter attribute)

 	tokenized_conda_url_startswith() (in module conda.models.channel)

 	tokenized_startswith() (in module conda.common.path)

 	(in module conda.models.channel)

 	TokenURLFilter (class in conda.gateways.logging)

 	TooManyArgumentsError

 	top (ParameterFlag attribute)

 	topic() (DeprecationHandler method)

 	toposort() (in module conda.common.toposort)

 	total_call_num (time_recorder attribute)

 	total_number_channel_notices (ChannelNoticeResultSet attribute)

 	total_run_time (time_recorder attribute)

 	touch() (in module conda.gateways.disk.update)

 	touch_nonadmin() (in module conda.misc)

 	Trace (class in conda._vendor.cpuinfo)

 	(class in conda._vendor.cpuinfo.cpuinfo)

 	trace (Context property)

 	TRACE (in module conda.common.constants)

 	(in module conda.gateways.disk)

 	trace() (in module conda.gateways.logging)

 	track_features (Context attribute)

 	(PackageRecord attribute), [1]

 	track_features_specs() (SolverStateContainer method)

 	translate_stream() (in module conda.utils)

 	trash_dir() (Context method)

 	treeify() (in module conda.models.version)

 	Troubleshooting

 	TRUE (in module conda.common._logic)

 	(in module conda.common.logic)

 	trusted_root (_SignatureVerification property)

 	type (ActionGroup attribute)

 	(Field property)

 	(Link attribute)

 	(Noarch attribute)

 	TYPE_CHECKING (in module conda._version)

 	typify() (in module conda.auxlib.type_coercion)

 	(LoadedParameter method)

 	(Parameter method)

 	typify_parameter() (Configuration method)

U

 	
 	uname_string_raw (DataSource attribute), [1]

 	UnavailableInvalidChannel, [1]

 	unbox() (Field method)

 	(ListField method)

 	UNDEFINED_MESSAGE_ID (in module conda.notices.types)

 	unicode (in module conda._vendor.appdirs)

 	UNICODE_CHARACTERS (in module conda.testing.integration)

 	UNICODE_CHARACTERS_RESTRICTED (in module conda.testing.integration)

 	union() (BuildNumberMatch method)

 	(MatchInterface method)

 	(MatchSpec class method)

 	(VersionSpec method)

 	unique() (in module conda.common.iterators)

 	unix_path_to_win() (in module conda.utils)

 	unix_python_entry_point (PathType attribute)

 	unix_shell_base (in module conda.utils)

 	UNKNOWN_CHANNEL (in module conda.base.constants)

 	UnknownPackageClobberError

 	UNLINK (in module conda.instructions)

 	unlink_action_groups (PrefixActionGroup attribute)

 	unlink_or_rename_to_trash() (in module conda.gateways.disk.delete)

 	unlink_precs (PrefixSetup attribute)

 	UnlinkLinkTransaction (class in conda.core.link)

 	UNLINKLINKTRANSACTION (in module conda.instructions)

 	UNLINKLINKTRANSACTION_CMD() (in module conda.instructions)

 	UnlinkPathAction (class in conda.core.path_actions)

 	unmanageable_package_types() (PackageType static method)

 	unregister_action_groups (PrefixActionGroup attribute)

 	unregister_env() (in module conda.core.envs_manager)

 	UnregisterEnvironmentLocationAction (class in conda.core.path_actions)

 	unsat (Clauses property)

 	Unsatisfiable (in module conda.resolve)

 	unsatisfiable_hints (Context attribute)

 	unsatisfiable_hints_check_depth (Context attribute)

 	UnsatisfiableError

 	unset_description (in module conda_env.cli.main_vars)

 	unset_environment_env_vars() (PrefixData method)

 	unset_example (in module conda_env.cli.main_vars)

 	unset_var_tmpl (_Activator attribute)

 	(CmdExeActivator attribute)

 	(CshActivator attribute)

 	(FishActivator attribute)

 	(PosixActivator attribute)

 	(PowerShellActivator attribute)

 	(XonshActivator attribute)

 	untracked() (in module conda.misc)

 	untreeify() (in module conda.models.version)

 	UPDATE (Commands attribute), [1]

 	update() (History method)

 	UPDATE_ALL (UpdateModifier attribute)

 	UPDATE_DEPS (UpdateModifier attribute)

 	
 	update_file_in_place_as_binary() (in module conda.gateways.disk.update)

 	update_modifier (Context attribute)

 	update_prefix() (in module conda.core.portability)

 	update_specs (PrefixSetup attribute)

 	UPDATE_SPECS (UpdateModifier attribute)

 	update_to() (ProgressBar method)

 	updated_precs (ChangeReport attribute)

 	UpdateHistoryAction (class in conda.core.path_actions)

 	UpdateModifier (class in conda.base.constants)

 	(in module conda.api)

 	url (ChannelNoticeResponse attribute)

 	Url (class in conda.common.url)

 	url (PackageInfo attribute)

 	(PackageRecord attribute), [1]

 	url() (Channel method), [1]

 	(MultiChannel method)

 	url_attrs (in module conda.common.url)

 	url_channel_wtf (Channel property), [1]

 	URL_KEY (in module conda.gateways.repodata)

 	url_pat (in module conda.misc)

 	url_to_path() (in module conda.common.path)

 	url_to_s3_info() (in module conda.common.url)

 	url_w_credentials (RepodataFetch attribute)

 	url_w_repodata_fn (RepodataFetch property)

 	(SubdirData property)

 	url_w_subdir (RepodataFetch attribute)

 	urlparse() (in module conda.common.url)

 	urls() (Channel method), [1]

 	(MultiChannel method)

 	UrlsData (class in conda.core.package_cache_data)

 	use_index_cache (Context attribute)

 	use_local (Context attribute)

 	use_only_tar_bz2 (Context property)

 	user_agent (ExceptionHandler property)

 	user_agent() (Context method)

 	user_cache_dir (AppDirs property)

 	(EnvAppDirs property)

 	user_cache_dir() (in module conda._vendor.appdirs)

 	user_data_dir (AppDirs property)

 	(EnvAppDirs property)

 	user_data_dir() (in module conda._vendor.appdirs)

 	(in module conda.base.context)

 	user_log_dir (AppDirs property)

 	(EnvAppDirs property)

 	user_log_dir() (in module conda._vendor.appdirs)

 	user_rc_path (in module conda.base.context)

 	username() (BinstarSpec method), [1]

 	Using conda for your project

 	Using non-standard certificates

 	Using the .condarc conda configuration file

 	utf8_writer() (in module conda.auxlib.compat)

 	Utf8NamedTemporaryFile() (in module conda.auxlib.compat)

V

 	
 	valid() (Resolve method)

 	valid2() (Resolve method)

 	VALID_KEYS (in module conda.env.env)

 	valid_name() (BinstarSpec method), [1]

 	valid_package() (BinstarSpec method), [1]

 	validate() (Entity method)

 	(Field method)

 	(ListField method)

 	validate_all() (Configuration method)

 	validate_configuration() (Configuration method)

 	validate_destination() (in module conda.cli.main_rename)

 	validate_keys() (in module conda.env.env)

 	validate_prefix() (in module conda.cli.common)

 	validate_prefix_name() (in module conda.base.context)

 	validate_src() (in module conda.cli.main_rename)

 	ValidationError, [1]

 	value() (ArgParseRawParameter method)

 	(DefaultValueRawParameter method)

 	(EnvRawParameter method)

 	(RawParameter method)

 	(YamlRawParameter method)

 	ValueEnum (class in conda.base.constants)

 	valueflags() (ArgParseRawParameter method)

 	(DefaultValueRawParameter method)

 	(EnvRawParameter method)

 	(RawParameter method)

 	(YamlRawParameter method)

 	values() (PackageCacheData method), [1], [2]

 	var_description (in module conda_env.cli.main_vars)

 	var_example (in module conda_env.cli.main_vars)

 	ver_eval() (in module conda.models.version)

 	verbose (Context property)

 	verbosity (Context property)

 	verified (_Action property)

 	verify() (_Action method)

 	(_SignatureVerification method)

 	(CacheUrlAction method)

 	(CompileMultiPycAction method)

 	(CreateInPrefixPathAction method)

 	(ExtractPackageAction method)

 	(in module conda.exports)

 	(LinkPathAction method)

 	(PrefixReplaceLinkAction method)

 	(RegisterEnvironmentLocationAction method)

 	(RemoveFromPrefixPathAction method)

 	(UnlinkLinkTransaction method)

 	(UnregisterEnvironmentLocationAction method)

 	
 	verify_specs() (Resolve method)

 	verify_threads (Context property)

 	version (CondaVirtualPackage attribute), [1], [2]

 	(Dist attribute)

 	(DistDetails attribute)

 	(in module conda._version)

 	(MatchSpec property)

 	(PackageInfo property)

 	(PackageRecord attribute), [1]

 	(PythonDistribution property)

 	(PythonDistributionMetadata property)

 	version() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	version_cache (in module conda.models.version)

 	version_check_re (in module conda.models.version)

 	VERSION_IDENTIFIER (in module conda.common.pkg_formats.python)

 	version_key() (Resolve method)

 	version_parts() (in module conda._vendor.distro)

 	(LinuxDistribution method)

 	version_relation_re (in module conda.models.version)

 	version_split_re (in module conda.models.version)

 	VERSION_TUPLE (in module conda._version)

 	version_tuple (in module conda._version)

 	VersionMatch (in module conda.models.version)

 	VersionOrder (class in conda.models.version)

 	VersionSpec (class in conda.models.version)

 	View command line help

 	viewed_channel_notices (ChannelNoticeResultSet attribute)

 	VIRTUAL_PRIVATE_ENV (PackageType attribute)

 	VIRTUAL_PYTHON_EGG_LINK (PackageType attribute)

 	VIRTUAL_PYTHON_EGG_MANAGEABLE (PackageType attribute)

 	VIRTUAL_PYTHON_EGG_UNMANAGEABLE (PackageType attribute)

 	VIRTUAL_PYTHON_WHEEL (PackageType attribute)

 	VIRTUAL_SYSTEM (PackageType attribute)

 	VSPEC_TOKENS (in module conda.models.version)

W

 	
 	walk_prefix() (in module conda.misc)

 	warn (PathConflict attribute)

 	(SafetyChecks attribute)

 	WARNING (NoticeLevel attribute)

 	which() (in module conda.common.path)

 	which_or_where (in module conda.testing.integration)

 	which_package() (in module conda.cli.main_package)

 	which_prefix() (in module conda.cli.main_package)

 	win (Platform attribute)

 	win_conda_bat_redirect() (in module conda.exports)

 	win_path_backout() (in module conda.common.path)

 	win_path_double_escape() (in module conda.common.path)

 	win_path_ok() (in module conda.common.path)

 	win_path_to_cygwin() (in module conda.utils)

 	win_path_to_unix() (in module conda.common.path)

 	windows_python_entry_point_exe (PathType attribute)

 	windows_python_entry_point_script (PathType attribute)

 	winreg_arch_string_raw() (DataSource static method), [1]

 	winreg_feature_bits() (DataSource static method), [1]

 	
 	winreg_hz_actual() (DataSource static method), [1]

 	winreg_processor_brand() (DataSource static method), [1]

 	winreg_vendor_id_raw() (DataSource static method), [1]

 	withext()